1301
|
Tomita T. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Pituitary Adenomas: Possible Markers of Neuroendocrine Cells. Endocr Pathol 1997; 8:305-313. [PMID: 12114792 DOI: 10.1007/bf02739933] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinases (MMPs) are involved in remodeling processes and have been immunocytochemically localized in some endocrine glands and their tumors. Using anterior pituitary gland and pituitary adenomas, immunocytochemical localization of MMP-2 (gelatinase-A), -9 (gelatinase-B), tissue inhibitor of metalloproteinase (TIMP)-1 and -2 was performed. Normal anterior-pituitary cells all contain MMPs and lesser amount of TIMPs, whereas far fewer MMPs and TIMPs are identified in anterior pituitary adenomas. There is no correlation between pituitary hormone and MMPs-TIMPs localization, thus MMP-TIMP homeostasis may not be involved in hormone synthesis and secretion of anterior pituitary cells and their adenomas, Because MMPs and TIMPs are more abundantly and specifically localized in pituitary cells and their adenomas, MMPs and TIMPs may be included as markers for endocrine cells, including anterior-pituitary cells.
Collapse
|
1302
|
Kawagoe Y, Delmer DP. Pathways and genes involved in cellulose biosynthesis. GENETIC ENGINEERING 1997; 19:63-87. [PMID: 9193103 DOI: 10.1007/978-1-4615-5925-2_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Y Kawagoe
- Section of Plant Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
1303
|
Brooker S, C. Davidson T. First observation of non-bridging thiolates or tetrahedral geometries within thiolate-containing Schiff-base macrocycles: [Zn2L][CF3SO3]2. Chem Commun (Camb) 1997. [DOI: 10.1039/a705415g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
1304
|
Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:129-223. [PMID: 9187054 DOI: 10.1016/s0079-6603(08)61005-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A I Roca
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
1305
|
Loeb MJ, Wagner RM, Woods CW, Gelman DG, Harrison D, Bell RA. Naturally occurring analogs of Lymantria testis ecdysiotropin, a gonadotropin isolated from brains of Lymantria dispar pupae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1997; 36:37-50. [PMID: 9243792 DOI: 10.1002/(sici)1520-6327(1997)36:1<37::aid-arch4>3.0.co;2-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lymantria testis ecdysiotropin (LTE) was isolated from the most prominent peptide peak corresponding to an active fraction obtained by high pressure liquid chromatographic (HPLC) separation of a homogenate of 13,000 Lymantria dispar pupal brains. In this work we examined the other active fractions from this separation as well as a second HPLC separation of an additional 2,300 pupal brains. Bioassay of the ecdysteroidogenic effects of each peak on L. dispar testes allowed detection of 20 peptide peaks with testis ecdysiotropic activity in addition to LTE. Of these, ten peptides were purified and sequenced. All of them were comparable to LTE in molecular weight. The amino acid sequences of five of the peptides were similar enough to LTE to be considered to be members of an LTE family. However, the other five peptides had no significant homology with LTE or with each other. A BLAST database search indicated LTE family homology with portions of inhibitory peptides such as those inhibiting cytolysis. In contrast, non-LTE ecdysiotropic peptides, in which undetermined residues designated X were assumed to be cysteine, were strikingly homologous to portions of vertebrate and invertebrate zinc finger peptides and to vertebrate and invertebrate virus proteins.
Collapse
Affiliation(s)
- M J Loeb
- Insect Neurobiology and Hormone Laboratory, US Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | |
Collapse
|
1306
|
Affiliation(s)
- WG Rice
- Laboratory of Antiviral Drug Mechanisms, Developmental Therapeutics Program, Division of Cancer Treatment, Diagnosis and Centers, National Cancer Institute-Frederick Cancer Research and Development Center, SAIC Frederick, Building 431T-B, P.O. Box B, Frederick MD 21702-1201, USA
| | | |
Collapse
|
1307
|
Mital R, Kobayashi R, Hernandez N. RNA polymerase III transcription from the human U6 and adenovirus type 2 VAI promoters has different requirements for human BRF, a subunit of human TFIIIB. Mol Cell Biol 1996; 16:7031-42. [PMID: 8943358 PMCID: PMC231706 DOI: 10.1128/mcb.16.12.7031] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian TFIIIB can be separated into two fractions required for transcription of the adenovirus type 2 VAI gene, which have been designated 0.38M-TFIIIB and 0.48M-TFIIIB. While 0.48M-TFIIIB has not been characterized, 0.38M-TFIIIB corresponds to a TBP-containing complex. We describe here the purification of this complex, which consists of TBP and a closely associated polypeptide of 88 kDa, and the isolation of a cDNA corresponding to the 88-kDa polypeptide. The predicted protein sequence reveals that the 88-kDa polypeptide corresponds to a human homolog of the Saccharomyces cerevisiae BRF protein, a subunit of yeast TFIIIB. Human BRF (hBRF) probably corresponds to TFIIIB90, a protein previously cloned by Wang and Roeder (Proc. Natl. Acad. Sci. USA 92:7026-7030, 1995), although its predicted amino acid sequence differs from that reported for TFIIIB90 over a stretch of 67 amino acids as a result of frameshifts. Immunodepletion of more than 90 to 95% of the hBRF present in a transcription extract severely debilitates transcription from the tRNA-type VAI promoter but does not affect transcription from the TATA box-containing human U6 promoter, suggesting that the 0.38M-TFIIIB complex, and perhaps hBRF as well, is not required for U6 transcription.
Collapse
Affiliation(s)
- R Mital
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
1308
|
Zheng R, Jenkins TM, Craigie R. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci U S A 1996; 93:13659-64. [PMID: 8942990 PMCID: PMC19383 DOI: 10.1073/pnas.93.24.13659] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The N-terminal domain of HIV-1 integrase contains a pair of His and Cys residues (the HHCC motif) that are conserved among retroviral integrases. Although His and Cys residues are often involved in binding zinc, the HHCC motif does not correspond to any recognized class of zinc binding domain. We have investigated the binding of zinc to HIV-1 integrase protein and find that it binds zinc with a stoichiometry of one zinc per integrase monomer. Analysis of zinc binding to deletion derivatives of integrase locates the binding site to the N-terminal domain. Integrase with a mutation in the HHCC motif does not bind zinc, consistent with coordination of zinc by these residues. The isolated N-terminal domain is disordered in the absence of zinc but, in the presence of zinc, it adopts a secondary structure with a high alpha helical content. Integrase bound by zinc tetramerizes more readily than the apoenzyme and is also more active than the apoenzyme in in vitro integration assays. We conclude that binding of zinc to the HHCC motif stabilizes the folded state of the N-terminal domain of integrase and bound zinc is required for optimal enzymatic activity.
Collapse
Affiliation(s)
- R Zheng
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA
| | | | | |
Collapse
|
1309
|
Holm RH, Kennepohl P, Solomon EI. Structural and Functional Aspects of Metal Sites in Biology. Chem Rev 1996; 96:2239-2314. [PMID: 11848828 DOI: 10.1021/cr9500390] [Citation(s) in RCA: 1892] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard H. Holm
- Departments of Chemistry, Harvard University, Cambridge, Massachusetts 02138, and Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
1310
|
Affiliation(s)
- William N. Lipscomb
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | | |
Collapse
|
1311
|
Reifsnyder C, Lowell J, Clarke A, Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 1996; 14:42-9. [PMID: 8782818 DOI: 10.1038/ng0996-42] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Silencing is an epigenetic form of transcriptional regulation whereby genes are heritably, but not necessarily permanently, inactivated. We have identified the Saccharomyces cerevisiae genes SAS2 and SAS3 through a screen for enhancers of sir1 epigenetic silencing defects. SAS2, SAS3 and a Schizosaccharomyces pombe homologue are closely related to several human genes, including one associated with acute myeloid leukaemia arising from the recurrent translocation t(8;16)(p11;p13) and one implicated in HIV-1 Tat interactions. All of these genes encode proteins with an atypical zinc finger and well-conserved similarities to acetyltransferases. Sequence similarities and yeast mutant phenotypes suggest that SAS-like genes function in transcriptional regulation and cell-cycle exit and reveal novel connections between transcriptional silencing and human disease.
Collapse
MESH Headings
- Acetyltransferases/genetics
- Acute Disease
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Fungal
- Enhancer Elements, Genetic
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Gene Products, tat/genetics
- HIV-1/genetics
- Humans
- Leukemia, Myeloid/genetics
- Molecular Sequence Data
- Mutation
- Phenotype
- Resting Phase, Cell Cycle
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Schizosaccharomyces/genetics
- Sequence Homology, Amino Acid
- Silent Information Regulator Proteins, Saccharomyces cerevisiae
- Trans-Activators/genetics
- Zinc Fingers/genetics
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- C Reifsnyder
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | | | | | |
Collapse
|
1312
|
Lutfiyya LL, Johnston M. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol 1996; 16:4790-7. [PMID: 8756637 PMCID: PMC231480 DOI: 10.1128/mcb.16.9.4790] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Expression of the SUC2 gene in Saccharomyces cerevisiae, which encodes invertase, is repressed about 200-fold by high levels of glucose. Mig1p is a Cys2His2 zinc-finger-containing protein required for glucose repression of SUC2 and several other genes. However, SUC2 expression is still about 13-fold repressed by glucose in a mig1 mutant. We have identified a second repressor, Mig2p, containing zinc fingers very similar to those of Mig1p that is responsible for this remaining glucose repression of SUC2 expression. Overexpression of MIG2 represses SUC2 under nonrepressing conditions, and a LexA-Mig2p fusion represses transcription of a lexO-containing promoter in a glucose-dependent manner, supporting the idea that Mig2p is a glucose-activated repressor. We have shown that Mig2p binds to the Miglp-binding sites in the SUC2 promoter. Even though Mig1p and Mig2p bind to similar sites and share almost identical zinc fingers, they differ in their relative affinities for various Mig1p-binding sites. This could explain our observation that MIG2 appears to have little role in glucose repression of other promoters with MIG1-binding sites.
Collapse
Affiliation(s)
- L L Lutfiyya
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
1313
|
Abstract
The rational design of novel proteins offers a new method of studying structure and function, and makes possible the construction of new biomaterials. The richness of metal chemistry, the relative ease of creating stable complexes, and the remarkable degree of subtle, highly specific control of reactivity imposed by the protein matrix upon the metal center make metalloprotein design a very fruitful area for the exploration and application of design techniques. So far, most designs have concentrated on the exploration of simple metal-chelation properties. Even so, this has led to the development of new methods for protein stabilization and affinity purification, of metal biosensors, of novel strategies for control of protein activity, and of model systems for the exploration of fundamental principles of molecular recognition.
Collapse
Affiliation(s)
- H W Hellinga
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
1314
|
Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C. A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 1996; 271:18068-73. [PMID: 8663499 DOI: 10.1074/jbc.271.30.18068] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The A20 gene product is a novel zinc finger protein originally described as a tumor necrosis factor alpha (TNF)-inducible early response gene in human umbilical vein endothelial cells (HUVEC). Its described function is to block TNF-induced apoptosis in fibroblasts and B lymphocytes, but more recently it has also been shown to play a role in lymphoid cell maturation. The mechanism of action of A20 is unknown. The aim of our study was to assess the effect of A20 upon endothelial cell activation. By transfecting bovine aortic endothelial cells (BAEC) with A20 as well as reporter constructs consisting of the promoters of genes known to be up-regulated during endothelial cell activation, i.e. E-selectin, interleukin (IL)-8, tissue factor (TF), and inhibitor of nuclear factor kappaBalpha (IkappaBalpha), we demonstrate that A20 expression inhibits gene up-regulation associated with TNF, lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), and hydrogen peroxide (H2O2)-induced endothelial cell (EC) activation. The mechanism of action of A20 is in part, or totally, due to the blockade of nuclear factor kappaB (NF-kappaB), as shown by its ability to suppress the activity of a NF-kappaB reporter. This effect is specific, as A20 does not block a noninducible, constitutively expressed reporter, Rous sarcoma virus-luciferase (RSV-LUC); nor does it block the c-Tat-inducible, NF-kappaB-independent reporter, human immunodeficiency virus-chloramphenicol acetyltransferase (HIV-CAT). How A20 blocks NF-kappaB is unclear, although we demonstrate that it does not affect p65 (RelA)-mediated gene transactivation. The inhibition of endothelial cell activation by A20 is a novel function for A20.
Collapse
Affiliation(s)
- J T Cooper
- Sandoz Center for Immunobiology, Deaconess Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
1315
|
Nudler E, Avetissova E, Markovtsov V, Goldfarb A. Transcription processivity: protein-DNA interactions holding together the elongation complex. Science 1996; 273:211-7. [PMID: 8662499 DOI: 10.1126/science.273.5272.211] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The elongation of RNA chains during transcription occurs in a ternary complex containing RNA polymerase (RNAP), DNA template, and nascent RNA. It is shown here that elongating RNAP from Escherichia coli can switch DNA templates by means of end-to-end transposition without loss of the transcript. After the switch, transcription continues on the new template. With the use of defined short DNA fragments as switching templates, RNAP-DNA interactions were dissected into two spatially distinct components, each contributing to the stability of the elongating complex. The front (F) interaction occurs ahead of the growing end of RNA. This interaction is non-ionic and requires 7 to 9 base pairs of intact DNA duplex. The rear (R) interaction is ionic and requires approximately six nucleotides of the template DNA strand behind the active site and one nucleotide ahead of it. The nontemplate strand is not involved. With the use of protein-DNA crosslinking, the F interaction was mapped to the conserved zinc finger motif in the NH2-terminus of the beta' subunit and the R interaction, to the COOH-terminal catalytic domain of the beta subunit. Mutational disruption of the zinc finger selectively destroyed the F interaction and produced a salt-sensitive ternary complex with diminished processivity. A model of the ternary complex is proposed here that suggests that trilateral contacts in the active center maintain the nonprocessive complex, whereas a front-end domain including the zinc finger ensures processivity.
Collapse
Affiliation(s)
- E Nudler
- Public Health Research Institute, New York, NY 10016, USA
| | | | | | | |
Collapse
|