99951
|
Pol J, Kroemer G. Anti-CTLA-4 immunotherapy: uncoupling toxicity and efficacy. Cell Res 2018; 28:501-502. [PMID: 29593340 PMCID: PMC5951874 DOI: 10.1038/s41422-018-0031-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jonathan Pol
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, 75006, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France
- University of Pierre et Marie Curie, Paris, 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France
| | - Guido Kroemer
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, 75006, France.
- University of Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.
- University of Pierre et Marie Curie, Paris, 75006, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, 75015, France.
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden.
| |
Collapse
|
99952
|
Dörfel D, Lechner CJ, Joas S, Funk T, Gutknecht M, Salih J, Geiger J, Kropp KN, Maurer S, Müller MR, Kopp HG, Salih HR, Grünebach F, Rittig SM. The BCR-ABL inhibitor nilotinib influences phenotype and function of monocyte-derived human dendritic cells. Cancer Immunol Immunother 2018; 67:775-783. [PMID: 29468363 PMCID: PMC11028318 DOI: 10.1007/s00262-018-2129-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
In chronic myeloid leukemia (CML), the translocation t(9;22) results in the fusion protein BCR-ABL (breakpoint cluster region-abelson murine leukemia), a tyrosine kinase mediating oncogenic signaling which is successfully targeted by treatment with BCR-ABL inhibitors like imatinib. However, BCR-ABL inhibitors may also affect antitumor immunity. For instance, it was reported that imatinib impairs the function of dendritic cells (DCs) that play a central role in initiating and sustaining T cell responses. Meanwhile, second generation BCR-ABL inhibitors like nilotinib, which inhibits BCR-ABL with enhanced potency have become standard of treatment, at least in patients with BCR-ABL kinase domain mutations. In this study we analyzed the influence of therapeutic concentrations of nilotinib on human monocyte-derived DCs and compared its effects to imatinib. We found that both tyrosine kinase inhibitors (TKI) comparably and significantly impaired differentiation of monocytes to DCs as revealed by curtated downregulation of CD14 and reduced upregulation of CD1a and CD83. This was only partially restored after withdrawal of the TKI. Moreover, both TKI significantly reduced activation-induced IL-12p70 and C-C motif chemokine ligand (CCL) 3 secretion, while divergent TKI effects for CCL2 and CCL5 were observed. In contrast, only nilotinib significantly impaired the migratory capacity of DCs and their capacity to induce T-cell immune responses in MLRs. Our results indicate that imatinib and nilotinib may differ significantly with regard to their influence on antitumor immunity. Thus, for future combinatory approaches and particularly stop studies in CML treatment, choice of the most suitable BCR-ABL inhibitor requires careful consideration.
Collapse
Affiliation(s)
- Daniela Dörfel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Christian J Lechner
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
- Medizin & Markt GmbH, Munich, Germany
| | - Simone Joas
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
- Institute of Molecular Virology, Ulm University Hospital, Ulm, Germany
| | - Tanja Funk
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Michael Gutknecht
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
- Novartis Pharma AG, Basel, Switzerland
| | - Julia Salih
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Julian Geiger
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Korbinian N Kropp
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Martin R Müller
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Frank Grünebach
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Susanne M Rittig
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany.
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
99953
|
Shim R, Wong CHY. Complex interplay of multiple biological systems that contribute to post-stroke infections. Brain Behav Immun 2018; 70:10-20. [PMID: 29571897 DOI: 10.1016/j.bbi.2018.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 02/08/2023] Open
Abstract
Stroke is a leading contributor of death and disability around the world. Despite its recognised debilitating neurological deficits, a devastating clinical complication of surviving stroke patients that needs more attention is infection. Up to half of the patients develop infections after stroke, and a high proportion of them will die as a direct consequence. Major clinical trials that examined preventive antibiotic therapy in stroke patients have demonstrated this method of prevention is not effective as it does not reduce incidence of post-stroke pneumonia or improve patient outcome. Additionally, retrospective studies evaluating the use of β-blockers for the modulation of the sympathetic nervous system to prevent post-stroke infections have given mixed results. Therefore, there is an urgent need for more effective therapeutic options that target the underlying mechanisms of post-stroke infections. The understanding that infections are largely attributable to the "stroke-induced systemic immunosuppression" phenomenon has begun to emerge, and thus, exploring the pathways that trigger post-stroke immunosuppression is expected to reveal potential new therapeutics. As such, we will outline the impacts that stroke has on several biological systems in this review, and discuss how these contribute to host susceptibility to infection after stroke. Furthermore, the emerging role of the gut and its microbiota has recently come to surface and intensifies the complex pathways to post-stroke infection. Finally, we identify potential avenues to combat infection that target the pathways of stroke-induced systemic immunosuppression to ultimately improve stroke patient outcome.
Collapse
Affiliation(s)
- Raymond Shim
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
99954
|
Impaired IL-10 Receptor-mediated Suppression in Monocyte From Patients With Crohn Disease. J Pediatr Gastroenterol Nutr 2018; 66:779-784. [PMID: 29045353 DOI: 10.1097/mpg.0000000000001795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Interleukin-10 (IL-10) is an immunoregulatory cytokine that has a central role in suppressing proinflammatory responses. Patients with deleterious mutations in interleukin (IL)-10 or IL-10 receptor (IL-10R) genes develop severe colitis and perianal disease in the first months of life. Whether IL-10R expression and signaling in pediatric- or adult-onset Crohn disease (CD) are altered is unknown. The objective of this study was to characterize IL-10R expression and IL-10R-mediated suppression in patients with CD. METHODS Monocytes were sorted from peripheral blood mononuclear cells of patients with CD and control subjects. IL-10R expression was determined by flow cytometry. Monocytes were stimulated with lipopolysaccharide (LPS) for 3 hours in the presence of different concentrations of IL-10 to determine IL-10-mediated suppression of tumor necrosis factor α production. Signaling through the IL-10R was evaluated by quantifying STAT3 phosphorylation in response to IL-10 stimulation. RESULTS Forty-two subjects were enrolled in this study: 19 with CD and 23 controls. Stimulation of monocytes with LPS markedly increased IL-10R expression in both groups but to a much lower extent in patients with CD. In addition, IL-10-mediated suppression of TNFα production upon LPS stimulation and IL-10-induced STAT3 phosphorylation were attenuated in patients with CD versus controls. Finally, LPS-stimulated monocytes from patients with CD secreted significantly lower quantities of IL-10, compared with control monocytes. CONCLUSIONS IL-10R expression and signaling are decreased in monocytes from patients with CD. Additional studies are required to assess whether similar patterns occur in other innate immune cells, especially in the gut, and whether disease activity, medical therapy, and genetic factors modulate these findings.
Collapse
|
99955
|
Alaoui L, Palomino G, Zurawski S, Zurawski G, Coindre S, Dereuddre-Bosquet N, Lecuroux C, Goujard C, Vaslin B, Bourgeois C, Roques P, Le Grand R, Lambotte O, Favier B. Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs. Cell Mol Life Sci 2018; 75:1871-1887. [PMID: 29134249 PMCID: PMC11105587 DOI: 10.1007/s00018-017-2712-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.
Collapse
Affiliation(s)
- Lamine Alaoui
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Gustavo Palomino
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Sandy Zurawski
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | | | - Sixtine Coindre
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Camille Lecuroux
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Pierre Roques
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France.
| |
Collapse
|
99956
|
Rodríguez-Ruiz M, Perez-Gracia J, Rodríguez I, Alfaro C, Oñate C, Pérez G, Gil-Bazo I, Benito A, Inogés S, López-Diaz de Cerio A, Ponz-Sarvise M, Resano L, Berraondo P, Barbés B, Martin-Algarra S, Gúrpide A, Sanmamed M, de Andrea C, Salazar A, Melero I. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann Oncol 2018; 29:1312-1319. [DOI: 10.1093/annonc/mdy089] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
99957
|
Ratheesh A, Biebl J, Vesela J, Smutny M, Papusheva E, Krens SG, Kaufmann W, Gyoergy A, Casano AM, Siekhaus DE. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration. Dev Cell 2018; 45:331-346.e7. [DOI: 10.1016/j.devcel.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
|
99958
|
Chan TC, Hawkes JE, Krueger JG. Interleukin 23 in the skin: role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment. Ther Adv Chronic Dis 2018; 9:111-119. [PMID: 29796240 PMCID: PMC5956648 DOI: 10.1177/2040622318759282] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Plaque psoriasis is one of the most common autoimmune skin diseases and is characterized by erythematous, scaly plaques. Many highly effective, targeted therapies have been developed as a result of an improved understanding of the pathogenesis of psoriasis. Using agents that target the central interleukin (IL)-23/IL-17 immune axis, this once difficult-to-treat disease is now among the most effectively treated autoimmune diseases with major clinical improvements possible in around 90% of patients. In this article, we outline the immune mechanisms responsible for the development of psoriasis and provide an overview of the novel IL-23 antagonists being used to manage this chronic skin disease.
Collapse
Affiliation(s)
- Tom C. Chan
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jason E. Hawkes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - James G. Krueger
- The Milstein Research Program, Laboratory Head, Investigative Dermatology, The Rockefeller University, 1230 York Avenue, Box 178, New York, NY 10065, USA
| |
Collapse
|
99959
|
Jin J, Wu D, Zhao L, Zou W, Shen W, Tu Q, He Q. Effect of autophagy and stromal interaction molecule 1 on podocyte epithelial-mesenchymal transition in diabetic nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2450-2459. [PMID: 31938357 PMCID: PMC6958286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/22/2018] [Indexed: 06/10/2023]
Abstract
AIM We aimed to assess the effect of autophagy and stromal interaction molecule 1 (STIM1) on podocyte epithelial-mesenchymal transition in diabetic nephropathy. METHODS The sera of 8-week-old db/db and C57BL/KsJ rats were used to culture MPC5 cells. The experiment was divided into 4 groups: MPC5 + siRNA-Scr + 10% C57BL/KsJ (Group A), MPC5 + siRNA-STIM1 + 10% C57BL/KsJ (Group B), MPC5 + siRNA-Scr + 10% db/db (Group C), and MPC5 + siRNA-STIM1 + 10% db/db (Group D). Podocyte autophagy was evaluated via immunofluorescence staining for LC3II and P62, and via Western blotting for P62 and LC3 (LC3II/LC3I). Western blotting was also used to assess the expression of TRPC6, Orai1, Beclin-1, Bcl-2, Caspase3, E-cadherin, fibronectin, and α-SMA protein. Furthermore, podocyte apoptosis was assessed via flow cytometry. RESULTS We found that, in podocytes cultured in the serum of diabetic nephrotic rats, the autophagy level decreased, whereas the apoptosis level increased, and EMT can be advanced. However, after silencing STIM1 with siRNA, a converse outcome was noted. Furthermore, in diabetic nephropathy rats, the up-regulated expression of podocyte STIM1 can activate TRPC6 and Orai1 channels, which results in Ca2+ entry. CONCLUSIONS We found that, in podocytes cultured in the serum of diabetic nephrotic rats, the autophagy level increased, whereas the apoptosis level decreased, and EMT can be inhibited by silencing STIM1 with siRNA.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Diandian Wu
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- Bengbu Medical CollegeBengbu, Anhui, P. R. China
| | - Li Zhao
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Wenli Zou
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Wei Shen
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Qiudi Tu
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| |
Collapse
|
99960
|
Toward precision manufacturing of immunogene T-cell therapies. Cytotherapy 2018; 20:623-638. [DOI: 10.1016/j.jcyt.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
|
99961
|
Li JW, Zong Y, Cao XP, Tan L, Tan L. Microglial priming in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:176. [PMID: 29951498 DOI: 10.21037/atm.2018.04.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease of central nervous system (CNS). Nowadays, increasing evidence suggests that immune system plays a significant role in the mechanisms of AD's onset and progression. Microglia, the main participator in the immune system of CNS, is always regarded as a protector of our brain in a healthy state and also has a beneficial role in maintaining the homeostasis of CNS microenvironment. However, chronic and sustained stimulation can push microglia into the state termed priming. Primed microglia can induce the production of amyloid β (Aβ), tau pathology, neuroinflammation and reduce the release of neurotrophic factors, resulting in loss of normal neurons in quantity and function that has immense relationship with AD. The therapeutic strategies mainly aimed at modulating the microenvironment and microglial activity in CNS to delay progression and alleviate pathogenesis of AD. Overall, in this review, we highlight the mechanism of microglial priming, and discuss the profound relationship between microglial priming and AD. Besides, we also pay attention to the therapeutic strategies targeting at microglial priming.
Collapse
Affiliation(s)
- Jun-Wei Li
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China
| | - Yu Zong
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
99962
|
Raeven RH, Brummelman J, Pennings JLA, van der Maas L, Helm K, Tilstra W, van der Ark A, Sloots A, van der Ley P, van Eden W, Jiskoot W, van Riet E, van Els CA, Kersten GF, Han WG, Metz B. Molecular and cellular signatures underlying superior immunity against Bordetella pertussis upon pulmonary vaccination. Mucosal Immunol 2018; 11:979-993. [PMID: 28930286 DOI: 10.1038/mi.2017.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/15/2017] [Indexed: 02/04/2023]
Abstract
Mucosal immunity is often required for protection against respiratory pathogens but the underlying cellular and molecular mechanisms of induction remain poorly understood. Here, systems vaccinology was used to identify immune signatures after pulmonary or subcutaneous immunization of mice with pertussis outer membrane vesicles. Pulmonary immunization led to improved protection, exclusively induced mucosal immunoglobulin A (IgA) and T helper type 17 (Th17) responses, and in addition evoked elevated systemic immunoglobulin G (IgG) antibody levels, IgG-producing plasma cells, memory B cells, and Th17 cells. These adaptive responses were preceded by unique local expression of genes of the innate immune response related to Th17 (e.g., Rorc) and IgA responses (e.g., Pigr) in addition to local and systemic secretion of Th1/Th17-promoting cytokines. This comprehensive systems approach identifies the effect of the administration route on the development of mucosal immunity, its importance in protection against Bordetella pertussis, and reveals potential molecular correlates of vaccine immunity to this reemerging pathogen.
Collapse
Affiliation(s)
- R Hm Raeven
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.,Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - J Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - J L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - L van der Maas
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - K Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - W Tilstra
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - A van der Ark
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - A Sloots
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - P van der Ley
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - W van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - W Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - E van Riet
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - C Acm van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - G Fa Kersten
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.,Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - W Gh Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - B Metz
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| |
Collapse
|
99963
|
Kimura M, Nishikawa K, Sakamaki H, Mizokami M, Kimura K. Reduced therapeutic effect of antiviral drugs in patients with hepatitis B virus reactivation after hematopoietic stem cell transplantation. Hepatol Res 2018; 48:469-478. [PMID: 29235226 DOI: 10.1111/hepr.13044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Abstract
AIM Patients with resolved hepatitis B virus (HBV) infection following hematopoietic stem cell transplantation (HSCT) are potentially at high risk of HBV reactivation. Although antiviral drug therapy is recommended when HBV DNA reappears in the serum, drug efficacy after HBV reactivation remains unclear. METHODS Host immune response against HBV was investigated by immunological analyses at 12 months after entecavir (ETV) treatment in six HSCT-treated and five non-HSCT-treated patients with HBV reactivation, and 18 patients with chronic hepatitis B (CHB). Peripheral HBV-specific CD8+ T cells were analyzed for total numbers by flow cytometry and tetramer staining, as was intracellular γ-interferon (IFN-γ) production and CD107a expression in response to HBV peptides. Interleukin-10 (IL-10)-expressing CD19+ B-cell count and serum inflammatory cytokine levels were also analyzed. RESULTS Serum HBV DNA was detectable in HSCT-treated patients with HBV reactivation at 12 months compared with other groups, indicating insufficient ETV efficacy against HBV. The HBV-specific CD8+ T-cell counts in HSCT-treated patients with HBV reactivation were significantly lower compared with those in non-HSCT patients. Additionally, IFN-γ production and CD107a expression by CD8+ T cells after incubation with HBV peptides was significantly reduced in HSCT-treated compared with CHB patients at 12 months after ETV treatment. Conversely, HSCT-treated patient serum IL-10 levels were significantly elevated compared with those in non-HSCT patients. Finally, IL-10-producing CD19+ B-cell counts were increased in HSCT-treated compared with CHB patients. CONCLUSION After HBV reactivation, ETV efficacy was impaired in HSCT-treated patients as evidenced by low HBV-specific CD8+ T-cell counts and high B-cell IL-10 production.
Collapse
Affiliation(s)
| | | | - Hisashi Sakamaki
- Division of Hematology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | | |
Collapse
|
99964
|
Scherer S, Göbel TW. Characterisation of chicken OX40 and OX40L. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:128-138. [PMID: 29407480 DOI: 10.1016/j.dci.2018.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
The Tumour Necrosis Factor superfamilies of receptors and ligands play a crucial role in the regulation of effective immune responses against pathogens and malignant cells. In chickens, only few members have been identified. Here, we characterise the chicken homologues for mammalian costimulatory molecules OX40 and OX40L, which are involved in sustaining T cell responses. Both genes were identified by virtue of their genomic localisation close to highly conserved genes and their structural relationship to their mammalian homologues. Following cloning and expression of soluble and cell-associated chicken OX40 and OX40L, we confirmed their mutual interaction via ELISA and flow cytometric analyses. In addition, we showed the application of soluble OX40-Fc in staining of chicken cells. Whereas non-activated cells did not express OX40L, activation by IL-2 and IL-12 resulted in upregulation of OX40L on αβ and γδ T cell populations. Our results demonstrate the existence of the costimulatory OX40-OX40L system in the chicken and provide the basis for further investigations of chicken T cell responses.
Collapse
Affiliation(s)
- Stephanie Scherer
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Thomas W Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany.
| |
Collapse
|
99965
|
Oja AE, Piet B, Helbig C, Stark R, van der Zwan D, Blaauwgeers H, Remmerswaal EBM, Amsen D, Jonkers RE, Moerland PD, Nolte MA, van Lier RAW, Hombrink P. Trigger-happy resident memory CD4 + T cells inhabit the human lungs. Mucosal Immunol 2018; 11:654-667. [PMID: 29139478 DOI: 10.1038/mi.2017.94] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023]
Abstract
Resident memory T cells (TRM) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8+ TRM have been extensively characterized, the properties of CD4+ TRM remain unclear. Here we determined the transcriptional signature of CD4+ TRM, identified by the expression of CD103, retrieved from human lung resection material. Various tissue homing molecules were specifically upregulated on CD4+ TRM, whereas expression of tissue egress and lymph node homing molecules were low. CD103+ TRM expressed low levels of T-bet, only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein expression was absent. On the other hand, the CD103+ TRM showed a Notch signature. CD4+CD103+ TRM constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4+ TRM in the human lung. Understanding the specific properties of CD4+ TRM is required to rationally improve vaccine design.
Collapse
Affiliation(s)
- A E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - B Piet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Respiratory Medicine, OLVG, Amsterdam, The Netherlands
| | - C Helbig
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - D van der Zwan
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - H Blaauwgeers
- Department of Pathology, OLVG, Amsterdam, The Netherlands
| | - E B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam The Netherlands
| | - D Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R E Jonkers
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - P D Moerland
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics and Department of Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - M A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - P Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| |
Collapse
|
99966
|
Bastian OW, Croes M, Alblas J, Koenderman L, Leenen LPH, Blokhuis TJ. Neutrophils Inhibit Synthesis of Mineralized Extracellular Matrix by Human Bone Marrow-Derived Stromal Cells In Vitro. Front Immunol 2018; 9:945. [PMID: 29765377 PMCID: PMC5938347 DOI: 10.3389/fimmu.2018.00945] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 04/16/2018] [Indexed: 11/23/2022] Open
Abstract
Although controlled local inflammation is essential for adequate bone regeneration, several studies have shown that hyper-inflammatory conditions after major trauma are associated with impaired fracture healing. These hyper-inflammatory conditions include the trauma-induced systemic inflammatory response to major injury, open fractures, and significant injury to the surrounding soft tissues. The current literature suggests that increased or prolonged influx of neutrophils into the fracture hematoma may mediate impairment of bone regeneration after hyper-inflammatory conditions. The underlying mechanism remains unclear. We hypothesize that high neutrophil numbers inhibit synthesis of mineralized extracellular matrix (ECM) by bone marrow stromal cells (BMSCs). We therefore studied the effect of increasing concentrations of neutrophils on ECM synthesis by human BMSCs in vitro. Moreover, we determined how high neutrophil concentrations affect BMSC cell counts, as well as BMSC osteogenic activity determined by alkaline phosphatase (ALP) expression and ALP activity. Co-culture of BMSCs with neutrophils induced a 52% decrease in BMSC cell count (p < 0.01), a 64% decrease in the percentage of ALP+ cells (p < 0.001), a 28% decrease in total ALP activity (p < 0.01), and a significant decrease in the amount of mineralized ECM [38% decrease after 4 weeks (p < 0.05)]. Co-cultures with peripheral blood mononuclear cells and neutrophils within transwells did not induce a significant decrease in ALP activity. In conclusion, our data shows that a decreased amount of mineralized ECM became synthesized by BMSCs, when they were co-cultured with high neutrophil concentrations. Moreover, high neutrophil concentrations induced a decrease in BMSC cell counts and decreased ALP activity. Clarifying the underlying mechanism may contribute to development of therapies that augment bone regeneration or prevent impaired fracture healing after hyper-inflammatory conditions.
Collapse
Affiliation(s)
- Okan W Bastian
- Department of Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Michiel Croes
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Luke P H Leenen
- Department of Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Taco J Blokhuis
- Department of Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
99967
|
Guerriero JL. Macrophages: The Road Less Traveled, Changing Anticancer Therapy. Trends Mol Med 2018; 24:472-489. [PMID: 29655673 PMCID: PMC5927840 DOI: 10.1016/j.molmed.2018.03.006] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/04/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Macrophages are present in all vertebrate tissues and have emerged as multifarious cells with complex roles in development, tissue homeostasis, and disease. Macrophages are a major constituent of the tumor microenvironment, where they either promote or inhibit tumorigenesis and metastasis depending on their state. Successful preclinical strategies to target macrophages for anticancer therapy are now being evaluated in the clinic and provide proof of concept that targeting macrophages may enhance current therapies; however, clinical success has been limited. This review discusses the promise of targeting macrophages for anticancer therapy, yet highlights how much is unknown regarding their ontogeny, regulation, and tissue-specific diversity. Further work might identify subsets of macrophages within different tissues, which could reveal novel therapeutic opportunities for anticancer therapy.
Collapse
Affiliation(s)
- Jennifer L Guerriero
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
99968
|
Guo XK, Ou J, Liang S, Zhou X, Hu X. Epithelial Hes1 maintains gut homeostasis by preventing microbial dysbiosis. Mucosal Immunol 2018; 11:716-726. [PMID: 29297498 DOI: 10.1038/mi.2017.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/12/2017] [Indexed: 02/04/2023]
Abstract
Recent advancements suggest that in addition to its roles in developmental processes, transcription repressor hairy and enhancer of split 1 (Hes1) also acts as a key regulator of inflammatory responses. A healthy gut microbiota ecology is critical for establishment of tissue homeostasis. However, the role of epithelial Hes1 in regulating intestinal microbiota ecology and intestinal homeostasis remains unexplored. Here we show that epithelial Hes1 deficiency leads to intestinal microbial dysbiosis and disturbed homeostasis. Both inducible Hes1 deletion and intestinal epithelial cell (IEC)-intrinsic Hes1 deletion resulted in loss of Bacteroidetes in ileum and increase of Escherichia coli and Akkermansia muciniphila in colon. Loss of Bacteroidetes closely correlated with decreased expression of commensal-dependent antimicrobial genes, leading to impaired resistance against pathogenic bacterial colonization. Moreover, Hes1 deficiency enhanced susceptibility to Dextran sodium sulphate-induced intestinal inflammation. Of note, transfer of Hes1-deficient-mouse-derived fecal microbiota promoted intestinal inflammation. The increase of A. muciniphila in colon was associated with Hes1-deficiency-induced unbalanced mucosal microhabitats. Thus, our results support that IEC-intrinsic Hes1 maintains gut homeostasis by preventing microbial dysbiosis partially through regulating mucosal microhabitats.
Collapse
Affiliation(s)
- X-K Guo
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - J Ou
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - S Liang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - X Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,College of Plant Protection, China Agricultural University, Beijing, China
| | - X Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, China
| |
Collapse
|
99969
|
Shi YH, Chen K, Ma WJ, Chen J. Ayu C-reactive protein/serum amyloid P agglutinates bacteria and inhibits complement-mediated opsonophagocytosis by monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2018; 76:58-67. [PMID: 29481847 DOI: 10.1016/j.fsi.2018.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
The short-chain pentraxins (PTXs), including C-reactive protein (CRP) and serum amyloid P (SAP), are soluble pattern recognition molecules (PRMs) that exhibit calcium-dependent binding to bacterial surface molecules. They opsonize pathogens or other particles by phagocytic clearance. However, the detailed functions of short-chain PTXs in teleosts remained unclear. In this study, we identified a short-chain PTX gene from ayu, Plecoglossus altivelis, and tentatively named as PaCRP/SAP. Sequence analysis revealed that PaCRP/SAP has typical characteristics of fish CRP/SAP and is mostly closely related to rainbow smelt (Osmerus mordax) SAP. PaCRP/SAP transcripts were detected in all tested tissues, with the highest level in the liver, and its expression significantly upregulated following Vibrio anguillarum infection. The active recombinant mature PaCRP/SAP (rPaCRP/SAPm) agglutinated Gram-negative bacteria (Escherichia coli, V. anguillarum, Aeromonas hydrophila, and Vibrio parahaemolyticus) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) in a calcium-dependent manner in vitro, and it correspondingly bound peptidoglycan and lipopolysaccharide in a dose-dependent manner. The binding of rPaCRP/SAPm to E. coli and S. aureus resulted in a clear inhibition of the deposition of ayu complement 3 (PaC3) on the bacteria. Furthermore, rPaCRP/SAPm decreased phagocytosis of rPaCRP/SAPm-bound E. coli and S. aureus cells by ayu monocytes/macrophages (MO/MΦ) in a complement-dependent way. However, rPaCRP/SAPm alone had no significant influence on phagocytosis. These results provided the first evidence that PaCRP/SAP might function in ayu immune responses via agglutinating bacteria and inhibiting complement-mediated opsonophagocytosis by MO/MΦ.
Collapse
Affiliation(s)
- Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Kai Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wen-Jing Ma
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
99970
|
Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 2018; 9:488-500. [PMID: 29736705 PMCID: PMC5960472 DOI: 10.1007/s13238-018-0548-1] [Citation(s) in RCA: 437] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Abstract
Microbes appear in every corner of human life, and microbes affect every aspect of human life. The human oral cavity contains a number of different habitats. Synergy and interaction of variable oral microorganisms help human body against invasion of undesirable stimulation outside. However, imbalance of microbial flora contributes to oral diseases and systemic diseases. Oral microbiomes play an important role in the human microbial community and human health. The use of recently developed molecular methods has greatly expanded our knowledge of the composition and function of the oral microbiome in health and disease. Studies in oral microbiomes and their interactions with microbiomes in variable body sites and variable health condition are critical in our cognition of our body and how to make effect on human health improvement.
Collapse
Affiliation(s)
- Lu Gao
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China
- Department of Orthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Tiansong Xu
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Gang Huang
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Song Jiang
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Yan Gu
- Department of Orthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Feng Chen
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
99971
|
Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 2018; 50:421-428. [PMID: 29567414 DOI: 10.1016/j.dld.2018.02.012] [Citation(s) in RCA: 453] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
Actinobacteria are one the four major phyla of the gut microbiota and, although they represent only a small percentage, are pivotal in the maintenance of gut homeostasis. During the last decade many studies focused the attention on Actinobacteria, especially on their role both in gastrointestinal and systemic diseases and on their possible therapeutic use. In fact, classes of this phylum, especially Bifidobacteria, are widely used as probiotic demonstrating beneficial effects in many pathological conditions, even if larger in vivo studies are needed to confirm such encouraging results. This review aims to explore the current knowledge on their physiological functions and to speculate on their possible therapeutic role(s) in gastrointestinal and systemic diseases.
Collapse
Affiliation(s)
- Cecilia Binda
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Loris Riccardo Lopetuso
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Gianenrico Rizzatti
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Giulia Gibiino
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Bologna, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy.
| |
Collapse
|
99972
|
RelB intrinsically regulates the development and function of medullary thymic epithelial cells. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1039-1048. [PMID: 29730722 DOI: 10.1007/s11427-017-9298-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
Abstract
Medullary thymic epithelial cells (mTECs) act as one of the major stromal components in the thymus for selection and maturation of both conventional T cells and non-conventional T cells. Extensive efforts have been spent to understand how mTEC development and function are regulated. Although RelB has been well accepted to be a critical transcriptional factor for mTEC development, the underlying mechanisms still remain largely unclear. In this study, by generating thymic epithelial cell specific RelB deficient mice, we found that epithelial intrinsic RelB is required for mTEC homeostatic proliferation. Mechanistically, RelB regulates the expression of genes involved in cell cycle. Functionally, lack of intrinsic RelB in thymic epithelial cells results in dramatically reduced population of mTECs and impaired development of thymic invariant natural killer T (iNKT) cells and intraepithelial lymphocyte precursors (IELPs). This study thus reveals an epithelial intrinsic role of RelB on mTEC development and function.
Collapse
|
99973
|
Cabon L, Bertaux A, Brunelle-Navas MN, Nemazanyy I, Scourzic L, Delavallée L, Vela L, Baritaud M, Bouchet S, Lopez C, Quang Van V, Garbin K, Chateau D, Gilard F, Sarfati M, Mercher T, Bernard OA, Susin SA. AIF loss deregulates hematopoiesis and reveals different adaptive metabolic responses in bone marrow cells and thymocytes. Cell Death Differ 2018; 25:983-1001. [PMID: 29323266 PMCID: PMC5943248 DOI: 10.1038/s41418-017-0035-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is a tightly regulated process that plays a central role throughout the lifespan of hematopoietic cells. Herein, we analyze the consequences of the mitochondrial oxidative phosphorylation (OXPHOS)/metabolism disorder associated with the cell-specific hematopoietic ablation of apoptosis-inducing factor (AIF). AIF-null (AIF-/Y ) mice developed pancytopenia that was associated with hypocellular bone marrow (BM) and thymus atrophy. Although myeloid cells were relatively spared, the B-cell and erythroid lineages were altered with increased frequencies of precursor B cells, pro-erythroblasts I, and basophilic erythroblasts II. T-cell populations were dramatically reduced with a thymopoiesis blockade at a double negative (DN) immature state, with DN1 accumulation and delayed DN2/DN3 and DN3/DN4 transitions. In BM cells, the OXPHOS/metabolism dysfunction provoked by the loss of AIF was counterbalanced by the augmentation of the mitochondrial biogenesis and a shift towards anaerobic glycolysis. Nevertheless, in a caspase-independent process, the resulting excess of reactive oxygen species compromised the viability of the hematopoietic stem cells (HSC) and progenitors. This led to the progressive exhaustion of the HSC pool, a reduced capacity of the BM progenitors to differentiate into colonies in methylcellulose assays, and the absence of cell-autonomous HSC repopulating potential in vivo. In contrast to BM cells, AIF-/Y thymocytes compensated for the OXPHOS breakdown by enhancing fatty acid β-oxidation. By over-expressing CPT1, ACADL and PDK4, three key enzymes facilitating fatty acid β-oxidation (e.g., palmitic acid assimilation), the AIF-/Y thymocytes retrieved the ATP levels of the AIF +/Y cells. As a consequence, it was possible to significantly reestablish AIF-/Y thymopoiesis in vivo by feeding the animals with a high-fat diet complemented with an antioxidant. Overall, our data reveal that the mitochondrial signals regulated by AIF are critical to hematopoietic decision-making. Emerging as a link between mitochondrial metabolism and hematopoietic cell fate, AIF-mediated OXPHOS regulation represents a target for the development of new immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Lauriane Cabon
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Audrey Bertaux
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Marie-Noëlle Brunelle-Navas
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Ivan Nemazanyy
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laurianne Scourzic
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Laure Delavallée
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Laura Vela
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Mathieu Baritaud
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Sandrine Bouchet
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Cécile Lopez
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Vu Quang Van
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Kevin Garbin
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
| | - Danielle Chateau
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Sud/Paris Saclay, Orsay, France
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Thomas Mercher
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Santos A Susin
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France.
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
99974
|
Kaimala S, Al-Sbiei A, Cabral-Marques O, Fernandez-Cabezudo MJ, Al-Ramadi BK. Attenuated Bacteria as Immunotherapeutic Tools for Cancer Treatment. Front Oncol 2018; 8:136. [PMID: 29765907 PMCID: PMC5938341 DOI: 10.3389/fonc.2018.00136] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022] Open
Abstract
The use of attenuated bacteria as cancer therapeutic tools has garnered increasing scientific interest over the past 10 years. This is largely due to the development of bacterial strains that maintain good anti-tumor efficacy, but with reduced potential to cause toxicities to the host. Because of its ability to replicate in viable as well as necrotic tissue, cancer therapy using attenuated strains of facultative anaerobic bacteria, such as Salmonella, has several advantages over standard treatment modalities, including chemotherapy and radiotherapy. Despite some findings suggesting that it may operate through a direct cytotoxic effect against cancer cells, there is accumulating evidence demonstrating that bacterial therapy acts by modulating cells of the immune system to counter the growth of the tumor. Herein, we review the experimental evidence underlying the success of bacterial immunotherapy against cancer and highlight the cellular and molecular alterations in the peripheral immune system and within the tumor microenvironment that have been reported following different forms of bacterial therapy. Our improved understanding of these mechanisms should greatly aid in the translational application of bacterial therapy to cancer patients.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Otavio Cabral-Marques
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
99975
|
Nikapitiya C, Dananjaya SHS, De Silva BCJ, Heo GJ, Oh C, De Zoysa M, Lee J. Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2018; 76:240-246. [PMID: 29510255 DOI: 10.1016/j.fsi.2018.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Chitosan nanoparticles (CNPs) were synthesized by ionic gelation method and its immunomodulatory properties were investigated in zebrafish larvae. Average particle size and zeta potential were 181.2 nm and +37.2 mv, respectively. Initially, toxicity profile was tested in zebrafish embryo at 96 h post fertilization (hpf) stage using medium molecular weight chitosan (MMW-C) and CNPs. At 5 μg/mL, the hatching rate was almost similar in both treatments, however, the survival rate was lower in MMW-C compared to CNPs exposure, suggesting that toxicity effect of CNPs in hatched larvae was minimal at 5 μg/mL compared to MMW-C. Quantitative real time PCR results showed that in CNPs exposed larvae at 5 days post fertilization (5 dpf) stage, immune related (il-1β, tnf-α, il-6, il-10, cxcl-18b, ccl34a.4, cxcl-8a, lyz-c, defβl-1, irf-1a, irf-3, MxA) and stress response (hsp-70) genes were induced. In contrast, basal or down regulated expression of antioxidant genes (gstp-1, cat, sod-1, prdx-4, txndr-1) were observed. Moreover, zebrafish larvae (at 5 dpf stage) exposed to CNPs (5 μg/mL) showed higher survival rate at 72 h post infection stage against pathogenic Aeromonas hydrophila challenge compared to controls. These results suggest that although CNPs can have toxic effects to the larvae at higher doses, CNPs exposure at 5 μg/mL could enhance the immune responses and develop the disease resistance against A. hydrophila, which could be attributed to its strong immune modulatory properties.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - B C J De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Gang-Joon Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chulhong Oh
- Jeju International Marine Science Research and Education Center, Korea Institute of Ocean Science and Technology, Jeju Special Self-Governing Province, 63349, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Jehee Lee
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
99976
|
Rothenberger M, Wagner JE, Haase A, Richman D, Grzywacz B, Strain M, Lada S, Estes J, Fletcher CV, Podany AT, Anderson J, Schmidt T, Wietgrefe S, Schacker T, Verneris MR. Transplantation of CCR5∆32 Homozygous Umbilical Cord Blood in a Child With Acute Lymphoblastic Leukemia and Perinatally Acquired HIV Infection. Open Forum Infect Dis 2018; 5:ofy090. [PMID: 29868623 PMCID: PMC5965100 DOI: 10.1093/ofid/ofy090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/09/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Allogeneic hematopoietic cell transplantation (allo-HCT) in a CCR5∆32 homozygous donor resulted in HIV cure. Understanding how allo-HCT impacts the HIV reservoir will inform cure strategies. METHODS A 12-year-old with perinatally acquired, CCR5-tropic HIV and acute lymphoblastic leukemia underwent myeloablative conditioning and umbilical cord blood (UCB) transplantation from a CCR5∆32 homozygous donor. Peripheral blood mononuclear cells (PBMCs) and the rectum were sampled pre- and post-transplant. The brain, lung, lymph node (LN), stomach, duodenum, ileum, and colon were sampled 73 days after transplantation (day +73), when the patient died from graft-vs-host disease. Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization (ISH) were used detect the HIV reservoir in tissues. CCR5 and CD3 expression in the LN was assessed using immunohistochemistry (IHC). RESULTS HIV DNA (vDNA) was detected in PBMCs by ddPCR pretransplant but not post-transplant. vDNA was detected by ISH in the rectum at days -8 and +22, and in the LN, colon, lung, and brain day +73. vDNA was also detected in the lung by ddPCR. IHC revealed CCR5+CD3+ cells in the LN postmortem. CONCLUSIONS HIV was detected in multiple tissues 73 days after CCR5∆32 homozygous UCB allo-HCT despite myeloablative conditioning and complete donor marrow engraftment. These results highlight the importance of analyzing tissue during HIV cure interventions and inform the choice of assay used to detect HIV in tissue reservoirs.
Collapse
Affiliation(s)
| | - John E Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Ashley Haase
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Douglas Richman
- Department of Pathology and Lab Medicine, University of Minnesota, Minneapolis, Minnesota
- Veteran’s Affairs (VA) San Diego Healthcare System, San Diego, California
| | - Bartosz Grzywacz
- Center for AIDS Research, University of California San Diego, La Jolla, California
| | - Matthew Strain
- Veteran’s Affairs (VA) San Diego Healthcare System, San Diego, California
| | - Steven Lada
- Department of Pathology and Lab Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jacob Estes
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Anthony T Podany
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jodi Anderson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Thomas Schmidt
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Steve Wietgrefe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Timothy Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Michael R Verneris
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
99977
|
Cheng SB, Davis S, Sharma S. Maternal-fetal cross talk through cell-free fetal DNA, telomere shortening, microchimerism, and inflammation. Am J Reprod Immunol 2018; 79:e12851. [PMID: 29577468 PMCID: PMC5908740 DOI: 10.1111/aji.12851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
There exists a strong correlation between unscheduled inflammation at the maternal-fetal interface and the continuum of pregnancy complications. In normal pregnancy, immunological tolerance is established to protect the semi-allogeneic fetus. There has been extensive research on how the immunity, endovascular trophoblast migration, and hormonal nexus are orchestrated during pregnancy at the maternal-fetal interface to program a normal pregnancy outcome. It is not clear what contributes to the plasticity of uterine immune tolerance, fetal survial, and long-term post-partum health of the mother and the offspring. Old and new concepts have reemerged and emerged that include cell-free fetal DNA (cffDNA), telomere shortening, microchimerism involving bidirectional migration of maternal and fetal cells, and pregnancy as a stress factor. The question is how these pathways converge in a gestational age-dependent manner to contribute to the health of the mother and the offspring later in life and respond to an array of inflammatory challenges. In this Review, we provide pertinent discussion on maternal-fetal cross talk through cffDNA, telomere shortening, and microchimerism in the context of inflammatory and anti-inflammatory settings, particularly how these pathways lead to normal and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pediatrics, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sarah Davis
- Department of Obstetrics and Gynecology, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
99978
|
Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res 2018; 362:14-24. [PMID: 29310977 PMCID: PMC5911222 DOI: 10.1016/j.heares.2017.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
The cochlea has an immune environment dominated by macrophages under resting conditions. When stressed, circulating monocytes enter the cochlea. These immune mediators, along with cochlear resident cells, organize a complex defense response against pathological challenges. Since the cochlea has minimal exposure to pathogens, most inflammatory conditions in the cochlea are sterile. Although the immune response is initiated for the protection of the cochlea, off-target effects can cause collateral damage to cochlear cells. A better understanding of cochlear immune capacity and regulation would therefore lead to development of new therapeutic treatments. Over the past decade, there have been many advances in our understanding of cochlear immune capacity. In this review, we provide an update and overview of the cellular components of cochlear immune capacity with a focus on macrophages in mammalian cochleae. We describe the composition and distribution of immune cells in the cochlea and suggest that phenotypic and functional characteristics of macrophages have site-specific diversity. We also highlight the response of immune cells to acute and chronic stresses and comment on the potential function of immune cells in cochlear homeostasis and disease development. Finally, we briefly review potential roles for cochlear resident cells in immune activities of the cochlea.
Collapse
Affiliation(s)
- Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
99979
|
Abstract
Diabetes is a chronic metabolic disorder that poses a global burden to healthcare. Increasing incidence of diabetes-related complications in the affected population includes a delay in wound healing that often results in non-traumatic limb amputations. Owing to the intricacies of the healing process and crosstalk between the multitude of participating cells, the identification of hyperglycaemia-induced changes at both cellular and molecular levels poses a challenge. Macrophages are one of the key participants in wound healing and continue to exert functional changes at the wound site since the time of injury. In the present review, we discuss the role of these cells and their aberrant functions in diabetic wounds. We have extensively studied the process of macrophage polarization (MP) and its modulation through epigenetic modifications. Data from both pre-clinical and clinical studies on diabetes have co-related hyperglycaemia induced changes in gene expression to an increased incidence of diabetic complications. Hyperglycaemia and oxidative stress, create an environment prone to changes in the epigenetic code, that is manifested as an altered inflammatory gene expression. Here, we have attempted to understand the different epigenetic modulations that possibly contribute towards dysregulated MP, resulting in delayed wound healing.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (formerly Manipal University), Manipal 576104, Karnataka, India
| | - B S Jayashree
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (formerly Manipal University), Manipal 576104, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (formerly Manipal University), Manipal 576104, Karnataka, India.
| |
Collapse
|
99980
|
Abstract
Immunotherapy has become standard of care in advanced non-small cell lung cancer (NSCLC) in a number of settings. Radiotherapy remains an important and potentially curative treatment for localized and locally advanced NSCLC not amenable to surgery. While the principal cytotoxic effect of ionizing radiation is via DNA damage, the effect on tumour microenvironment, promoting dendritic cell presentation of tumour-derived antigens to T cells stimulating the host adaptive immune system to mount an immune response against tumours cells, has become of particular interest when combining immunomodulating agents with radiation. The 'abscopal effect' of radiation where non-irradiated metastatic lesions may respond to radiation may be immune-mediated, via radiation primed anti-tumour T cells. Immune priming by radiation offers the potential for increasing the efficacy of immunotherapy and this is subject to on-going clinical trials underpinned by immunological bioassays. Increasing understanding of the interaction between tumour, radiation and immune cells at a molecular level provides a further opportunity for intervention to enhance the potential synergy between radiation and immunotherapy. Applying the potential efficacy of combination therapy to clinical practice requires caution particularly to ensure the safety of the two treatment modalities in early phase clinical trials, many of which are currently underway. We review the biological basis for combining radiation and immunotherapy and examine the existing pre-clinical and clinical evidence and the challenges posed by the new combination of treatments.
Collapse
Affiliation(s)
- Neeraj Bhalla
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, Merseyside, UK
| | - Rachel Brooker
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, Merseyside, UK
| | - Michael Brada
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, Merseyside, UK.,Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
99981
|
Dou C, Ding N, Zhao C, Hou T, Kang F, Cao Z, Liu C, Bai Y, Dai Q, Ma Q, Luo F, Xu J, Dong S. Estrogen Deficiency-Mediated M2 Macrophage Osteoclastogenesis Contributes to M1/M2 Ratio Alteration in Ovariectomized Osteoporotic Mice. J Bone Miner Res 2018; 33:899-908. [PMID: 29281118 DOI: 10.1002/jbmr.3364] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
In this study, for the first time we discovered that the M1/M2 macrophage phenotype ratio is increased in bone marrow of ovariectomized (OVX) osteoporotic C57BL/6 mice. Considering estrogen is the main variable, we assumed that estrogen participated in this alteration. To determine whether and how estrogen contributes to the change of the M1/M2 ratio, we first isolated bone marrow macrophages (BMMs) from mice femur and stimulated the cells with lipopolysaccharide (LPS)/interferon γ (IFN-γ) for M1 polarization and interleukin 4 (IL-4)/IL-13 for M2 polarization. M1 and M2 macrophages were then exposed to RANKL stimulation, we found that M2 macrophage but not M1 macrophage differentiated into functional osteoclast leading to increased M1/M2 ratio. Intriguingly, 17β-estradiol (E2) pretreatment prevented osteoclastogenesis from M2 macrophages. By constructing shRNA lentivirus interfering the expression of different estrogen receptors in M2 macrophages, we found that estrogen protects M2 macrophage from receptor activator of nuclear factor κB ligand (RANKL) stimulation selectively through estrogen receptor α (ERα) and the downstream blockage of NF-κB p65 nuclear translocation. Animal studies showed that ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) was able to replicate the therapeutic effects of E2 in treating osteoporotic OVX mice. Together, our findings reveal that estrogen deficiency-mediated M2 macrophage osteoclastogenesis leads to increased M1/M2 ratio in OVX mice. Reducing the M1/M2 ratio is a potential therapeutic target in treating postmenopausal osteoporosis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ning Ding
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chunrong Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qinyu Ma
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
99982
|
Meng H, Nel AE. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Adv Drug Deliv Rev 2018; 130:50-57. [PMID: 29958925 DOI: 10.1016/j.addr.2018.06.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
While chemotherapy is the only approved non-surgical option for the majority of pancreatic cancer patients, it rarely results in a cure. The failure to respond to chemotherapy is due to the presence of an abundant dysplastic stroma that interferes in drug delivery and as a result of drug resistance. It is appropriate, therefore, to consider the stromal contribution to the resistance to chemotherapy and sidestepping this barrier with nanocarriers that improve survival outcome. In this paper, we provide a short overview of the role of the stroma in chemotherapy resistance, including the use of nanocarriers to negate this barrier. We provide a perspective and guidance towards the implementation of nanotherapeutic approaches to improve therapeutic delivery and efficacy of PDAC management.
Collapse
Affiliation(s)
- Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, United States of America; California NanoSystems Institute, University of California, Los Angeles, United States of America.
| | - Andre E Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, United States of America; California NanoSystems Institute, University of California, Los Angeles, United States of America.
| |
Collapse
|
99983
|
Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704307. [PMID: 29389049 DOI: 10.1002/adma.201704307] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Indexed: 05/18/2023]
Abstract
Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the materials, transfer to other cells, and/or translocation across tissue barriers are still poorly understood. The involvement of these cellular clearance mechanisms strongly influences the long-term fate of used nanomaterials, especially if one also considers repeated exposure. Several nanomaterials, such as liposomes and iron oxide, gold, or silica nanoparticles, are already approved by the American Food and Drug Administration for clinical trials; however, there is still a huge gap of knowledge concerning their fate in the body. Herein, clinically relevant nanomaterials, their possible modes of exposure, as well as the biological barriers they must overcome to be effective are reviewed. Furthermore, the biodistribution and kinetics of nanomaterials and their modes of clearance are discussed, knowledge of the long-term fates of a selection of nanomaterials is summarized, and the critical points that must be considered for future research are addressed.
Collapse
Affiliation(s)
- Joël Bourquin
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Ana Milosevic
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Roman Lehner
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Fabian Blank
- Respiratory Medicine, Department of Biomedical Research, University of Bern, Murtenstrasse 50, 3008, Bern
| | - Alke Petri-Fink
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|
99984
|
Abstract
Alcoholic liver disease (ALD) is an escalating global problem accounting for more than 3 million deaths annually. Bacterial infections are diagnosed in 25-47% of hospitalized patients with cirrhosis and represent the most important trigger for acute decompensation, multi-organ failure, septic shock and death. Current guidelines recommend intensive antibiotic therapy, but this has led to the emergence of multi-drug resistant bacteria, which are associated with increased morbidity and mortality rates. As such, there is a pressing need to explore new paradigms for anti-infective therapy and host-directed immunomodulatory therapies are a promising approach. Paradoxically, cirrhotic patients are characterised by heightened immune activity and exacerbated inflammatory processes but are unable to contend with bacterial infection, demonstrating that whilst immune effector cells are primed, their antibacterial effector functions are switched-off, reflecting a skewed homeostatic balance between anti-pathogen immunity and host-induced immunopathology. Preservation of this equilibrium physiologically is maintained by multiple immune-regulatory checkpoints and these feedback receptors serve as pivotal regulators of the host immunity. Checkpoint receptor blockade is proving to be effective at rescuing deranged/exhausted immunity in pre-clinical studies for chronic viral infection and sepsis. This approach has also obtained FDA approval for restoring anti-tumor immunity, with improved response rates and good safety profiles. To date, no clinical studies have investigated checkpoint blockade in ALD, highlighting an area for development of host-targeted immunotherapeutic strategies in ALD, for which there are no current specific treatment options. This review aims at framing current knowledge on immune checkpoints and the possibility of their therapeutic utility in ALD-associated immune dysfunctions.
Collapse
Affiliation(s)
- Antonio Riva
- Institute of Hepatology London, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Shilpa Chokshi
- Institute of Hepatology London, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
99985
|
Wang R, Yang L, Zhang Y, Li J, Xu L, Xiao Y, Zhang Q, Bai L, Zhao S, Liu E, Zhang YJ. Porcine reproductive and respiratory syndrome virus induces HMGB1 secretion via activating PKC-delta to trigger inflammatory response. Virology 2018; 518:172-183. [PMID: 29522984 DOI: 10.1016/j.virol.2018.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 01/09/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes inflammatory injuries in infected pigs. PRRSV induces secretion of high mobility group box 1 (HMGB1) that enhances inflammatory response. However, the mechanism of PRRSV-induced HMGB1 secretion is unknown. Here, we discovered PRRSV induced HMGB1 secretion via activating protein kinase C-delta (PKCδ). HMGB1 secretion was positively correlated with PKCδ activation in PRRSV-infected cells in a dose and time-dependent manner. Suppression of PKCδ with inhibitor and siRNA significantly blocked PRRSV-induced HMGB1 translocation and secretion, which indicates PKCδ activation is essential for the PRRSV-mediated HMGB1 secretion. In addition, PKCδ knockdown in PRRSV-infected cells led to downregulation of inflammatory cytokines, including IL-1beta and IL-6. Moreover, PRRSV E and pORF5a proteins were found to activate PKCδ and consequent HMGB1 secretion. These results demonstrate PRRSV activates PKCδ to induce HMGB1 secretion via E and pORF5a. This finding provides insights on the inflammatory response and pathogenesis of PRRSV infection.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Yali Zhang
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junyan Li
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liran Xu
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yueqiang Xiao
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong, China
| | - Qian Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong, China
| | - Liang Bai
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sihai Zhao
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
99986
|
Phase I Study of Multiple Epitope Peptide Vaccination in Patients With Recurrent or Persistent Cervical Cancer. J Immunother 2018; 41:201-207. [DOI: 10.1097/cji.0000000000000214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
99987
|
Lu M, Yang C, Li M, Yi Q, Lu G, Wu Y, Qu C, Wang L, Song L. A conserved interferon regulation factor 1 (IRF-1) from Pacific oyster Crassostrea gigas functioned as an activator of IFN pathway. FISH & SHELLFISH IMMUNOLOGY 2018; 76:68-77. [PMID: 29458094 DOI: 10.1016/j.fsi.2018.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factors (IRFs), a family of transcription factors with a novel helix-turn-helix DNA-binding motif, play important roles in regulating the expression of interferons (IFNs) and IFN-stimulated genes. In the present study, an interferon regulation factor 1 was identified from oyster Crassostrea gigas (designated CgIRF-1), and its immune function was characterized to understand the regulatory mechanism of interferon system against viral infection in invertebrates. The open reading frame (ORF) of CgIRF-1 was 990 bp, encoding a polypeptide of 329 amino acids with a typical IRF domain (also known as DNA-binding domain). The mRNA transcripts of CgIRF-1 were detected in all the tested tissues with the highest expression level in hemocyte. CgIRF-1 protein was distributed in both nucleus and cytoplasm of the oyster hemocyte. The mRNA expression of CgIRF-1 in hemocytes was significantly up-regulated at 48 h after poly (I:C) stimulation (p < 0.05). The recombinant CgIRF-1 (rCgIRF-1) could interact with classically IFN-stimulated response elements (ISRE) in vitro. The relative luciferase activity of interferon-like protein promotor reporter gene (pGL-CgIFNLP promotor) was significantly (p < 0.05) enhanced in HEK293T cell after transfection of CgIRF-1. These results indicated that CgIRF-1 could bind ISRE and regulate the expression of CgIFNLP as a transcriptional regulatory factor, and participated in the antiviral immune response of oysters.
Collapse
Affiliation(s)
- Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yichen Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
99988
|
Herrmann I, Gotovina J, Fazekas-Singer J, Fischer MB, Hufnagl K, Bianchini R, Jensen-Jarolim E. Canine macrophages can like human macrophages be in vitro activated toward the M2a subtype relevant in allergy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:118-127. [PMID: 29329953 DOI: 10.1016/j.dci.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
The M2a subtype of macrophages plays an important role in human immunoglobulin E (IgE-mediated allergies) and other Th2 type immune reactions. In contrast, very little is known about these cells in the dog. Here we describe an in vitro method to activate canine histiocytic DH82 cells and primary canine monocyte-derived macrophages (MDMs) toward the M2a macrophages using human cytokines. For a side-by-side comparison, we compared the canine cells to human MDMs, and the human monocytic cell line U937 activated towards M1 and M2a cells on the cellular and molecular level. In analogy to activated human M2a cells, canine M2a, differentiated from both DH82 and MDMs, showed an increase in CD206 surface receptor expression compared to M1. Interestingly, canine M2a, but not M1 derived from MDM, upregulated the high-affinity IgE receptor (FcεRI). Transcription levels of M2a-associated genes (IL10, CCL22, TGFβ, CD163) showed a diverse pattern between the human and dog species, whereas M1 genes (IDO1, CXCL11, IL6, TNF-α) were similarly upregulated in canine and human M1 cells (cell lines and MDMs). We suggest that our novel in vitro method will be suitable in comparative allergology studies focussing on macrophages.
Collapse
Affiliation(s)
- Ina Herrmann
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210, Vienna, Austria; Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Jelena Gotovina
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria; Center for Biomedical Technology, Krems Danube University Krems, Dr.-Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
99989
|
Hosokawa H, Rothenberg EV. Cytokines, Transcription Factors, and the Initiation of T-Cell Development. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028621. [PMID: 28716889 DOI: 10.1101/cshperspect.a028621] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multipotent blood progenitor cells migrate into the thymus and initiate the T-cell differentiation program. T-cell progenitor cells gradually acquire T-cell characteristics while shedding their multipotentiality for alternative fates. This process is supported by extracellular signaling molecules, including Notch ligands and cytokines, provided by the thymic microenvironment. T-cell development is associated with dynamic change of gene regulatory networks of transcription factors, which interact with these environmental signals. Together with Notch or pre-T-cell-receptor (TCR) signaling, cytokines always control proliferation, survival, and differentiation of early T cells, but little is known regarding their cross talk with transcription factors. However, recent results suggest ways that cytokines expressed in distinct intrathymic niches can specifically modulate key transcription factors. This review discusses how stage-specific roles of cytokines and transcription factors can jointly guide development of early T cells.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
99990
|
Toellner KM, Sze DMY, Zhang Y. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? A Role for Antibody Feedback. Cold Spring Harb Perspect Biol 2018. [PMID: 28630078 DOI: 10.1101/cshperspect.a028795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We discuss the impact of antibody feedback on affinity maturation of B cells. Competition from epitope-specific antibodies produced earlier during the immune response leads to immune complex formation, which is essential for transport and deposition of antigen onto follicular dendritic cells (FDCs). It also reduces the concentration of free epitopes into the μm to nm range, which is essential for B-cell receptors (BCRs) to sense affinity-dependent changes in binding capacity. Antibody feedback may also induce epitope spreading, leading to a broader selection of epitopes recognized by newly emerging B-cell clones. This may be exploitable, providing ways to manipulate epitope usage induced by vaccination.
Collapse
Affiliation(s)
- Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Daniel M-Y Sze
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
99991
|
Induction of vaginal-resident HIV-specific CD8 T cells with mucosal prime-boost immunization. Mucosal Immunol 2018; 11:994-1007. [PMID: 29067995 DOI: 10.1038/mi.2017.89] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023]
Abstract
Tissue-resident memory (TRM) CD8 T cells survey a range of non-lymphoid mucosal tissues where they rapidly mediate clearance of viral infections at the entry portals. Vaccines that establish CD8 TRM cells in the cervicovaginal mucosa hold promise for effective immunity against sexually transmitted HIV. We demonstrate that HIV-specific CD8 TRM cells can be established in the murine vaginal mucosa using a combined intranasal and intravaginal mucosal immunization with recombinant influenza-HIV vectors. Using in situ tetramer immunofluorescence microscopy, we found that this mucosally administered prime-boost immunization also resulted in the durable seeding of CD8 T cells in the frontline vaginal epithelial compartment as opposed to the vaginal submucosa. Upon cognate antigen recognition within the vaginal mucosa, these HIV-specific CD8 TRM cells rapidly initiated a tissue-wide state of immunity. The activation of HIV-specific CD8 TRM cells resulted in the upregulation of endothelial vessel addressin expression and substantial recruitment of both adaptive and innate immune cells in the vaginal mucosa. These findings suggest that the epithelial localization of HIV-specific CD8 TRM cell populations and their capacity to rapidly activate both arms of the immune system could significantly augment frontline defenses against vaginal HIV infection.
Collapse
|
99992
|
Urine biomarkers informative of human kidney allograft rejection and tolerance. Hum Immunol 2018; 79:343-355. [DOI: 10.1016/j.humimm.2018.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
|
99993
|
Forrester JV, Kuffova L, Dick AD. Autoimmunity, Autoinflammation, and Infection in Uveitis. Am J Ophthalmol 2018; 189:77-85. [PMID: 29505775 DOI: 10.1016/j.ajo.2018.02.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To review the pathogenesis of uveitis in light of recent advances in our understanding of innate and adaptive immune responses and their regulation. DESIGN Perspective. METHODS Methods included a review of prevailing views on the pathogenesis of uveitis and an analysis of developments in immunology that impact on its conceptual basis, particularly the concept of immunologic tolerance and its loss in autoimmunity. Importantly, the role of infection in the pathogenesis of uveitis is evaluated. RESULTS The results comprise a reappraisal of the pathogenesis of anterior vs posterior uveitis in the context of the blood-retinal barrier and its relation to autoimmune, autoinflammatory, and infectious uveitis. Autoimmunity is seen as a possible cause of certain forms of uveitis but definitive proof is lacking. Autoinflammatory disease, involving activated innate immune mechanisms, is considered causative in a second set of uveitis conditions. A place for infection in uveitis generally is proposed within a unifying concept for the pathogenesis of uveitis. CONCLUSION Infection may be implicated directly or indirectly in many forms of noninfectious or undifferentiated uveitis. In addition to the growing recognition that foreign antigen, including reactivatable infectious agents, might hide within ocular tissues, the possibility that a dysregulated microbiome might generate T cells that cause immune-mediated ocular inflammation has now been demonstrated experimentally. An uncontrolled, overexuberant host immune response may cause continuing irreversible tissue damage even after the infection has been cleared.
Collapse
Affiliation(s)
- John V Forrester
- Section of Immunology and Infection, Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Science, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom; Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia.
| | - Lucia Kuffova
- Section of Immunology and Infection, Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Science, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom; NHS Grampian, Aberdeen, Scotland, United Kingdom
| | - Andrew D Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom; University College London, Institute of Ophthalmology, and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
99994
|
Shi R, Cao Z, Li H, Graw J, Zhang G, Thannickal VJ, Cheng G. Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria. PLoS Pathog 2018; 14:e1007026. [PMID: 29775486 PMCID: PMC5979044 DOI: 10.1371/journal.ppat.1007026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 05/31/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Innate immune recognition is classically mediated by the interaction of host pattern-recognition receptors and pathogen-associated molecular patterns; this triggers a series of downstream signaling events that facilitate killing and elimination of invading pathogens. In this report, we provide the first evidence that peroxidasin (PXDN; also known as vascular peroxidase-1) directly binds to gram-negative bacteria and mediates bactericidal activity, thus, contributing to lung host defense. PXDN contains five leucine-rich repeats and four immunoglobulin domains, which allows for its interaction with lipopolysaccharide, a membrane component of gram-negative bacteria. Bactericidal activity of PXDN is mediated via its capacity to generate hypohalous acids. Deficiency of PXDN results in a failure to eradicate Pseudomonas aeruginosa and increased mortality in a murine model of Pseudomonas lung infection. These observations indicate that PXDN mediates previously unrecognized host defense functions against gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Ruizheng Shi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Zehong Cao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Hong Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jochen Graw
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Victor J. Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Guangjie Cheng
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
99995
|
Sologuren I, Martínez-Saavedra MT, Solé-Violán J, de Borges de Oliveira E, Betancor E, Casas I, Oleaga-Quintas C, Martínez-Gallo M, Zhang SY, Pestano J, Colobran R, Herrera-Ramos E, Pérez C, López-Rodríguez M, Ruiz-Hernández JJ, Franco N, Ferrer JM, Bilbao C, Andújar-Sánchez M, Álvarez Fernández M, Ciancanelli MJ, Rodríguez de Castro F, Casanova JL, Bustamante J, Rodríguez-Gallego C. Lethal Influenza in Two Related Adults with Inherited GATA2 Deficiency. J Clin Immunol 2018; 38:513-526. [PMID: 29882021 PMCID: PMC6429553 DOI: 10.1007/s10875-018-0512-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
The pathogenesis of life-threatening influenza A virus (IAV) disease remains elusive, as infection is benign in most individuals. We studied two relatives who died from influenza. We Sanger sequenced GATA2 and evaluated the mutation by gene transfer, measured serum cytokine levels, and analyzed circulating T- and B-cells. Both patients (father and son, P1 and P2) died in 2011 of H1N1pdm IAV infection at the ages of 54 and 31 years, respectively. They had not suffered from severe or moderately severe infections in the last 17 (P1) and 15 years (P2). A daughter of P1 had died at 20 years from infectious complications. Low B-cell, NK- cell, and monocyte numbers and myelodysplastic syndrome led to sequence GATA2. Patients were heterozygous for a novel, hypomorphic, R396L mutation leading to haplo-insufficiency. B- and T-cell rearrangement in peripheral blood from P1 during the influenza episode showed expansion of one major clone. No T-cell receptor excision circles were detected in P1 and P3 since they were 35 and 18 years, respectively. Both patients presented an exuberant, interferon (IFN)-γ-mediated hypercytokinemia during H1N1pdm infection. No data about patients with viremia was available. Two previously reported adult GATA2-deficient patients died from severe H1N1 IAV infection; GATA2 deficiency may predispose to life-threatening influenza in adulthood. However, a role of other genetic variants involved in immune responses cannot be ruled out. Patients with GATA2 deficiency can reach young adulthood without severe infections, including influenza, despite long-lasting complete B-cell and natural killer (NK) cell deficiency, as well as profoundly diminished T-cell thymic output.
Collapse
Affiliation(s)
- Ithaisa Sologuren
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | | | - Jordi Solé-Violán
- Intensive Care Unit, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Edgar de Borges de Oliveira
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
| | - Eva Betancor
- Department of Biochemistry, Molecular Biology, Physiology, Genetics and Immunology, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Inmaculada Casas
- National Influenza Center-Madrid, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
| | | | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Jose Pestano
- Department of Biochemistry, Molecular Biology, Physiology, Genetics and Immunology, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Roger Colobran
- Department of Immunology, Vall d'Hebrón University Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Estefanía Herrera-Ramos
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Carmen Pérez
- Department of Microbiology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Marta López-Rodríguez
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - José Juan Ruiz-Hernández
- Department of Internal Medicine, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Nieves Franco
- Intensive Care Unit, Mostoles University Hospital, Madrid, Spain
| | - José María Ferrer
- Intensive Care Unit, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Bilbao
- Department of Hematology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Miguel Andújar-Sánchez
- Department of Pathology, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
| | | | - Michael J Ciancanelli
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Felipe Rodríguez de Castro
- Department of Respiratory Diseases, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Calle Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain.
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Calle Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
99996
|
Moliva JI, Hossfeld AP, Canan CH, Dwivedi V, Wewers MD, Beamer G, Turner J, Torrelles JB. Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8 + T-cell-dependent manner. Mucosal Immunol 2018; 11:968-978. [PMID: 28930287 PMCID: PMC5860920 DOI: 10.1038/mi.2017.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023]
Abstract
Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa (alveolar lining fluid (ALF)), which modifies the Mycobacterium tuberculosis (M.tb) cell wall, revealing alternate antigenic epitopes on the bacterium surface that alter its pathogenicity. We hypothesized that ALF-induced modification of BCG would induce better protection against aerosol infection with M.tb. Here we vaccinated mice with ALF-exposed BCG, mimicking the mycobacterial cell surface properties that would be present in the lung during M.tb infection. ALF-exposed BCG-vaccinated mice were more effective at reducing M.tb bacterial burden in the lung and spleen, and had reduced lung inflammation at late stages of M.tb infection. Improved BCG efficacy was associated with increased numbers of memory CD8+ T cells, and CD8+ T cells with the potential to produce interferon-γ in the lung in response to M.tb challenge. Depletion studies confirmed an essential role for CD8+ T cells in controlling M.tb bacterial burden. We conclude that ALF modifications to the M.tb cell wall in vivo are relevant in the context of vaccine design.
Collapse
Affiliation(s)
- Juan I. Moliva
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, COM, OSU, Columbus, OH, USA
| | - Austin P. Hossfeld
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Cynthia H. Canan
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Varun Dwivedi
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Mark D. Wewers
- Dept. Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, COM, OSU, Columbus, OH, USA
| | - Gillian Beamer
- Dept. Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Joanne Turner
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Jordi B. Torrelles
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| |
Collapse
|
99997
|
Current state of in vivo panning technologies: Designing specificity and affinity into the future of drug targeting. Adv Drug Deliv Rev 2018; 130:39-49. [PMID: 29964079 DOI: 10.1016/j.addr.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Targeting ligands are used in drug delivery to improve drug distribution to desired cells or tissues and to facilitate cellular entry. In vivo biopanning, whereby billions of potential ligand sequences are screened in biologically-relevant and complex conditions, is a powerful method for identification of novel target ligands. This tool has impacted drug delivery technologies and expanded our arsenal of therapeutics and diagnostics. Within this review we will discuss current in vivo panning technologies and ways that these technologies can be improved to advance next-generation drug delivery strategies.
Collapse
|
99998
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
99999
|
WITHDRAWN: Cytokines and fatty liver diseases. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
100000
|
Navid F, Layh-Schmitt G, Sikora KA, Cougnoux A, Colbert RA. The Role of Autophagy in the Degradation of Misfolded HLA-B27 Heavy Chains. Arthritis Rheumatol 2018; 70:746-755. [PMID: 29342507 PMCID: PMC6101661 DOI: 10.1002/art.40414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine whether autophagy is involved in the degradation of misfolded HLA-B27 in experimental spondyloarthritis. METHODS Bone marrow-derived macrophages from HLA-B27/human β2 -microglobulin (hβ2 m)-transgenic rats were incubated in the presence or absence of interferon-γ and proteasome or autophagy inhibitors. Immunoprecipitation, immunoblotting, and immunofluorescence analysis were used to measure HLA-B27 heavy chains and autophagy. Autophagy was induced using rapamycin. Macrophages from HLA-B7/hβ2 m-transgenic and wild-type rats were used as controls. RESULTS HLA-B27-expressing macrophages showed phosphatidylethanolamine-conjugated microtubule-associated protein 1 light chain 3B levels similar to those in both control groups, before and after manipulation of autophagy. Blocking autophagic flux with bafilomycin resulted in the accumulation of misfolded HLA-B27 dimers and oligomers as well as monomers, which was comparable with the results of blocking endoplasmic reticulum-associated degradation (ERAD) with the proteasome inhibitor bortezomib. HLA-B7 monomers also accumulated after blocking each degradation pathway. The ubiquitin-to-heavy chain ratio was 2-3-fold lower for HLA-B27 than for HLA-B7. Activation of autophagy with rapamycin rapidly eliminated ~50% of misfolded HLA-B27, while folded HLA-B27 or HLA-B7 monomeric heavy chains were minimally affected. CONCLUSION This study is the first to demonstrate that both autophagy and ERAD play roles in the elimination of excess HLA class I heavy chains expressed in transgenic rats. We observed no evidence that HLA-B27 expression modulated the autophagy pathway. Our results suggest that impaired ubiquitination of HLA-B27 may play a role in the accumulation of misfolded disulfide-linked dimers, the elimination of which can be enhanced by activation of autophagy. Manipulation of the autophagy pathway should be further investigated as a potential therapeutic target in spondyloarthritis.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892 USA
| | | | - Keith A. Sikora
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892 USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, 20892 USA
| | - Robert A. Colbert
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892 USA
| |
Collapse
|