51
|
Harikumar KG, Coudrat T, Desai AJ, Dong M, Dengler DG, Furness SGB, Christopoulos A, Wootten D, Sergienko EA, Sexton PM, Miller LJ. Discovery of a Positive Allosteric Modulator of Cholecystokinin Action at CCK1R in Normal and Elevated Cholesterol. Front Endocrinol (Lausanne) 2021; 12:789957. [PMID: 34950108 PMCID: PMC8689142 DOI: 10.3389/fendo.2021.789957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Drugs useful in prevention/treatment of obesity could improve health. Cholecystokinin (CCK) is a key regulator of appetite, working through the type 1 CCK receptor (CCK1R); however, full agonists have not stimulated more weight loss than dieting. We proposed an alternate strategy to target this receptor, while reducing likelihood of side effects and/or toxicity. Positive allosteric modulators (PAMs) with minimal intrinsic agonist activity would enhance CCK action, while maintaining spatial and temporal characteristics of physiologic signaling. This could correct abnormal stimulus-activity coupling observed in a high-cholesterol environment observed in obesity. We utilized high-throughput screening to identify a molecule with this pharmacological profile and studied its basis of action. Compound 1 was a weak partial agonist, with PAM activity to enhance CCK action at CCK1R, but not CCK2R, maintained in both normal and high cholesterol. Compound 1 (10 µM) did not exhibit agonist activity or stimulate internalization of CCK1R. It enhanced CCK activity by slowing the off-rate of bound hormone, increasing its binding affinity. Computational docking of Compound 1 to CCK1R yielded plausible poses. A radioiodinatable photolabile analogue retained Compound 1 pharmacology and covalently labeled CCK1R Thr211, consistent with one proposed pose. Our study identifies a novel, selective, CCK1R PAM that binds to the receptor to enhance action of CCK-8 and CCK-58 in both normal and disease-mimicking high-cholesterol environments. This facilitates the development of compounds that target the physiologic spatial and temporal engagement of CCK1R by CCK that underpins its critical role in metabolic regulation.
Collapse
Affiliation(s)
- Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
| | - Thomas Coudrat
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC (Australian Research Council) Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
| | - Daniela G. Dengler
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sebastian G. B. Furness
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC (Australian Research Council) Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC (Australian Research Council) Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Eduard A. Sergienko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC (Australian Research Council) Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
- *Correspondence: Laurence J. Miller,
| |
Collapse
|