51
|
Swanson PA, Hart GT, Russo MV, Nayak D, Yazew T, Peña M, Khan SM, Janse CJ, Pierce SK, McGavern DB. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog 2016; 12:e1006022. [PMID: 27907215 PMCID: PMC5131904 DOI: 10.1371/journal.ppat.1006022] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023] Open
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. Cerebral malaria (CM) is a severe and potentially fatal complication of malaria in humans that results in swelling and bleeding within the brain. The mechanisms that cause this fatal disease in humans are not completely understood. We studied an animal model known as experimental cerebral malaria to learn more about the factors that drive this disease process. Using a technique referred to as intravital microscopy, we captured movies of immune cells operating in the living brain as the disease developed. At the peak of disease, we observed evidence of immune cells interacting with and aggregating along blood vessels throughout the brain. These interactions were directly associated vascular leakage. This caused the brain to swell, which gave rise to an unsustainable pressure that ultimately killed neurons responsible for heart and lung function. The fatal swelling was induced by immune cells (referred to as T cells) interacting with bits of parasite presented by blood vessels in the brain. Removal of this parasite presentation protected the mice from fatal disease. We also evaluated a straightforward therapy that involved intravenous administration of antibodies that interfered with T cell sticking to blood vessels. Our movies revealed that this therapeutic approach rapidly displaced T cells from the blood vessels in the brain and prevented fatal disease.
Collapse
Affiliation(s)
- Phillip A. Swanson
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geoffrey T. Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew V. Russo
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Debasis Nayak
- Center for Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Takele Yazew
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mirna Peña
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dorian B. McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
52
|
Ahn D, Peñaloza H, Wang Z, Wickersham M, Parker D, Patel P, Koller A, Chen EI, Bueno SM, Uhlemann AC, Prince A. Acquired resistance to innate immune clearance promotes Klebsiella pneumoniae ST258 pulmonary infection. JCI Insight 2016; 1:e89704. [PMID: 27777978 DOI: 10.1172/jci.insight.89704] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptive changes in the genome of a locally predominant clinical isolate of the multidrug-resistant Klebsiella pneumoniae ST258 (KP35) were identified and help to explain the selection of this strain as a successful pulmonary pathogen. The acquisition of 4 new ortholog groups, including an arginine transporter, enabled KP35 to outcompete related ST258 strains lacking these genes. KP35 infection elicited a monocytic response, dominated by Ly6Chi monocytic myeloid-derived suppressor cells that lacked phagocytic capabilities, expressed IL-10, arginase, and antiinflammatory surface markers. In comparison with other K. pneumoniae strains, KP35 induced global changes in the phagocytic response identified with proteomics, including evasion of Ca2+ and calpain activation necessary for phagocytic killing, confirmed in functional studies with neutrophils. This comprehensive analysis of an ST258 K. pneumoniae isolate reveals ongoing genetic adaptation to host microenvironments and innate immune clearance mechanisms that complements its repertoire of antimicrobial resistance genes and facilitates persistence in the lung.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Hernán Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zheng Wang
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Matthew Wickersham
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Dane Parker
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Purvi Patel
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Antonius Koller
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Emily I Chen
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA.,Department of Pharmacology, Columbia University Medical Center, New York, New York, USA
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Pharmacology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
53
|
Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, French T, Hambardzumyan D, Matzinger P, Dunay IR, Wolf SA. Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Rep 2016; 15:1945-56. [PMID: 27210745 DOI: 10.1016/j.celrep.2016.04.074] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/15/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6C(hi) monocytes in the brain than antibiotic-treated mice. Elimination of Ly6C(hi) monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6C(hi) monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6C(hi) monocytes.
Collapse
Affiliation(s)
- Luisa Möhle
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Daniele Mattei
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Markus M Heimesaat
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Stefan Bereswill
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - André Fischer
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Marie Alutis
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Timothy French
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Dolores Hambardzumyan
- Department of Neurosciences at the Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Polly Matzinger
- Ghost Lab, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892-9760, USA
| | - Ildiko R Dunay
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Susanne A Wolf
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
54
|
Brant F, Miranda AS, Esper L, Gualdrón-López M, Cisalpino D, de Souza DDG, Rachid MA, Tanowitz HB, Teixeira MM, Teixeira AL, Machado FS. Suppressor of cytokine signaling 2 modulates the immune response profile and development of experimental cerebral malaria. Brain Behav Immun 2016; 54:73-85. [PMID: 26765997 DOI: 10.1016/j.bbi.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum infection results in severe malaria in humans, affecting various organs, including the liver, spleen and brain, and resulting in high morbidity and mortality. The Plasmodium berghei ANKA (PbA) infection in mice closely recapitulates many aspects of human cerebral malaria (CM); thus, this model has been used to investigate the pathogenesis of CM. Suppressor of cytokine signaling 2 (SOCS2), an intracellular protein induced by cytokines and hormones, modulates the immune response, neural development, neurogenesis and neurotrophic pathways. However, the role of SOCS2 during CM remains unknown. SOCS2 knockout (SOCS2(-/-)) mice infected with PbA show an initial resistance to infection with reduced parasitemia and production of TNF, TGF-β, IL-12 and IL-17 in the brain. Interestingly, in the late phase of infection, SOCS2(-/-) mice display increased parasitemia and reduced Treg cell infiltration, associated with enhanced levels of Th1 and Th17 cells and related cytokines IL-17, IL-6, and TGF-β in the brain. A significant reduction in protective neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), was also observed. Moreover, the molecular alterations in the brain of infected SOCS2(-/-) mice were associated with anxiety-related behaviors and cognition impairment. Mechanistically, these results revealed enhanced nitric oxide (NO) production in PbA-infected SOCS2(-/-) mice, and the inhibition of NO synthesis through l-NAME led to a marked decrease in survival, the disruption of parasitemia control and more pronounced anxiety-like behavior. Treatment with l-NAME also shifted the levels of Th1, Th7 and Treg cells in the brains of infected SOCS2(-/-) mice to the background levels observed in infected WT, with remarkable exception of increased CD8(+)IFN(+) T cells and inflammatory monocytes. These results indicate that SOCS2 plays a dual role during PbA infection, being detrimental in the control of the parasite replication but crucial in the regulation of the immune response and production of neurotrophic factors. Here, we provided strong evidence of a critical relationship between SOCS2 and NO in the orchestration of the immune response and development of CM during PbA infection.
Collapse
Affiliation(s)
- Fatima Brant
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline S Miranda
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lisia Esper
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Melisa Gualdrón-López
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel Cisalpino
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle da Gloria de Souza
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene Alvarenga Rachid
- Department of Pathology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Herbert B Tanowitz
- Department of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mauro Martins Teixeira
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lucio Teixeira
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana Simão Machado
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
55
|
Lauvau G, Loke P, Hohl TM. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol 2016; 27:397-409. [PMID: 27021645 DOI: 10.1016/j.smim.2016.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023]
Abstract
Circulating blood monocytes are a heterogeneous leukocyte population that contributes critical antimicrobial and regulatory functions during systemic and tissue-specific infections. These include patrolling vascular tissue for evidence of microbial invasion, infiltrating peripheral tissues and directly killing microbial invaders, conditioning the inflammatory milieu at sites of microbial tissue invasion, and orchestrating the activation of innate and adaptive immune effector cells. The central focus of this review is the in vivo mechanisms by which monocytes and their derivative cells promote microbial clearance and immune regulation. We include an overview of murine models to examine monocyte functions during microbial challenges and review our understanding of the functional roles of monocytes and their derivative cells in host defense against bacteria, fungi, and parasites.
Collapse
Affiliation(s)
- Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY, United States.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Immunology Program, Memorial Sloan Kettering Cencer Center, New York, NY, United States.
| |
Collapse
|
56
|
Ioannidis LJ, Nie CQ, Ly A, Ryg-Cornejo V, Chiu CY, Hansen DS. Monocyte- and Neutrophil-Derived CXCL10 Impairs Efficient Control of Blood-Stage Malaria Infection and Promotes Severe Disease. THE JOURNAL OF IMMUNOLOGY 2015; 196:1227-38. [PMID: 26718341 DOI: 10.4049/jimmunol.1501562] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/23/2015] [Indexed: 11/19/2022]
Abstract
CXCL10, or IFN-γ-inducible protein 10, is a biomarker associated with increased risk for Plasmodium falciparum-mediated cerebral malaria (CM). Consistent with this, we have previously shown that CXCL10 neutralization or genetic deletion alleviates brain intravascular inflammation and protects Plasmodium berghei ANKA-infected mice from CM. In addition to organ-specific effects, the absence of CXCL10 during infection was also found to reduce parasite biomass. To identify the cellular sources of CXCL10 responsible for these processes, we irradiated and reconstituted wild-type (WT) and CXCL10(-/-) mice with bone marrow from either WT or CXCL10(-/-) mice. Similar to CXCL10(-/-) mice, chimeras unable to express CXCL10 in hematopoietic-derived cells controlled infection more efficiently than WT controls. In contrast, expression of CXCL10 in knockout mice reconstituted with WT bone marrow resulted in high parasite biomass levels, higher brain parasite and leukocyte sequestration rates, and increased susceptibility to CM. Neutrophils and inflammatory monocytes were identified as the main cellular sources of CXCL10 responsible for the induction of these processes. The improved control of parasitemia observed in the absence of CXCL10-mediated trafficking was associated with a preferential accumulation of CXCR3(+)CD4(+) T follicular helper cells in the spleen and enhanced Ab responses to infection. These results are consistent with the notion that some inflammatory responses elicited in response to malaria infection contribute to the development of high parasite densities involved in the induction of severe disease in target organs.
Collapse
Affiliation(s)
- Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Catherine Q Nie
- Office for Research Ethics and Integrity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Victoria Ryg-Cornejo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Chris Y Chiu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
57
|
Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria. PLoS Pathog 2015; 11:e1005210. [PMID: 26562533 PMCID: PMC4643016 DOI: 10.1371/journal.ppat.1005210] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ex vivo flow cytometric analysis, we show that brain-infiltrating T cells accumulate within the perivascular spaces of brains of mice infected with both ECM-inducing (P. berghei ANKA) and non-inducing (P. berghei NK65) infections. However, perivascular T cells displayed an arrested behavior specifically during P. berghei ANKA infection, despite the brain-accumulating CD8+ T cells exhibiting comparable activation phenotypes during both infections. We observed T cells forming long-term cognate interactions with CX3CR1-bearing antigen presenting cells within the brains during P. berghei ANKA infection, but abrogation of this interaction by targeted depletion of the APC cells failed to prevent ECM development. Pathogenic CD8+ T cells were found to colocalize with rare apoptotic cells expressing CD31, a marker of endothelial cells, within the brain during ECM. However, cellular apoptosis was a rare event and did not result in loss of cerebral vasculature or correspond with the extensive disruption to its integrity observed during ECM. In summary, our data show that the arrest of T cells in the perivascular compartments of the brain is a unique signature of ECM-inducing malaria infection and implies an important role for this event in the development of the ECM-syndrome. Cerebral malaria is the most severe complication of Plasmodium falciparum infection. Utilizing the murine experimental model of cerebral malaria (ECM), it has been found that CD8+ T cells are a key immune cell type responsible for development of cerebral pathology during malaria infection. To identify how CD8+ T cells cause cerebral pathology during malaria infection, in this study we have performed detailed in vivo analysis (two photon imaging) of CD8+ T cells within the brains of mice infected with strains of malaria parasites that cause or do not cause ECM. We found that CD8+ T cells appear to accumulate in similar numbers and in comparable locations within the brains of mice infected with parasites that do or do not cause ECM. Importantly, however, brain accumulating CD8+ T cells displayed significantly different movement characteristics during the different infections. CD8+ T cells interacted with myeloid cells within the brain during infection with parasites causing ECM, but this association was not required for development of cerebral complications. Furthermore, our results suggest that CD8+ T cells do not cause ECM through the widespread killing of brain microvessel cells. The results in this study significantly improve our understanding of the ways through which CD8+ T cells can mediate cerebral pathology during malaria infection.
Collapse
|
58
|
Melero-Jerez C, Ortega MC, Moliné-Velázquez V, Clemente D. Myeloid derived suppressor cells in inflammatory conditions of the central nervous system. Biochim Biophys Acta Mol Basis Dis 2015; 1862:368-80. [PMID: 26527182 DOI: 10.1016/j.bbadis.2015.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
The knowledge of the immune system elements and their relationship with other tissues, organs and systems are key approximations for the resolution of many immune-related disorders. The control of the immune response and/or its modulation from the pro-inflammatory to the anti-inflammatory response is being deeply studied in the field. In the last years, the study of myeloid-derived suppressor cells (MDSCs), a group of immature myeloid cells with a high suppressive activity on T cells has been extensively addressed in cancer. In contrast, their role in neuroimmune diseases is far from being totally understood. In this review, we will summarize data about MDSCs coming from the study of neuroinflammatory diseases in general and their potential role in multiple sclerosis, in order to introduce the putative use of this extraordinary promising cell type for future cell-based therapies. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain
| | - María Cristina Ortega
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain; Centro de Biología Molecular Severo Ochoa. Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Verónica Moliné-Velázquez
- Animal Experimental Unit, Scientific Instrumentation Center (CIC), Campus de la Cartuja, Universidad de Granada, Granada, Spain
| | - Diego Clemente
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain.
| |
Collapse
|