51
|
Ho LJ, Lu CH, Su RY, Lin FH, Su SC, Kuo FC, Chu NF, Hung YJ, Liu JS, Hsieh CH. Association between glucokinase regulator gene polymorphisms and serum uric acid levels in Taiwanese adolescents. Sci Rep 2022; 12:5519. [PMID: 35365700 PMCID: PMC8975867 DOI: 10.1038/s41598-022-09393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The glucokinase regulator gene (GCKR) is located on chromosome 2p23. It plays a crucial role in maintaining plasma glucose homeostasis and metabolic traits. Recently, genome-wide association studies have revealed a positive association between hyperuricemia and GCKR variants in adults. This study investigated this genetic association in Taiwanese adolescents. Data were collected from our previous cross-sectional study (Taipei Children Heart Study). The frequencies of various genotypes (CC, CT, and TT) or alleles (C and T) of the GCKR intronic single-nucleotide polymorphism (SNP) rs780094 and the coding SNP rs1260326 (Pro446Leu, a common 1403C-T transition) were compared between a total of 968 Taiwanese adolescents (473 boys, 495 girls) with hyperuricemia or normal uric acid levels on the basis of gender differences. Logistic and linear regression analyses explored the role of GCKR in abnormal uric acid (UA) levels. Boys had higher UA levels than girls (6.68 ± 1.29 and 5.23 ± 0.95 mg/dl, respectively, p < 0.001). The analysis of both SNPs in girls revealed that the T allele was more likely to appear in patients with hyperuricemia than the C allele. After adjusting for confounders, the odds ratio (OR) for hyperuricemia incidence in the TT genotype was 1.75 (95% confidence interval [CI] 1.02–3.00), which was higher than that in the C allele carriers in rs1260326 in the girl population. Similarly, the TT genotypes had a higher risk of hyperuricemia, with an OR of 2.29 (95% CI 1.11–4.73) for rs1260326 and 2.28 (95% CI 1.09–4.75) for rs780094, than the CC genotype in girl adolescents. The T (Leu446) allele of GCKR rs1260326 polymorphism is associated with higher UA levels in Taiwanese adolescent girls.
Collapse
Affiliation(s)
- Li-Ju Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Ruei-Yu Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, ROC
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sheng-Chiang Su
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Nain-Feng Chu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.,School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.
| |
Collapse
|
52
|
Yeh KH, Hsu LA, Teng MS, Wu S, Chou HH, Ko YL. Pleiotropic Effects of Common and Rare GCKR Exonic Mutations on Cardiometabolic Traits. Genes (Basel) 2022; 13:genes13030491. [PMID: 35328045 PMCID: PMC8951277 DOI: 10.3390/genes13030491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The common non-synonymous mutation of the glucokinase regulator (GCKR) gene, namely rs1260326, is widely reported to have pleiotropic effects on cardio-metabolic traits and hematological parameters. Objective: This study aimed to identify whether other GCKR variants may have pleiotropic effects independent of the rs1260326 genotypes. Methods: In total, 81,097 Taiwan Biobank participants were enrolled for the regional plot association studies and candidate variant analysis of the region around the GCKR gene. Results: The initial candidate variant approach showed the significant association of the rs1260326 genotypes with multiple phenotypes. Regional plot association analysis of the GCKR gene region further revealed genome-wide significant associations between GCKR variants and serum total and low-density lipoprotein cholesterol; triglyceride, uric acid, creatinine, aspartate aminotransferase, γ-Glutamyl transferase, albumin, and fasting plasma glucose levels; estimated glomerular filtration rate; leukocyte and platelet counts; microalbuminuria, and metabolic syndrome, with rs1260326 being the most common lead polymorphism. Serial conditional analysis identified genome-wide significant associations of two low-frequency exonic mutations, rs143881585 and rs8179206, with high serum triglyceride and albumin levels. In five rare GCKR exonic non-synonymous or nonsense mutations available for analysis, GCKR rs146175795 showed an independent association with serum triglyceride and albumin levels and rs150673460 showed an independent association with serum triglyceride levels. Weighted genetic risk scores from the combination of GCKR rs143881585 and rs146175795 revealed a significant association with metabolic syndrome. Conclusion: In addition to the rs1260326 variant, low-frequency and rare GCKR exonic mutations exhibit pleiotropic effects on serum triglyceride and albumin levels and the risk of metabolic syndrome. These results provide evidence that both common and rare GCKR variants may play a critical role in predicting the risk of cardiometabolic disorders.
Collapse
Affiliation(s)
- Kuan-Hung Yeh
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Hsin-Hua Chou
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Lin Ko
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5355); Fax: +886-2-6628-9009
| |
Collapse
|
53
|
Zheng Q, Keliang W, Hongtao Q, Xiaosheng L. Genetic Association Between SLC22A12 Variants and Susceptibility to Hyperuricemia: A Meta-Analysis. Genet Test Mol Biomarkers 2022; 26:81-95. [PMID: 35225677 DOI: 10.1089/gtmb.2021.0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: Gout is a form of inflammatory arthritis characterized by the deposition of monosodium urate crystals. An important risk factor for gout is hyperuricemia. The relationship between SLC22A12 gene variants and the susceptibility to hyperuricemia has been reported, but these findings have been inconsistent. Thus, we aimed to assess the relationship between SLC22A12 gene variants and hyperuricemia susceptibility through a meta-analysis. Methods: The meta-analysis was performed by searching PubMed, Embase, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) databases. The relationship between hyperuricemia risk and the SLC22A12 rs11602903, rs524023, rs3825018, rs3825016, rs11231825, rs7932775, rs893006, and rs475688 variants was assessed by odds ratios and 95% confidence intervals. Results: In total, 20 eligible publications with 4817 cases and 6819 controls were included in the meta-analysis. Hyperuricemia risk was significantly associated with the SLC22A12 alleles rs3825018, rs7932775, and rs475688 under both the dominant and recessive models and with rs3825016 under the allelic and dominant models. Conclusions: Under the allelic model SLC22A12 rs3825018 and rs3825016 were risk factors for hyperuricemia and gout as was rs7932775 under dominant and recessive models, while the SLC22A12 rs475688 was protective against hyperuricemia under both dominant and recessive models.
Collapse
Affiliation(s)
- Qu Zheng
- Department of Orthopedics, Guangzhou University of Chinese Medicine, Guangzhou, China.,Orthopedics First Ward, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, China
| | - Wu Keliang
- Department of Orthopedics, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiu Hongtao
- Orthopedics First Ward, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, China
| | - Lin Xiaosheng
- Orthopedics Ward, Shenzhen Integrative Medicine Hospital, Shenzhen, China
| |
Collapse
|
54
|
Li R, Zeng L, Wu C, Ma P, Cui H, Chen L, Li Q, Hong C, Liu L, Xiao L, Li W. Tea Consumption is Associated with an Increased Risk of Hyperuricemia in an Occupational Population in Guangdong, China. Int J Gen Med 2022; 15:2747-2757. [PMID: 35300131 PMCID: PMC8922363 DOI: 10.2147/ijgm.s355253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 01/30/2023] Open
Abstract
Purpose Chronic hyperuricemia leads to long-term deposition of monosodium urate crystals that may damage the joint structure and affect quality of life. Although hyperuricemia prevalence varies, most studies indicate increased cases of hyperuricemia worldwide. The relationship between hyperuricemia and tea consumption is uncertain. This cross-sectional study investigated the effect of tea consumption on the risk of hyperuricemia in the working population in Guangdong, China. Patients and Methods Data on weight, height, blood pressure, laboratory test results, and health questionnaire responses of 7644 adults aged ≥18 years were obtained from the health examinee dataset of Nanfang Hospital. The characteristics of subjects with and without hyperuricemia were compared using t-tests or non-parametric Mann–Whitney U-tests for continuous variables and chi-square tests for categorical variables. Relationships between hyperuricemia and participant characteristics (sex, age, education level, smoking history, alcohol consumption, hypertension, body mass index, tea consumption, and other dietary factors) were examined using univariate and multivariate logistic regression models to identify independent risk factors for hyperuricemia. Results Tea consumption was associated with a higher risk of hyperuricemia in the crude model (odds ratio [OR] 1.74, 95% confidence interval [CI] 1.48–2.05, once a month through twice a week vs never, P<0.001; OR 2.44, 95% CI 2.07–2.89, ≥3 times a week vs never, P<0.001). The adjusted OR for hyperuricemia was 1.30 (95% CI 1.08–1.56, P=0.006) in participants who consumed tea once a month through twice a week and 1.35 (95% CI 1.11–1.64, P=0.003) in those who consumed tea ≥3 times a week compared with the “never” reference group after adjusting for sociodemographic factors, anthropometric and biochemical indices, and dietary factors. This relationship remained significant in men but not women in subgroup analysis. Conclusion Tea consumption is an independent risk factor for hyperuricemia and is more pronounced in men than women.
Collapse
Affiliation(s)
- Ruining Li
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lin Zeng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chengkai Wu
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Pengcheng Ma
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hao Cui
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liya Chen
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qimei Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chang Hong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Li Liu
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lushan Xiao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Lushan Xiao, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China, Email
| | - Wenyuan Li
- Hospital Office, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Wenyuan Li, Hospital Office, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China, Email
| |
Collapse
|
55
|
Jiang G, Luk AO, Tam CH, Ozaki R, Lim CK, Chow EY, Lau ES, Kong AP, Fan B, Hong Kong Diabetes Register TRS Study Group, Lee KF, Siu SC, Hui G, Tsang CC, Lau KP, Leung JY, Tsang MW, Kam G, Lau IT, Li JK, Yeung VT, Lau E, Lo S, Fung S, Cheng YL, Chow CC, Hong Kong Diabetes Biobank Study Group, Tang NL, Huang Y, Lan HY, Oram RA, Szeto CC, So WY, Chan JC, Ma RC. Clinical Predictors and Long-term Impact of Acute Kidney Injury on Progression of Diabetic Kidney Disease in Chinese Patients With Type 2 Diabetes. Diabetes 2022; 71:520-529. [PMID: 35043149 PMCID: PMC8893937 DOI: 10.2337/db21-0694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022]
Abstract
We aim to assess the long-term impact of acute kidney injury (AKI) on progression of diabetic kidney disease (DKD) and all-cause mortality and investigate determinants of AKI in Chinese patients with type 2 diabetes (T2D). A consecutive cohort of 9,096 Chinese patients with T2D from the Hong Kong Diabetes Register was followed for 12 years (mean ± SD age 57 ± 13.2 years; 46.9% men; median duration of diabetes 5 years). AKI was defined based on the Kidney Disease: Improving Global Outcomes (KDIGO) criteria using serum creatinine. Estimated glomerular filtration rate measurements were used to identify the first episode with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Polygenic risk score (PRS) composed of 27 single nucleotide polymorphisms (SNPs) known to be associated with serum uric acid (SUA) in European populations was used to examine the role of SUA in pathogenesis of AKI, CKD, and ESRD. Validation was sought in an independent cohort including 6,007 patients (age 61.2 ± 10.9 years; 59.5% men; median duration of diabetes 10 years). Patients with AKI had a higher risk for developing incident CKD (hazard ratio 14.3 [95% CI 12.69-16.11]), for developing ESRD (12.1 [10.74-13.62]), and for all-cause death (7.99 [7.31-8.74]) compared with those without AKI. Incidence rate for ESRD among patients with no episodes of AKI and one, two, and three or more episodes of AKI was 7.1, 24.4, 32.4, and 37.3 per 1,000 person-years, respectively. Baseline SUA was a strong independent predictor for AKI. A PRS composed of 27 SUA-related SNPs was associated with AKI and CKD in both discovery and replication cohorts but not ESRD. Elevated SUA may increase the risk of DKD through increasing AKI. The identification of SUA as a modifiable risk factor and PRS as a nonmodifiable risk factor may facilitate the identification of individuals at high risk to prevent AKI and its long-term impact in T2D.
Collapse
Affiliation(s)
- Guozhi Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| | - Andrea O. Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Claudia H.T. Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong
| | - Risa Ozaki
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| | - Cadmon K.P. Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong
| | - Elaine Y.K. Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| | - Eric S. Lau
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong
| | - Alice P.S. Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong
| | | | - Ka Fai Lee
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong
| | | | - Grace Hui
- Diabetes Centre, Tung Wah Eastern Hospital, Hong Kong
| | - Chiu Chi Tsang
- Diabetes and Education Centre, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | | | - Jenny Y. Leung
- Department of Medicine and Geriatrics, Ruttonjee Hospital, Hong Kong
| | - Man-wo Tsang
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong
| | - Grace Kam
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong
| | | | - June K. Li
- Department of Medicine, Yan Chai Hospital, Hong Kong
| | - Vincent T. Yeung
- Centre for Diabetes Education and Management, Our Lady of Maryknoll Hospital, Hong Kong
| | - Emmy Lau
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Stanley Lo
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Samuel Fung
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | - Yuk Lun Cheng
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | - Chun Chung Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | | | - Nelson L.S. Tang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Yu Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong
| | - Hui-yao Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Richard A. Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Cheuk Chun Szeto
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| | - Juliana C.N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong
| | - Ronald C.W. Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong
- Corresponding author: Ronald C.W. Ma,
| |
Collapse
|
56
|
Chary S, Amrein K, Mahmoud SH, Lasky-Su JA, Christopher KB. Sex-Specific Catabolic Metabolism Alterations in the Critically Ill following High Dose Vitamin D. Metabolites 2022; 12:metabo12030207. [PMID: 35323650 PMCID: PMC8953844 DOI: 10.3390/metabo12030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Pharmacological interventions are essential for the treatment and management of critical illness. Although women comprise a large proportion of the critically ill, sex-specific pharmacological properties are poorly described in critical care. The sex-specific effects of vitamin D3 treatment in the critically ill are not known. Therefore, we performed a metabolomics cohort study with 1215 plasma samples from 428 patients from the VITdAL-ICU trial to study sex-specific differences in the metabolic response to critical illness following high-dose oral vitamin D3 intervention. In women, despite the dose of vitamin D3 being higher, pharmacokinetics demonstrated a lower extent of vitamin D3 absorption compared to men. Metabolic response to high-dose oral vitamin D3 is sex-specific. Sex-stratified individual metabolite associations with elevations in 25(OH)D following intervention showed female-specific positive associations in long-chain acylcarnitines and male-specific positive associations in free fatty acids. In subjects who responded to vitamin D3 intervention, significant negative associations were observed in short-chain acylcarnitines and branched chain amino acid metabolites in women as compared to men. Acylcarnitines and branched chain amino acids are reflective of fatty acid B oxidation, and bioenergesis may represent notable metabolic signatures of the sex-specific response to vitamin D. Demonstrating sex-specific pharmacometabolomics differences following intervention is an important movement towards the understanding of personalized medicine.
Collapse
Affiliation(s)
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria;
| | - Sherif H. Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Kenneth B. Christopher
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
57
|
Mittal M, Patra S, Saxena S, Roy A, Yadav T, Vedant D. Gout in Primary Hyperparathyroidism, connecting crystals to the minerals. J Endocr Soc 2022; 6:bvac018. [PMID: 35261933 PMCID: PMC8898037 DOI: 10.1210/jendso/bvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Musculoskeletal manifestations in primary hyperparathyroidism (PHPT) range from 13% to 93% encompassing pseudogout, vertebral fracture, myopathy, and cord compression. Though pseudogout has been the most prevalent musculoskeletal condition in PHPT, rarely reports of acute gouty attacks in large joints including the knee have been reported in the literature. Here we detail a unique case of PHPT presenting with acute severe bilateral knee joint inflammatory arthritis accompanied by occasional abdominal pain. Joint aspiration fluid study revealed extracellular monosodium urate crystals exhibiting strong negative birefringence on polarized light microscopy suggestive of acute gouty arthritis. Hypercalcemia and hypophosphatemia with high intact parathyroid hormone (iPTH) confirmed the diagnosis of PHPT and a right inferior parathyroid adenoma was localized. Parathyroidectomy resulted in statistically significant clinical improvement of the debilitating joint manifestations, and the patient was able to walk again without support. Although the incidence of gout is increasing because of an overall increase in metabolic syndrome prevalence, a higher prevalence than in the general population is reported in PHPT. Serum uric acid levels positively correlate with serum iPTH levels in PHPT, and parathyroidectomy leads to a reduction in levels. Acute inflammatory joint pain due to urate crystal deposition in a large joint like the knee is an uncommonly reported condition in PHPT. Identifying the correct etiology in such a case can result in marked clinical improvement in the joint manifestations following surgical cure of hyperparathyroidism.
Collapse
Affiliation(s)
- Madhukar Mittal
- Department of Endocrinology & Metabolism, AIIMS Jodhpur, India
| | - Shinjan Patra
- Department of Endocrinology & Metabolism, AIIMS Jodhpur, India
| | | | - Ayan Roy
- Department of Endocrinology & Metabolism, AIIMS Jodhpur, India
| | - Taruna Yadav
- Department of Radiodiagnosis, AIIMS Jodhpur, India
| | | |
Collapse
|
58
|
Cui N, Dong X, Liao W, Xue Y, Liu X, Li X, Hou J, Huo W, Li L, Mao Z, Wang C, Li Y. Association of eating out frequency and other factors with serum uric acid levels and hyperuricemia in Chinese population. Eur J Nutr 2022; 61:243-254. [PMID: 34297194 DOI: 10.1007/s00394-021-02634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE A significant shift in meal pattern with frequent eating out was closely associated with multiple chronic outcomes, but with limited evidence on hyperuricemia. We aimed to explore the associations between eating out and serum uric acid (SUA) as well as hyperuricemia. METHODS A total of 29,597 participants were recruited from the Henan Rural Cohort Study. A validated food frequency questionnaire (FFQ) was used to collect dietary data, including the frequency of eating out. Linear regression models were used to examine the association of eating-out frequency with SUA and BMI. Logistic regression and restricted cubic spline were performed to assess the association and dose-response relationship between eating-out frequency and hyperuricemia. The mediation effect of BMI between eating out and the risk of hyperuricemia was evaluated. RESULTS Eating out was significantly associated with higher SUA levels in the total population and males (P < 0.001). Multivariate-adjusted odds ratios (ORs) with 95% confidence interval (CIs) of hyperuricemia were 1.26 (1.09, 1.46) for the total population and 1.18 (1.00, 1.40) for males (≥ 7 times/week vs 0 time/week). A non-linear positive dose-response relationship between eating-out frequency and hyperuricemia was observed. Furthermore, BMI played a partial mediating role in the relationship between eating out frequency and hyperuricemia, which explained 30.7% in the total population and 44.8% in males. CONCLUSION Our findings indicated that eating out was associated with increased SUA levels and elevated hyperuricemia risk in rural China, especially in males. Moreover, the relationship was partly mediated by BMI. CLINICAL TRIALS ChiCTR-OOC-15006699 (2015-07-06).
Collapse
Affiliation(s)
- Ningning Cui
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yuan Xue
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xing Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yuqian Li
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
59
|
Alghubayshi A, Edelman A, Alrajeh K, Roman Y. Genetic assessment of hyperuricemia and gout in Asian, Native Hawaiian, and Pacific Islander subgroups of pregnant women: biospecimens repository cross-sectional study. BMC Rheumatol 2022; 6:1. [PMID: 34986901 PMCID: PMC8734301 DOI: 10.1186/s41927-021-00239-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background Gout, an inflammatory condition, is characterized by the precipitation of monosodium urate crystals (MSU) in or around distal joints. The latter is caused by chronic hyperuricemia (HU)—high urate levels in the blood. Genetic variations in urate transporters play a significant role in determining urate levels within the human body, rendering some racial and ethnic groups more or less susceptible to developing either HU or gout. This study aims to estimate the frequencies of HU and gout risk alleles in Asian, Native Hawaiian, and Pacific Islander subgroups, using biorepository DNA samples. Methods The biospecimens repository at the University of Hawai’i provided DNA samples of consented post-partum women of Japanese, Filipino, Korean, Native Hawaiian, Samoan, and Marshallese descent. The DNA was previously extracted from maternal blood and genotyped at the Genomics and Bioinformatics Shared Resource, Cancer Center (Honolulu, HI). Nine urate genes: ABCG2, SLC2A9, SLC16A9, GCKR, SLC22A11, SLC22A12, LRR16A, PDZK1, and SLC17A1, were selected due to their significant association with HU and gout risk. Hardy–Weinberg Equilibrium (HWE) for genotype frequencies was assessed, using the Chi-Square test with p < 0.006 for statistical significance. Allele frequencies in our study were then compared to EUR from the 1000 Genomes Project Database Phase III, using Chi-square or Fisher's exact test, when appropriate. Bonferroni correction for multiple comparisons was used, with p < 0.006 for statistical significance. Results Our study involved 1059 post-partum women 18-year-old or older who self-reported their respective race and ethnicity, including Asian, Native Hawaiian, and Pacific Islander ancestry. The Asian subgroups included Japanese, Filipino, and Korean. The Pacific Islander subgroups included Marshallese and Samoan. None of the study participants had a history of gout. We excluded the PDZK1 gene from the final analysis due to its deviation from HWE (p < 0.006) across all the population subgroups, with eight loci remaining for cross-subgroup comparisons. Compared to EUR, the genetic polymorphism frequencies were significantly different-8/8 in Japanese, 6/8 in Korean, 6/8 in Filipino, 8/8 in Samoan, 6/8 in Native Hawaiian, and 6/8 in Marshallese. HU and gout risk alleles indices were 8, 6, 5, 5, 4, and 4 in Japanese, Filipino, Korean, Samoan, Marshallese, and Native Hawaiian, respectively. The percentage of cumulative risk alleles was 100% in both Japanese and Filipino, followed by 83.5% in Korean. Conclusions Compared to EUR, Asian subgroups, particularly Japanese, Filipino, and Korean, had the highest percentage of the cumulative uric acid risk alleles. These results could partly explain the increased risk of developing gout among some Asian ancestral subgroups compared to EUR.
Collapse
Affiliation(s)
- Ali Alghubayshi
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0533, USA
| | - Alison Edelman
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health Science University, Portland, OR, 97239, USA
| | - Khalifa Alrajeh
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0533, USA
| | - Youssef Roman
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0533, USA.
| |
Collapse
|
60
|
Wang L, Chen X, Han L, Jin B, Han W, Jia J, Bai X, Teng Z. EPIGENETIC FACTORS OF SERUM URIC ACID LEVEL AND RELATED GENE POLYMORPHISMS IN SHENYANG, CHINA. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:1-12. [PMID: 35975251 PMCID: PMC9365425 DOI: 10.4183/aeb.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND The purpose of this study was to explore the influencing factors of serum uric acid (SUA) level and related gene polymorphisms in the healthy population. METHODS A total of 346 healthy individuals screened from different areas in Shenyang City and 195 patients with high SUA levels were included. RESULTS The levels of TC (total cholesterol), HDL-C (high-density lipoprotein cholesterol), LDL-C (low-density lipoprotein cholesterol), TG (triglycerides), GLU (blood glucose) ALT (alanine aminotransferase), TBA (total bile acid), TBIL (total bilirubin), CR (creatinine) and CYSC (Cystatin C) were statistically different between the healthy and hyperuricemia population (P<0.05). However, there was no statistical difference in the UA level between the two groups (P>0.05). After adjusting for UA, TC, HDL-C, LDL-C, GLU, TBIL and CYSC, the additive and recessive models of rs2231142 were statistically significant in females (P<0.05). For males, haplotypes of A-C-A-A-G-G, A-C-G-C-G-G and A-T-G-A-A-G had significant difference between the healthy and hyperuricemia population (P<0.05). For females, the haplotypes of A-C-G-C-G-G and A-T-A-C-A-T had significant differences (P<0.05). CONCLUSION The distributions of SLC2A9 (solute carrier family 2 and facilitated glucose transporter member 9), ABCG2 (ATP-binding cassette G2), GCKR (glucokinase regulatory protein), KCNQ1, IGFIR (Insulin-like growth factor-I receptor) and VEGFR (Vascular Endothelial Growth Factor Receptor) were balanced in the population in Shenyang City. The haplotypes of A-C-A-A-G-G, A-C-G-C-G-G and A-T-G-A-A-G were the influencing factors of high SUA in the population in Shenyang City.
Collapse
Affiliation(s)
- L. Wang
- The First Affiliated Hospital of China Medical University, Dept. of General Practice, Shenyang, Liaoning, China
| | - X. Chen
- The First Affiliated Hospital of China Medical University, Dept. of General Practice, Shenyang, Liaoning, China
| | - L. Han
- Shengjing Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning, China
| | - B. Jin
- Dalian Medical University, Dalian, Liaoning, Dept. of Gerontology and Geriatrics, Shenyang, Liaoning, China
| | - W. Han
- Shengjing Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning, China
| | - J. Jia
- Jixian Community Health Service Centre, Heping District, Dept. of General Practice, Shenyang, Liaoning, China
| | - X. Bai
- Shengjing Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning, China
| | - Z. Teng
- The First Hospital of China Medical University, Dept. of Medical Oncology, Shenyang, Liaoning, China
| |
Collapse
|
61
|
Abstract
Circulation of urate levels is determined by the balance between urate production and excretion, homeostasis regulated by the function of urate transporters in key epithelial tissues and cell types. Our understanding of these physiological processes and identification of the genes encoding the urate transporters has advanced significantly, leading to a greater ability to predict risk for urate-associated diseases and identify new therapeutics that directly target urate transport. Here, we review the identified urate transporters and their organization and function in the renal tubule, the intestinal enterocytes, and other important cell types to provide a fuller understanding of the complicated process of urate homeostasis and its role in human diseases. Furthermore, we review the genetic tools that provide an unbiased catalyst for transporter identification as well as discuss the role of transporters in determining the observed significant gender differences in urate-associated disease risk.
Collapse
Affiliation(s)
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
62
|
Interaction of Alcohol Consumption and ABCG2 rs2231142 Variant Contributes to Hyperuricemia in a Taiwanese Population. J Pers Med 2021; 11:jpm11111158. [PMID: 34834509 PMCID: PMC8618280 DOI: 10.3390/jpm11111158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background: ABCG2 rs2231142 is an important genetic factor that contributes to the development of gout and hyperuricemia (HUA). Epidemiologic studies have demonstrated that lifestyle risk factors of HUA (e.g., alcohol consumption) and genetic predisposition (e.g., ABCG2 gene) together, contribute to enhanced serum uric acid levels. However, the interaction between ABCG2 rs2231142, alcohol consumption, and HUA in the Taiwanese population is still unclear. Therefore, this study investigated whether the risk of HUA is associated with ABCG2 rs2231142 variants and how this is affected by alcohol consumption. Method: study subjects were selected from the participants of the Taiwan Biobank database. Overall, 114,540 participants aged 30 to 70 years were enrolled in this study. The interaction between ABCG2 rs2231142, alcohol consumption, and serum uric acid (sUA) levels was analyzed by multiple logistic regression models. Results: the prevalence of HUA was 32.7% and 4.4 % in the male and female populations, respectively. In the whole study population, the minor T allele of ABCG2 rs2231142 was significantly associated with HUA risk, and the occurrence of HUA was high in TT genotype and TG genotype. The risk of HUA was significantly increased by the combined association of ABCG2 rs2231142 and alcohol consumption for TG/TT genotype compared to the GG genotype (wild-type genotype), especially among women. Conclusion: the ABCG2 rs2231142 is a crucial genetic locus for sUA levels in the Taiwanese population and our findings revealed that alcohol consumption combined with the ABCG2 rs2231142 risk allele contributes to increased HUA risk.
Collapse
|
63
|
The genetic basis of urate control and gout: Insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Pract Res Clin Rheumatol 2021; 35:101721. [PMID: 34732286 DOI: 10.1016/j.berh.2021.101721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the post-genome-wide association study (GWAS) era in gout, i.e., the translation of GWAS genetic association signals into biologically informative knowledge. Analytical and experimental follow-up of individual loci, based on the identification of causal genetic variants, reveals molecular pathogenic pathways. We summarize in detail the largest GWAS in urate to date, then we review follow-up studies and molecular insights from ABCG2, HNF4A, PDZK1, MAF, GCKR, ALDH2, ALDH16A1, SLC22A12, SLC2A9, ABCC4, and SLC22A13, including the role of insulin signaling. One common factor in these pathways is the importance of transcriptional control, including the HNF4α transcription factor. The new molecular knowledge reveals new targets for intervention to manage urate levels and prevent gout.
Collapse
|
64
|
Maloberti A, Biolcati M, Ruzzenenti G, Giani V, Leidi F, Monticelli M, Algeri M, Scarpellini S, Nava S, Soriano F, Oreglia J, Sacco A, Morici N, Oliva F, Piani F, Borghi C, Giannattasio C. The Role of Uric Acid in Acute and Chronic Coronary Syndromes. J Clin Med 2021; 10:jcm10204750. [PMID: 34682873 PMCID: PMC8540994 DOI: 10.3390/jcm10204750] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Uric acid (UA) is the final product of the catabolism of endogenous and exogenous purine nucleotides. While its association with articular gout and kidney disease has been known for a long time, new data have demonstrated that UA is also related to cardiovascular (CV) diseases. UA has been identified as a significant determinant of many different outcomes, such as all-cause and CV mortality, and also of CV events (mainly Acute Coronary Syndromes (ACS) and even strokes). Furthermore, UA has been related to the development of Heart Failure, and to a higher mortality in decompensated patients, as well as to the onset of atrial fibrillation. After a brief introduction on the general role of UA in CV disorders, this review will be focused on UA's relationship with CV outcomes, as well as on the specific features of patients with ACS and Chronic Coronary Syndrome. Finally, two issues which remain open will be discussed: the first is about the identification of a CV UA cut-off value, while the second concerns the possibility that the pharmacological reduction of UA is able to lower the incidence of CV events.
Collapse
Affiliation(s)
- Alessandro Maloberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (M.B.); (G.R.); (V.G.); (F.L.); (M.M.); (C.G.)
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
- Correspondence: ; Tel.: +39-026-444-2141; Fax: +39-026-444-2566
| | - Marco Biolcati
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (M.B.); (G.R.); (V.G.); (F.L.); (M.M.); (C.G.)
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
| | - Giacomo Ruzzenenti
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (M.B.); (G.R.); (V.G.); (F.L.); (M.M.); (C.G.)
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
| | - Valentina Giani
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (M.B.); (G.R.); (V.G.); (F.L.); (M.M.); (C.G.)
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
| | - Filippo Leidi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (M.B.); (G.R.); (V.G.); (F.L.); (M.M.); (C.G.)
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
| | - Massimiliano Monticelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (M.B.); (G.R.); (V.G.); (F.L.); (M.M.); (C.G.)
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
| | - Michela Algeri
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
| | - Sara Scarpellini
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
| | - Stefano Nava
- Cardiology 1, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (S.N.); (F.S.); (J.O.); (A.S.); (N.M.); (F.O.)
| | - Francesco Soriano
- Cardiology 1, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (S.N.); (F.S.); (J.O.); (A.S.); (N.M.); (F.O.)
| | - Jacopo Oreglia
- Cardiology 1, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (S.N.); (F.S.); (J.O.); (A.S.); (N.M.); (F.O.)
| | - Alice Sacco
- Cardiology 1, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (S.N.); (F.S.); (J.O.); (A.S.); (N.M.); (F.O.)
| | - Nuccia Morici
- Cardiology 1, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (S.N.); (F.S.); (J.O.); (A.S.); (N.M.); (F.O.)
| | - Fabrizio Oliva
- Cardiology 1, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (S.N.); (F.S.); (J.O.); (A.S.); (N.M.); (F.O.)
| | - Federica Piani
- School of Medicine and Surgery, University of Bologna—IRCCS Policlinico S. Orsola, 40138 Bologna, Italy; (F.P.); (C.B.)
| | - Claudio Borghi
- School of Medicine and Surgery, University of Bologna—IRCCS Policlinico S. Orsola, 40138 Bologna, Italy; (F.P.); (C.B.)
| | - Cristina Giannattasio
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (M.B.); (G.R.); (V.G.); (F.L.); (M.M.); (C.G.)
- Cardiology 4, ASST GOM Niguarda Hospital, 20121 Milan, Italy; (M.A.); (S.S.)
| |
Collapse
|
65
|
Williams PT. Quantile-Dependent Expressivity of Serum Uric Acid Concentrations. Int J Genomics 2021; 2021:3889278. [PMID: 34545327 PMCID: PMC8448993 DOI: 10.1155/2021/3889278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE "Quantile-dependent expressivity" occurs when the effect size of a genetic variant depends upon whether the phenotype (e.g., serum uric acid) is high or low relative to its distribution. Analyses were performed to test whether serum uric acid heritability is quantile-specific and whether this could explain some reported gene-environment interactions. METHODS Serum uric acid concentrations were analyzed from 2151 sibships and 12,068 offspring-parent pairs from the Framingham Heart Study. Quantile-specific heritability from offspring-parent regression slopes (β OP, h 2 = 2β OP/(1 + r spouse)) and full-sib regression slopes (β FS, h 2 = {(1 + 8r spouse β FS)0.5 - 1}/(2r spouse)) was robustly estimated by quantile regression with nonparametric significance assigned from 1000 bootstrap samples. RESULTS Quantile-specific h 2 (±SE) increased with increasing percentiles of the offspring's sex- and age-adjusted uric acid distribution when estimated from β OP (P trend = 0.001): 0.34 ± 0.03 at the 10th, 0.36 ± 0.03 at the 25th, 0.41 ± 0.03 at the 50th, 0.46 ± 0.04 at the 75th, and 0.49 ± 0.05 at the 90th percentile and when estimated from β FS (P trend = 0.006). This is consistent with the larger genetic effect size of (1) the SLC2A9 rs11722228 polymorphism in gout patients vs. controls, (2) the ABCG2 rs2231142 polymorphism in men vs. women, (3) the SLC2A9 rs13113918 polymorphism in obese patients prior to bariatric surgery vs. two-year postsurgery following 29 kg weight loss, (4) the ABCG2 rs6855911 polymorphism in obese vs. nonobese women, and (5) the LRP2 rs2544390 polymorphism in heavier drinkers vs. abstainers. Quantile-dependent expressivity may also explain the larger genetic effect size of an SLC2A9/PKD2/ABCG2 haplotype for high vs. low intakes of alcohol, chicken, or processed meats. CONCLUSIONS Heritability of serum uric acid concentrations is quantile-specific.
Collapse
Affiliation(s)
- Paul T. Williams
- Lawrence Berkeley National Laboratory, Molecular Biophysics & Integrated Bioimaging Division, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
66
|
Bernabeu E, Canela-Xandri O, Rawlik K, Talenti A, Prendergast J, Tenesa A. Sex differences in genetic architecture in the UK Biobank. Nat Genet 2021; 53:1283-1289. [PMID: 34493869 DOI: 10.1038/s41588-021-00912-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Males and females present differences in complex traits and in the risk of a wide array of diseases. Genotype by sex (GxS) interactions are thought to account for some of these differences. However, the extent and basis of GxS are poorly understood. In the present study, we provide insights into both the scope and the mechanism of GxS across the genome of about 450,000 individuals of European ancestry and 530 complex traits in the UK Biobank. We found small yet widespread differences in genetic architecture across traits. We also found that, in some cases, sex-agnostic analyses may be missing trait-associated loci and looked into possible improvements in the prediction of high-level phenotypes. Finally, we studied the potential functional role of the differences observed through sex-biased gene expression and gene-level analyses. Our results suggest the need to consider sex-aware analyses for future studies to shed light onto possible sex-specific molecular mechanisms.
Collapse
Affiliation(s)
- Elena Bernabeu
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Oriol Canela-Xandri
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Konrad Rawlik
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Andrea Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - James Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Albert Tenesa
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK.
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| |
Collapse
|
67
|
Sandoval-Plata G, Morgan K, Abhishek A. Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank. Ann Rheum Dis 2021; 80:1220-1226. [PMID: 33832965 DOI: 10.1136/annrheumdis-2020-219796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To perform a genome-wide association study (GWAS) of gout cases versus asymptomatic hyperuricaemia (AH) controls, and gout cases versus normouricaemia controls, and to generate a polygenic risk score (PRS) to determine gout-case versus AH-control status. METHODS Gout cases and AH controls (serum urate (SU) ≥6.0 mg/dL) from the UK Biobank were divided into discovery (4934 cases, 56 948 controls) and replication (2115 cases, 24 406 controls) cohorts. GWAS was conducted and PRS generated using summary statistics in discovery cohort as the base dataset and the replication cohort as the target dataset. The predictive ability of the model was evaluated. GWAS were performed to identify variants associated with gout compared with normouricaemic controls using SU <6.0 mg/dL and <7.0 mg/dL thresholds, respectively. RESULTS Thirteen independent single nucleotide polymorphisms (SNPs) in ABCG2, SLC2A9, SLC22A11, GCKR, MEPE, PPM1K-DT, LOC105377323 and ADH1B reached genome-wide significance and replicated as predictors of AH to gout transition. Twelve of 13 associations were novel for this transition, and rs1229984 (ADH1B) was identified as GWAS locus for gout for the first time. The best PRS model was generated from association data of 17 SNPs; and had predictive ability of 58.5% that increased to 69.2% on including demographic factors. Two novel SNPs rs760077(MTX1) and rs3800307(PRSS16) achieved GWAS significance for association with gout compared with normouricaemic controls using both SU thresholds. CONCLUSION The association of urate transporters with gout supports the central role of hyperuricaemia in its pathogenesis. Larger GWAS are required to identify if variants in inflammatory pathways contribute to progression from AH to gout.
Collapse
Affiliation(s)
- Gabriela Sandoval-Plata
- Academic Rheumatology, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, NIHR, Nottingham, UK
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Abhishek Abhishek
- Academic Rheumatology, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, NIHR, Nottingham, UK
| |
Collapse
|
68
|
Boocock J, Leask M, Okada Y, Matsuo H, Kawamura Y, Shi Y, Li C, Mount DB, Mandal AK, Wang W, Cadzow M, Gosling AL, Major TJ, Horsfield JA, Choi HK, Fadason T, O'Sullivan J, Stahl EA, Merriman TR. Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum Mol Genet 2021; 29:923-943. [PMID: 31985003 DOI: 10.1093/hmg/ddaa013] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
High serum urate is a prerequisite for gout and associated with metabolic disease. Genome-wide association studies (GWAS) have reported dozens of loci associated with serum urate control; however, there has been little progress in understanding the molecular basis of the associated loci. Here, we employed trans-ancestral meta-analysis using data from European and East Asian populations to identify 10 new loci for serum urate levels. Genome-wide colocalization with cis-expression quantitative trait loci (eQTL) identified a further five new candidate loci. By cis- and trans-eQTL colocalization analysis, we identified 34 and 20 genes, respectively, where the causal eQTL variant has a high likelihood that it is shared with the serum urate-associated locus. One new locus identified was SLC22A9 that encodes organic anion transporter 7 (OAT7). We demonstrate that OAT7 is a very weak urate-butyrate exchanger. Newly implicated genes identified in the eQTL analysis include those encoding proteins that make up the dystrophin complex, a scaffold for signaling proteins and transporters at the cell membrane; MLXIP that, with the previously identified MLXIPL, is a transcription factor that may regulate serum urate via the pentose-phosphate pathway and MRPS7 and IDH2 that encode proteins necessary for mitochondrial function. Functional fine mapping identified six loci (RREB1, INHBC, HLF, UBE2Q2, SFMBT1 and HNF4G) with colocalized eQTL containing putative causal SNPs. This systematic analysis of serum urate GWAS loci identified candidate causal genes at 24 loci and a network of previously unidentified genes likely involved in control of serum urate levels, further illuminating the molecular mechanisms of urate control.
Collapse
Affiliation(s)
- James Boocock
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Megan Leask
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | | | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Changgui Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - David B Mount
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA.,Renal Division, VA Boston Healthcare System, Harvard Medical School, Boston MA, USA
| | - Asim K Mandal
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Weiqing Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, New York, NY, USA
| | - Murray Cadzow
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna L Gosling
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya J Major
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Hyon K Choi
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tayaza Fadason
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Eli A Stahl
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, New York, NY, USA
| | - Tony R Merriman
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
69
|
Zhu C, Sun B, Zhang B, Zhou Z. An update of genetics, co-morbidities and management of hyperuricaemia. Clin Exp Pharmacol Physiol 2021; 48:1305-1316. [PMID: 34133780 DOI: 10.1111/1440-1681.13539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Hyperuricaemia (HU) caused by disorders of purine metabolism is a metabolic disease. A number of epidemiological reports have confirmed that HU is correlated with multiple disorders, such as chronic kidney diseases, cardiovascular disease and gout. Recent studies showed that the expression and functional changes of uric acid transporters, including URAT1, GLUT9 and ABCG2, were associated with HU. Moreover, a large number of genome-wide association studies have shown that these transporters' dysfunction leads to HU. In this review, we describe the recent progress of aetiology and related transporters of HU, and we also summarise the common co-morbidities possible mechanisms, as well as the potential pharmacological and non-pharmacological treatment methods for HU, aiming to provide new ideas for the treatment of HU.
Collapse
Affiliation(s)
- Chunsheng Zhu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Bing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
70
|
Mannarino MR, Pirro M, Gigante B, Savonen K, Kurl S, Giral P, Smit A, Veglia F, Tremoli E, Baldassarre D. Association Between Uric Acid, Carotid Intima-Media Thickness, and Cardiovascular Events: Prospective Results From the IMPROVE Study. J Am Heart Assoc 2021; 10:e020419. [PMID: 33998285 PMCID: PMC8483552 DOI: 10.1161/jaha.120.020419] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background The association between elevated serum uric acid (SUA), cardiovascular disease (CVD) risk, and carotid atherosclerosis has long been explored, and contrasting results have been reported. Therefore, the role of SUA as an independent risk factor for vascular events (VEs) and carotid atherosclerosis deserves further attention. We investigated the relationship between SUA, incident VEs, carotid intima-media thickness (cIMT), and cIMT progression in subjects at moderate-to-high CVD risk. Methods and Results In the IMPROVE (IMT-Progression as Predictors of VEs) study, 3686 participants (median age 64 years; 48% men) with ≥ 3 vascular risk factors, free from VEs at baseline, were grouped according to SUA quartiles (division points: 244-284-328 µmol/L in women, 295-336-385 µmol/L in men). Carotid-IMT and its 15-month progression, along with incident VEs, were recorded. A U-shaped association between SUA and VEs was observed in men, with 2.4-fold (P = 0.004) and 2.5-fold (P = 0.002) increased CVD risk in the first and fourth SUA quartiles as compared with the second. Adjusted hazard ratios (HRs) for cerebro-VEs in men were the highest (first and fourth quartile versus second: HR, 5.3, P = 0.010 and HR, 4.4, P = 0.023, respectively). SUA level was independently associated with cIMT progression in men (β = 0.068, P = 0.014). No significant association between SUA levels, CVD end points, and cIMT progression were found in women. Conclusions Both low and high SUA levels are associated with an increased risk of VEs in men at moderate-to-high CVD risk but not in women. Only elevated SUA levels predict cIMT progression and at a lesser but not significant extent in women.
Collapse
Affiliation(s)
- Massimo R Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Bruna Gigante
- Unit of Cardiovascular Epidemiology Institute of Environmental Medicine Stockholm Sweden.,Division of Cardiovascular Medicine Department of Clinical Sciences Danderyd HospitalKarolinska Institutet Stockholm Sweden
| | - Kai Savonen
- Foundation for Research in Health Exercise and Nutrition Kuopio & Research Institute of Exercise Medicine Kuopio Finland.,Department of Clinical Physiology and Nuclear Medicine Kuopio University Hospital Kuopio Finland
| | - Sudhir Kurl
- Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
| | - Philippe Giral
- Unités de Prévention Cardiovasculaire Service Endocrinologie-Metabolisme Assistance Publique - Hopitaux de ParisGroupe Hôpitalier Pitie-Salpetriere Paris France
| | - Andries Smit
- Department of Medicine University Medical Center Groningen Groningen the Netherlands.,Department of Medicine Isala Clinics Zwolle Zwolle the Netherlands
| | - Fabrizio Veglia
- Centro Cardiologico MonzinoIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Milan Italy
| | - Elena Tremoli
- Centro Cardiologico MonzinoIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Milan Italy
| | - Damiano Baldassarre
- Centro Cardiologico MonzinoIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Milan Italy.,Department of Medical Biotechnology and Translational Medicine Università degli Studi di Milano Milan Italy
| | | |
Collapse
|
71
|
Roman YM, Lor K, Xiong T, Culhane-Pera K, Straka RJ. Gout prevalence in the Hmong: a prime example of health disparity and the role of community-based genetic research. Per Med 2021; 18:311-327. [PMID: 33787318 DOI: 10.2217/pme-2020-0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Individuals of distinct Asian backgrounds are commonly aggregated as Asian, which could mask the differences in the etiology and prevalence of health conditions in the different Asian subgroups. The Hmong are a growing Asian subgroup in the United States with a higher prevalence of gout and gout-related comorbidities than non-Hmong. Genetic explorations in the Hmong suggest a higher prevalence of genetic polymorphisms associated with an increased risk of hyperuricemia and gout. History of immigration, acculturation, lifestyle factors, including dietary and social behavioral patterns, and the use of traditional medicines in the Hmong community may also increase the risk of developing gout and lead to poor gout management outcomes. Engaging minorities such as the Hmong population in biomedical research is a needed step to reduce the burden of health disparities within their respective communities, increase diversity in genomic studies, and accelerate the adoption of precision medicine to clinical practice.
Collapse
Affiliation(s)
- Youssef M Roman
- Assistant Professor, Virginia Commonwealth University, School of Pharmacy, Richmond, Virginia 23298, USA
| | - Kajua Lor
- Associate Professor & Chair, Medical College of Wisconsin, School of Pharmacy, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Txia Xiong
- Clinical Pharmacist, West Side Community Health Services, St. Paul, MN 55106, USA
| | | | - Robert J Straka
- Professor & Department Head, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
72
|
Butler F, Alghubayshi A, Roman Y. The Epidemiology and Genetics of Hyperuricemia and Gout across Major Racial Groups: A Literature Review and Population Genetics Secondary Database Analysis. J Pers Med 2021; 11:jpm11030231. [PMID: 33810064 PMCID: PMC8005056 DOI: 10.3390/jpm11030231] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gout is an inflammatory condition caused by elevated serum urate (SU), a condition known as hyperuricemia (HU). Genetic variations, including single nucleotide polymorphisms (SNPs), can alter the function of urate transporters, leading to differential HU and gout prevalence across different populations. In the United States (U.S.), gout prevalence differentially affects certain racial groups. The objective of this proposed analysis is to compare the frequency of urate-related genetic risk alleles between Europeans (EUR) and the following major racial groups: Africans in Southwest U.S. (ASW), Han-Chinese (CHS), Japanese (JPT), and Mexican (MXL) from the 1000 Genomes Project. The Ensembl genome browser of the 1000 Genomes Project was used to conduct cross-population allele frequency comparisons of 11 SNPs across 11 genes, physiologically involved and significantly associated with SU levels and gout risk. Gene/SNP pairs included: ABCG2 (rs2231142), SLC2A9 (rs734553), SLC17A1 (rs1183201), SLC16A9 (rs1171614), GCKR (rs1260326), SLC22A11 (rs2078267), SLC22A12 (rs505802), INHBC (rs3741414), RREB1 (rs675209), PDZK1 (rs12129861), and NRXN2 (rs478607). Allele frequencies were compared to EUR using Chi-Square or Fisher’s Exact test, when appropriate. Bonferroni correction for multiple comparisons was used, with p < 0.0045 for statistical significance. Risk alleles were defined as the allele that is associated with baseline or higher HU and gout risks. The cumulative HU or gout risk allele index of the 11 SNPs was estimated for each population. The prevalence of HU and gout in U.S. and non-US populations was evaluated using published epidemiological data and literature review. Compared with EUR, the SNP frequencies of 7/11 in ASW, 9/11 in MXL, 9/11 JPT, and 11/11 CHS were significantly different. HU or gout risk allele indices were 5, 6, 9, and 11 in ASW, MXL, CHS, and JPT, respectively. Out of the 11 SNPs, the percentage of risk alleles in CHS and JPT was 100%. Compared to non-US populations, the prevalence of HU and gout appear to be higher in western world countries. Compared with EUR, CHS and JPT populations had the highest HU or gout risk allele frequencies, followed by MXL and ASW. These results suggest that individuals of Asian descent are at higher HU and gout risk, which may partly explain the nearly three-fold higher gout prevalence among Asians versus Caucasians in ambulatory care settings. Furthermore, gout remains a disease of developed countries with a marked global rising.
Collapse
|
73
|
Kawaguchi M, Nakayama A, Aoyagi Y, Nakamura T, Shimizu S, Kawamura Y, Takao M, Tamura T, Hishida A, Nagayoshi M, Nagase M, Ooyama K, Ooyama H, Shinomiya N, Matsuo H. Both variants of A1CF and BAZ1B genes are associated with gout susceptibility: a replication study and meta-analysis in a Japanese population. Hum Cell 2021; 34:293-299. [PMID: 33517564 PMCID: PMC7900071 DOI: 10.1007/s13577-021-00485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/01/2021] [Indexed: 12/20/2022]
Abstract
Gout is a common type of acute arthritis that results from elevated serum uric acid (SUA) levels. Recent genome-wide association studies (GWASs) have revealed several novel single nucleotide polymorphism (SNPs) associated with SUA levels. Of these, rs10821905 of A1CF and rs1178977 of BAZ1B showed the greatest and the second greatest significant effect size for increasing SUA level in the Japanese population, but their association with gout is not clear. We examined their association with gout using 1411 clinically-defined Japanese gout patients and 1285 controls, and meta-analyzed our previous gout GWAS data to investigate any association with gout. Replication studies revealed both SNPs to be significantly associated with gout (P = 0.0366, odds ratio [OR] with 95% confidence interval [CI]: 1.30 [1.02-1.68] for rs10821905 of A1CF, P = 6.49 × 10-3, OR with 95% CI: 1.29 [1.07-1.55] for rs1178977 of BAZ1B). Meta-analysis also revealed a significant association with gout in both SNPs (Pmeta = 3.16 × 10-4, OR with 95% CI: 1.39 [1.17-1.66] for rs10821905 of A1CF, Pmeta = 7.28 × 10-5, OR with 95% CI 1.32 [1.15-1.51] for rs1178977 of BAZ1B). This study shows the first known association between SNPs of A1CF, BAZ1B and clinically-defined gout cases in Japanese. Our results also suggest a shared physiological/pathophysiological background between several populations, including Japanese, for both SUA increase and gout susceptibility. Our findings will not only assist the elucidation of the pathophysiology of gout and hyperuricemia, but also suggest new molecular targets.
Collapse
Affiliation(s)
- Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yuka Aoyagi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, Premedical Course, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mako Nagayoshi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
74
|
Ma Y, Luo Y, Gong S, Zhou X, Li Y, Liu W, Zhang S, Cai X, Ren Q, Zhou L, Zhang X, Wang Y, Huang X, Gao X, Hu M, Han X, Ji L. Low-Frequency Genetic Variant in the Hepatic Glucokinase Gene Is Associated With Type 2 Diabetes and Insulin Resistance in Chinese Population. Diabetes 2021; 70:809-816. [PMID: 33298402 DOI: 10.2337/db20-0564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022]
Abstract
Glucokinase (GCK) regulates insulin secretion and hepatic glucose metabolism, and its inactivating variants could cause diabetes. We aimed to evaluate the association of a low-frequency variant of GCK (rs13306393) with type 2 diabetes (T2D), prediabetes, or both (impaired glucose regulation [IGR]) in a Chinese population. An association study was first conducted in a random cluster sampling population (sample 1: 537 T2D, 768 prediabetes, and 1,912 control), and then another independent population (sample 2: 3,896 T2D, 2,301 prediabetes, and 868 control) was used to confirm the findings in sample 1. The A allele of rs13306393 was associated with T2D (odds ratio 3.08 [95% CI 1.77-5.36], P = 0.00007) in sample 1; rs13306393 was also associated with prediabetes (1.67 [1.05-2.65], P = 0.03) in sample 2. In a pooled analysis of the two samples, the A allele increased the risk of T2D (1.57 [1.15-2.15], P = 0.005), prediabetes (1.83 [1.33-2.54], P = 0.0003) or IGR (1.68 [1.26-2.25], P = 0.0004), insulin resistance estimated by HOMA (β = 0.043, P = 0.001), HbA1c (β = 0.029, P = 0.029), and urinary albumin excretion (β = 0.033, P = 0.025), irrespective of age, sex, and BMI. Thus, the Chinese-specific low-frequency variant increased the risk of T2D through reducing insulin sensitivity rather than islet β-cell function, which should be considered in the clinical use of GCK activators in the future.
Collapse
Affiliation(s)
- Yumin Ma
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Siqian Gong
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Departments of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Wei Liu
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuying Zhang
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yanai Wang
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueying Gao
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Mengdie Hu
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
75
|
Chary S, Amrein K, Lasky-Su JA, Dobnig H, Christopher KB. Metabolomic differences between critically Ill women and men. Sci Rep 2021; 11:3951. [PMID: 33597589 PMCID: PMC7889607 DOI: 10.1038/s41598-021-83602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolism differs in women and men at homeostasis. Critically ill patients have profound dysregulation of homeostasis and metabolism. It is not clear if the metabolic response to critical illness differs in women compared to men. Such sex-specific differences in illness response would have consequences for personalized medicine. Our aim was to determine the sex-specific metabolomic response to early critical illness. We performed a post-hoc metabolomics study of the VITdAL-ICU trial where subjects received high dose vitamin D3 or placebo. Using mixed-effects modeling, we studied sex-specific changes in metabolites over time adjusted for age, Simplified Acute Physiology Score II, admission diagnosis, day 0 25-hydroxyvitamin D level, and 25-hydroxyvitamin D response to intervention. In women, multiple members of the sphingomyelin and lysophospholipid metabolite classes had significantly positive Bonferroni corrected associations over time compared to men. Further, multiple representatives of the acylcarnitine, androgenic steroid, bile acid, nucleotide and amino acid metabolite classes had significantly negative Bonferroni corrected associations over time compared to men. Gaussian graphical model analyses revealed sex-specific functional modules. Our findings show that robust and coordinated sex-specific metabolite differences exist early in critical illness.
Collapse
Affiliation(s)
- Sowmya Chary
- Biogen, Inc., 225 Binney St, Cambridge, MA, 02142, USA
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, USA
| | - Harald Dobnig
- Thyroid Endocrinology Osteoporosis Institute Dobnig, Jakob-Redtenbachergasse 10, 8010, Graz, Austria
| | - Kenneth B Christopher
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, USA.
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, 02115, USA.
| |
Collapse
|
76
|
Braga TT, Foresto-Neto O, Camara NOS. The role of uric acid in inflammasome-mediated kidney injury. Curr Opin Nephrol Hypertens 2021; 29:423-431. [PMID: 32452918 DOI: 10.1097/mnh.0000000000000619] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Uric acid is produced after purine nucleotide degradation, upon xanthine oxidase catalytic action. In the evolutionary process, humans lost uricase, an enzyme that converts uric acid into allantoin, resulting in increased serum uric acid levels that may vary according to dietary ingestion, pathological conditions, and other factors. Despite the controversy over the inflammatory role of uric acid in its soluble form, crystals of uric acid are able to activate the NLRP3 inflammasome in different tissues. Uric acid, therefore, triggers hyperuricemic-related disease such as gout, metabolic syndrome, and kidney injuries. The present review provides an overview on the role of uric acid in the inflammasome-mediated kidney damage. RECENT FINDINGS Hyperuricemia is present in 20-35% of patients with chronic kidney disease. However, whether this increased circulating uric acid is a risk factor or just a biomarker of renal and cardiovascular injuries has become a topic of intense discussion. Despite these conflicting views, several studies support the idea that hyperuricemia is indeed a cause of progression of kidney disease, with a putative role for soluble uric acid in activating renal NLRP3 inflammasome, in reprograming renal and immune cell metabolism and, therefore, in promoting kidney inflammation/injury. SUMMARY Therapies aiming to decrease uric acid levels prevent renal NLRP3 inflammasome activation and exert renoprotective effects in experimental kidney diseases. However, further clinical studies are needed to investigate whether reduced circulating uric acid can also inhibit the inflammasome and be beneficial in human conditions.
Collapse
Affiliation(s)
- Tarcio Teodoro Braga
- Department of Basic Pathology, Federal University of Parana, Curitiba, PR.,Carlos Chagas Institute - Fiocruz-Parana, Curitiba
| | - Orestes Foresto-Neto
- Nephrology Division, Federal University of São Paulo.,Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
| | - Niels Olsen Saraiva Camara
- Nephrology Division, Federal University of São Paulo.,Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
| |
Collapse
|
77
|
Cui N, Dong X, Xue Y, Liao W, Liu X, Li Y, Hou J, Huo W, Li L, Mao Z, Zheng Z, Wang C. Gender-Specific Inverse Associations Between Beans Intake, Serum Urate Levels, and Hyperuricemia: A Cross-Sectional Analysis Based on the Henan Rural Cohort Study. Front Nutr 2021; 7:593599. [PMID: 33553229 PMCID: PMC7859095 DOI: 10.3389/fnut.2020.593599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: Beans are rich in purines, which are important substances that lead to elevated serum urate, especially exogenous purines. Few studies were conducted to assess the relationship between beans intake and serum urate or hyperuricemia, especially in rural people. The purpose of this study was to validate the association by gender in the rural Chinese population. Methods: A total of 38,855 participants aged 18-79 years old were enrolled from the Henan Rural Cohort Study (Registration number: ChiCTR-OOC-15006699). Dietary data were collected using a validated food frequency questionnaire (FFQ). Linear regression models and logistic regression models were used to examine the associations between beans intake and serum urate levels or hyperuricemia. Restricted cubic spline regression was performed to display the dose-response relationship. Results: In multivariate-adjusted linear regression, an inverse correlation was found between beans intake and serum urate level (the highest quartile Q4 vs. the bottom quartile Q1) in both men (P = 0.008) and women (P < 0.001). Per 10-g increment in beans intake was associated with 0.30 μmol/L decreased concentration of serum urate in men and 0.71 μmol/L in women. The multivariate-adjusted odds ratios (ORs) of hyperuricemia were 0.83 (0.71, 0.97) in men and 0.73 (0.63, 0.84) in women (Q4 vs. Q1). Per 10-g increment in beans intake created a 1% decreased risk of hyperuricemia in men and 3% in women. The cubic spline suggested a risk reduction for hyperuricemia with increasing intake of beans. Conclusion: A higher beans intake was associated with a lower serum urate level and a reduced risk of hyperuricemia in both sexes, and the association was more pronounced in women.
Collapse
Affiliation(s)
- Ningning Cui
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuan Xue
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuqian Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhaohui Zheng
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
78
|
Cicero AFG, Fogacci F, Kuwabara M, Borghi C. Therapeutic Strategies for the Treatment of Chronic Hyperuricemia: An Evidence-Based Update. ACTA ACUST UNITED AC 2021; 57:medicina57010058. [PMID: 33435164 PMCID: PMC7827966 DOI: 10.3390/medicina57010058] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
This article aims to critically review the evidence on the available therapeutic strategies for the treatment of hyperuricemia. For this reason, several papers were reviewed. Xanthine oxidase inhibitors are the safest and most effective uric acid lowering drugs for the management of chronic hyperuricemia, while the efficacy of uricosuric agents is strongly modulated by pharmacogenetics. Emergent drugs (lesinurad, peglotidase) were found to be more effective for the acute management of refractory hyperuricemia, but their use is supported by a relatively small number of clinical trials so that further well-designed clinical research is needed to deepen their efficacy and safety profile.
Collapse
Affiliation(s)
- Arrigo F. G. Cicero
- Hypertension Research Unit, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.G.C.); (F.F.)
| | - Federica Fogacci
- Hypertension Research Unit, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.G.C.); (F.F.)
| | - Masanari Kuwabara
- Cardiology Department and Intensive Care Unit, Toranomon Hospital, Tokyo 40138, Japan;
| | - Claudio Borghi
- Hypertension Research Unit, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.G.C.); (F.F.)
- Correspondence: ; Tel.: +39-512142224
| |
Collapse
|
79
|
Hu X, Rong S, Wang Q, Sun T, Bao W, Chen L, Liu L. Association between plasma uric acid and insulin resistance in type 2 diabetes: A Mendelian randomization analysis. Diabetes Res Clin Pract 2021; 171:108542. [PMID: 33227361 DOI: 10.1016/j.diabres.2020.108542] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/03/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Circulating uric acid levels were associated with insulin resistance, but the causality is unclear. We aimed to investigate the association between plasma uric acid and insulin resistance in newly diagnosed type 2 diabetes (T2D). METHODS We enrolled 1,938 patients who underwent a 75-g oral glucose tolerance test. Insulin resistance was estimated based on the homeostatic model assessment index (HOMA2-IR) and the Matsuda index. Uric acid was measured in fasting plasma by uricase-peroxidase method. We genotyped single nucleotide polymorphisms (SNPs) that were recently identified as top hits in genome-wide association studies of uric acid levels. A weighted genetic risk score (wGRS) was calculated based on the associations between selected SNPs and uric acid levels. RESULTS The adjusted β coefficients for Ln-transformed Matsuda index and HOMA2-IR per 1 mg/dL uric acid increment were -0.070 (95%CI: -0.089, -0.052) and 0.057 (95%CI: 0.039, 0.075). These associations were more pronounced among women than men. In Mendelian randomization analysis, the wGRS raised uric acid by 0.225 mg/dL (95%CI: 0.138, 0.312) per SD increase of the score. However, no association was observed between the wGRS and insulin resistance indices whether in men or women. CONCLUSIONS Elevated plasma uric acid was associated with higher risk of insulin resistance, along with observation of gender difference in such association. However, our study does not support a causal role of plasma uric acid on insulin resistance among newly diagnosed T2D patients.
Collapse
Affiliation(s)
- Xueting Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 2, Huangjiahu Road, Wuhan 430065, PR China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.
| |
Collapse
|
80
|
Ko YL. Genetics of hyperuricemia and gout: Insights from recent genome-wide association studies and Mendelian randomization studies. Tzu Chi Med J 2021; 34:261-269. [PMID: 35912057 PMCID: PMC9333104 DOI: 10.4103/tcmj.tcmj_117_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022] Open
Abstract
Gout is the most common form of inflammatory arthritis in adults. Elevation serum uric acid (SUA) concentration is known to be the key to gout pathogenesis. Since the first genome-wide association study (GWAS) for SUA was performed in 2007, the number of gene loci known to be associated with hyperuricemia and gout has grown rapidly. GWASs and Mendelian randomization studies have also reported numerous novel results regarding the genetics of hyperuricemia and gout since 2018. We concisely review recent advances in scholarship on the effects of genetics on hyperuricemia and gout risk. We also review data from genetic association studies in Taiwan and perform GWASs of SUA levels among Taiwan Biobank participants.
Collapse
|
81
|
Abstract
Uric acid, the end product of purine metabolism, plays a key role in the pathogenesis of gout and other disease processes. The circulating serum uric acid concentration is governed by the relative balance of hepatic production, intestinal secretion, and renal tubular reabsorption and secretion. An elegant synergy between genome-wide association studies and transport physiology has led to the identification and characterization of the major transporters involved with urate reabsorption and secretion, in both kidney and intestine. This development, combined with continued analysis of population-level genetic data, has yielded an increasingly refined mechanistic understanding of uric acid homeostasis as well as greater understanding of the genetic and acquired influences on serum uric acid concentration. The continued delineation of novel and established regulatory pathways that regulate uric acid homeostasis promises to lead to a more complete understanding of uric acid-associated diseases and to identify new targets for treatment.
Collapse
Affiliation(s)
| | - Asim K Mandal
- Renal Division, Brigham and Women's Hospital, Boston, MA
| | - David B Mount
- Renal Division, Brigham and Women's Hospital, Boston, MA; Renal Division, VA Boston Healthcare System, Harvard Medical School, Boston, MA.
| |
Collapse
|
82
|
Narang RK, Gamble G, Phipps-Green AJ, Topless R, Cadzow M, Stamp LK, Merriman TR, Dalbeth N. Do Serum Urate-associated Genetic Variants Influence Gout Risk in People Taking Diuretics? Analysis of the UK Biobank. J Rheumatol 2020; 47:1704-1711. [PMID: 32007933 DOI: 10.3899/jrheum.191005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether serum urate (SU)-associated genetic variants differ in their influence on gout risk in people taking a diuretic compared to those not taking a diuretic. METHODS This research was conducted using the UK Biobank Resource (n = 359,876). Ten SU-associated single-nucleotide polymorphisms (SNP) were tested for their association with gout according to diuretic use. Gene-diuretic interactions for gout association were tested using a genetic risk score (GRS) and individual SNP by logistic regression adjusting for relevant confounders. RESULTS After adjustment, use of a loop diuretic was positively associated with prevalent gout (OR 2.34, 95% CI 2.08-2.63), but thiazide diuretics were inversely associated with prevalent gout (OR 0.60, 95% CI 0.55-0.66). Compared with a lower GRS (< mean), a higher GRS (≥ mean) was positively associated with gout in those not taking diuretics (OR 2.63, 2.49-2.79), in those taking loop diuretics (OR 2.04, 95% CI 1.65-2.53), in those taking thiazide diuretics (OR 2.70, 2.26-3.23), and in those taking thiazide-like diuretics (OR 2.11, 95% CI 1.37-3.25). No nonadditive gene-diuretic interactions were observed. CONCLUSION In people taking diuretics, SU-associated genetic variants contribute strongly to gout risk, with a similar effect to that observed in those not taking a diuretic. These findings suggest that the contribution of genetic variants is not restricted to people with "primary" gout, and that genetic variants can play an important role in gout susceptibility in the presence of other risk factors.
Collapse
Affiliation(s)
- Ravi K Narang
- R.K. Narang, MBChB, G. Gamble, MSc, N. Dalbeth, FRACP, Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland
| | - Greg Gamble
- R.K. Narang, MBChB, G. Gamble, MSc, N. Dalbeth, FRACP, Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland
| | - Amanda J Phipps-Green
- A.J. Phipps-Green, MSc, R. Topless, BSc, M. Cadzow, PhD, T.R. Merriman, PhD, Department of Biochemistry, University of Otago, Dunedin
| | - Ruth Topless
- A.J. Phipps-Green, MSc, R. Topless, BSc, M. Cadzow, PhD, T.R. Merriman, PhD, Department of Biochemistry, University of Otago, Dunedin
| | - Murray Cadzow
- A.J. Phipps-Green, MSc, R. Topless, BSc, M. Cadzow, PhD, T.R. Merriman, PhD, Department of Biochemistry, University of Otago, Dunedin
| | - Lisa K Stamp
- L.K. Stamp, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Tony R Merriman
- A.J. Phipps-Green, MSc, R. Topless, BSc, M. Cadzow, PhD, T.R. Merriman, PhD, Department of Biochemistry, University of Otago, Dunedin
| | - Nicola Dalbeth
- R.K. Narang, MBChB, G. Gamble, MSc, N. Dalbeth, FRACP, Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland;
| |
Collapse
|
83
|
Lukkunaprasit T, Rattanasiri S, Turongkaravee S, Suvannang N, Ingsathit A, Attia J, Thakkinstian A. The association between genetic polymorphisms in ABCG2 and SLC2A9 and urate: an updated systematic review and meta-analysis. BMC MEDICAL GENETICS 2020; 21:210. [PMID: 33087043 PMCID: PMC7580000 DOI: 10.1186/s12881-020-01147-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Background Replication studies showed conflicting effects of ABCG2 and SLC2A9 polymorphisms on gout and serum urate. This meta-analysis therefore aimed to pool their effects across studies. Methods Studies were located from MEDLINE and Scopus from inception to 17th June 2018. Observational studies in adults with any polymorphism in ABCG2 or SLC2A9, and outcome including gout, hyperuricemia, and serum urate were included for pooling. Data extractions were performed by two independent reviewers. Genotype effects were pooled stratified by ethnicity using a mixed-effect logistic model and a multivariate meta-analysis for dichotomous and continuous outcomes. Results Fifty-two studies were included in the analysis. For ABCG2 polymorphisms, mainly studied in Asians, carrying 1–2 minor-allele-genotypes of rs2231142 and rs72552713 were respectively about 2.1–4.5 and 2.5–3.9 times higher odds of gout than non-minor-allele-genotypes. The two rs2231142-risk-genotypes also had higher serum urate about 11–18 μmol/l. Conversely, carrying 1–2 minor alleles of rs2231137 was about 36–57% significantly lower odds of gout. For SLC2A9 polymorphisms, mainly studied in Caucasians, carrying 1–2 minor alleles of rs1014290, rs6449213, rs6855911, and rs7442295 were about 25–43%, 31–62%, 33–64%, and 35–65% significantly lower odds of gout than non-minor-allele-genotypes. In addition, 1–2 minor-allele-genotypes of the latter three polymorphisms had significantly lower serum urate about 20–49, 21–51, and 18–54 μmol/l than non-minor-allele-genotypes. Conclusions Our findings should be useful in identifying patients at risk for gout and high serum urate and these polymorphisms may be useful in personalized risk scores. Trial registration PROSPERO registration number: CRD42018105275. Supplementary information The online version contains supplementary material available at 10.1186/s12881-020-01147-2.
Collapse
Affiliation(s)
- Thitiya Lukkunaprasit
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand.,Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Sasivimol Rattanasiri
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand.
| | - Saowalak Turongkaravee
- Social and Administrative Pharmacy Excellence Research (SAPER) Unit, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Naravut Suvannang
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - Atiporn Ingsathit
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - John Attia
- Centre for Clincial Epidemiology and Biostatistics, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
84
|
Hong M, Park JW, Yang PS, Hwang I, Kim TH, Yu HT, Uhm JS, Joung B, Lee MH, Jee SH, Pak HN. A mendelian randomization analysis: The causal association between serum uric acid and atrial fibrillation. Eur J Clin Invest 2020; 50:e13300. [PMID: 32474920 DOI: 10.1111/eci.13300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Observational studies have shown that high levels of serum uric acid (UA) were associated with atrial fibrillation (AF). However, the causal effect of urate on the risk of AF is still unknown. To clarify the potential causal association between UA and AF, we performed a Mendelian randomization (MR) analysis using genetic instrumental variables (IVs). MATERIALS AND METHODS From the Korean GWAS dataset of 633 patients with AF (mean age 50.6 ± 7.8 years, 80.9% male, Yonsei AF Ablation cohort) who underwent radiofrequency catheter ablation and the data from 3533 controls (from the Korea Genome Epidemiology Study), we selected 9 SNPs, with a P value less than .05, associated with an increased UA serum level. Additionally, we calculated the weighted genetic risk score (wGRS) using the selected 9 SNPs, to use it as an instrumental variable. A Mendelian randomization analysis was calculated by a 2-stage estimator method. RESULTS The conventional association between the serum UA and AF was significant (P = .001) after adjusting for potential confounding factors. The SNP rs1165196 on SLC17A1 (F-statistics = 208.34, 0.18 mg/mL per allele change, P < .001) and wGRS (F-statistics = 222.26, 0.20 mg/mL per 1SD change, P < .001) were significantly associated with an increase in the UA level. The MR analysis was causally associated with rs1165196 (estimated odds ratio (OR), 0.21, 95% confidence interval (CI), 0.06-0.75, P = .017), but not wGRS (estimated OR, 1.07, 95% CI, 0.57-2.01, P = .832). CONCLUSION The serum UA level was independently associated with the AF risk.
Collapse
Affiliation(s)
- Myunghee Hong
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Je-Wook Park
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Pil-Sung Yang
- Department of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Inseok Hwang
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Yonsei University, Seoul, Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
85
|
Reis LN, Borfe L, Brand C, Franke SIR, Renner JDP, Gaya AR, Brazo-Sayavera J, Reuter CP. Food Consumption is Associated with Hyperuricemia in Boys. High Blood Press Cardiovasc Prev 2020; 27:409-415. [PMID: 32772309 DOI: 10.1007/s40292-020-00406-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/01/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Hyperuricemia is related to health issues among children and adolescents, once the uric acid concentration is associated with metabolic syndrome, hypertension, insulin resistance, obesity, and dyslipidemia. However, few studies are addressing uric acid levels and food uptake in this age group. AIM To verify the association between food consumption and uric acid in children and adolescents. METHODS This is a cross-sectional study developed with 2335 children and adolescents of both genders aged 6-17 years old. Blood collection was performed after 12 h of fasting. Uric acid values were classified according to tertiles, in which the highest tertile was considered as hyperuricemia. Food consumption was evaluated by weekly consumption frequency questionnaire. Pearson correlation and logistic binary regressions were used for statistical analysis. Models were adjusted for age, systolic blood pressure, body mass index (BMI), and skin color/ethnicity. RESULTS It was found an association between red meat consumption and hyperuricemia only in boys in the crude model (OR = 1.56; 95% CI 1.12; 2.18). Also, there was an association between pasta (OR = 1.52; 95% CI 1.11; 2.10) with hyperuricemia in boys, when adjusted age, systolic blood pressure, BMI, and skin color/ethnicity. CONCLUSION The knowledge of food patterns which are predisposing factors for the increase in serum uric acid levels is important for the implementation of strategies and public health policies for health promotion among children and adolescents.
Collapse
Affiliation(s)
- Luiza Naujorks Reis
- Graduate Program in Human Movement Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leticia Borfe
- Graduate Program in Human Movement Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Brand
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Silvia Isabel Rech Franke
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Jane Dagmar Pollo Renner
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Anelise Reis Gaya
- Graduate Program in Human Movement Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Cézane Priscila Reuter
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| |
Collapse
|
86
|
Borghi C, Agabiti-Rosei E, Johnson RJ, Kielstein JT, Lurbe E, Mancia G, Redon J, Stack AG, Tsioufis KP. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur J Intern Med 2020; 80:1-11. [PMID: 32739239 DOI: 10.1016/j.ejim.2020.07.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
During the last century, there has been an increasing prevalence of hyperuricaemia noted in many populations. While uric acid is usually discussed in the context of gout, hyperuricaemia is also associated with hypertension, chronic kidney disease, hypertriglyceridaemia, obesity, atherosclerotic heart disease, metabolic syndrome, and type 2 diabetes. Here we review the connection between hyperuricaemia and cardiovascular, kidney and metabolic diseases. Contrary to the popular view that uric acid is an inert metabolite of purine metabolism, recent studies suggest serum uric acid may have a variety of pro-inflammatory, pro-oxidative and vasoconstrictive actions that may contribute to cardiometabolic diseases. Hyperuricaemia is a predictive factor for the development of hypertension, metabolic syndrome, type 2 diabetes, coronary artery disease, left ventricular hypertrophy, atrial fibrillation, myocardial infarction, stroke, heart failure and chronic kidney disease. Treatment with uric acid-lowering therapies has also been found to improve outcomes in patients with hypertension and kidney disease, in some but not all studies. In conclusion, uric acid is emerging as a potentially treatable risk factor for cardiometabolic diseases, and more clinical trials investigating the potential benefit of lowering serum uric acid are recommended in individuals with hyperuricaemia with and without deposition and concomitant hypertension, metabolic syndrome or chronic kidney disease.
Collapse
Affiliation(s)
- Claudio Borghi
- Department of Medical and Surgical Sciences, Ospedale Malpighi, University of Bologna, Via Albertoni 15, 40138 Bologna, Italy.
| | - Enrico Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia Division of Medicine, Viale Europa, 11 - 25123 Brescia, Italy
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave Aurora, Colorado, United States
| | - Jan T Kielstein
- Medical Clinic V: Nephrology, Rheumatology and Blood Purification, Academic Teaching Hospital Braunschweig, Salzdahlumer Straße 90, 38126, Braunschweig, Germany
| | - Empar Lurbe
- Pediatric Department, General Hospital of Valencia and CIBERObn, Av. Menéndez Pelayo 4, 46010 Valencia, Spain
| | - Giuseppe Mancia
- University of Milano-Bicocca, Piazza dell'AteneoNuovo, 1, 20126 Milan and Policlinico di Monza, Monza, Italy
| | - Josep Redon
- Hospital Clinic of Valencia, INCLIVA University of Valencia and CIBERObn, Av. Menéndez Pelayo 4, 46010 Valencia, Spain
| | - Austin G Stack
- Department of Nephrology, University Hospital Limerick, Graduate Entry Medical School, University of Limerick, Castletroy, Co. Limerick, V94 T9PX, Ireland
| | | |
Collapse
|
87
|
Console L, Scalise M, Mazza T, Pochini L, Galluccio M, Giangregorio N, Tonazzi A, Indiveri C. Carnitine Traffic in Cells. Link With Cancer. Front Cell Dev Biol 2020; 8:583850. [PMID: 33072764 PMCID: PMC7530336 DOI: 10.3389/fcell.2020.583850] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility is a peculiar hallmark of cancer cells. A growing number of observations reveal that tumors can utilize a wide range of substrates to sustain cell survival and proliferation. The diversity of carbon sources is indicative of metabolic heterogeneity not only across different types of cancer but also within those sharing a common origin. Apart from the well-assessed alteration in glucose and amino acid metabolisms, there are pieces of evidence that cancer cells display alterations of lipid metabolism as well; indeed, some tumors use fatty acid oxidation (FAO) as the main source of energy and express high levels of FAO enzymes. In this metabolic pathway, the cofactor carnitine is crucial since it serves as a “shuttle-molecule” to allow fatty acid acyl moieties entering the mitochondrial matrix where these molecules are oxidized via the β-oxidation pathway. This role, together with others played by carnitine in cell metabolism, underlies the fine regulation of carnitine traffic among different tissues and, within a cell, among different subcellular compartments. Specific membrane transporters mediate carnitine and carnitine derivatives flux across the cell membranes. Among the SLCs, the plasma membrane transporters OCTN2 (Organic cation transport novel 2 or SLC22A5), CT2 (Carnitine transporter 2 or SLC22A16), MCT9 (Monocarboxylate transporter 9 or SLC16A9) and ATB0, + [Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) or SLC6A14] together with the mitochondrial membrane transporter CAC (Mitochondrial carnitine/acylcarnitine carrier or SLC25A20) are the most acknowledged to mediate the flux of carnitine. The concerted action of these proteins creates a carnitine network that becomes relevant in the context of cancer metabolic rewiring. Therefore, molecular mechanisms underlying modulation of function and expression of carnitine transporters are dealt with furnishing some perspective for cancer treatment.
Collapse
Affiliation(s)
- Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Annamaria Tonazzi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| |
Collapse
|
88
|
Yang HJ, Liu M, Kim MJ, Park S. The haplotype of SLC2A9_rs3733591, PKD2_rs2725220 and ABCG2_rs2231142 increases the hyperuricaemia risk and alcohol, chicken and processed meat intakes and smoking interact with its risk. Int J Food Sci Nutr 2020; 72:391-401. [PMID: 32806975 DOI: 10.1080/09637486.2020.1807474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We determined that a genetic haplotype increased the risk of hyperuricaemia and it interacted with lifestyle factors, including nutrients in 28,445 middle-aged Koreans. ABCG2_rs2231142, PKD2_rs2725220 and SLC2A9_rs3733591 were selected from GWAS based on hyperuricaemia (≥7 mg/dL; p = 6.88E-42, 1.56E-26 and 1.01E-20, respectively). Hyperuricaemia and gout were elevated by 3.93- and 3.23-fold, respectively, by the minor alleles as compared with the major alleles of the haplotype of the selected 3 SNPs after adjusting for covariates. The haplotype significantly interacted with alcohol, chicken and processed meat intakes, and smoking status in the hyperuricaemia risk (p = 0.002-0.007). Minor alleles of the haplotype had an association with hyperuricaemia as compared with major alleles particularly in high intakes of alcohol (2g/day), chicken (6.3g/day), and processed meat (3g/day) and smokers. In conclusion, people carrying minor alleles of the haplotype of SLC2A9_rs3733591, PKD2_rs2725220 and ABCG2_rs2231142 should avoid diets high in chicken and processed meat, alcohol drinking, and cigarette smoking to protect against hyperuricaemia risk.
Collapse
Affiliation(s)
- Hye Jeong Yang
- Food Functional Research Division, Korean Food Research Institutes, Wanjoo, Republic of Korea
| | - Meiling Liu
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, Republic of Korea
| | - Min Jung Kim
- Food Functional Research Division, Korean Food Research Institutes, Wanjoo, Republic of Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
89
|
Stevenson M, Pagnamenta AT, Reichart S, Philpott C, Lines KE, OxClinWGS, Gorvin CM, Lhotta K, Taylor JC, Thakker RV. Whole genome sequence analysis identifies a PAX2 mutation to establish a correct diagnosis for a syndromic form of hyperuricemia. Am J Med Genet A 2020; 182:2521-2528. [PMID: 32776440 PMCID: PMC7611017 DOI: 10.1002/ajmg.a.61814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023]
Abstract
Hereditary hyperuricemia may occur as part of a syndromic disorder or as an isolated nonsyndromic disease, and over 20 causative genes have been identified. Here, we report the use of whole genome sequencing (WGS) to establish a diagnosis in a family in which individuals were affected with gout, hyperuricemia associated with reduced fractional excretion of uric acid, chronic kidney disease (CKD), and secondary hyperparathyroidism, that are consistent with familial juvenile hyperuricemic nephropathy (FJHN). However, single gene testing had not detected mutations in the uromodulin (UMOD) or renin (REN) genes, which cause approximately 30-90% of FJHN. WGS was therefore undertaken, and this identified a heterozygous c.226G>C (p.Gly76Arg) missense variant in the paired box gene 2 (PAX2) gene, which co-segregated with renal tubulopathy in the family. PAX2 mutations are associated with renal coloboma syndrome (RCS), which is characterized by abnormalities in renal structure and function, and anomalies of the optic nerve. Ophthalmological examination in two adult brothers affected with hyperuricemia, gout, and CKD revealed the presence of optic disc pits, consistent with optic nerve coloboma, thereby revising the diagnosis from FJHN to RCS. Thus, our results demonstrate the utility of WGS analysis in establishing the correct diagnosis in disorders with multiple etiologies.
Collapse
Affiliation(s)
- Mark Stevenson
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | | | - Silvia Reichart
- Department of Ophthalmology, Academic Teaching Hospital, Feldkirch, Austria
| | - Charlotte Philpott
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | - Kate E. Lines
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | | | - Caroline M. Gorvin
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | - Karl Lhotta
- Department of Internal Medicine III (Nephrology and Dialysis), Academic Teaching Hospital, Feldkirch, Austria
| | | | - Rajesh V. Thakker
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
90
|
Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647. [PMID: 32758646 DOI: 10.1016/j.pharmthera.2020.107647] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.
Collapse
|
91
|
Roman Y, Tiirikainen M, Prom-Wormley E. The prevalence of the gout-associated polymorphism rs2231142 G>T in ABCG2 in a pregnant female Filipino cohort. Clin Rheumatol 2020; 39:2387-2392. [PMID: 32107664 DOI: 10.1007/s10067-020-04994-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
Gout is a metabolic disorder and one of the most common arthritic conditions. Hyperuricemia is the hallmark of developing gout and mostly caused by uric acid underexcretion. Gout disproportionately affects people of specific races and ethnicities. Filipinos are the second-largest Asian population in the USA and reported to have a higher prevalence of gout and hyperuricemia than non-Filipino counterparts and Filipinos residing in the Philippines. The genetic polymorphism rs2231142 G>T in the ABCG2 has been strongly associated with hyperuricemia and gout across multiple populations. However, the prevalence of this variant in Filipinos is unknown. Therefore, assessing the prevalence of this variant may provide insights on the high prevalence of hyperuricemia and gout in Filipinos. A total of 190 DNA samples from pregnant females who self-identified as a Filipino from the Hawaii Biorepository Bank were genotyped for rs2231142 G>T in the ABCG2. The prevalence of the gout risk allele (T) (46%) was significantly higher in Filipinos than in samples of Caucasians (12%, p < 0.001), Han Chinese (29%, p = 0.014), and African Americans (3%, p < 0.001). Similarly, the prevalence of the gout-risk genotype (TT) (21%) was significantly higher in Filipinos than in samples of Caucasians (1%, p < 0.001), Han Chinese (9%, p = 0.002), and African Americans (0.1%, p < 0.001). Though there were no gout cases in this cohort, these findings are suggestive of a genetic basis to the high prevalence of hyperuricemia and gout in Filipinos. This might also explain the reported reduced urinary uric acid excretion in Filipinos compared with Caucasians. Key Points • The Filipinos have the highest prevalence of the gout-associated risk allele (T) of the rs2231142 G>T in ABCG2. • The high prevalence of the risk allele (T) of the rs2231142 G>T in ABCG2 may partly explain the reduced urinary urate excretion and early-onset gout in Filipinos. • The high prevalence of the risk allele (T) of the rs2231142 G > T in ABCG2 may predispose Filipinos to hyperuricemia and gout when acculturated to high-purine diet.
Collapse
Affiliation(s)
- Youssef Roman
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
| | - Maarit Tiirikainen
- Population Sciences in the Pacific program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Elizabeth Prom-Wormley
- Department of Family Medicine and Population Health, Division of Epidemiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
92
|
Otani N, Kurata Y, Maharani N, Kuwabara M, Ikeda N, Notsu T, Li P, Miake J, Yoshida A, Sakaguchi H, Higaki K, Nakasone N, Tsuneto M, Shirayoshi Y, Ouchi M, Ninomiya H, Yamamoto K, Anzai N, Hisatome I. Evidence for Urate Uptake Through Monocarboxylate Transporter 9 Expressed in Mammalian Cells and Its Enhancement by Heat Shock. Circ Rep 2020; 2:425-432. [PMID: 33693264 PMCID: PMC7819574 DOI: 10.1253/circrep.cr-20-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Monocarboxylate transporter 9 (MCT9), an orphan transporter member of the solute carrier family 16 (SLC16), possibly reabsorbs uric acid in the renal tubule and has been suggested by genome-wide association studies to be involved in the development of hyperuricemia and gout. In this study we investigated the mechanisms regulating the expression of human (h) MCT9, its degradation, and physiological functions. Methods and Results: hMCT9-FLAG was stably expressed in HEK293 cells and its degradation, intracellular localization, and urate uptake activities were assessed by pulse-chase analysis, immunofluorescence, and [14C]-urate uptake experiments, respectively. hMCT9-FLAG was localized on the plasma membrane as well as in the endoplasmic reticulum and Golgi apparatus. The proteasome inhibitors MG132 and lactacystine increased levels of hMCT9-FLAG protein expression with enhanced ubiquitination, prolonged their half-life, and decreased [14C]-urate uptake. [14C]-urate uptake was increased by both heat shock (HS) and the HS protein inducer geranylgeranylacetone (GGA). Both HS and GGA restored the [14C]-urate uptake impaired by MG132. Conclusions: hMCT9 does transport urate and is degraded by a proteasome, inhibition of which reduces hMCT9 expression on the cell membrane and urate uptake. HS enhanced urate uptake through hMCT9.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine Oita Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University Ishikawa Japan
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine Diponegoro University Semarang Indonesia
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital Tokyo Japan
| | - Nobuhito Ikeda
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Tomomi Notsu
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Peili Li
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine Tottori Japan
| | - Akio Yoshida
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Hiromi Sakaguchi
- Department of Radiology, Tottori University Faculty of Medicine Tottori Japan
| | - Katsumi Higaki
- Division of Functional Genomics, Tottori University Research Center for Bioscience and Technology Tottori Japan
| | - Naoe Nakasone
- Department of Biological Regulation, Tottori University Faculty of Medicine Tottori Japan
| | - Motokazu Tsuneto
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Yasuaki Shirayoshi
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine Tochigi Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University Faculty of Medicine Tottori Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine Tottori Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine Chiba Japan
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| |
Collapse
|
93
|
Torres RJ. Toll-Like receptor 4 (TLR4) polymorphism rs2149356 and risk of gout in a Spanish cohort. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1424-1431. [PMID: 32552358 DOI: 10.1080/15257770.2020.1780438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Gout is the most common arthritis and it is associated to urate monosodium crystals deposits in articulations, kidney and soft tissue. The urate monosodium crystals deposit initiates an inflammatory response; mediated by NLRP3 inflammasome, with the release of interleukin 1β. Toll-like receptor 4 (TLR4) is involved in this response. Although serum urate level is a strong predictor of incident gout, only about half of those with serum urate concentrations ≥10mg/dL develop clinically evident gout over 15 years. Therefore, it has been postulated that other factors, including genetic or immunity related factors, seems to be necessary to the apparition of the acute gout flare beside hyperuricemia. The association of TLR4 single nucleotide polymorphism (SNP) rs2149356 and gout risk is controversial with different results according to different populations.Methods: We have analyzed rs2149356 polymorphism of TLR4 gene in DNA extracted from 125 well characterized Caucasian gouty patients and 300 Caucasian health controls, by automated DNA sequencing.Results: Allele frequency distribution in control samples were CC: 0.467 (140); CA 0.437 (131); and AA 0.097 (29).Allele distribution in gouty patients were CC: 0.512 (64); CA: 0.392 (49); and AA: 0.096 (12). No significant association was found between TRL4 rs2149356 polymorphism and risk of gout in the analyzed population.Conclusions: Allele frequency for rs2149356 in our population was similar to other population of European ancestry, and in these populations; the polymorphism was not related to gouty risk.
Collapse
Affiliation(s)
- Rosa J Torres
- Foundation for Biomedical Research FIBHULP, IdiPaz, Department of Biochemistry, La Paz University Hospital, IdiPaz, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
94
|
Sex Differences in Urate Handling. Int J Mol Sci 2020; 21:ijms21124269. [PMID: 32560040 PMCID: PMC7349092 DOI: 10.3390/ijms21124269] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hyperuricemia, or elevated serum urate, causes urate kidney stones and gout and also increases the incidence of many other conditions including renal disease, cardiovascular disease, and metabolic syndrome. As we gain mechanistic insight into how urate contributes to human disease, a clear sex difference has emerged in the physiological regulation of urate homeostasis. This review summarizes our current understanding of urate as a disease risk factor and how being of the female sex appears protective. Further, we review the mechanisms of renal handling of urate and the significant contributions from powerful genome-wide association studies of serum urate. We also explore the role of sex in the regulation of specific renal urate transporters and the power of new animal models of hyperuricemia to inform on the role of sex and hyperuricemia in disease pathogenesis. Finally, we advocate the use of sex differences in urate handling as a potent tool in gaining a further understanding of physiological regulation of urate homeostasis and for presenting new avenues for treating the constellation of urate related pathologies.
Collapse
|
95
|
Zhang Y, Zhang Y, Sun K, Meng Z, Chen L. The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 2020; 11:1-13. [PMID: 30239845 PMCID: PMC6359923 DOI: 10.1093/jmcb/mjy052] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
The prevalence of metabolic diseases is growing worldwide. Accumulating evidence suggests that solute carrier (SLC) transporters contribute to the etiology of various metabolic diseases. Consistent with metabolic characteristics, the top five organs in which SLC transporters are highly expressed are the kidney, brain, liver, gut, and heart. We aim to understand the molecular mechanisms of important SLC transporter-mediated physiological processes and their potentials as drug targets. SLC transporters serve as ‘metabolic gate’ of cells and mediate the transport of a wide range of essential nutrients and metabolites such as glucose, amino acids, vitamins, neurotransmitters, and inorganic/metal ions. Gene-modified animal models have demonstrated that SLC transporters participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, tissue development, oxidative stress, host defense, and neurological regulation. Furthermore, the human genomic studies have identified that SLC transporters are susceptible or causative genes in various diseases like cancer, metabolic disease, cardiovascular disease, immunological disorders, and neurological dysfunction. Importantly, a number of SLC transporters have been successfully targeted for drug developments. This review will focus on the current understanding of SLCs in regulating physiology, nutrient sensing and uptake, and risk of diseases.
Collapse
Affiliation(s)
- Yong Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuping Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kun Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ziyi Meng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
96
|
Cho SK, Kim B, Myung W, Chang Y, Ryu S, Kim HN, Kim HL, Kuo PH, Winkler CA, Won HH. Polygenic analysis of the effect of common and low-frequency genetic variants on serum uric acid levels in Korean individuals. Sci Rep 2020; 10:9179. [PMID: 32514006 PMCID: PMC7280503 DOI: 10.1038/s41598-020-66064-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/05/2020] [Indexed: 01/28/2023] Open
Abstract
Increased serum uric acid (SUA) levels cause gout and are associated with multiple diseases, including chronic kidney disease. Previous genome-wide association studies (GWAS) have identified more than 180 loci that contribute to SUA levels. Here, we investigated genetic determinants of SUA level in the Korean population. We conducted a GWAS for SUA in 6,881 Korean individuals, calculated polygenic risk scores (PRSs) for common variants, and validated the association of low-frequency variants and PRS with SUA levels in 3,194 individuals. We identified two low-frequency and six common independent variants associated with SUA. Despite the overall similar effect sizes of variants in Korean and European populations, the proportion of variance for SUA levels explained by the variants was greater in the Korean population. A rare, nonsense variant SLC22A12 p.W258X showed the most significant association with reduced SUA levels, and PRSs of common variants associated with SUA levels were significant in multiple Korean cohorts. Interestingly, an East Asian-specific missense variant (rs671) in ALDH2 displayed a significant association on chromosome 12 with the SUA level. Further genetic epidemiological studies on SUA are needed in ethnically diverse cohorts to investigate rare or low-frequency variants and determine the influence of genetic and environmental factors on SUA.
Collapse
Affiliation(s)
- Sung Kweon Cho
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.,Molecular Genetic Epidemiology Section, Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han-Na Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University, Seoul, Republic of Korea
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
97
|
Buziau AM, Schalkwijk CG, Stehouwer CDA, Tolan DR, Brouwers MCGJ. Recent advances in the pathogenesis of hereditary fructose intolerance: implications for its treatment and the understanding of fructose-induced non-alcoholic fatty liver disease. Cell Mol Life Sci 2020; 77:1709-1719. [PMID: 31713637 PMCID: PMC11105038 DOI: 10.1007/s00018-019-03348-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
Hereditary fructose intolerance (HFI) is a rare inborn disease characterized by a deficiency in aldolase B, which catalyzes the cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate (Fru 1P) to triose molecules. In patients with HFI, ingestion of fructose results in accumulation of Fru 1P and depletion of ATP, which are believed to cause symptoms, such as nausea, vomiting, hypoglycemia, and liver and kidney failure. These sequelae can be prevented by a fructose-restricted diet. Recent studies in aldolase B-deficient mice and HFI patients have provided more insight into the pathogenesis of HFI, in particular the liver phenotype. Both aldolase B-deficient mice (fed a very low fructose diet) and HFI patients (treated with a fructose-restricted diet) displayed greater intrahepatic fat content when compared to controls. The liver phenotype in aldolase B-deficient mice was prevented by reduction in intrahepatic Fru 1P concentrations by crossing these mice with mice deficient for ketohexokinase, the enzyme that catalyzes the synthesis of Fru 1P. These new findings not only provide a potential novel treatment for HFI, but lend insight into the pathogenesis of fructose-induced non-alcoholic fatty liver disease (NAFLD), which has raised to epidemic proportions in Western society. This narrative review summarizes the most recent advances in the pathogenesis of HFI and discusses the implications for the understanding and treatment of fructose-induced NAFLD.
Collapse
Affiliation(s)
- Amée M Buziau
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, MA, USA.
| | - Martijn C G J Brouwers
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
| |
Collapse
|
98
|
Nakayama A, Nakatochi M, Kawamura Y, Yamamoto K, Nakaoka H, Shimizu S, Higashino T, Koyama T, Hishida A, Kuriki K, Watanabe M, Shimizu T, Ooyama K, Ooyama H, Nagase M, Hidaka Y, Matsui D, Tamura T, Nishiyama T, Shimanoe C, Katsuura-Kamano S, Takashima N, Shirai Y, Kawaguchi M, Takao M, Sugiyama R, Takada Y, Nakamura T, Nakashima H, Tsunoda M, Danjoh I, Hozawa A, Hosomichi K, Toyoda Y, Kubota Y, Takada T, Suzuki H, Stiburkova B, Major TJ, Merriman TR, Kuriyama N, Mikami H, Takezaki T, Matsuo K, Suzuki S, Hosoya T, Kamatani Y, Kubo M, Ichida K, Wakai K, Inoue I, Okada Y, Shinomiya N, Matsuo H. Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Ann Rheum Dis 2020; 79:657-665. [PMID: 32238385 PMCID: PMC7213308 DOI: 10.1136/annrheumdis-2019-216644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Genome-wide meta-analyses of clinically defined gout were performed to identify subtype-specific susceptibility loci. Evaluation using selection pressure analysis with these loci was also conducted to investigate genetic risks characteristic of the Japanese population over the last 2000-3000 years. METHODS Two genome-wide association studies (GWASs) of 3053 clinically defined gout cases and 4554 controls from Japanese males were performed using the Japonica Array and Illumina Array platforms. About 7.2 million single-nucleotide polymorphisms were meta-analysed after imputation. Patients were then divided into four clinical subtypes (the renal underexcretion type, renal overload type, combined type and normal type), and meta-analyses were conducted in the same manner. Selection pressure analyses using singleton density score were also performed on each subtype. RESULTS In addition to the eight loci we reported previously, two novel loci, PIBF1 and ACSM2B, were identified at a genome-wide significance level (p<5.0×10-8) from a GWAS meta-analysis of all gout patients, and other two novel intergenic loci, CD2-PTGFRN and SLC28A3-NTRK2, from normal type gout patients. Subtype-dependent patterns of Manhattan plots were observed with subtype GWASs of gout patients, indicating that these subtype-specific loci suggest differences in pathophysiology along patients' gout subtypes. Selection pressure analysis revealed significant enrichment of selection pressure on ABCG2 in addition to ALDH2 loci for all subtypes except for normal type gout. CONCLUSIONS Our findings on subtype GWAS meta-analyses and selection pressure analysis of gout will assist elucidation of the subtype-dependent molecular targets and evolutionary involvement among genotype, phenotype and subtype-specific tailor-made medicine/prevention of gout and hyperuricaemia.
Collapse
Affiliation(s)
- Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Medical Squadron, Air Base Group, Western Aircraft Control and Warning Wing, Japan Air Self-Defense Force, Kasuga, Japan
| | - Masahiro Nakatochi
- Division of Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Department of General Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Miki Watanabe
- Department of Public Health, Nagoya City University Graduate School Medical Science, Nagoya, Japan
| | - Toru Shimizu
- Midorigaoka Hospital, Takatsuki, Japan
- Kyoto Industrial Health Association, Kyoto, Japan
| | | | | | | | | | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School Medical Science, Nagoya, Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Ryo Sugiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yuzo Takada
- Faculty of Medical Science, Teikyo University of Science, Tokyo, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Japan
| | - Masashi Tsunoda
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Japan
| | - Inaho Danjoh
- Group of Privacy Controls, Tohoku Medical Megabank Organization, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Yu Kubota
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Blanka Stiburkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Institute of Rheumatology, Prague, Czech Republic
| | - Tanya J Major
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Tony R Merriman
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School Medical Science, Nagoya, Japan
| | - Tatsuo Hosoya
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
- Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Tokyo, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kimiyoshi Ichida
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
99
|
Otani N, Ouchi M, Kudo H, Tsuruoka S, Hisatome I, Anzai N. Recent approaches to gout drug discovery: an update. Expert Opin Drug Discov 2020; 15:943-954. [PMID: 32329387 DOI: 10.1080/17460441.2020.1755251] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Inflammation induced by urate deposition in joints causes gout. Healthy individuals maintain serum levels of urate by balancing urate production/excretion, whereas a production/excretion imbalance increases urate levels. Hyperuricemia is diagnosed when the serum urate level is continuously above 7 mg/dl as the solubility limit, and urate accumulates in the kidneys and joints. Because hyperuricemia increases the risk of gout, therapies aim to eliminate urate deposition to prevent gouty arthritis and kidney injury. AREAS COVERED This review discusses the mechanism underlying hyperuricemia with respect to urate production and urate transport, along with urate-lowering therapeutics, including urate synthesis inhibitors, uricolytic enzymes, and uricosuric agents. The authors asses published data on relevant commercial therapy development projects and clinical trials. EXPERT OPINION Available treatment options for hyperuricemia are limited. Allopurinol, a urate synthesis inhibitor, is generally administered at a reduced dosage to patients with renal impairment. Some URAT1 inhibitors have an unfavorable side effect profile. A promising strategy for treatment is the use of uricosuric agents that inhibit transporters (e.g. URAT1, URATv1/GLUT9, OAT10) which reabsorb urate from the urine.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine , Oita, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine , Tochigi, Japan
| | - Hideo Kudo
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine , Oita, Japan
| | | | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science , Tottori, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine , Chiba, Japan
| |
Collapse
|
100
|
Kim HJ, Sohn IW, Kim YS, Jun JB. The Different Relationship between Homocysteine and Uric Acid Levels with Respect to the MTHFR C677T Polymorphism According to Gender in Patients with Cognitive Impairment. Nutrients 2020; 12:nu12041147. [PMID: 32325916 PMCID: PMC7230180 DOI: 10.3390/nu12041147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
In an elderly population with cognitive impairment, we investigated the association between serum uric acid (sUA) and serum homocysteine (sHcy), known risk factors for cerebrovascular disease. We also investigated the potential effect of the C677T polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR) to the sUA level in different dementia types. Participants underwent a battery of tests including measurements of sUA, sHcy, folic acid, and vitamin B12 as well as genotyping of the MTHFR locus. Data from 861 subjects (597 females to 264 males) were retrospectively analyzed. Subjects with hyperhomocysteinemia had lower serum folic acid and vitamin B12 and higher sUA than those with normal sHcy. sUA was significantly associated with serum creatinine, HbA1c, and sHcy regardless of gender. The TT genotype was found to be associated with hyperhomocysteinemia in both genders (p = 0.001). The levels of hyperlipidemia, sHcy, and sUA differed according to dementia subtypes. High sUA were associated with hyperhomocystenemia in TT genotype only in dementia with vascular lesion. This study reveals that sUA is positively associated with sHcy. We speculate that the two markers synergistically increase cerebrovascular burden and suggested that dietary intervention for sUA and sHcy would be helpful for cognitive decline with vascular lesion.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Department of Neurology, Hanyang University, 222, Wansimni-ro, Seondong-gu, Seoul 04763, Korea;
- Correspondence: (H.-J.K.); (J.-B.J.); Tel.: +82-2-2290-9216 (H.-J.K.); +82-2-2290-8374 (J.-B.J.)
| | - Il Woong Sohn
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wansimni-ro, Seondong-gu, Seoul 04763, Korea;
| | - Young Seo Kim
- Department of Neurology, Hanyang University, 222, Wansimni-ro, Seondong-gu, Seoul 04763, Korea;
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wansimni-ro, Seondong-gu, Seoul 04763, Korea;
- Correspondence: (H.-J.K.); (J.-B.J.); Tel.: +82-2-2290-9216 (H.-J.K.); +82-2-2290-8374 (J.-B.J.)
| |
Collapse
|