51
|
Sun H, Ren Q, Zhao X, Tian Y, Pan J, Wei Q, Li Y, Chen Y, Zhang H, Zhang W, Jiang S. Regional similarities and differences in mature human milk fatty acids in Chinese population: A systematic review. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102184. [PMID: 33045533 DOI: 10.1016/j.plefa.2020.102184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Maternal factors such as the diet can impact human milk fatty acid profiles. We hypothesized that mature human milk fatty acid profiles differ among regions of China. To test our hypothesis, we conducted a systematic review to calculate regional average contents of fatty acids and the statistical significance of regional differences in fatty acids. We searched both Chinese and English literature databases and selected 21 articles, including 11 in Chinese and 10 in English. We categorized regions of China by 3 ways: 1) north vs. south; 2) inland vs. coastal; 3) socioeconomic development levels. The ratios of ΣSFAs:ΣMUFAs:ΣPUFAs were similar between regions and the average was 1:1:0.7. Contents of palmitic, oleic, and linoleic acids were also similar between regions and together they accounted for more than 70% of all fatty acids in mature human milk. Conversely, concentrations of ALA and DHA differed more than palmitic, oleic, and linoleic acids. We also found that it might be necessary to reduce maternal dietary contents of potentially harmful fatty acids such as erucic acid to minimize detrimental effects on infant health. To our knowledge, this study represents the first systematic review that quantitatively investigated the regional similarities and differences in mature human milk fatty acid contents and is therefore significant for academia and policy makers.
Collapse
Affiliation(s)
- Han Sun
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Qiqi Ren
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Xuejun Zhao
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yueyue Tian
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Jiancun Pan
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Qiaosi Wei
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yuanyuan Li
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yong Chen
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Huaqin Zhang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Wei Zhang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China.
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
52
|
Palacios-Abrantes J, Reygondeau G, Wabnitz CCC, Cheung WWL. The transboundary nature of the world's exploited marine species. Sci Rep 2020; 10:17668. [PMID: 33087747 PMCID: PMC7578035 DOI: 10.1038/s41598-020-74644-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Regulatory boundaries and species distributions often do not align. This is especially the case for marine species crossing multiple Exclusive Economic Zones (EEZs). Such movements represent a challenge for fisheries management, as policies tend to focus at the national level, yet international collaborations are needed to maximize long-term ecological, social and economic benefits of shared marine species. Here, we combined species distributions and the spatial delineation of EEZs at the global level to identify the number of commercially exploited marine species that are shared between neighboring nations. We found that 67% of the species analyzed are transboundary (n = 633). Between 2005 and 2014, fisheries targeting these species within global-EEZs caught on average 48 million tonnes per year, equivalent to an average of USD 77 billion in annual fishing revenue. For select countries, over 90% of their catch and economic benefits were attributable to a few shared resources. Our analysis suggests that catches from transboundary species are declining more than those from non-transboundary species. Our study has direct implications for managing fisheries targeting transboundary species, highlighting the need for strengthened effective and equitable international cooperation.
Collapse
Affiliation(s)
| | - Gabriel Reygondeau
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Department of Ecology and Evolutionary, Yale University, New Haven, CT, USA
| | - Colette C C Wabnitz
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Center for Ocean Solutions, Stanford University, Stanford, CA, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
53
|
Cisneros‐Montemayor AM, Crosman KM, Ota Y. A green new deal for the oceans must prioritize social justice beyond infrastructure. Conserv Lett 2020. [DOI: 10.1111/conl.12751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Andrés M. Cisneros‐Montemayor
- Nippon Foundation Ocean Nexus Program, Institute for the Oceans and Fisheries University of British Columbia Vancouver British Columbia Canada
| | - Katherine M. Crosman
- Nippon Foundation Ocean Nexus Center EarthLab University of Washington Seattle Washington
| | - Yoshitaka Ota
- Nippon Foundation Ocean Nexus Center EarthLab University of Washington Seattle Washington
| |
Collapse
|
54
|
Affiliation(s)
- Shankar Aswani
- Departments of Anthropology and Ichthyology and Fisheries Science Rhodes University Grahamstown 6140 South Africa
| |
Collapse
|
55
|
Inácio M, Mikša K, Kalinauskas M, Pereira P. Mapping wild seafood potential, supply, flow and demand in Lithuania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137356. [PMID: 32109814 DOI: 10.1016/j.scitotenv.2020.137356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
While member states have made a great effort into mapping ecosystem services (ES) in Europe, much work is still needed, especially in the marine domain. Difficulties in understanding the ecological functioning of marine ecosystem services (MES), together with the lack of administrative and technical resources, calls for the development of new assessment approaches. Even for the well-studied MES, the provision of wild seafood, few studies focus on mapping and mostly in a qualitative way by applying expert-based methods. This study aims to quantitatively map MES by developing new methodological frameworks for each of the components of the cascade model for wild seafood provision. The results showed a high potential of wild seafood provision in coastal areas, contrasting with offshore areas of the Exclusive Economic Zone (EEZ). Wild seafood is mainly supplied in the central part of the EEZ and is influenced by biological (e.g. sediments) and anthropogenic (e.g. shipping) factors. The flow was mapped using the location of first buying companies, restaurants, hotels, and supermarkets showing that the highest values were located in the urban areas. The coastal zone has a high flow as a consequence of the high density of fish selling points. The demand was mapped using the population density, number of tourists, and the fish consumption per capita; showing a high demand for fish products in urban as coastal areas. A validation step for the developed potential and supply, the analysis of the limitations and methodological considerations for all components, highlights the future data needs; showing decision-makers where to direct efforts. Mapping all components of wild seafood provision is critical to understand dynamics, the trade-offs associated, and its role in the socio-economic dimensions of coastal communities. This information can then be integrated into decision-making by showing the advantages in achieving a sustainable provision of wild seafood.
Collapse
Affiliation(s)
- Miguel Inácio
- Environmental Management Laboratory, Mykolas Romeris University, Vilnius, Lithuania.
| | - Katažyna Mikša
- Environmental Management Laboratory, Mykolas Romeris University, Vilnius, Lithuania
| | - Marius Kalinauskas
- Environmental Management Laboratory, Mykolas Romeris University, Vilnius, Lithuania
| | - Paulo Pereira
- Environmental Management Laboratory, Mykolas Romeris University, Vilnius, Lithuania
| |
Collapse
|
56
|
Dietary diversity and fish consumption of mothers and their children in fisher households in Komodo District, eastern Indonesia. PLoS One 2020; 15:e0230777. [PMID: 32236144 PMCID: PMC7112201 DOI: 10.1371/journal.pone.0230777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Small-scale coastal fisheries contribute directly and indirectly to the food and nutrition security of marine-dependent households. Fishers can apportion part of their catch for household consumption or use the income earned to purchase staples and other desired foods. Fish are an important animal-source food rich in micronutrients essential for cognitive development of children and for adult health, and a valuable addition to rice-based diets. Furthermore, the engagement of women in fisheries value chains and increased control over income may facilitate decision-making which improves nutrition outcomes for women and their children. Despite these contributions, food insecurity remains prevalent in many low and middle income fish-producing countries. This paper reports findings from an exploration of the interplaying factors leading to food and nutrition insecurity in three marine-dependent coastal communities in eastern Indonesia, focusing on the consumption pathway, that is, the contribution of fish to the diets and nutrition of women and children. The research was undertaken as a mixed-methods case study. The study found that over 50% of mother-child pairs failed to meet the minimum recommended dietary diversity, and, while fish was the main animal-source food in diets, the introduction of fish to infant and young child diets was delayed due to fears of allergies and illnesses. Moreover, access to nutrient-dense foods was affected by variable and insufficient income from fisheries-based livelihoods, isolation from markets, and the broader food environment. Given the shift towards 'nutrition-sensitive interventions' to improve the livelihoods and well-being of fisher households, these results highlight the need for analysis of the intra-household sharing of fish within fisher households, culturally-appropriate strategies to improve the quality of family and especially complementary foods, and efforts to increase physical access to nutrient-dense foods.
Collapse
|
57
|
Duarte CM, Agusti S, Barbier E, Britten GL, Castilla JC, Gattuso JP, Fulweiler RW, Hughes TP, Knowlton N, Lovelock CE, Lotze HK, Predragovic M, Poloczanska E, Roberts C, Worm B. Rebuilding marine life. Nature 2020; 580:39-51. [DOI: 10.1038/s41586-020-2146-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022]
|
58
|
Hossain S, Wickramanayake MVKS, Dahanayake PS, Heo GJ. Species identification, virulence markers and antimicrobial resistance profiles of Aeromonas sp. isolated from marketed hard-shelled mussel (Mytilus coruscus) in Korea. Lett Appl Microbiol 2020; 70:221-229. [PMID: 31854000 DOI: 10.1111/lam.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Hard-shelled mussel (Mytilus coruscus) is a popular seafood in Korea. This study aimed to determine the virulence markers and antimicrobial resistance patterns of 33 Aeromonas strains isolated from mussels. The isolates were identified as A. salmonicida (n = 14), A. veronii (n = 9), A. enteropelogenes (n = 4), A. caviae (n = 3), A. allosaccharophila (n = 2) and A. bivalvium (n = 1) by gyrB gene sequencing. The sequence divergence between and within the species ranged from 3·70 to 10·40% and 0-1·50% respectively. Every species formed a distinct group in a neighbour-joining phylogenetic tree. The DNase, gelatinase, caseinase, β-haemolysis, biofilm and lipase activities were observed in 33 (100·00%), 31 (93·93%), 30 (90·90%), 27 (81·81%), 21 (63·63%) and 17 (51·51%) isolates respectively. The virulence genes were detected by PCR in the following frequencies: fla (90·09%), aer (87·88%), hlyA (87·88%), ahyB (81·19%), gcaT (75·76%), ser (69·70%), lip (66·67%), alt (57·58%), ast (51·51%) and act (21·21%). Every isolate was resistant to at least three of 18 antimicrobials in the disk diffusion test. The multiple antimicrobial resistance index values ranged from 0·11 to 0·44 among the isolates. Our study suggests that mussels can be a potential reservoir of virulent and multidrug-resistant Aeromonas sp. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas sp. are known as common pathogenic bacteria isolated from seafood. The virulence factors and antimicrobial resistance profiles of mussel-borne Aeromonas sp. are poorly understood. This study demonstrated for the first time the existence of virulence markers and antimicrobial resistance of Aeromonas sp. from mussels in Korea. Majority of the isolates were positive for phenotypic virulence characteristics and harboured several virulence genes which reveal the potential virulence of mussel-borne Aeromonas sp. Multiple antimicrobial resistance was also observed among the isolates. Our study highlights the importance of food safety standards in mussel consumption.
Collapse
Affiliation(s)
- S Hossain
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - M V K S Wickramanayake
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - P S Dahanayake
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - G-J Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
59
|
Kenny TA, Archambault P, Ayotte P, Batal M, Chan HM, Cheung W, Eddy TD, Little M, Ota Y, Pétrin-Desrosiers C, Plante S, Poitras J, Polanco F, Singh G, Lemire M. Oceans and human health—navigating changes on Canada’s coasts. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ocean conditions can affect human health in a variety of ways that are often overlooked and unappreciated. Oceans adjacent to Canada are affected by many anthropogenic stressors, with implications for human health and well-being. Climate change further escalates these pressures and can expose coastal populations to unique health hazards and distressing conditions. However, current research efforts, education or training curriculums, and policies in Canada critically lack explicit consideration of these ocean–public health linkages. The objective of this paper is to present multiple disciplinary perspectives from academics and health practitioners to inform the development of future directions for research, capacity development, and policy and practice at the interface of oceans and human health in Canada. We synthesize major ocean and human health linkages in Canada, and identify climate-sensitive drivers of change, drawing attention to unique considerations in Canada. To support effective, sustained, and equitable collaborations at the nexus of oceans and human health, we recommend the need for progress in three critical areas: ( i) holistic worldviews and perspectives, ( ii) capacity development, and ( iii) structural supports. Canada can play a key role in supporting the global community in addressing the health challenges of climate and ocean changes.
Collapse
Affiliation(s)
- Tiff-Annie Kenny
- Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de québec, Université Laval, Québec, QC G1S 4L8, Canada
| | - Philippe Archambault
- Département de biologie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- ArcticNet, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de québec, Université Laval, Québec, QC G1S 4L8, Canada
| | - Malek Batal
- Département de nutrition, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre de recherche en santé publique (CReSP), Montréal, QC H3C 3J7, Canada
| | - Hing Man Chan
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William Cheung
- Institute of Oceans and Fisheries (IOF), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tyler D. Eddy
- Centre for Fisheries Ecosystems Research, Fisheries & Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
| | - Matthew Little
- School of Public Health and Social Policy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Yoshitaka Ota
- Nippon Foundation Ocean Nexus Center, EarthLab, University of Washington, Seattle, WA 98195-5674, USA
- School of Marine and Environmental Affairs (SMEA), University of Washington, Seattle, WA 98195-5685, USA
| | - Claudel Pétrin-Desrosiers
- Département de médecine familiale et de médecine d’urgence, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Association canadienne des médecins pour l’environnement/Canadian Association of Physicians for the Environment (ACME/CAPE), Toronto, ON M5T 2C2, Canada
| | - Steve Plante
- Département Sociétés territoires et développement, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Julien Poitras
- Département de médecine familiale et de médecine d’urgence, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Fernando Polanco
- School of Medicine, St. George’s University, St. George’s, Grenada, West Indies
| | - Gerald Singh
- Department of Geography, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Mélanie Lemire
- Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de québec, Université Laval, Québec, QC G1S 4L8, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
60
|
Bradford J, Filgueira R, Bailey M. Exploring community-based marine aquaculture as a coastal resource management opportunity in Nova Scotia, Canada. Facets (Ott) 2020. [DOI: 10.1139/facets-2019-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aquaculture is one of the world’s fastest growing food production sectors and presents an opportunity for rural community development that can support coastal livelihoods. An ecosystem approach to aquaculture (EAA) has been recommended to facilitate socially and environmentally sustainable development, yet there remains a need to better involve people in planning and operational aspects. Community-based management may help to implement principles of the EAA; however, context-specific research is needed to understand its potential application and suitability. This research explores opportunities for community-based marine aquaculture (CBMA) for nonfinfish in the context of Nova Scotia, Canada, through a series of stakeholder interviews. Results suggest that all stakeholder groups interviewed were positive about the potential for CBMA to support sustainable aquaculture growth in the province; however, key questions around operationalizing CBMA remain. The aquaculture industry is on a continual path for growth worldwide and, therefore, it becomes increasingly important to proactively examine strategies such as CBMA that can help to facilitate EAA in a way that genuinely puts people at the centre of aquaculture development and governance.
Collapse
Affiliation(s)
- Jessica Bradford
- Marine Affairs Program, Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Ramón Filgueira
- Marine Affairs Program, Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Megan Bailey
- Marine Affairs Program, Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
61
|
Expression of Heat Shock Proteins in Thermally Challenged Pacific Abalone Haliotis discus hannai. Genes (Basel) 2019; 11:genes11010022. [PMID: 31878084 PMCID: PMC7016835 DOI: 10.3390/genes11010022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Summer mortality, caused by thermal conditions, is the biggest threat to abalone aquaculture production industries. Various measures have been taken to mitigate this issue by adjusting the environment; however, the cellular processes of Pacific abalone (Haliotis discus hannai) have been overlooked due to the paucity of genetic information. The draft genome of H. discus hannai has recently been reported, prompting exploration of the genes responsible for thermal regulation in Pacific abalone. In this study, 413 proteins were systematically annotated as members of the heat shock protein (HSP) super families, and among them 26 HSP genes from four Pacific abalone tissues (hemocytes, gill, mantle, and muscle) were differentially expressed under cold and heat stress conditions. The co-expression network revealed that HSP expression patterns were tissue-specific and similar to those of other shellfish inhabiting intertidal zones. Finally, representative HSPs were selected at random and their expression patterns were identified by RNA sequencing and validated by qRT-PCR to assess expression significance. The HSPs expressed in hemocytes were highly similar in both analyses, suggesting that hemocytes could be more reliable samples for validating thermal condition markers compared to other tissues.
Collapse
|
62
|
Potera C. A Global Look at Mercury Exposures: Supporting the Goals of the Minamata Convention. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:84001. [PMID: 31436126 PMCID: PMC6791587 DOI: 10.1289/ehp4900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 06/10/2023]
|
63
|
Abstract
Transformations towards sustainability are needed to address many of the earth’s profound environmental and social challenges. Yet, actions taken to deliberately shift social–ecological systems towards more sustainable trajectories can have substantial social impacts and exclude people from decision-making processes. The concept of just transformations makes explicit a need to consider social justice in the process of shifting towards sustainability. In this paper, we draw on the transformations, just transitions, and social justice literature to advance a pragmatic framing of just transformations that includes recognitional, procedural and distributional considerations. Decision-making processes to guide just transformations need to consider these three factors before, during and after the transformation period. We offer practical and methodological guidance to help navigate just transformations in environmental management and sustainability policies and practice. The framing of just transformations put forward here might be used to inform decision making in numerous marine and terrestrial ecosystems, in rural and urban environments, and at various scales from local to global. We argue that sustainability transformations cannot be considered a success unless social justice is a central concern.
Collapse
|
64
|
MACIEL EDS, SONATI JG, GALVÃO JA, OETTERER M. Fish consumption and lifestyle: a cross-sectional study. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.40617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
Ashrafudoulla M, Mizan MFR, Park H, Byun KH, Lee N, Park SH, Ha SD. Genetic Relationship, Virulence Factors, Drug Resistance Profile and Biofilm Formation Ability of Vibrio parahaemolyticus Isolated From Mussel. Front Microbiol 2019; 10:513. [PMID: 30949142 PMCID: PMC6435529 DOI: 10.3389/fmicb.2019.00513] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to investigate the virulence factors, genetic relationship, antibiotic resistance profile and the biofilm formation ability of Vibrio parahaemolyticus isolates on shrimp and mussel surfaces at 30°C. In this study, eight (n = 8) V. parahaemolyticus isolated from mussel were examined. We used the polymerase chain reaction (PCR) to examine the distribution of different genes, and Repetitive Extragenic Palindromic-PCR (REP-PCR) to compare the genetic relationship. Disk diffusion technique was used to assess antibiotic and multiple-antibiotic resistance. The biofilm formation assay, and field emission scanning electron microscopy (FE-SEM) were used to evaluate biofilm formation ability. Transmission Electron Microscope (TEM) was used to observe the morphological structure of bacterial cell. Our results indicated that the biofilm-associated genes, 16S rRNA, toxR, and tdh, were present in all the tested V. parahaemolyticus isolates (n = 8). Approximately, 62.5% (5 isolates among 8 isolates) isolates showed strong multiple-antibiotic resistance index with an average value of 0.56. All isolates (n = 8) showed strong genetic relationship and significant biofilm formation ability on shrimp and mussel surfaces. This study demonstrated that the presence of virulence factors, high multiple antibiotic resistance index (MARI) values, and effective biofilm formation ability of V. parahaemolyticus isolates could be a great threat to human health and economic values in future. It was also suggested that a high resistance rate to antibiotic could be ineffective for treating V. parahaemolyticus infections. The continuous monitoring of V. parahaemolyticus antibiotic, molecular and biofilm characteristics is needed to increase seafood safety.
Collapse
Affiliation(s)
- Md. Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| | - Md. Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| | - Heedae Park
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| | - Kye-Hwan Byun
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| | - Nari Lee
- Food Safety Research Group, Korea Food Research Institute, Seongnam, South Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
66
|
Marushka L, Kenny TA, Batal M, Cheung WWL, Fediuk K, Golden CD, Salomon AK, Sadik T, Weatherdon LV, Chan HM. Potential impacts of climate-related decline of seafood harvest on nutritional status of coastal First Nations in British Columbia, Canada. PLoS One 2019; 14:e0211473. [PMID: 30811408 PMCID: PMC6392226 DOI: 10.1371/journal.pone.0211473] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Traditional food systems are under pressure from various stressors, including climate change which is projected to negatively alter the abundance of marine species harvested by coastal First Nations (FNs) in British Columbia (BC). OBJECTIVE To model the potential impacts of the climate-related declines in seafood production on the nutritional status of coastal BC FNs. In addition, we projected potential changes in nutrient intakes, under different scenarios of substitution where traditional seafood is replaced with alternative non-traditional foods. METHODS The study design is a mixed-method approach that combines two datasets: projected scenarios of climate-related change on seafood catch potential for coastal BC FNs and data derived from the cross-sectional First Nations Food, Nutrition, and Environment Study. The consumption of seafood was estimated using a food frequency questionnaire among 356 FNs. The contribution of seafood consumption to protein, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), vitamins (A, B12, D, niacin), and minerals (zinc, selenium and iron) requirements was assessed using Dietary Reference Intakes (DRIs). RESULTS Traditional seafood consumption provided daily recommendations of EPA+DHA (74-184%) and vitamin B12 (84-152%) and substantial levels of niacin (28-55%), selenium (29-55%), vitamin D (15-30%) and protein (14-30%). Projected climate change was estimated to reduce the intakes of essential nutrients by 21% and 31% under 'strong mitigation' (Representative Concentration Pathway, RCP2.6) and 'business-as-usual' (RCP8.5) climate change scenarios, respectively, by the year 2050 relative to 2000. The hypothetical substitution of seafood with selected alternative non-traditional foods does not provide adequate amounts of nutrients. CONCLUSION Traditionally-harvested seafood remains fundamental to the contemporary diet and health of coastal BC FNs. Potential dietary shifts aggravated by climate-related declines in seafood consumption may have significant nutritional and health implications for BC FN. Strategies to improve access to seafood harvest potential in coastal communities are needed to ensure nutritional health and overall well-being and to promote food security and food sovereignty in coastal FNs.
Collapse
Affiliation(s)
- Lesya Marushka
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Tiff-Annie Kenny
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Malek Batal
- Nutrition Department, Faculty of Medicine, Université de Montréal, Pavillon Liliane de Stewart, Montreal, Québec, Canada
| | - William W. L. Cheung
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
- Nippon Foundation-UBC Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Fediuk
- Dietitian and Nutrition Researcher, Victoria, British Columbia, Canada
| | - Christopher D. Golden
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- Harvard University Center for the Environment, Cambridge, Massachusetts, United States of America
| | - Anne K. Salomon
- School of Resource & Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tonio Sadik
- Assembly of First Nations, Ottawa, Ontario, Canada
| | | | - Hing Man Chan
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
67
|
Shin GH, Shin Y, Jung M, Hong JM, Lee S, Subramaniyam S, Noh ES, Shin EH, Park EH, Park JY, Kim YO, Choi KM, Nam BH, Park CI. First Draft Genome for Red Sea Bream of Family Sparidae. Front Genet 2018; 9:643. [PMID: 30619468 PMCID: PMC6299066 DOI: 10.3389/fgene.2018.00643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/27/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ga-Hee Shin
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | - Younhee Shin
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Myunghee Jung
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | - Ji-Man Hong
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | - Sangmin Lee
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | | | - Eun-Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Eun-Ha Shin
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Eun-Hee Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Kwnag-Min Choi
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| |
Collapse
|
68
|
Seidel U, Huebbe P, Rimbach G. Taurine: A Regulator of Cellular Redox Homeostasis and Skeletal Muscle Function. Mol Nutr Food Res 2018; 63:e1800569. [DOI: 10.1002/mnfr.201800569] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/10/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Ulrike Seidel
- Institute of Human Nutrition and Food ScienceUniversity of Kiel Kiel Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food ScienceUniversity of Kiel Kiel Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food ScienceUniversity of Kiel Kiel Germany
| |
Collapse
|
69
|
Basu N, Horvat M, Evers DC, Zastenskaya I, Weihe P, Tempowski J. A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:106001. [PMID: 30407086 PMCID: PMC6371716 DOI: 10.1289/ehp3904] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND The Minamata Convention on Mercury provided a mandate for action against global mercury pollution. However, our knowledge of mercury exposures is limited because there are many regions and subpopulations with little or no data. OBJECTIVE We aimed to increase worldwide understanding of human exposures to mercury by collecting, collating, and analyzing mercury concentrations in biomarker samples reported in the published scientific literature. METHOD A systematic search of the peer-reviewed scientific literature was performed using three databases. A priori search strategy, eligibility criteria, and data extraction steps were used to identify relevant studies. RESULTS We collected 424,858 mercury biomarker measurements from 335,991 individuals represented in 312 articles from 75 countries. General background populations with insignificant exposures have blood, hair, and urine mercury levels that generally fall under [Formula: see text], [Formula: see text], and [Formula: see text], respectively. We identified four populations of concern: a) Arctic populations who consume fish and marine mammals; b) tropical riverine communities (especially Amazonian) who consume fish and in some cases may be exposed to mining; c) coastal and/or small-island communities who substantially depend on seafood; and d) individuals who either work or reside among artisanal and small-scale gold mining sites. CONCLUSIONS This review suggests that all populations worldwide are exposed to some amount of mercury and that there is great variability in exposures within and across countries and regions. There remain many geographic regions and subpopulations with limited data, thus hindering evidence-based decision making. This type of information is critical in helping understand exposures, particularly in light of certain stipulations in the Minamata Convention on Mercury. https://doi.org/10.1289/EHP3904.
Collapse
Affiliation(s)
- Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - David C Evers
- Biodiversity Research Institute, Portland, Maine, USA
| | - Irina Zastenskaya
- European Centre for Environment and Health, World Health Organization, Bonn, Germany
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Tórshavn, Faroe Islands, Denmark
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands, Denmark
| | - Joanna Tempowski
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| |
Collapse
|
70
|
Vaitla B, Collar D, Smith MR, Myers SS, Rice BL, Golden CD. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat Commun 2018; 9:3742. [PMID: 30254265 PMCID: PMC6156416 DOI: 10.1038/s41467-018-06199-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/24/2018] [Indexed: 01/07/2023] Open
Abstract
Human food and nutrition security is dependent on marine ecosystems threatened by overfishing, climate change, and other processes. The consequences on human nutritional status are uncertain, in part because current methods of analyzing fish nutrient content are expensive. Here, we evaluate the possibility of predicting nutrient content of ray-finned fishes using existing phylogenetic and life history information. We focus on nutrients for which fish are important sources: protein, total fat, omega-3 and omega-6 fatty acids, iron, zinc, vitamin A, vitamin B12, and vitamin D. Our results show that life history traits are weak predictors of species nutrient content, but phylogenetic relatedness is associated with similar nutrient profiles. Further, we develop a method for predicting the nutrient content of 7500+ species based on phylogenetic relationships to species with known nutrient content. Our approach is a cost-effective means for estimating potential changes in human nutrient intake associated with altered access to ray-finned fishes. Humans increasingly depend on seafood for nutrition, but nutrient content is unknown for the vast majority of fish species. Here, the authors use phylogenetic analyses and data imputation to predict the nutrient content of fish that are under-studied but that could be of future dietary importance.
Collapse
Affiliation(s)
- Bapu Vaitla
- Department of Nutrition, Harvard TH Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA, 02115, USA.
| | - David Collar
- Department of Organismal & Environmental Biology, Christopher Newport University, One Avenue of the Arts, Newport News, VA, 23606, USA
| | - Matthew R Smith
- Department of Environmental Health, Harvard TH Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Samuel S Myers
- Department of Environmental Health, Harvard TH Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA, 02115, USA.,Harvard University Center for the Environment, Harvard University, 26 Oxford St, 4th Floor, Cambridge, MA, 02138, USA
| | - Benjamin L Rice
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, USA
| | - Christopher D Golden
- Department of Nutrition, Harvard TH Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA, 02115, USA.,Department of Environmental Health, Harvard TH Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
71
|
Global change in marine aquaculture production potential under climate change. Nat Ecol Evol 2018; 2:1745-1750. [DOI: 10.1038/s41559-018-0669-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/14/2018] [Indexed: 11/08/2022]
|
72
|
Schiller L, Bailey M, Jacquet J, Sala E. High seas fisheries play a negligible role in addressing global food security. SCIENCE ADVANCES 2018; 4:eaat8351. [PMID: 30101196 PMCID: PMC6082645 DOI: 10.1126/sciadv.aat8351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/13/2018] [Indexed: 06/01/2023]
Abstract
Recent international negotiations have highlighted the need to protect marine diversity on the high seas-the ocean area beyond national jurisdiction. However, restricting fishing access on the high seas raises many concerns, including how such restrictions would affect food security. We analyze high seas catches and trade data to determine the contribution of the high seas catch to global seafood production, the main species caught on the high seas, and the primary markets where these species are sold. By volume, the total catch from the high seas accounts for 4.2% of annual marine capture fisheries production and 2.4% of total seafood production, including freshwater fisheries and aquaculture. Thirty-nine fish and invertebrate species account for 99.5% of the high seas targeted catch, but only one species, Antarctic toothfish, is caught exclusively on the high seas. The remaining catch, which is caught both on the high seas and in national jurisdictions, is made up primarily of tunas, billfishes, small pelagic fishes, pelagic squids, toothfish, and krill. Most high seas species are destined for upscale food and supplement markets in developed, food-secure countries, such as Japan, the European Union, and the United States, suggesting that, in aggregate, high seas fisheries play a negligible role in ensuring global food security.
Collapse
Affiliation(s)
- Laurenne Schiller
- Marine Affairs Program, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Ocean Wise, Vancouver, British Columbia V6G 3E2, Canada
| | - Megan Bailey
- Marine Affairs Program, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jennifer Jacquet
- Department of Environmental Studies, New York University, New York, NY 10003, USA
| | - Enric Sala
- National Geographic Society, Washington, DC 20036, USA
| |
Collapse
|
73
|
Achieving sustainable and equitable fisheries requires nuanced policies not silver bullets. Nat Ecol Evol 2018; 2:1334. [PMID: 30038245 DOI: 10.1038/s41559-018-0633-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
74
|
Mizan MFR, Ashrafudoulla M, Sadekuzzaman M, Kang I, Ha SD. Effects of NaCl, glucose, and their combinations on biofilm formation on black tiger shrimp (Penaeus monodon) surfaces by Vibrio parahaemolyticus. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
75
|
A global database of polybrominated diphenyl ether flame retardant congeners in foods and supplements. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
76
|
Lavoie RA, Bouffard A, Maranger R, Amyot M. Mercury transport and human exposure from global marine fisheries. Sci Rep 2018; 8:6705. [PMID: 29712952 PMCID: PMC5928114 DOI: 10.1038/s41598-018-24938-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/12/2018] [Indexed: 11/15/2022] Open
Abstract
Human activities have increased the global circulation of mercury, a potent neurotoxin. Mercury can be converted into methylmercury, which biomagnifies along aquatic food chains and leads to high exposure in fish-eating populations. Here we quantify temporal trends in the ocean-to-land transport of total mercury and methylmercury from fisheries and we estimate potential human mercury intake through fish consumption in 175 countries. Mercury export from the ocean increased over time as a function of fishing pressure, especially on upper-trophic-level organisms. In 2014, over 13 metric tonnes of mercury were exported from the ocean. Asian countries were important contributors of mercury export in the last decades and the western Pacific Ocean was identified as the main source. Estimates of per capita mercury exposure through fish consumption showed that populations in 38% of the 175 countries assessed, mainly insular and developing nations, were exposed to doses of methylmercury above governmental thresholds. Our study shows temporal trends and spatial patterns of Hg transport by fisheries. Given the high mercury intake through seafood consumption observed in several understudied yet vulnerable coastal communities, we recommend a comprehensive assessment of the health exposure risk of those populations.
Collapse
Affiliation(s)
- Raphael A Lavoie
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin, CP6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| | - Ariane Bouffard
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin, CP6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Roxane Maranger
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin, CP6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Marc Amyot
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin, CP6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
77
|
Girard C, Charette T, Leclerc M, Shapiro BJ, Amyot M. Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:863-874. [PMID: 29096961 DOI: 10.1016/j.scitotenv.2017.10.236] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Fish consumption is a major pathway for mercury exposure in humans. Current guidelines and risk assessments assume that 100% of methylmercury (MeHg) in fish is absorbed by the human body after ingestion. However, a growing body of literature suggests that this absorption rate may be overestimated. We used an in vitro digestion method to measure MeHg bioaccessibility in commercially-purchased fish, and investigated the effects of dietary practices on MeHg bioaccessibility. Cooking had the greatest effect, decreasing bioaccessibility on average to 12.5±5.6%. Polyphenol-rich beverages also significantly reduced bioaccessibility to 22.7±3.8% and 28.6±13.9%, for green and black tea respectively. We confirmed the suspected role of polyphenols in tea as being a driver of MeHg's reduced bioaccessibility, and found that epicatechin, epigallocatechin gallate, rutin and cafeic acid could individually decrease MeHg bioaccessibility by up to 55%. When both cooking and polyphenol-rich beverage treatments were combined, only 1% of MeHg remained bioaccessible. These results call for in vivo validation, and suggest that dietary practices should be considered when setting consumer guidelines for MeHg. More realistic risk assessments could promote consumption of fish as a source of fatty acids, which can play a protective role against cardiovascular disease.
Collapse
Affiliation(s)
- Catherine Girard
- Center for Northern Studies (CEN), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada
| | - Tania Charette
- ÉcoLac, Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada; Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada
| | - Maxime Leclerc
- ÉcoLac, Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada; Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada
| | - B Jesse Shapiro
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada
| | - Marc Amyot
- Center for Northern Studies (CEN), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada; ÉcoLac, Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada; Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada.
| |
Collapse
|
78
|
Abstract
This paper aims to highlight the risk of climate change on coupled marine human and natural systems and explore possible solutions to reduce such risk. Specifically, it explores some of the key responses of marine fish stocks and fisheries to climate change and their implications for human society. It highlights the importance of mitigating carbon emission and achieving the Paris Agreement in reducing climate risk on marine fish stocks and fisheries. Finally, it discusses potential opportunities for helping fisheries to reduce climate threats, through local adaptation. A research direction in fish biology and ecology is proposed that would help support the development of these potential solutions.
Collapse
Affiliation(s)
- W W L Cheung
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
79
|
Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, Kidd KA, Nyland JF. Modulators of mercury risk to wildlife and humans in the context of rapid global change. AMBIO 2018; 47:170-197. [PMID: 29388128 PMCID: PMC5794686 DOI: 10.1007/s13280-017-1011-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental mercury (Hg) contamination is an urgent global health threat. The complexity of Hg in the environment can hinder accurate determination of ecological and human health risks, particularly within the context of the rapid global changes that are altering many ecological processes, socioeconomic patterns, and other factors like infectious disease incidence, which can affect Hg exposures and health outcomes. However, the success of global Hg-reduction efforts depends on accurate assessments of their effectiveness in reducing health risks. In this paper, we examine the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to humans and organisms in the environment. We do so within three key domains of ecological and human health risk. First, we examine how extrinsic global change drivers influence pathways of Hg bioaccumulation and biomagnification through food webs. Next, we describe how extrinsic socioeconomic drivers at a global scale, and intrinsic individual-level drivers, influence human Hg exposure. Finally, we address how the adverse health effects of Hg in humans and wildlife are modulated by a range of extrinsic and intrinsic drivers within the context of rapid global change. Incorporating components of these three domains into research and monitoring will facilitate a more holistic understanding of how ecological and societal drivers interact to influence Hg health risks.
Collapse
Affiliation(s)
| | - Ellen K. Silbergeld
- Johns Hopkin Bloomberg School of Public Health, 615 N. Wolfe Street, E6644, Baltimore, MD 21205 USA
| | - Niladri Basu
- McGill University, 204-CINE Building, Montreal, QC H9X 3V9 Canada
| | - Paco Bustamante
- University of La Rochelle, laboratory of Littoral Environment and Societies, Littoral Environnement et Sociétés (LIENSs), LIENSs UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Fernando Diaz-Barriga
- Center for Applied Research in Environment and Health at, Universidad Autonoma de San Luis Potosi, Avenida Venustiano Carranza No. 2405, Col Lomas los Filtros Código Postal, 78214 San Luis Potosí, SLP Mexico
| | - William A. Hopkins
- Department of Fish and Wildlife Conservation, 310 West Campus Drive Virginia Tech, Cheatham Hall, Room 106 (MC 0321), Blacksburg, VA 24061 USA
| | - Karen A. Kidd
- Department of Biology & School of Geography and Earth Sciences, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4K1 Canada
| | - Jennifer F. Nyland
- Department of Biological Sciences, 1101 Camden Ave, Salisbury, MD 21801 USA
| |
Collapse
|
80
|
Eddy TD, Cheung WWL, Bruno JF. Historical baselines of coral cover on tropical reefs as estimated by expert opinion. PeerJ 2018; 6:e4308. [PMID: 29379692 PMCID: PMC5786882 DOI: 10.7717/peerj.4308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/10/2018] [Indexed: 11/24/2022] Open
Abstract
Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.g., to avoid the ‘shifting baseline syndrome’. There are few quantitative observations of coral reef cover prior to the industrial revolution, and therefore baselines of coral reef cover are difficult to estimate. Here, we use expert and ocean-user opinion surveys to estimate baselines of global coral reef cover. The overall mean estimated baseline coral cover was 59% (±19% standard deviation), compared to an average of 58% (±18% standard deviation) estimated by professional scientists. We did not find evidence of the shifting baseline syndrome, whereby respondents who first observed coral reefs more recently report lower estimates of baseline coral cover. These estimates of historical coral reef baseline cover are important for scientists, policy makers, and managers to understand the extent to which coral reefs have become depleted and to set appropriate recovery targets.
Collapse
Affiliation(s)
- Tyler D Eddy
- Nippon Foundation-Nereus Program, Institute for the Oceans & Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W L Cheung
- Nippon Foundation-Nereus Program, Institute for the Oceans & Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - John F Bruno
- Department of Biological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
81
|
Alava JJ, Cheung WWL, Ross PS, Sumaila UR. Climate change-contaminant interactions in marine food webs: Toward a conceptual framework. GLOBAL CHANGE BIOLOGY 2017; 23:3984-4001. [PMID: 28212462 DOI: 10.1111/gcb.13667] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change-contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change-contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change-contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the ecological and socioeconomic risk of greenhouse gases and marine pollutants.
Collapse
Affiliation(s)
- Juan José Alava
- Global Fisheries Cluster, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Ocean Pollution Research Program, Coastal Ocean Research Institute, Vancouver Aquarium Marine Science Centre, Vancouver, BC, Canada
| | - William W L Cheung
- Global Fisheries Cluster, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Peter S Ross
- Ocean Pollution Research Program, Coastal Ocean Research Institute, Vancouver Aquarium Marine Science Centre, Vancouver, BC, Canada
| | - U Rashid Sumaila
- Global Fisheries Cluster, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
82
|
Grafeld S, Oleson KLL, Teneva L, Kittinger JN. Follow that fish: Uncovering the hidden blue economy in coral reef fisheries. PLoS One 2017; 12:e0182104. [PMID: 28771508 PMCID: PMC5542444 DOI: 10.1371/journal.pone.0182104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Despite their importance for human well-being, nearshore fisheries are often data poor, undervalued, and underappreciated in policy and development programs. We assess the value chain for nearshore Hawaiian coral reef fisheries, mapping post-catch distribution and disposition, and quantifying associated monetary, food security, and cultural values. We estimate that the total annual value of the nearshore fishery in Hawaiʻi is $10.3-$16.4 million, composed of non-commercial ($7.2-$12.9 million) and commercial ($2.97 million licensed + $148,500-$445,500 unlicensed) catch. Hawaii’s nearshore fisheries provide >7 million meals annually, with most (>5 million) from the non-commercial sector. Over a third (36%) of meals were planktivores, 26% piscivores, 21% primary consumers, and 18% secondary consumers. Only 62% of licensed commercial catch is accounted for in purchase reports, leaving 38% of landings unreported in sales. Value chains are complex, with major buyers for the commercial fishery including grocery stores (66%), retailers (19%), wholesalers (14%), and restaurants (<1%), who also trade and sell amongst themselves. The bulk of total nearshore catch (72–74%) follows a short value chain, with non-commercial fishers keeping catch for household consumption or community sharing. A small amount (~37,000kg) of reef fish—the equivalent of 1.8% of local catch—is imported annually into Hawaiʻi, 23,000kg of which arrives as passenger luggage on commercial flights from Micronesia. Evidence of exports to the US mainland exists, but is unquantifiable given existing data. Hawaiian nearshore fisheries support fundamental cultural values including subsistence, activity, traditional knowledge, and social cohesion. These small-scale coral reef fisheries provide large-scale benefits to the economy, food security, and cultural practices of Hawaiʻi, underscoring the need for sustainable management. This research highlights the value of information on the value chain for small-scale production systems, making the hidden economy of these fisheries visible and illuminating a range of conservation interventions applicable to Hawaiʻi and beyond.
Collapse
Affiliation(s)
- Shanna Grafeld
- Department of Natural Resources and Environmental Management, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Kirsten L. L. Oleson
- Department of Natural Resources and Environmental Management, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Lida Teneva
- Conservation International, Center for Oceans, Honolulu, Hawaii, United States of America
| | - John N. Kittinger
- Conservation International, Center for Oceans, Honolulu, Hawaii, United States of America
- Arizona State University, Center for Biodiversity Outcomes, Julie Ann Wrigley Global Institute of Sustainability, Life Sciences Center, Tempe, Arizona
| |
Collapse
|