51
|
Menor-Flores M, Vega-Rodríguez MA, Molina F. Computational design of phage cocktails based on phage-bacteria infection networks. Comput Biol Med 2022; 142:105186. [PMID: 34998221 DOI: 10.1016/j.compbiomed.2021.105186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/16/2023]
Abstract
The misuse and overuse of antibiotics have boosted the proliferation of multidrug-resistant (MDR) bacteria, which are considered a major public health issue in the twenty-first century. Phage therapy may be a promising way in the treatment of infections caused by MDR pathogens, without the side effects of the current available antimicrobials. Phage therapy is based on phage cocktails, that is, combinations of phages able to lyse the target bacteria. In this work, we present and explain in detail two innovative computational methods to design phage cocktails taking into account a given phage-bacteria infection network. One of the methods (Exhaustive Search) always generates the best possible phage cocktail, while the other method (Network Metrics) always keeps a very reduced runtime (a few milliseconds). Both methods have been included in a Cytoscape application that is available for any user. A complete experimental study has been performed, evaluating and comparing the biological quality, runtime, and the impact when additional phages are included in the cocktail.
Collapse
Affiliation(s)
- Manuel Menor-Flores
- Escuela Politécnica, Universidad de Extremadura(1), Avda. de la Universidad s/n, 10 003, Cáceres, Spain.
| | - Miguel A Vega-Rodríguez
- Escuela Politécnica, Universidad de Extremadura(1), Avda. de la Universidad s/n, 10 003, Cáceres, Spain.
| | - Felipe Molina
- Facultad de Ciencias, Universidad de Extremadura(1), Avda. de Elvas s/n, 06 006, Badajoz, Spain.
| |
Collapse
|
52
|
Adler BA, Hessler T, Cress BF, Lahiri A, Mutalik VK, Barrangou R, Banfield J, Doudna JA. Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nat Microbiol 2022; 7:1967-1979. [PMID: 36316451 PMCID: PMC9712115 DOI: 10.1038/s41564-022-01258-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
CRISPR-Cas13 proteins are RNA-guided RNA nucleases that defend against incoming RNA and DNA phages by binding to complementary target phage transcripts followed by general, non-specific RNA degradation. Here we analysed the defensive capabilities of LbuCas13a from Leptotrichia buccalis and found it to have robust antiviral activity unaffected by target phage gene essentiality, gene expression timing or target sequence location. Furthermore, we find LbuCas13a antiviral activity to be broadly effective against a wide range of phages by challenging LbuCas13a against nine E. coli phages from diverse phylogenetic groups. Leveraging the versatility and potency enabled by LbuCas13a targeting, we applied LbuCas13a towards broad-spectrum phage editing. Using a two-step phage-editing and enrichment method, we achieved seven markerless genome edits in three diverse phages with 100% efficiency, including edits as large as multi-gene deletions and as small as replacing a single codon. Cas13a can be applied as a generalizable tool for editing the most abundant and diverse biological entities on Earth.
Collapse
Affiliation(s)
- Benjamin A. Adler
- grid.47840.3f0000 0001 2181 7878California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Innovative Genomics Institute, University of California, Berkeley, CA USA
| | - Tomas Hessler
- grid.47840.3f0000 0001 2181 7878Innovative Genomics Institute, University of California, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Earth and Planetary Science, University of California, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Brady F. Cress
- grid.47840.3f0000 0001 2181 7878California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Innovative Genomics Institute, University of California, Berkeley, CA USA
| | - Arushi Lahiri
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Vivek K. Mutalik
- grid.47840.3f0000 0001 2181 7878Innovative Genomics Institute, University of California, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Rodolphe Barrangou
- grid.47840.3f0000 0001 2181 7878Innovative Genomics Institute, University of California, Berkeley, CA USA ,grid.40803.3f0000 0001 2173 6074Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC USA
| | - Jillian Banfield
- grid.47840.3f0000 0001 2181 7878Innovative Genomics Institute, University of California, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Earth and Planetary Science, University of California, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Environmental Science, Policy and Management, University of California, Berkeley, CA USA ,grid.1008.90000 0001 2179 088XUniversity of Melbourne, Melbourne, Australia
| | - Jennifer A. Doudna
- grid.47840.3f0000 0001 2181 7878California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Innovative Genomics Institute, University of California, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Howard Hughes Medical Institute, University of California, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Chemistry, University of California, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
53
|
Loose M, Sáez Moreno D, Mutti M, Hitzenhammer E, Visram Z, Dippel D, Schertler S, Tišáková LP, Wittmann J, Corsini L, Wagenlehner F. Natural Bred ε 2-Phages Have an Improved Host Range and Virulence against Uropathogenic Escherichia coli over Their Ancestor Phages. Antibiotics (Basel) 2021; 10:1337. [PMID: 34827275 PMCID: PMC8614997 DOI: 10.3390/antibiotics10111337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
Alternative treatments for Escherichia coli infections are urgently needed, and phage therapy is a promising option where antibiotics fail, especially for urinary tract infections (UTI). We used wastewater-isolated phages to test their lytic activity against a panel of 47 E. coli strains reflecting the diversity of strains found in UTI, including sequence type 131, 73 and 69. The plaquing host range (PHR) was between 13 and 63%. In contrast, the kinetic host range (KHR), describing the percentage of strains for which growth in suspension was suppressed for 24 h, was between 0% and 19%, substantially lower than the PHR. To improve the phage host range and their efficacy, we bred the phages by mixing and propagating cocktails on a subset of E. coli strains. The bred phages, which we termed evolution-squared ε2-phages, of a mixture of Myoviridae have KHRs up to 23% broader compared to their ancestors. Furthermore, using constant phage concentrations, Myoviridae ε2-phages suppressed the growth of higher bacterial inocula than their ancestors did. Thus, the ε2-phages were more virulent compared to their ancestors. Analysis of the genetic sequences of the ε2-phages with the broadest host range reveals that they are mosaic intercrossings of 2-3 ancestor phages. The recombination sites are distributed over the whole length of the genome. All ε2-phages are devoid of genes conferring lysogeny, antibiotic resistance, or virulence. Overall, this study shows that ε2-phages are remarkably more suitable than the wild-type phages for phage therapy.
Collapse
Affiliation(s)
- Maria Loose
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| | - David Sáez Moreno
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Michele Mutti
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Eva Hitzenhammer
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Zehra Visram
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - David Dippel
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| | - Susanne Schertler
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Lenka Podpera Tišáková
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Johannes Wittmann
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Lorenzo Corsini
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Florian Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| |
Collapse
|
54
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|
55
|
Kim J, Park H, Ryu S, Jeon B. Inhibition of Antimicrobial-Resistant Escherichia coli Using a Broad Host Range Phage Cocktail Targeting Various Bacterial Phylogenetic Groups. Front Microbiol 2021; 12:699630. [PMID: 34512575 PMCID: PMC8425383 DOI: 10.3389/fmicb.2021.699630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial-resistant (AMR) commensal Escherichia coli is a major reservoir that disseminates antimicrobial resistance to humans through the consumption of contaminated foods, such as retail poultry products. This study aimed to control AMR E. coli on retail chicken using a broad host range phage cocktail. Five phages (JEP1, 4, 6, 7, and 8) were isolated and used to construct a phage cocktail after testing infectivity on 67 AMR E. coli strains isolated from retail chicken. Transmission electron microscopic analysis revealed that the five phages belong to the Myoviridae family. The phage genomes had various sizes ranging from 39 to 170 kb and did not possess any genes associated with antimicrobial resistance and virulence. Interestingly, each phage exhibited different levels of infection against AMR E. coli strains depending on the bacterial phylogenetic group. A phage cocktail consisting of the five phages was able to infect AMR E. coli in various phylogenetic groups and inhibited 91.0% (61/67) of AMR E. coli strains used in this study. Furthermore, the phage cocktail was effective in inhibiting E. coli on chicken at refrigeration temperatures. The treatment of artificially contaminated raw chicken skin with the phage cocktail rapidly reduced the viable counts of AMR E. coli by approximately 3 log units within 3 h, and the reduction was maintained throughout the experiment without developing resistance to phage infection. These results suggest that phages can be used as a biocontrol agent to inhibit AMR commensal E. coli on raw chicken.
Collapse
Affiliation(s)
- Jinshil Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Haejoon Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Byeonghwa Jeon
- Divison of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
56
|
Li Y, Wu X, Chen H, Zhao Y, Shu M, Zhong C, Wu G. A bacteriophage JN02 infecting multidrug‐resistant Shiga toxin‐producing
Escherichia
coli
: isolation, characterisation and application as a biocontrol agent in foods. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ya‐Ke Li
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Xin Wu
- Jiangxi Province Food Control Institute Nanchang China
| | - Hu Chen
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Yuan‐Yang Zhao
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Mei Shu
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Chan Zhong
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| | - Guo‐Ping Wu
- College of Food Science and Engineering Jiangxi Agricultural University Nanchang China
| |
Collapse
|
57
|
Miroshnikov KA, Evseev PV, Lukianova AA, Ignatov AN. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms 2021; 9:1819. [PMID: 34576713 PMCID: PMC8472413 DOI: 10.3390/microorganisms9091819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.
Collapse
Affiliation(s)
- Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bldg. 12, 119234 Moscow, Russia
| | - Alexander N Ignatov
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| |
Collapse
|
58
|
Zhang Y, Liao YT, Salvador A, Lavenburg VM, Wu VCH. Characterization of Two New Shiga Toxin-Producing Escherichia coli O103-Infecting Phages Isolated from an Organic Farm. Microorganisms 2021; 9:microorganisms9071527. [PMID: 34361962 PMCID: PMC8303462 DOI: 10.3390/microorganisms9071527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O103 strains have been recently attributed to various foodborne outbreaks in the United States. Due to the emergence of antibiotic-resistant strains, lytic phages are considered as alternative biocontrol agents. This study was to biologically and genomically characterize two STEC O103-infecting bacteriophages, vB_EcoP-Ro103C3lw (or Ro103C3lw) and vB_EcoM-Pr103Blw (or Pr103Blw), isolated from an organic farm. Based on genomic and morphological analyses, phages Ro103C3lw and Pr103Blw belonged to Autographiviridae and Myoviridae families, respectively. Ro103C3lw contained a 39,389-bp double-stranded DNA and encoded a unique tail fiber with depolymerase activity, resulting in huge plaques. Pr103Blw had an 88,421-bp double-stranded DNA with 26 predicted tRNAs associated with the enhancement of the phage fitness. Within each phage genome, no virulence, antibiotic-resistant, and lysogenic genes were detected. Additionally, Ro103C3lw had a short latent period (2 min) and a narrow host range, infecting only STEC O103 strains. By contrast, Pr103Blw had a large burst size (152 PFU/CFU) and a broad host range against STEC O103, O26, O111, O157:H7, and Salmonella Javiana strains. Furthermore, both phages showed strong antimicrobial activities against STEC O103:H2 strains. The findings provide valuable insight into these two phages’ genomic features with the potential antimicrobial activities against STEC O103.
Collapse
|
59
|
Besarab NV, Akhremchuk AE, Zlatohurska MA, Romaniuk LV, Valentovich LN, Tovkach FI, Lagonenko AL, Evtushenkov AN. Isolation and characterization of Hena1 - a novel Erwinia amylovora bacteriophage. FEMS Microbiol Lett 2021; 367:5823740. [PMID: 32319510 DOI: 10.1093/femsle/fnaa070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
Fire blight, caused by plant pathogenic bacterium Erwinia amylovora, is one of the most important diseases of Rosaceae plants. Due to the lack of effective control measures, fire blight infections pose a recurrent threat on agricultural production worldwide. Recently, bacterial viruses, or bacteriophages, have been proposed as environmentally friendly natural antimicrobial agents for fire blight control. Here, we isolated a novel bacteriophage Hena1 with activity against E. amylovora. Further analysis revealed that Hena1 is a narrow-host-range lytic phage belonging to Myoviridae family. Its genome consists of a linear 148,842 bp dsDNA (48.42% GC content) encoding 240 ORFs and 23 tRNA genes. Based on virion structure and genomic composition, Hena1 was classified as a new species of bacteriophage subfamily Vequintavirinae. The comprehensive analysis of Hena1 genome may provide further insights into evolution of bacteriophages infecting plant pathogenic bacteria.
Collapse
Affiliation(s)
- Natalya V Besarab
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| | - Artur E Akhremchuk
- Institute of Microbiology, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Maryna A Zlatohurska
- Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, D03680 Kyiv, Ukraine
| | - Liudmyla V Romaniuk
- Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, D03680 Kyiv, Ukraine
| | - Leonid N Valentovich
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus.,Institute of Microbiology, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Fedor I Tovkach
- Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, D03680 Kyiv, Ukraine
| | - Alexander L Lagonenko
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| | - Anatoly N Evtushenkov
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| |
Collapse
|
60
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
61
|
Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE. A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Front Microbiol 2021; 12:564532. [PMID: 33664712 PMCID: PMC7920989 DOI: 10.3389/fmicb.2021.564532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, the spread of antibiotic-resistant bacteria and efforts to preserve food microbiota have induced renewed interest in phage therapy. Phage cocktails, instead of a single phage, are commonly used as antibacterial agents since the hosts are unlikely to become resistant to several phages simultaneously. While the spectrum of activity might increase with cocktail complexity, excessive phages could produce side effects, such as the horizontal transfer of genes that augment the fitness of host strains, dysbiosis or high manufacturing costs. Therefore, cocktail formulation represents a compromise between achieving substantial reduction in the bacterial loads and restricting its complexity. Despite the abovementioned points, the observed bacterial load reduction does not increase significantly with the size of phage cocktails, indicating the requirement for a systematic approach to their design. In this work, the information provided by host range matrices was analyzed after building phage-bacteria infection networks (PBINs). To this end, we conducted a meta-analysis of 35 host range matrices, including recently published studies and new datasets comprising Escherichia coli strains isolated during ripening of artisanal raw milk cheese and virulent coliphages from ewes' feces. The nestedness temperature, which reflects the host range hierarchy of the phages, was determined from bipartite host range matrices using heuristic (Nestedness Temperature Calculator) and genetic (BinMatNest) algorithms. The latter optimizes matrix packing, leading to lower temperatures, i.e., it simplifies the identification of the phages with the broadest host range. The structure of infection networks suggests that generalist phages (and not specialist phages) tend to succeed in infecting less susceptible bacteria. A new metric (Φ), which considers some properties of the host range matrices (fill, temperature, and number of bacteria), is proposed as an estimator of phage cocktail size. To identify the best candidates, agglomerative hierarchical clustering using Ward's method was implemented. Finally, a cocktail was formulated for the biocontrol of cheese-isolated E. coli, reducing bacterial counts by five orders of magnitude.
Collapse
Affiliation(s)
- Felipe Molina
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Alfredo Simancas
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Microbiology, Department of Biomedical Sciences, University of Extremadura, Badajoz, Spain
| | - Rafael Tabla
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - Isidro Roa
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - José Emilio Rebollo
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| |
Collapse
|
62
|
Green SI, Gu Liu C, Yu X, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X, Ramig RF, Trautner BW, Kaplan HB, Maresso AW. Targeting of Mammalian Glycans Enhances Phage Predation in the Gastrointestinal Tract. mBio 2021; 12:e03474-20. [PMID: 33563833 PMCID: PMC7885116 DOI: 10.1128/mbio.03474-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.
Collapse
Affiliation(s)
- Sabrina I Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xue Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shelley Gibson
- Department of Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wilhem Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah E Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W Trautner
- Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
63
|
Hantke K. Compilation of Escherichia coli K-12 outer membrane phage receptors - their function and some historical remarks. FEMS Microbiol Lett 2021; 367:5721240. [PMID: 32009155 DOI: 10.1093/femsle/fnaa013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Many Escherichia coli phages have been sequenced, but in most cases their sequences alone do not suffice to predict their host specificity. Analysis of phage resistant E. coli K-12 mutants have uncovered a certain set of outer membrane proteins and polysaccharides as receptors. In this review, a compilation of E. coli K12 phage receptors is provided and their functional characterization, often driven by studies on phage resistant mutants, is discussed in the historical context. While great progress has been made in this field thus far, several proteins in the outer membrane still await characterization as phage receptors.
Collapse
Affiliation(s)
- Klaus Hantke
- IMIT, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
64
|
Park DW, Park JH. Characterization of Endolysin LysECP26 Derived from rV5-like Phage vB_EcoM-ECP26 for Inactivation of Escherichia coli O157:H7. J Microbiol Biotechnol 2020; 30:1552-1558. [PMID: 32699198 PMCID: PMC9728275 DOI: 10.4014/jmb.2005.05030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
With an increase in the consumption of non-heated fresh food, foodborne shiga toxin-producing Escherichia coli (STEC) has emerged as one of the most problematic pathogens worldwide. Endolysin, a bacteriophage-derived lysis protein, is able to lyse the target bacteria without any special resistance, and thus has been garnering interest as a powerful antimicrobial agent. In this study, rV5-like phage endolysin targeting E. coli O157:H7, named as LysECP26, was identified and purified. This endolysin had a lysozyme-like catalytic domain, but differed markedly from the sequence of lambda phage endolysin. LysECP26 exhibited strong activity with a broad lytic spectrum against various gram-negative strains (29/29) and was relatively stable at a broad temperature range (4°C- 55°C). The optimum temperature and pH ranges of LysECP26 were identified at 37°C-42°C and pH 7- 8, respectively. NaCl supplementation did not affect the lytic activity. Although LysECP26 was limited in that it could not pass the outer membrane, E. coli O157: H7 could be effectively controlled by adding ethylenediaminetetraacetic acid (EDTA) and citric acid (1.44 and 1.14 log CFU/ml) within 30 min. Therefore, LysECP26 may serv as an effective biocontrol agent for gram-negative pathogens, including E. coli O157:H7.
Collapse
Affiliation(s)
- Do-Won Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea,Corresponding author Phone: +82-31-750-5523 Fax: +82-31-750-5273 E-mail:
| |
Collapse
|
65
|
Multisubunit RNA Polymerases of Jumbo Bacteriophages. Viruses 2020; 12:v12101064. [PMID: 32977622 PMCID: PMC7598289 DOI: 10.3390/v12101064] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Prokaryotic viruses with DNA genome longer than 200 kb are collectively referred to as “jumbo phages”. Some representatives of this phylogenetically diverse group encode two DNA-dependent RNA polymerases (RNAPs)—a virion RNAP and a non-virion RNAP. In contrast to most other phage-encoded RNAPs, the jumbo phage RNAPs are multisubunit enzymes related to RNAPs of cellular organisms. Unlike all previously characterized multisubunit enzymes, jumbo phage RNAPs lack the universally conserved alpha subunits required for enzyme assembly. The mechanism of promoter recognition is also different from those used by cellular enzymes. For example, the AR9 phage non-virion RNAP requires uracils in its promoter and is able to initiate promoter-specific transcription from single-stranded DNA. Jumbo phages encoding multisubunit RNAPs likely have a common ancestor allowing making them a separate subgroup within the very diverse group of jumbo phages. In this review, we describe transcriptional strategies used by RNAP-encoding jumbo phages and describe the properties of characterized jumbo phage RNAPs.
Collapse
|
66
|
Sørensen PE, Van Den Broeck W, Kiil K, Jasinskyte D, Moodley A, Garmyn A, Ingmer H, Butaye P. New insights into the biodiversity of coliphages in the intestine of poultry. Sci Rep 2020; 10:15220. [PMID: 32939020 PMCID: PMC7494930 DOI: 10.1038/s41598-020-72177-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
Despite phages' ubiquitous presence and great importance in shaping microbial communities, little is known about the diversity of specific phages in different ecological niches. Here, we isolated, sequenced, and characterized 38 Escherichia coli-infecting phages (coliphages) from poultry faeces to gain a better understanding of the coliphage diversity in the poultry intestine. All phages belonged to either the Siphoviridae or Myoviridae family and their genomes ranged between 44,324 and 173,384 bp, with a G+C content between 35.5 and 46.4%. Phylogenetic analysis was performed based on single "marker" genes; the terminase large subunit, portal protein, and exonucleases, as well as the full draft genomes. Single gene analysis resulted in six distinct clusters. Only minor differences were observed between the different phylogenetic analyses, including branch lengths and additional duplicate or triplicate subclustering. Cluster formation was according to genome size, G+C content and phage subfamily. Phylogenetic analysis based on the full genomes supported these clusters. Moreover, several of our Siphoviridae phages might represent a novel unclassified phage genus. This study allowed for identification of several novel coliphages and provides new insights to the coliphage diversity in the intestine of poultry. Great diversity was observed amongst the phages, while they were isolated from an otherwise similar ecosystem.
Collapse
Affiliation(s)
- Patricia E Sørensen
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium.
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | | | - Kristoffer Kiil
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Dziuginta Jasinskyte
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Arshnee Moodley
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
- CGIAR Antimicrobial Resistance Hub, International Livestock Research Institute, Nairobi, Kenya
| | - An Garmyn
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Patrick Butaye
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
67
|
Guerin E, Hill C. Shining Light on Human Gut Bacteriophages. Front Cell Infect Microbiol 2020; 10:481. [PMID: 33014897 PMCID: PMC7511551 DOI: 10.3389/fcimb.2020.00481] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut is a complex environment that contains a multitude of microorganisms that are collectively termed the microbiome. Multiple factors have a role to play in driving the composition of human gut bacterial communities either toward homeostasis or the instability that is associated with many disease states. One of the most important forces are likely to be bacteriophages, bacteria-infecting viruses that constitute by far the largest portion of the human gut virome. Despite this, bacteriophages (phages) are the one of the least studied residents of the gut. This is largely due to the challenges associated with studying these difficult to culture entities. Modern high throughput sequencing technologies have played an important role in improving our understanding of the human gut phageome but much of the generated sequencing data remains uncharacterised. Overcoming this requires database-independent bioinformatic pipelines and even those phages that are successfully characterized only provide limited insight into their associated biological properties, and thus most viral sequences have been characterized as “viral dark matter.” Fundamental to understanding the role of phages in shaping the human gut microbiome, and in turn perhaps influencing human health, is how they interact with their bacterial hosts. An essential aspect is the isolation of novel phage-bacteria host pairs by direct isolation through various screening methods, which can transform in silico phages into a biological reality. However, this is also beset with multiple challenges including culturing difficulties and the use of traditional methods, such as plaquing, which may bias which phage-host pairs that can be successfully isolated. Phage-bacteria interactions may be influenced by many aspects of complex human gut biology which can be difficult to reproduce under laboratory conditions. Here we discuss some of the main findings associated with the human gut phageome to date including composition, our understanding of phage-host interactions, particularly the observed persistence of virulent phages and their hosts, as well as factors that may influence these highly intricate relationships. We also discuss current methodologies and bottlenecks hindering progression in this field and identify potential steps that may be useful in overcoming these hurdles.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
68
|
Olsen NS, Forero-Junco L, Kot W, Hansen LH. Exploring the Remarkable Diversity of Culturable Escherichia coli Phages in the Danish Wastewater Environment. Viruses 2020; 12:E986. [PMID: 32899836 PMCID: PMC7552041 DOI: 10.3390/v12090986] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Phages drive bacterial diversity, profoundly influencing microbial communities, from microbiomes to the drivers of global biogeochemical cycling. Aiming to broaden our understanding of Escherichiacoli (MG1655, K-12) phages, we screened 188 Danish wastewater samples and isolated 136 phages. Ninety-two of these have genomic sequences with less than 95% similarity to known phages, while most map to existing genera several represent novel lineages. The isolated phages are highly diverse, estimated to represent roughly one-third of the true diversity of culturable virulent dsDNA Escherichia phages in Danish wastewater, yet almost half (40%) are not represented in metagenomic databases, emphasising the importance of isolating phages to uncover diversity. Seven viral families, Myoviridae, Siphoviridae, Podoviridae,Drexlerviridae,Chaseviridae,Autographviridae, and Microviridae, are represented in the dataset. Their genomes vary drastically in length from 5.3 kb to 170.8 kb, with a guanine and cytosine (GC) content ranging from 35.3% to 60.0%. Hence, even for a model host bacterium, substantial diversity remains to be uncovered. These results expand and underline the range of coliphage diversity and demonstrate how far we are from fully disclosing phage diversity and ecology.
Collapse
Affiliation(s)
- Nikoline S. Olsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Laura Forero-Junco
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| |
Collapse
|
69
|
Paving the Way to Unveil the Diversity and Evolution of Phage Genomes. Viruses 2020; 12:v12090905. [PMID: 32824934 PMCID: PMC7551783 DOI: 10.3390/v12090905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/17/2023] Open
Abstract
Phage biology has been developing for the last hundred years, and the potential of phages as tools and treatments has been known since their early discovery. However, the lack of knowledge of the molecular mechanisms coded in phage genomes hindered the development of the field. With current molecular methods, the last decade has been a resurgence of the field. The Special Issue on “Diversity and Evolution of Phage Genomes” is a great example with its 17 manuscripts published. It covers some of the latest methods to sample and characterize environmental and host associated viromes, considering experimental biases and computational developments. Furthermore, the use of molecular tools coupled with traditional methods has allowed to isolate and characterize viruses from different hosts and environments with such diversity that even a new viral class is being proposed. The viruses described cover all different phage families and lifestyles. However, is not only about diversity; the molecular evolution is studied in a set of manuscripts looking at phage-host interactions and their capacity to uncover the frequency and type of mutations behind the bacterial resistance mechanisms and viral pathogenesis, and such methods are opening new ways into identifying potential receptors and characterizing the bacterial host range.
Collapse
|
70
|
Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the Genus Pseudomonas. Front Mol Biosci 2020; 7:127. [PMID: 32754614 PMCID: PMC7366521 DOI: 10.3389/fmolb.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
71
|
Bumunang EW, McAllister TA, Stanford K, Anany H, Niu YD, Ateba CN. Characterization of Non-O157 STEC Infecting Bacteriophages Isolated from Cattle Faeces in North-West South Africa. Microorganisms 2019; 7:E615. [PMID: 31779135 PMCID: PMC6956337 DOI: 10.3390/microorganisms7120615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) E. coli are emerging pathotypes that are frequently associated with diseases in humans around the world. The consequences of these serogroups for public health is a concern given the lack of effective prevention and treatment measures. In this study, ten bacteriophages (phages; SA20RB, SA79RD, SA126VB, SA30RD, SA32RD, SA35RD, SA21RB, SA80RD, SA12KD and SA91KD) isolated from cattle faeces collected in the North-West of South Africa were characterized. Activity of these phages against non-O157 STEC isolates served as hosts for these phages. All of the phages except SA80RD displayed lytic against non-O157 E. coli isolates. Of 22 non-O157 E. coli isolates, 14 were sensitive to 9 of the 10 phages tested. Phage SA35RD was able to lyse 13 isolates representing a diverse group of non-O157 E. coli serotypes including a novel O-antigen Shiga toxigenic (wzx-Onovel5:H19) strain. However, non-O157 E. coli serotypes O76:H34, O99:H9, O129:H23 and O136:H30 were insensitive to all phages. Based on transmission electron microscopy, the non-O157 STEC phages were placed into Myoviridae (n = 5) and Siphoviridae (n = 5). Genome of the phage ranged from 44 to 184.3 kb. All but three phages (SA91KD, SA80RD and SA126VB) were insensitive to EcoRI-HF and HindIII nucleases. This is the first study illustrating that cattle from North-West South Africa harbour phages with lytic potentials that could potentially be exploited for biocontrol against a diverse group of non-O157 STEC isolated from the same region.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa;
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Hany Anany
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, ON N1G 5C9, Canada;
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|