1201
|
Pianta TJ, Buckley NA, Peake PW, Endre ZH. Clinical use of biomarkers for toxicant-induced acute kidney injury. Biomark Med 2013; 7:441-56. [DOI: 10.2217/bmm.13.51] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Toxicant-induced acute kidney injury (ToxAKI) causes substantial morbidity and retards drug development. ToxAKI is relatively underexplored compared with ischemia–reperfusion injury in clinical biomarker studies. We highlight the rationale for novel AKI biomarkers in management of ToxAKI, and review the contemporary evidence supporting their clinical use. Directly-acting nephrotoxins, such as cisplatin, aminoglycosides, vancomycin and radiocontrast, remain widely used and highlight how novel biomarkers can either improve the detection of changes in glomerular filtration rate or directly signal cellular injury and structural damage. Serum cystatin C has already improved clinical risk prediction and drug dosing although its clinical use for early diagnosis awaits validation. The use of novel functional and structural biomarkers to stage ToxAKI and aid prognosis requires robust validation and better understanding of the relationship between biomarkers, morbidity and mortality. Biomarkers that illustrate the probable mechanisms and phase of ToxAKI may guide mechanism-specific diagnosis and therapy.
Collapse
Affiliation(s)
- Timothy J Pianta
- Department of Nephrology, Prince of Wales Hospital High Street, Randwick, Sydney, NSW 2031, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Nicholas A Buckley
- Clinical Pharmacology & Toxicology Group, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Philip W Peake
- Department of Nephrology, Prince of Wales Hospital High Street, Randwick, Sydney, NSW 2031, Australia
| | - Zoltan H Endre
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
1202
|
Wang S, Wei Q, Dong G, Dong Z. ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1582-90. [PMID: 23727409 DOI: 10.1016/j.bbadis.2013.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
In kidneys, each tubular epithelial cell contains a primary cilium that protrudes from the apical surface. Ciliary dysfunction was recently linked to acute kidney injury (AKI) following renal ischemia-reperfusion. Whether ciliary regulation is a general pathogenic mechanism in AKI remains unclear. Moreover, the ciliary change during AKI and its underlying mechanism are largely unknown. Here we examined the change of primary cilium and its role in tubular cell apoptosis and AKI induced by cisplatin, a chemotherapy agent with notable nephrotoxicity. In cultured human proximal tubular HK-2 epithelial cells, cilia became shorter during cisplatin treatment, followed by apoptosis. Knockdown of Kif3a or Polaris (cilia maintenance proteins) reduced cilia and increased apoptosis during cisplatin treatment. We further subcloned HK-2 cells and found that the clones with shorter cilia were more sensitive to cisplatin-induced apoptosis. Mechanistically, cilia-suppressed cells showed hyperphosphorylation or activation of ERK. Inhibition of ERK by U0126 preserved cilia during cisplatin treatment and protected against apoptosis in HK-2 cells. In C57BL/6 mice, U0126 prevented the loss of cilia from proximal tubules during cisplatin treatment and protected against AKI. U0126 up-regulated Polaris, but not Kif3a, in kidney tissues. It is suggested that ciliary regulation by ERK plays a role in cisplatin-induced tubular apoptosis and AKI.
Collapse
Affiliation(s)
- Shixuan Wang
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
1203
|
Cox KM, Goel S, O'Connell RL, Boyer M, Beale PJ, Simes RJ, Stockler MR. Randomized cross-over trial comparing inpatient and outpatient administration of high-dose cisplatin. Intern Med J 2013; 41:172-8. [PMID: 20214694 DOI: 10.1111/j.1445-5994.2010.02201.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND/AIMS Treatment with high-dose cisplatin (HDC) previously required inpatient (IP) admission with overnight hospitalization, but recently practice has shifted to outpatient (OP) therapy. We aimed to determine whether it is preferable to give HDC as an IP or OP using a two-period cross-over trial. METHODS Eligible patients were starting chemotherapy with ≥2 cycles of HDC (≥100 mg/dose) and were suitable for OP treatment. All patients received an IP cycle and OP cycle: the order was randomly allocated. Pre-hydration, anti-emetics and chemotherapy were identical for IP and OP. Post-hydration varied by group (3 L normal saline (NS) for IP, 2 L NS for OP). The primary outcome was patient preference for IP versus OP treatment. Secondary outcomes included aspects of health-related quality of life, adverse events (dose delays and reductions, elevated creatinine and unplanned readmissions) and resource use. RESULTS Fifty-nine patients were randomized, 53 completed two cycles of HDC. Most patients preferred OP treatment (36 vs 13, P = 0.002). There were no significant differences in patients' ratings of nausea, vomiting, fatigue, anxiety, depression or overall quality of life. Adverse events were few and unrelated to IP versus OP treatment. Nursing time was longer for IP than OP (163 vs 104 min, P < 0.001). CONCLUSION OP treatment was preferred by most patients, appeared safe and used less resources.
Collapse
Affiliation(s)
- K M Cox
- Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
1204
|
Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity. Cell Death Differ 2013; 20:953-62. [PMID: 23660976 PMCID: PMC3679464 DOI: 10.1038/cdd.2013.42] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-induced apoptosis is defective in the renal proximal tubule cells (RPTC) from the Ablμ/μ mice. When injected with cisplatin, we found similar levels of platinum in the Abl+/+ and the Ablμ/μ kidneys, as well as similar initial inductions of p53 and PUMAα expression. However, the accumulation of p53 and PUMAα could not be sustained in the Ablμ/μ kidneys, leading to reductions in renal apoptosis and tubule damage. Co-treatment of cisplatin with the Abl kinase inhibitor, imatinib, reduced the accumulation of p53 and PUMAα in the Abl+/+ but not in the Ablμ/μ kidneys. The residual apoptosis in the Ablμ/μ mice was not further reduced in the Ablμ/μ; p53−/− double-mutant mice, suggesting that nuclear Abl and p53 are epistatic to each other in this apoptosis response. Although apoptosis and tubule damage were reduced, cisplatin-induced increases in phospho-Stat-1 and blood urea nitrogen were similar between the Abl+/+ and the Ablμ/μ kidneys, indicating that RPTC apoptosis is not the only factor in cisplatin-induced nephrotoxicity. These results provide in vivo evidence for the pro-apoptotic function of Abl, and show that its nuclear localization and tyrosine kinase activity are both required for the sustained expression of p53 and PUMAα in cisplatin-induced renal apoptosis.
Collapse
|
1205
|
Máthé C, Szénási G, Sebestény A, Blázovics A, Szentmihályi K, Hamar P, Albert M. Protective effect of CV247 against cisplatin nephrotoxicity in rats. Hum Exp Toxicol 2013; 33:789-99. [DOI: 10.1177/0960327113480972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CV247 (CV), an aqueous mixture of copper (Cu) and manganese (Mn) gluconates, vitamin C and sodium salicylate increased the antitumour effects of cisplatin (CDPP; cis-diamminedichloroplatinum) in vitro. We hypothesized that the antioxidant and cyclooxygenase-2 (COX-2; prostaglandin-endoperoxide synthase 2) inhibitory components of CV can protect the kidneys from CDPP nephrotoxicity in rats. CDPP (6.5 mg/kg, intraperitoneally) slightly elevated serum creatinine (Crea) and blood urea nitrogen (BUN) 12 days after treatment. Kidney histology demonstrated extensive tubular epithelial damage and COX-2 immunoreactivity increased 14 days after treatment. A large amount of platinum (Pt) accumulated in the kidney of CDPP-treated rats. Furthermore, CDPP decreased renal iron (Fe), molybdenum (Mo), zinc (Zn), Cu and Mn concentrations and increased plasma Fe and Cu concentrations. CDPP elevated plasma free radical concentration. Treatment with CV alone for 14 days (twice 3 ml/kg/day orally) did not influence these parameters. Chronic CV administration after CDPP reduced renal histological damage and slightly decreased COX-2 immunoreactivity, while failed to prevent the increase in Crea and BUN levels. Blood free radical concentration was reduced, that is, CV improved redox homeostasis. CV restored plasma Fe and renal Fe, Mo and Zn, while decreased Pt and elevated Cu and Mn concentrations in the kidney. Besides the known synergistic antitumour effects with CDPP, CV partially protected the kidneys from CDPP nephrotoxicity probably through its antioxidant effect.
Collapse
Affiliation(s)
- C. Máthé
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - G. Szénási
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - A. Sebestény
- Laboratory Animal Science Unit, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - A. Blázovics
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - K. Szentmihályi
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences, Budapest, Hungary
| | - P. Hamar
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - M. Albert
- Vetmed Laboratory Ltd, Budapest, Hungary
| |
Collapse
|
1206
|
Chen Y, Brott D, Luo W, Gangl E, Kamendi H, Barthlow H, Lengel D, Fikes J, Kinter L, Valentin JP, Bialecki R. Assessment of cisplatin-induced kidney injury using an integrated rodent platform. Toxicol Appl Pharmacol 2013; 268:352-61. [DOI: 10.1016/j.taap.2013.01.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/15/2022]
|
1207
|
Ueki M, Ueno M, Morishita J, Maekawa N. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. J Biosci Bioeng 2013; 115:547-51. [DOI: 10.1016/j.jbiosc.2012.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/25/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
|
1208
|
Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 2013; 4:34. [PMID: 23618405 PMCID: PMC3707035 DOI: 10.1186/scrt194] [Citation(s) in RCA: 495] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/08/2013] [Indexed: 12/28/2022] Open
Abstract
Introduction Administration of bone marrow mesenchymal stem cells (MSCs) or secreted microvesicles improves recovery from acute kidney injury (AKI). However, the potential roles and mechanisms are not well understood. In the current study, we focused on the protective effect of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-ex) on cisplatin-induced nephrotoxicity in vivo and in vitro. Methods We constructed cisplatin-induced AKI rat models. At 24 h after treatment with cisplatin, hucMSC-ex were injected into the kidneys via the renal capsule; human lung fibroblast (HFL-1)-secreted exosomes (HFL-1-ex) were used as controls. All animals were killed at day 5 after administration of cisplatin. Renal function, histological changes, tubular apoptosis and proliferation, and degree of oxidative stress were evaluated. In vitro, rat renal tubular epithelial (NRK-52E) cells were treated with or without cisplatin and after 6 h treated with or without exosomes. Cells continued to be cultured for 24 h, and were then harvested for western blotting, apoptosis and detection of degree of oxidative stress. Results After administration of cisplatin, there was an increase in blood urea nitrogen (BUN) and creatinine (Cr) levels, apoptosis, necrosis of proximal kidney tubules and formation of abundant tubular protein casts and oxidative stress in rats. Cisplatin-induced AKI rats treated with hucMSC-ex, however, showed a significant reduction in all the above indexes. In vitro, treatment with cisplatin alone in NRK-52E cells resulted in an increase in the number of apoptotic cells, oxidative stress and activation of the p38 mitogen-activated protein kinase (p38MAPK) pathway followed by a rise in the expression of caspase 3, and a decrease in cell multiplication, while those results were reversed in the hucMSCs-ex-treated group. Furthermore, it was observed that hucMSC-ex promoted cell proliferation by activation of the extracellular-signal-regulated kinase (ERK)1/2 pathway. Conclusions The results in the present study indicate that hucMSC-ex can repair cisplatin-induced AKI in rats and NRK-52E cell injury by ameliorating oxidative stress and cell apoptosis, promoting cell proliferation in vivo and in vitro. This suggests that hucMSC-ex could be exploited as a potential therapeutic tool in cisplatin-induced nephrotoxicity.
Collapse
|
1209
|
The effect of mirtazapine on cisplatin-induced oxidative damage and infertility in rat ovaries. ScientificWorldJournal 2013; 2013:327240. [PMID: 23737712 PMCID: PMC3655640 DOI: 10.1155/2013/327240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/04/2013] [Indexed: 12/15/2022] Open
Abstract
Cisplatin causes infertility due to ovarian toxicity. The toxicity mechanism is unknown, but evidence suggests oxidative stress. In this study, the effect of mirtazapine on cisplatin-induced infertility and oxidative stress in rats was investigated. 64 female rats were divided into 4 groups of 16. Except for the controls that received physiologic saline only, all were administered with cisplatin (5 mg/kg i.p.) and mirtazapine (15 mg/kg p.o.) or mirtazapine (30 mg/kg p.o.) for 10 days. After this period, six rats from each group were randomly selected, and malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), total gluthatione (tGSH), gluthatione peroxidase (GPx), superoxide dismutase (SOD), and 8-hydroxy-2 deoxyguanine (8-OH Gua) levels were measured in their ovarian tissues. Reproductive functions of the remaining rats were examined for 6 months. The MDA, MPO, NO groups and 8-OH Gua levels were higher in the cisplatin-treated groups than the controls, which was not observed in the mirtazapine and cisplatin groups. GSH, GPx, and SOD levels were reduced by cisplatin, which was prevented by mirtazapine. Cisplatin caused infertility by 70%. The infertility rates were, respectively, 40% and 10% for the 15 and 30 mg/kg mirtazapine administered groups. In conclusion, oxidative stress induced by cisplatin in the rat ovary tissue causes infertility in the female rats. Mirtazapine reverses this in a dose-dependent manner.
Collapse
|
1210
|
Khan MAH, Liu J, Kumar G, Skapek SX, Falck JR, Imig JD. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. FASEB J 2013; 27:2946-56. [PMID: 23603837 DOI: 10.1096/fj.12-218040] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nephrotoxicity severely limits the use of the anticancer drug cisplatin. Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress contribute to cisplatin-induced nephrotoxicity. We developed novel orally active epoxyeicosatrienoic acid (EET) analogs and investigated their prophylactic effect in cisplatin-induced nephrotoxicity in rats. Cisplatin-induced nephrotoxicity was manifested by increases in blood urea nitrogen, plasma creatinine, urinary N-acetyl-β-(d)-glucosaminidase activity, kidney injury molecule 1, and histopathology. EET analogs (10 mg/kg/d) attenuated cisplatin-induced nephrotoxicity by reducing these renal injury markers by 40-80% along with a 50-70% reduction in renal tubular cast formation. This attenuated renal injury is associated with reduced oxidative stress, inflammation, and ER stress evident from reduction in related biomarkers and in the renal expression of genes involved in these pathways. Moreover, we demonstrated that the attenuated nephrotoxicity correlated with decreased apoptosis that is associated with 50-90% reduction in Bcl-2 protein family mediated proapoptotic signaling, reduced renal caspase-12 expression, and a 50% reduction in renal caspase-3 activity. We further demonstrated in vitro that the protective activity of EET analogs does not compromise the anticancer effects of cisplatin. Collectively, our data provide evidence that EET analogs attenuate cisplatin-induced nephrotoxicity by reducing oxidative stress, inflammation, ER stress, and apoptosis without affecting the chemotherapeutic effects of cisplatin.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
1211
|
Miyawaki Y, Ueki M, Ueno M, Asaga T, Tokuda M, Shirakami G. D-allose ameliorates cisplatin-induced nephrotoxicity in mice. TOHOKU J EXP MED 2013; 228:215-21. [PMID: 23064522 DOI: 10.1620/tjem.228.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cisplatin (cis-diamminedichloroplatinum II) is a potent antineoplastic agent widely used to treat various forms of cancer. However, its therapeutic use is limited because of dose-dependent nephrotoxicity. Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin nephrotoxicity. D-allose is an aldo-hexose present in nature that recently has been demonstrated to inhibit production of inflammatory mediators in septic kidneys. The purpose of this study was to determine the protective effects of D-allose on cisplatin-induced nephrotoxicity. Cisplatin (20 mg/kg) was administered by intraperitoneal injection to mice in the cisplatin group and the cisplatin plus D-allose group, as was normal saline to control group mice. D-allose was intraperitoneally administered immediately after cisplatin injection. Serum and renal tumor necrosis factor (TNF)-alpha concentrations, renal monocyte chemoattractant protein-1 (MCP-1; a chemotactic factor for monocytes), renal function, histological changes and renal cortex neutrophil infiltration were determined 72 h after cisplatin injection. The serum TNF-alpha concentration in the cisplatin plus D-allose (400 mg/kg body weight) group significantly decreased in comparison with that in the cisplatin group. The renal TNF-alpha and MCP-1 concentrations in the cisplatin plus D-allose group significantly decreased in comparison with those in the cisplatin group. Neutrophil infiltration in the cisplatin plus D-allose group was significantly lower than that in the cisplatin group. Cisplatin-induced renal dysfunction and renal tubular injury scores were attenuated by D-allose treatment. These results reveal that D-allose attenuates cisplatin-induced nephrotoxicity by suppressing renal inflammation. Hence, D-allose may become a new therapeutic candidate for treatment of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yuki Miyawaki
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | |
Collapse
|
1212
|
Yang SK, Xiao L, Li J, Liu F, Sun L, Kanwar YS. Role of guanine-nucleotide exchange factor Epac in renal physiology and pathophysiology. Am J Physiol Renal Physiol 2013; 304:F831-9. [PMID: 23364803 PMCID: PMC3625846 DOI: 10.1152/ajprenal.00711.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
Exchange proteins directly activated by cAMP [Epac(s)] were discovered more than a decade ago as new sensors for the second messenger cAMP. The Epac family members, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2, and they function independently of protein kinase A. Given the importance of cAMP in kidney homeostasis, several molecular and cellular studies using specific Epac agonists have analyzed the role and regulation of Epac proteins in renal physiology and pathophysiology. The specificity of the functions of Epac proteins may depend upon their expression and localization in the kidney as well as their abundance in the microcellular environment. This review discusses recent literature data concerning the involvement of Epac in renal tubular transport physiology and renal glomerular cells where various signaling pathways are known to be operative. In addition, the potential role of Epac in kidney disorders, such as diabetic kidney disease and ischemic kidney injury, is discussed.
Collapse
Affiliation(s)
- Shi-kun Yang
- Department of Nephrology, The Second Xiangya Hospital, Kidney Institute of Nephrology, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | |
Collapse
|
1213
|
Transplantation of bone marrow-derived MSCs improves cisplatinum-induced renal injury through paracrine mechanisms. Exp Mol Pathol 2013; 94:466-73. [PMID: 23534987 DOI: 10.1016/j.yexmp.2013.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/07/2013] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have been reported to preserve renal function in various models of acute kidney injury (AKI). Different routes were used to transplant MSCs but the role of cell transplantation routes in directing outcomes has been unknown. In the present study, we evaluated organ bio-distributions of transplanted MSCs, and correlated survival of transplanted cells with outcomes in mice with cisplatinum-induced AKI. We found that after intravenous administration, MSCs were largely localized in pulmonary capillaries and only a minute fraction of MSCs entered kidneys and the cells survived only transiently. Therefore, we also transplanted MSCs via intraperitoneal and renal subcapsular routes. Transplanted MSCs survived longer in peritoneal cavity and renal subcapsular space. Interestingly, when MSC transplantation was followed by cisplatinum-induced AKI, renal morphology and renal functions were better preserved, irrespective of the cell transplantation route. As transplanted MSCs did not migrate to kidneys from either peritoneal cavity or renal subcapsular space, this finding suggested that migration of cells was not required for the beneficial response. The possibility of indirect mechanisms was confirmed when administration of the conditioned medium from MSCs also protected renal tubular cells from cisplatinum-induced cytotoxicity. We identified presence of over forty regulatory cytokines in the conditioned medium obtained from MSCs. Since paracrine factors released by transplanted cells accounted for improvements, it appears that the route of cell transplantation is not critical for realizing benefits of cell therapy with MSCs in AKI. Studies of specific cytokines secreted by MSCs will help to obtain new therapeutic mechanisms for renal protection.
Collapse
|
1214
|
N-acetylcysteine for the prevention of non-contrast media agent-induced kidney injury: from preclinical data to clinical evidence. Eur J Clin Pharmacol 2013; 69:1375-90. [DOI: 10.1007/s00228-013-1494-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/27/2013] [Indexed: 12/19/2022]
|
1215
|
Sahu BD, Kuncha M, Sindhura GJ, Sistla R. Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:453-460. [PMID: 23353054 DOI: 10.1016/j.phymed.2012.12.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
Nephrotoxicity is an important complication in cancer patients undergoing cisplatin therapy. Oxidative stress, inflammation and apoptosis/necrosis are the major patho-mechanisms of cisplatin induced nephrotoxicity. In the present study, hesperidin, a naturally-occurring bioflavonoid has been demonstrated to have protective effect on cisplatin-induced renal injury in rats. Cisplatin intoxication resulted in structural and functional renal impairment which was revealed by massive histopathological changes and elevated blood urea nitrogen and serum creatinine levels, respectively. Renal injury was associated with oxidative stress/lipid peroxidation as evident by increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation with decreased levels of antioxidants such as reduced glutathione, vitamin C, catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase. Cisplatin administration also triggered inflammatory response in rat kidneys by inducing pro-inflammatory cytokine, TNF-α, with the increased expression of myeloperoxidase (MPO). Furthermore, cisplatin increased the activity of caspase-3 and DNA damage with decreased tissue nitric oxide levels. Hesperidin treatment significantly attenuated the cisplatin-induced oxidative stress/lipid peroxidation, inflammation (infiltration of leukocytes and pro-inflammatory cytokine), apoptosis/necrosis (caspase-3 activity with DNA damage) as well as increased expression of nitric oxide in the kidney and improved renal function. Thus, our results suggest that hesperidin co-administration may serve as a novel and promising preventive strategy against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Bidya Dhar Sahu
- Pharmacology Division, Indian Institute of Chemical Technology, Hyderabad, India
| | | | | | | |
Collapse
|
1216
|
Sohn SJ, Kim SY, Kim HS, Chun YJ, Han SY, Kim SH, Moon A. In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol Lett 2013; 217:235-242. [PMID: 23287709 DOI: 10.1016/j.toxlet.2012.12.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/19/2023]
Abstract
The non-animal in vitro test methods, especially for assessment of kidney toxicity, have become invaluable tools due to the target organ-selective nature of many nephrotoxic xenobiotics. In vitro evaluation of biomarkers for nephrotoxicity assessment using human cell lines, which can provide more reliable information for toxicological risk evaluation in humans than animal cells, has not been well established to date. The present study investigated the potential use of biomarkers for cisplatin-induced nephrotoxicity assessment in vitro using HK-2 cells derived from human kidney proximal tubule epithelial cells. Cisplatin induced apoptosis of HK-2 cells in which down-regulation of Bcl-2 and activation of caspase-3 were possibly involved. We investigated the effect of cisplatin on the protein levels of kidney injury molecule (KIM)-1, clusterin, calbindin, tissue inhibitor of metalloproteinase (TIMP)-1, cystatin C (CysC), β₂-microglobulin (β₂-M) and neutrophil gelatinase associated lipocalin (NGAL), which have been recently identified as in vivo biomarkers of nephrotoxicity. The protein levels of KIM-1, calbindin and TIMP-1 were significantly increased in the conditioned media of HK-2 cells treated with cisplatin, while β₂-M, CysC, NGAL and clusterin were not affected by cisplatin treatment. The mRNA levels of KIM-1, calbindin and TIMP-1 were increased by cisplatin, indicating that cisplatin-induced up-regulation involves transcriptional activation. The levels of KIM-1, calbindin and TIMP-1 were significantly increased in urine of cisplatin-treated rats, providing in vivo validation of the in vitro results. Taken together, our results clearly demonstrate that among the known in vivo nephrotoxic biomarkers, KIM-1, calbindin and TIMP-1 can be effectively used as in vitro biomarkers for cisplatin-induced nephrotoxicity using a HK-2 human kidney cell system.
Collapse
Affiliation(s)
- So-Jung Sohn
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
1217
|
Kimura T, Takabatake Y, Takahashi A, Isaka Y. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res 2013; 73:3-7. [PMID: 23288916 DOI: 10.1158/0008-5472.can-12-2464] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autophagy is a homeostatic cellular recycling system that is responsible for degrading damaged or unnecessary cellular organelles and proteins. Cancer cells are thought to use autophagy as a source of energy in the unfavorable metastatic environment, and a number of clinical trials are now revealing the promising role of chloroquine, an autophagy inhibitor, as a novel antitumor drug. On the other hand, however, the kidneys are highly vulnerable to chemotherapeutic agents. Recent studies have shown that autophagy plays a protective role against acute kidney injury, including cisplatin-induced kidney injury, and thus, we suspect that the use of chloroquine in combination with anticancer drugs may exacerbate kidney damage. Moreover, organs in which autophagy also plays a homeostatic role, such as the neurons, liver, hematopoietic stem cells, and heart, may be sensitive to the combined use of chloroquine and anticancer drugs. Here, we summarize the functions of autophagy in cancer and kidney injury, especially focusing on the use of chloroquine to treat cancer, and address the possible side effects in the combined use of chloroquine and anticancer drugs.
Collapse
Affiliation(s)
- Tomonori Kimura
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | |
Collapse
|
1218
|
Chtchigrovsky M, Eloy L, Jullien H, Saker L, Ségal-Bendirdjian E, Poupon J, Bombard S, Cresteil T, Retailleau P, Marinetti A. Antitumor trans-N-Heterocyclic Carbene–Amine–Pt(II) Complexes: Synthesis of Dinuclear Species and Exploratory Investigations of DNA Binding and Cytotoxicity Mechanisms. J Med Chem 2013; 56:2074-86. [DOI: 10.1021/jm301780s] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mélanie Chtchigrovsky
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Laure Eloy
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Hélène Jullien
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Lina Saker
- Université Paris Descartes, INSERM UMR S 1007, 45 rue des Saints
Pères, 75270 Paris, France
| | | | - Joel Poupon
- Laboratoire de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise
Paré, 75475 Paris, France
| | - Sophie Bombard
- Université Paris Descartes, INSERM UMR S 1007, 45 rue des Saints
Pères, 75270 Paris, France
| | - Thierry Cresteil
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
1219
|
Qu W, Pi J, Waalkes MP. Metallothionein blocks oxidative DNA damage in vitro. Arch Toxicol 2013; 87:311-21. [PMID: 22914987 PMCID: PMC3554841 DOI: 10.1007/s00204-012-0927-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/06/2012] [Indexed: 01/12/2023]
Abstract
The role of metallothionein (MT) in mitigation of oxidative DNA damage (ODD) induced by either cadmium (Cd) or the direct oxidant hydrogen peroxide (H(2)O(2)) was systematically examined using MT-I/II double knockout (MT-null) or MT-competent wild-type (WT) cells. Both toxicants were much more lethal to MT-null cells (Cd LC(50) = 6.6 μM; H(2)O(2) LC(50) = 550 μM) than to WT cells (Cd LC(50) = 16.5 μM; H(2)O(2) LC(50) = 930 μM). Cd induced concentration-related MT increases in WT cells, while the basal levels were undetectable and not increased by Cd in MT-null cells. ODD, measured by the immuno-spin trapping method, was minimally induced by sub-toxic Cd levels (1 or 5 μM; 24 h) in WT cells, but markedly increased in MT-null cells (>430 %). Similarly, ODD was induced to higher levels by lower concentrations of H(2)O(2) in MT-null cells than WT cells. Transfection of MT-I into MT-null cells reduced both Cd- and H(2)O(2)-induced cytolethality and ODD. Cd increased the expression of the oxidant defense genes, HO-1, and GSTa2 to a much greater extent in MT-null cells than in WT. Cd or H(2)O(2) exposure increased the expression of key transport genes, Mrp1 and Mrp2, in WT cells but not in MT-null cells. MT protects against Cd- and H(2)O(2)-induced ODD in MT-competent cells possibly by multiple mechanisms, potentially including direct metal ion sequestration and sequestration of oxidant radicals by MT. MT-deficient cells appear to adapt to Cd primarily by turning on oxidant response systems, while MT-competent cells activate MT and transport systems.
Collapse
Affiliation(s)
- Wei Qu
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
1220
|
Govender P, Sudding LC, Clavel CM, Dyson PJ, Therrien B, Smith GS. The influence of RAPTA moieties on the antiproliferative activity of peripheral-functionalised poly(salicylaldiminato) metallodendrimers. Dalton Trans 2013; 42:1267-1277. [PMID: 23143220 DOI: 10.1039/c2dt31337e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cationic N,O-chelating dendrimers functionalised on the periphery with RAPTA-like (ruthenium(II)-arene-1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane) moieties have been synthesised and characterised using NMR and IR spectroscopy, elemental analysis and MALDI-TOF/HR-ESI mass spectrometry. Metallodendrimers from the first to the fourth-generation containing up to 32 peripheral ruthenium-arene-PTA moieties were obtained. Model mononuclear analogues, [{Ru(η(6)-p-cymene)((C(7)H(5)NO)-κ(2)-N,O)(PTA)}((CH(2))(3))][PF(6)] and [{Ru(η(6)hexamethylbenzene)((C(7)H(5)NO)-κ(2)-N,O)(PTA)}((CH(2))(3))][PF(6)], have been prepared and their structures were determined by single crystal X-ray diffraction analysis. The cytotoxicities of the metallodendrimers and their mononuclear analogues were established on A2780 and A2780cisR human ovarian carcinoma cancer cells and model human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Preshendren Govender
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
1221
|
Zhan M, Brooks C, Liu F, Sun L, Dong Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 2013; 83:568-81. [PMID: 23325082 PMCID: PMC3612360 DOI: 10.1038/ki.2012.441] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are a class of dynamic organelles that constantly undergo fission and fusion. Mitochondrial dynamics is governed by a complex molecular machinery and finely tuned by regulatory proteins. During cell injury or stress, the dynamics is shifted to fission, resulting in mitochondrial fragmentation, which contributes to mitochondrial damage and consequent cell injury and death. Emerging evidence has suggested a role of mitochondrial fragmentation in the pathogenesis of renal diseases including acute kidney injury and diabetic nephropathy. A better understanding of the regulation of mitochondrial dynamics and its pathogenic changes may unveil novel therapeutic strategies.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
1222
|
Lin HYH, Lee SC, Lin SF, Hsiao HH, Liu YC, Yang WC, Hwang DY, Hung CC, Chen HC, Guh JY. Urinary neutrophil gelatinase-associated lipocalin levels predict cisplatin-induced acute kidney injury better than albuminuria or urinary cystatin C levels. Kaohsiung J Med Sci 2013; 29:304-11. [PMID: 23684135 DOI: 10.1016/j.kjms.2012.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/30/2012] [Indexed: 12/20/2022] Open
Abstract
Cisplatin-induced acute kidney injury (AKI) is a major concern among clinicians in prescribing cisplatin-based chemotherapy. This study evaluated and compared the ability of urinary biomarkers, including urinary neutrophil gelatinase-associated lipocalin (NGAL), cystatin C, and the urinary albumin to creatinine ratio (ACR) to predict cisplatin-induced AKI. Thirty-three cancer patients receiving cisplatin-based chemotherapy were prospectively studied, including 10 (30%) who developed AKI (the study group). Changes of urinary biomarkers were compared at 4 hours, 8 hours, and 12 hours, and 1 day, 2 days, 3 days, and 4 days after cisplatin intravenous infusions (75mg/m(2)) versus the baseline. There was a significant increase in urinary NGAL levels from 12 hours to 4 days (p<0.05) compared to baseline after cisplatin infusion in the AKI group. The magnitude of these changes over time differed significantly by group (p<0.001). The area under the receiver operating curve describing the relationship between urinary NGAL levels and AKI within 12 hours was 0.865 (95% confidence interval=0.691-1.000). Urinary NGAL levels independently predicted AKI 12 hours after cisplatin (p=0.045) after adjustments for age, gender, body mass index, baseline serum creatinine, and urinary total protein. Urinary NGAL levels may be an early biomarker of AKI in patients receiving cisplatin-based treatment.
Collapse
Affiliation(s)
- Hugo You-Hsien Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1223
|
Dietary supplementation of flaxseed oil ameliorates the effect of cisplatin on rat kidney. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
1224
|
Benedetti G, Fredriksson L, Herpers B, Meerman J, van de Water B, de Graauw M. TNF-α-mediated NF-κB survival signaling impairment by cisplatin enhances JNK activation allowing synergistic apoptosis of renal proximal tubular cells. Biochem Pharmacol 2013; 85:274-86. [DOI: 10.1016/j.bcp.2012.10.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022]
|
1225
|
Ng CH, Wang WS, Chong KV, Win YF, Neo KE, Lee HB, San SL, Raja Abd. Rahman RNZ, Leong WK. Ternary copper(ii)-polypyridyl enantiomers: aldol-type condensation, characterization, DNA-binding recognition, BSA-binding and anticancer property. Dalton Trans 2013; 42:10233-43. [DOI: 10.1039/c3dt50884f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
1226
|
Amelioration of cisplatin-induced nephrotoxicity in peroxiredoxin I-deficient mice. Cancer Chemother Pharmacol 2012; 71:503-9. [PMID: 23228991 DOI: 10.1007/s00280-012-2046-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/25/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE Cisplatin is one of the most potent chemotherapeutic agents used to treat cancer. However, cisplatin-induced nephrotoxicity, which is partly caused by oxidative damage, is a serious problem. We previously showed that murine embryonic fibroblasts deficient in Peroxiredoxin I (Prx I), a major Nrf2-linked anti-oxidant enzyme, are susceptible to cisplatin-induced cytotoxicity. In the present study, we examined the role of Prx I against cisplatin-induced renal injury in vivo using Prx I-null mice. METHODS Prx I-null mice and wild-type (WT) mice were given an intraperitoneal injection of cisplatin, and tissues were removed and evaluated histopathologically. In addition, gene and protein expression of efflux transporters was analyzed. RESULTS In contrast to an in vitro cell study, Prx I-null mice exhibited less cisplatin-induced renal damage than WT mice in histological and blood biochemical analyses. Moreover, Prx I-null mice showed a higher clearance rate of cisplatin than WT mice following intraperitoneal cisplatin injection. Consistent with these results, Prx I-null mice exhibited higher expression of renal efflux transporters Mrp2 and Mrp4 compared with WT mice under both basal and the cisplatin-induced conditions. We suggest the enhanced transcriptional activity of c-Myc in Prx I-null mice may partly contribute the enhanced expression of renal efflux transporters. CONCLUSION In summary, the enhanced clearance rate of cisplatin significantly attenuates nephrotoxicity in Prx I-null mice.
Collapse
|
1227
|
Bortolatto CF, Wilhelm EA, Roman SS, Nogueira CW. (E)-2-Benzylidene-4-phenyl-1,3-diselenole ameliorates signals of renal injury induced by cisplatin in rats. J Appl Toxicol 2012; 34:87-94. [DOI: 10.1002/jat.2837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Cristiani F. Bortolatto
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Química, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; CEP 97105-900 Santa Maria RS Brazil
| | - Ethel A. Wilhelm
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Química, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; CEP 97105-900 Santa Maria RS Brazil
| | - Silvane S. Roman
- Universidade Regional Integrada do Alto Uruguai e das Missões; Campus de Erechim Erechim RS Brazil
| | - Cristina W. Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Química, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; CEP 97105-900 Santa Maria RS Brazil
| |
Collapse
|
1228
|
Kim TW, Song IB, Lee HK, Lim JH, Cho ES, Son HY, Park SJ, Kim JW, Yun HI. Platycodin D, a triterpenoid sapoinin from Platycodon grandiflorum, ameliorates cisplatin-induced nephrotoxicity in mice. Food Chem Toxicol 2012; 50:4254-9. [DOI: 10.1016/j.fct.2012.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/31/2022]
|
1229
|
Boscutti G, Feltrin L, Lorenzon D, Sitran S, Aldinucci D, Ronconi L, Fregona D. t-Butylsarcosinedithiocarbamato gold(III)-based anticancer agents: Design, in vitro biological evaluation and interaction with model biomolecules. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
1230
|
Ciarimboli G. Membrane transporters as mediators of Cisplatin effects and side effects. SCIENTIFICA 2012; 2012:473829. [PMID: 24278698 PMCID: PMC3820462 DOI: 10.6064/2012/473829] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/23/2012] [Indexed: 06/02/2023]
Abstract
Transporters are important mediators of specific cellular uptake and thus, not only for effects, but also for side effects, metabolism, and excretion of many drugs such as cisplatin. Cisplatin is a potent cytostatic drug, whose use is limited by its severe acute and chronic nephro-, oto-, and peripheral neurotoxicity. For this reason, other platinum derivatives, such as carboplatin and oxaliplatin, with less toxicity but still with antitumoral action have been developed. Several transporters, which are expressed on the cell membranes, have been associated with cisplatin transport across the plasma membrane and across the cell: the copper transporter 1 (Ctr1), the copper transporter 2 (Ctr2), the P-type copper-transporting ATPases ATP7A and ATP7B, the organic cation transporter 2 (OCT2), and the multidrug extrusion transporter 1 (MATE1). Some of these transporters are also able to accept other platinum derivatives as substrate. Since membrane transporters display a specific tissue distribution, they can be important molecules that mediate the entry of platinum derivatives in target and also nontarget cells possibly mediating specific effects and side effects of the chemotherapeutic drug. This paper summarizes the literature on toxicities of cisplatin compared to that of carboplatin and oxaliplatin and the interaction of these platinum derivatives with membrane transporters.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimentelle Nephrologie, Medizinische Klinik D, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, 48149 Münster, Germany
| |
Collapse
|
1231
|
Ma D, Baruch D, Shu Y, Yuan K, Sun Z, Ma K, Hoang T, Fu W, Min L, Lan ZS, Wang F, Mull L, He WW. Using protein microarray technology to screen anti-ERCC1 monoclonal antibodies for specificity and applications in pathology. BMC Biotechnol 2012; 12:88. [PMID: 23171216 PMCID: PMC3526464 DOI: 10.1186/1472-6750-12-88] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 11/10/2012] [Indexed: 12/15/2022] Open
Abstract
Background An antibody with cross-reactivity can create unexpected side effects or false diagnostic reports if used for clinical purposes. ERCC1 is being explored as a predictive diagnostic biomarker for cisplatin-based chemotherapy. High ERCC1 expression is linked to drug resistance on cisplatin-based chemotherapy. 8F1 is one of the most commonly used monoclonal antibodies for evaluating ERCC1 expression levels in lung cancer patient tissues, but it has been noted that this antibody cross-reacts with an unknown protein. Results By using a high density protein microarray chip technology, we discovered that 8F1 not only reacts with its authentic target, ERCC1, but also cross-reacts with an unrelated nuclear membrane protein, PCYT1A. The cross-reactivity is due to a common epitope presented on these two unrelated proteins. Similar to the subcellular localization of ERCC1, IHC tests demonstrated that PCYT1A is localized mainly on nuclear membrane. In this study, we also discovered that the PCYT1A gene expression level is significantly higher than the ERCC1 gene expression level in a certain population of lung cancer patient tissue samples. To develop the best monoclonal antibody for ERCC1 IHC analysis, 18 monoclonal antibodies were generated and 6 of them were screened against our protein microarray chip. Two clones showed high mono-specificity on the protein microarray chip test and both worked for the IHC application. Conclusion In summary, the 8F1 clone is not suitable for ERCC1 IHC assay due to its cross-reactivity with PCYT1A protein. Two newly generated monoclonal antibodies, 4F9 and 2E12, demonstrated ultra-specificity against ERCC1 protein and superior performance for IHC analyses.
Collapse
Affiliation(s)
- Donghui Ma
- OriGene Technologies Inc, 9620 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1232
|
Leinung M, Cuny C, Diensthuber M, Stöver T, Wagenblast J. Small molecules in combination with conventional chemotherapeutic drugs: Light at the end of the tunnel? Oncol Lett 2012; 4:1043-1046. [PMID: 23162648 DOI: 10.3892/ol.2012.883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/15/2012] [Indexed: 01/19/2023] Open
Abstract
Recent studies have shown BI2536 and bortezomib to be effective in squamous cell carcinoma of the head and neck (SCCHN) cell lines. In this systemic in vitro study, we examined the antitumor effect of the small molecules BI2536 and bortezomib in combination with cisplatin or docetaxel in nine squamous cell carcinoma cell lines, most of head and neck origin. Dose escalation studies were performed with these cell lines using bortezomib, BI2536, cisplatin and docetaxel in cell line-specific concentrations. Growth inhibitory and proapoptotic effects were measured quantitatively using cytohistology and the Human Apoptosis Array kit. The combination of bortezomib and BI2536 with cisplatin or docetaxel showed a significantly higher antiproliferative and apoptotic activity in all SCCHN cell lines investigated compared with single agent cisplatin or docetaxel alone (P≤0.021). Combination of conventional chemotherapeutic drugs, such as cisplatin and docetaxel, with small molecules in the clinical setting may enhance the antitumor activity of these agents and may lead to less toxic side-effects and a more effective cancer therapy.
Collapse
Affiliation(s)
- Martin Leinung
- ENT Department, Medical School, Goethe University, Frankfurt am Main, Hessen D-60590, Germany
| | | | | | | | | |
Collapse
|
1233
|
The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:278652. [PMID: 23243437 PMCID: PMC3518257 DOI: 10.1155/2012/278652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022]
Abstract
Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism.
Collapse
|
1234
|
Park JS, Jo CH, Kim S, Kim GH. Acute and chronic effects of dietary sodium restriction on renal tubulointerstitial fibrosis in cisplatin-treated rats. Nephrol Dial Transplant 2012; 28:592-602. [DOI: 10.1093/ndt/gfs496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
1235
|
Kimura A, Ishida Y, Inagaki M, Nakamura Y, Sanke T, Mukaida N, Kondo T. Interferon-γ is protective in cisplatin-induced renal injury by enhancing autophagic flux. Kidney Int 2012; 82:1093-1104. [PMID: 22785177 DOI: 10.1038/ki.2012.240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chemotherapeutic agent cisplatin often causes severe renal dysfunction; however, the molecular mechanism causing renal injury remains unclear. In wild-type mice, intrarenal interferon (IFN)-γ gene expression was found to be enhanced while CD3(+) T cells and Ly-6G neutrophils were the main cellular source of IFN-γ following cisplatin injection. Compared to wild-type mice, cisplatin-treated IFN-γ-deficient (IFN-γ(-/-)) mice exhibited exaggerated histopathological changes with higher blood urea nitrogen and creatinine levels. Cisplatin-induced apoptosis was associated with enhanced caspase-3 activation in renal proximal tubular epithelial cells, with effects suppressed by IFN-γ resulting in increased cell viability. IFN-γ significantly reduced the levels of the autophagic markers LC3-II and p62, and enhanced cathepsin D expression in cisplatin-treated renal proximal tubule epithelial cells, implying that IFN-γ can accelerate autophagic flux. Tubular cell apoptosis was more evident with enhanced caspase-3 activation in IFN-γ-deficient compared to wild-type mice. Elevated intrarenal LC3-II and increased p62 accumulation were associated with reduced cathepsin D activation in IFN-γ-deficient mice, implying that the absence of IFN-γ suppressed autophagic flux. Thus, IFN-γ can accelerate autophagic flux by augmenting cathepsin D levels and reciprocally increasing the viability of renal tubular cells, thereby attenuating cisplatin-induced acute renal injury.
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | |
Collapse
|
1236
|
Herzog C, Yang C, Holmes A, Kaushal GP. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am J Physiol Renal Physiol 2012; 303:F1239-50. [PMID: 22896037 PMCID: PMC3469677 DOI: 10.1152/ajprenal.00659.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 08/08/2012] [Indexed: 02/07/2023] Open
Abstract
Cisplatin injury to renal tubular epithelial cells (RTEC) is accompanied by autophagy and caspase activation. However, autophagy gradually decreases during the course of cisplatin injury. The role of autophagy and the mechanism of its decrease during cisplatin injury are not well understood. This study demonstrated that autophagy proteins beclin-1, Atg5, and Atg12 were cleaved and degraded during the course of cisplatin injury in RTEC and the kidney. zVAD-fmk, a widely used pancaspase inhibitor, blocked cleavage of autophagy proteins suggesting that zVAD-fmk would promote the autophagy pathway. Unexpectedly, zVAD-fmk blocked clearance of the autophagosomal cargo, indicating lysosomal dysfunction. zVAD-fmk markedly inhibited cisplatin-induced lysosomal cathepsin B and calpain activities and therefore impaired autophagic flux. In a mouse model of cisplatin nephrotoxicity, zVAD-fmk impaired autophagic flux by blocking autophagosomal clearance as revealed by accumulation of key autophagic substrates p62 and LC3-II. Furthermore, zVAD-fmk worsened cisplatin-induced renal dysfunction. Chloroquine, a lysomotropic agent that is known to impair autophagic flux, also exacerbated cisplatin-induced decline in renal function. These findings demonstrate that impaired autophagic flux induced by zVAD-fmk or a lysomotropic agent worsened renal function in cisplatin acute kidney injury (AKI) and support a protective role of autophagy in AKI. These studies also highlight that the widely used antiapoptotic agent zVAD-fmk may be contraindicated as a therapeutic agent for preserving renal function in AKI.
Collapse
Affiliation(s)
- Christian Herzog
- Department of Medicine, Central Arkansas Veterans Healthcare System, 4300 W. 7th St., Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
1237
|
Kimoto Y, Nishinohara M, Sugiyama A, Haruna A, Takeuchi T. Protective effect of lactoferrin on Cisplatin-induced nephrotoxicity in rats. J Vet Med Sci 2012; 75:159-64. [PMID: 23059800 DOI: 10.1292/jvms.12-0154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although cisplatin (cis-diamminedichloroplatinum II) is one of the most effective chemotherapeutic agents, its clinical use is limited because of its strong side effects on the kidneys. The aim of this study was to investigate the renoprotective effect of bovine lactoferrin (bLf) in cisplatin-induced renal failure in rats. To assess the renoprotective effect of bLf, oral bLf (300 mg/kg) was administered from the day before to the fifth day after cisplatin (7 mg/kg, i.p.) injection. Daily administration of bLf histologically reduced renal tubular injury induced by cisplatin and suppressed the deterioration of renal function. Accumulated platinum content in the kidney was significantly decreased by the daily administration of bLf. Moreover, the administration of intravenous bLf caused a significant increase in urine volume in a dose-dependent manner. These results suggest that pretreatment with bLf produces a protective effect against cisplatin-induced nephrotoxicity. This protective effect of bLf involves the reduction of accumulated cisplatin in the kidney.
Collapse
Affiliation(s)
- Yumi Kimoto
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | |
Collapse
|
1238
|
|
1239
|
Shishido SN, Nguyen TA. Gap junction enhancer increases efficacy of cisplatin to attenuate mammary tumor growth. PLoS One 2012; 7:e44963. [PMID: 23028705 PMCID: PMC3441663 DOI: 10.1371/journal.pone.0044963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/10/2012] [Indexed: 02/05/2023] Open
Abstract
Cisplatin treatment has an overall 19% response rate in animal models with malignant tumors. Increasing gap junction activity in tumor cells provides the targets to enhance antineoplastic therapies. Previously, a new class of substituted quinolines (PQs) acts as gap junction enhancer, ability to increase the gap junctional intercellular communication, in breast cancer cells. We examined the effect of combinational treatment of PQs and antineoplastic drugs in an animal model, showing an increase in efficacy of antineoplastic drugs via the enhancement of gap junctions. Mice were implanted with estradiol-17ß (1.7 mg/pellet) before the injection of 1×107 T47D breast cancer cells subcutaneously into the inguinal region of mammary fat pad. Animals were treated intraperitoneally with DMSO (control), cisplatin (3.5 mg/kg), PQ (25 mg/kg), or a combining treatment of cisplatin and PQ. Cisplatin alone decreased mammary tumor growth by 85% while combinational treatment of cisplatin and PQ1 or PQ7 showed an additional reduction of 77% and 22% of tumor growth after 7 treatments at every 2 days, respectively. Histological results showed a significant increase of gap junction proteins, Cx43 and Cx26, in PQ-treated tissues compared to control or cisplatin. Furthermore, evidence of highly stained caspase 3 in tumors of combinational treatment (PQ and cisplatin) was seen compared to cisplatin alone. We have showed for the first time an increase in the efficacy of antineoplastic drugs through a combinational treatment with PQs, a specific class of gap junction enhancers.
Collapse
Affiliation(s)
- Stephanie N. Shishido
- Departments of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Thu A. Nguyen
- Departments of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
1240
|
Hong JY, Kim GH, Kim JW, Kwon SS, Sato EF, Cho KH, Shim EB. Computational modeling of apoptotic signaling pathways induced by cisplatin. BMC SYSTEMS BIOLOGY 2012; 6:122. [PMID: 22967854 PMCID: PMC3532179 DOI: 10.1186/1752-0509-6-122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023]
Abstract
Background Apoptosis is an essential property of all higher organisms that involves extremely complex signaling pathways. Mathematical modeling provides a rigorous integrative approach for analyzing and understanding such intricate biological systems. Results Here, we constructed a large-scale, literature-based model of apoptosis pathways responding to an external stimulus, cisplatin. Our model includes the key elements of three apoptotic pathways induced by cisplatin: death receptor-mediated, mitochondrial, and endoplasmic reticulum-stress pathways. We showed that cisplatin-induced apoptosis had dose- and time-dependent characteristics, and the level of apoptosis was saturated at higher concentrations of cisplatin. Simulated results demonstrated that the effect of the mitochondrial pathway on apoptosis was the strongest of the three pathways. The cross-talk effect among pathways accounted for approximately 25% of the total apoptosis level. Conclusions Using this model, we revealed a novel mechanism by which cisplatin induces dose-dependent cell death. Our finding that the level of apoptosis was affected by not only cisplatin concentration, but also by cross talk among pathways provides in silico evidence for a functional impact of system-level characteristics of signaling pathways on apoptosis.
Collapse
Affiliation(s)
- Ji-Young Hong
- Department of Mechanical and Biomedical Engineering, Kangwon National University, 192-1 Hyoja 2-dong, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
1241
|
Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int 2012; 82:537-547. [PMID: 22622501 PMCID: PMC3425732 DOI: 10.1038/ki.2012.173] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
β-Catenin is a unique intracellular protein functioning as an integral component of the cell-cell adherens complex and a principal signaling protein mediating canonical Wnt signaling. Little is known about its function in adult kidneys in the normal physiologic state or after acute kidney injury (AKI). To study this, we generated conditional knockout mice in which the β-catenin gene was specifically disrupted in renal tubules (Ksp-β-cat-/-). These mice were phenotypically normal with no appreciable defects in kidney morphology and function. In the absence of β-catenin, γ-catenin functionally substituted for it in E-cadherin binding, thereby sustaining the integrity of epithelial adherens junctions in the kidneys. In AKI induced by ischemia reperfusion or folic acid, the loss of tubular β-catenin substantially aggravated renal lesions. Compared with controls, Ksp-β-cat-/- mice displayed higher mortality, elevated serum creatinine, and more severe morphologic injury. Consistently, apoptosis was more prevalent in kidneys of the knockout mice, which was accompanied by increased expression of p53 and Bax, and decreased phosphorylated Akt and survivin. In vitro activation of β-catenin by Wnt1 or stabilization of β-catenin protected tubular epithelial cells from apoptosis, activated Akt, induced survivin, and repressed p53 and Bax expression. Hence, endogenous β-catenin is pivotal for renal tubular protection after AKI by promoting cell survival through multiple mechanisms.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Nephrology, The First Affiliated Hospital, Nanjing University of Chinese Medicine Nanjing, China
| | - Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lili Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Nephrology, Nanfang Hospital, Southern Medical University, and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Peter Igarashi
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
1242
|
Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hear Res 2012; 294:153-65. [PMID: 22967486 DOI: 10.1016/j.heares.2012.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/21/2022]
Abstract
Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death.
Collapse
|
1243
|
Tanabe K, Tamura Y, Lanaspa MA, Miyazaki M, Suzuki N, Sato W, Maeshima Y, Schreiner GF, Villarreal FJ, Johnson RJ, Nakagawa T. Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. Am J Physiol Renal Physiol 2012; 303:F1264-74. [PMID: 22933302 DOI: 10.1152/ajprenal.00227.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cisplatin nephropathy can be regarded as a mitochondrial disease. Intervention to halt such deleterious injury is under investigation. Recently, the flavanol (-)-epicatechin emerges as a novel compound to protect the cardiovascular system, owing in part to mitochondrial protection. Here, we have hypothesized that epicatechin prevents the progression of cisplatin-induced kidney injury by protecting mitochondria. Epicatechin was administered 8 h after cisplatin injury was induced in the mouse kidney. Cisplatin significantly induced renal dysfunction and tubular injury along with an increase in oxidative stress. Mitochondrial damages were also evident as a decrease in loss of mitochondrial mass with a reduction in the oxidative phosphorylation complexes and low levels of MnSOD. The renal damages and mitochondrial injuries were significantly prevented by epicatechin treatment. Consistent with these observations, an in vitro study using cultured mouse proximal tubular cells demonstrated that cisplatin-induced mitochondrial injury, as revealed by a decrease in mitochondrial succinate dehydrogenase activity, an induction of cytochrome c release, mitochondrial fragmentation, and a reduction in complex IV protein, was prevented by epicatechin. Such a protective effect of epicatechin might be attributed to decreased oxidative stress and reduced ERK activity. Finally, we confirmed that epicatechin did not perturb the anticancer effect of cisplatin in HeLa cells. In conclusion, epicatechin exhibits protective effects due in part to its ability to prevent the progression of mitochondrial injury in mouse cisplatin nephropathy. Epicatechin may be a novel option to treat renal disorders associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Katsuyuki Tanabe
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1244
|
Leite de Oliveira R, Deschoemaeker S, Henze AT, Debackere K, Finisguerra V, Takeda Y, Roncal C, Dettori D, Tack E, Jönsson Y, Veschini L, Peeters A, Anisimov A, Hofmann M, Alitalo K, Baes M, D'hooge J, Carmeliet P, Mazzone M. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 2012; 22:263-77. [PMID: 22897855 DOI: 10.1016/j.ccr.2012.06.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 05/08/2012] [Accepted: 06/26/2012] [Indexed: 12/18/2022]
Abstract
The success of chemotherapy in cancer treatment is limited by scarce drug delivery to the tumor and severe side-toxicity. Prolyl hydroxylase domain protein 2 (PHD2) is an oxygen/redox-sensitive enzyme that induces cellular adaptations to stress conditions. Reduced activity of PHD2 in endothelial cells normalizes tumor vessels and enhances perfusion. Here, we show that tumor vessel normalization by genetic inactivation of Phd2 increases the delivery of chemotherapeutics to the tumor and, hence, their antitumor and antimetastatic effect, regardless of combined inhibition of Phd2 in cancer cells. In response to chemotherapy-induced oxidative stress, pharmacological inhibition or genetic inactivation of Phd2 enhances a hypoxia-inducible transcription factor (HIF)-mediated detoxification program in healthy organs, which prevents oxidative damage, organ failure, and tissue demise. Altogether, our study discloses alternative strategies for chemotherapy optimization.
Collapse
|
1245
|
Abstract
Despite dramatic improvements in patient survival and drug tolerability, nephrotoxicity remains an important complication of chemotherapy. Adverse renal effects occur because of innate drug toxicity and a number of patient- and drug-related factors. To provide cutting edge care for these patients, nephrologists and oncologists must be familiar with the nephrotoxicity of these drugs, particularly their associated clinical and laboratory manifestations. Rapid diagnosis, targeted treatment, and supportive care are critical to improving care for these patients. Unfortunately, some patients who develop nephrotoxicity will be left with long-term complications such as chronic tubulopathies and CKD. Onco-Nephrology is a new area that is rapidly expanding and requires a close working relationship between oncologists and nephrologists.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Department of Medicine, Yale University, 330 Cedar Street, New Haven, CT 06520-8029, USA.
| |
Collapse
|
1246
|
Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 2012; 82:1271-83. [PMID: 22854643 PMCID: PMC3491167 DOI: 10.1038/ki.2012.261] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is induced in renal tubular cells during acute kidney injury; however, whether this is protective or injurious remains controversial. We address this question by pharmacologic and genetic blockade of autophagy using mouse models of cisplatin- and ischemia-reperfusion-induced acute kidney injury. Chloroquine, a pharmacological inhibitor of autophagy, blocked autophagic flux and enhanced acute kidney injury in both models. Rapamycin, however, activated autophagy and protected against cisplatin-induced acute kidney injury. We also established a renal proximal tubule-specific autophagy-related gene 7-knockout mouse model shown to be defective in both basal and cisplatin-induced autophagy in kidneys. Compared with wild-type littermates, these knockout mice were markedly more sensitive to cisplatin-induced acute kidney injury as indicated by renal functional loss, tissue damage, and apoptosis. Mechanistically, these knockout mice had heightened activation of p53 and c-Jun N terminal kinase, the signaling pathways contributing to cisplatin acute kidney injury. Proximal tubular cells isolated from the knockout mice were more sensitive to cisplatin-induced apoptosis than cells from wild-type mice. In addition, the knockout mice were more sensitive to renal ischemia-reperfusion injury than their wild-type littermates. Thus, our results establish a renoprotective role of tubular cell autophagy in acute kidney injury where it may interfere with cell killing mechanisms.
Collapse
Affiliation(s)
- Man Jiang
- Department of Cellular Biology and Anatomy, Georgia Health Sciences University and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
1247
|
Lainé AL, Passirani C. Novel metal-based anticancer drugs: a new challenge in drug delivery. Curr Opin Pharmacol 2012; 12:420-6. [DOI: 10.1016/j.coph.2012.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/06/2012] [Accepted: 04/21/2012] [Indexed: 02/05/2023]
|
1248
|
Abstract
In this issue of Kidney International, Linkermann, et al. provide the first evidence for a possible biochemical mechanism of necrotic kidney cell death associated with renal ischemia/reperfusion-induced acute kidney injury. The mechanisms of several pathways resulting in programmed necrosis were recently elucidated and rely on receptor-interacting protein kinases 1 and 3. Using an inhibitor of one of these kinases, Linkermann was able to ameliorate functional and morphologic kidney damage after ischemia/reperfusion.
Collapse
|
1249
|
Hoffmann D, Bijol V, Krishnamoorthy A, Gonzalez VR, Frendl G, Zhang Q, Goering PL, Brown RP, Waikar SS, Vaidya VS. Fibrinogen excretion in the urine and immunoreactivity in the kidney serves as a translational biomarker for acute kidney injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:818-28. [PMID: 22819533 DOI: 10.1016/j.ajpath.2012.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/24/2012] [Accepted: 06/07/2012] [Indexed: 01/11/2023]
Abstract
Fibrinogen (Fg) is significantly up-regulated in the kidney after acute kidney injury (AKI). We evaluated the performance of Fg as a biomarker for early detection of AKI. In rats and mice with kidney tubular damage induced by ischemia/reperfusion (I/R) or cisplatin administration, respectively; kidney tissue and urinary Fg increased significantly and correlated with histopathological injury, urinary kidney injury molecule-1 (KIM-1) and N-acetyl glucosaminidase (NAG) corresponding to the progression and regression of injury temporally. In a longitudinal follow-up of 31 patients who underwent surgical repair of abdominal aortic aneurysm, urinary Fg increased earlier than SCr in patients who developed postoperative AKI (AUC-ROC = 0.72). Furthermore, in a cohort of patients with biopsy-proven AKI (n = 53), Fg immunoreactivity in the tubules and interstitium increased remarkably and was able to distinguish patients with AKI from those without AKI (n = 59). These results suggest that immunoreactivity of Fg in the kidney, as well as urinary excretion of Fg, serves as a sensitive and early diagnostic translational biomarker for detection of AKI.
Collapse
Affiliation(s)
- Dana Hoffmann
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1250
|
Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, Ravichandran K, Susztak K, Yoshida S, Dong Z. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 2012; 8:1009-31. [PMID: 22692002 PMCID: PMC3429540 DOI: 10.4161/auto.19821] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy.
Collapse
Affiliation(s)
- Tobias B Huber
- Renal Division, University Hospital Freiburg; Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|