101
|
Singh BN, Weaver C, Koyano-Nakagawa N, Garry DJ. Visualizing Vascular Structure in the Adult Newt (Notophthalmus viridescens) Heart1. J Med Device 2015. [DOI: 10.1115/1.4030125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bhairab N. Singh
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455
| | - Cyprian Weaver
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455
| | | | - Daniel J. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
102
|
Johnson B, Bark D, Van Herck I, Garrity D, Dasi LP. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech Model Mechanobiol 2015; 14:1379-89. [DOI: 10.1007/s10237-015-0681-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/29/2015] [Indexed: 01/29/2023]
|
103
|
Haustein M, Hannes T, Trieschmann J, Verhaegh R, Köster A, Hescheler J, Brockmeier K, Adelmann R, Khalil M. Excitation-contraction coupling in zebrafish ventricular myocardium is regulated by trans-sarcolemmal Ca2+ influx and sarcoplasmic reticulum Ca2+ release. PLoS One 2015; 10:e0125654. [PMID: 25938412 PMCID: PMC4418605 DOI: 10.1371/journal.pone.0125654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/17/2015] [Indexed: 01/19/2023] Open
Abstract
Zebrafish (Danio rerio) have become a popular model in cardiovascular research mainly due to identification of a large number of mutants with structural defects. In recent years, cardiomyopathies and other diseases influencing contractility of the heart have been studied in zebrafish mutants. However, little is known about the regulation of contractility of the zebrafish heart on a tissue level. The aim of the present study was to elucidate the role of trans-sarcolemmal Ca2+-flux and sarcoplasmic reticulum Ca2+-release in zebrafish myocardium. Using isometric force measurements of fresh heart slices, we characterised the effects of changes of the extracellular Ca2+-concentration, trans-sarcolemmal Ca2+-flux via L-type Ca2+-channels and Na+-Ca2+-exchanger, and Ca2+-release from the sarcoplasmic reticulum as well as beating frequency and β-adrenergic stimulation on contractility of adult zebrafish myocardium. We found an overall negative force-frequency relationship (FFR). Inhibition of L-type Ca2+-channels by verapamil (1 μM) decreased force of contraction to 22±7% compared to baseline (n=4, p<0.05). Ni2+ was the only substance to prolong relaxation (5 mM, time after peak to 50% relaxation: 73±3 ms vs. 101±8 ms, n=5, p<0.05). Surprisingly though, inhibition of the sarcoplasmic Ca2+-release decreased force development to 54±3% in ventricular (n=13, p<0.05) and to 52±8% in atrial myocardium (n=5, p<0.05) suggesting a substantial role of SR Ca2+-release in force generation. In line with this finding, we observed significant post pause potentiation after pauses of 5 s (169±7% force compared to baseline, n=8, p<0.05) and 10 s (198±9% force compared to baseline, n=5, p<0.05) and mildly positive lusitropy after β-adrenergic stimulation. In conclusion, force development in adult zebrafish ventricular myocardium requires not only trans-sarcolemmal Ca2+-flux, but also intact sarcoplasmic reticulum Ca2+-cycling. In contrast to mammals, FFR is strongly negative in the zebrafish heart. These aspects need to be considered when using zebrafish to model human diseases of myocardial contractility.
Collapse
Affiliation(s)
- Moritz Haustein
- Department of Paediatric Cardiology, Cologne Heart Centre, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Tobias Hannes
- Department of Paediatric Cardiology, Cologne Heart Centre, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
- * E-mail:
| | - Jan Trieschmann
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Rabea Verhaegh
- Institute of Physiological Chemistry, University Hospital Essen, Essen, North Rhine-Westphalia, Germany
| | - Annette Köster
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Konrad Brockmeier
- Department of Paediatric Cardiology, Cologne Heart Centre, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Roland Adelmann
- Department of Paediatric Cardiology, Cologne Heart Centre, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Markus Khalil
- Department of Paediatric Cardiology, University Hospital of Giessen and Marburg, University of Giessen and Marburg, Giessen, Hessen, Germany
| |
Collapse
|
104
|
Hein SJ, Lehmann LH, Kossack M, Juergensen L, Fuchs D, Katus HA, Hassel D. Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS One 2015; 10:e0122665. [PMID: 25853735 PMCID: PMC4390243 DOI: 10.1371/journal.pone.0122665] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/12/2015] [Indexed: 11/29/2022] Open
Abstract
Translucent zebrafish larvae represent an established model to analyze genetics of cardiac development and human cardiac disease. More recently adult zebrafish are utilized to evaluate mechanisms of cardiac regeneration and by benefiting from recent genome editing technologies, including TALEN and CRISPR, adult zebrafish are emerging as a valuable in vivo model to evaluate novel disease genes and specifically validate disease causing mutations and their underlying pathomechanisms. However, methods to sensitively and non-invasively assess cardiac morphology and performance in adult zebrafish are still limited. We here present a standardized examination protocol to broadly assess cardiac performance in adult zebrafish by advancing conventional echocardiography with modern speckle-tracking analyses. This allows accurate detection of changes in cardiac performance and further enables highly sensitive assessment of regional myocardial motion and deformation in high spatio-temporal resolution. Combining conventional echocardiography measurements with radial and longitudinal velocity, displacement, strain, strain rate and myocardial wall delay rates after myocardial cryoinjury permitted to non-invasively determine injury dimensions and to longitudinally follow functional recovery during cardiac regeneration. We show that functional recovery of cryoinjured hearts occurs in three distinct phases. Importantly, the regeneration process after cryoinjury extends far beyond the proposed 45 days described for ventricular resection with reconstitution of myocardial performance up to 180 days post-injury (dpi). The imaging modalities evaluated here allow sensitive cardiac phenotyping and contribute to further establish adult zebrafish as valuable cardiac disease model beyond the larval developmental stage.
Collapse
Affiliation(s)
- Selina J. Hein
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mandy Kossack
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lonny Juergensen
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics Inc., Amsterdam, The Netherlands
| | - Hugo A. Katus
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - David Hassel
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
105
|
Gerger CJ, Thomas JK, Janz DM, Weber LP. Acute effects of β-naphthoflavone on cardiorespiratory function and metabolism in adult zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:289-298. [PMID: 25186110 DOI: 10.1007/s10695-014-9982-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
Aryl hydrocarbon receptor (AhR) agonists are known to cause lethal cardiovascular deformities in fish after developmental exposure. Acute adult fish toxicity of AhR agonists is thought to be minimal, but limited evidence suggests sublethal effects may also involve the cardiac system in fish. In the present study, adult zebrafish (Danio rerio) were aqueously exposed to solvent control or three nominal concentrations of the commonly used model AhR agonist, β-naphthoflavone (BNF), for 48 h. Following exposure, fish were subjected to echocardiography to determine cardiac function or swimming tests with concurrent oxygen consumption measurement. Critical swimming speed and standard metabolic rate were not significantly changed, while active metabolic rate decreased with increasing BNF exposure, reaching statistical significance at the highest BNF exposure. Factorial aerobic scope was the most sensitive end-point and was decreased at even lower BNF concentrations, indicating a reduced aerobic capacity after acute AhR agonist exposure in adult fish. The highest BNF concentration caused a significant decrease in cardiac output, while increasing the ratio of atrial to ventricular heart rate (indicating atrioventricular conduction blockade). In conclusion, the effect of acute BNF exposure on zebrafish metabolic capacity and cardiac function is likely to be physiologically important given that fish have a critical need for adequate oxygen to fuel essential survival behaviors such as swimming, growth, and reproduction. Future studies should be directed at examining the effects of other polycyclic aromatic hydrocarbons on fish cardiorespiratory function to determine whether their effects and modes of action are similar to BNF.
Collapse
Affiliation(s)
- Courtney J Gerger
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | | | | | | |
Collapse
|
106
|
Shih YH, Zhang Y, Ding Y, Ross CA, Li H, Olson TM, Xu X. Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish. ACTA ACUST UNITED AC 2015; 8:261-9. [PMID: 25583992 DOI: 10.1161/circgenetics.114.000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genetic studies of cardiomyopathy and heart failure have limited throughput in mammalian models. Adult zebrafish have been recently pursued as a vertebrate model with higher throughput, but genetic conservation must be tested. METHODS AND RESULTS We conducted transcriptome analysis of zebrafish heart and searched for fish homologues of 51 known human dilated cardiomyopathy-associated genes. We also identified genes with high cardiac expression and genes with differential expression between embryonic and adult stages. Among tested genes, 30 had a single zebrafish orthologue, 14 had 2 homologues, and 5 had ≥3 homologues. By analyzing the expression data on the basis of cardiac abundance and enrichment hypotheses, we identified a single zebrafish gene for 14 of 19 multiple-homologue genes and 2 zebrafish homologues of high priority for ACTC1. Of note, our data suggested vmhc and vmhcl as functional zebrafish orthologues for human genes MYH6 and MYH7, respectively, which are established molecular markers for cardiac remodeling. CONCLUSIONS Most known genes for human dilated cardiomyopathy have a corresponding zebrafish orthologue, which supports the use of zebrafish as a conserved vertebrate model. Definition of the cardiac transcriptome and fetal gene program will facilitate systems biology studies of dilated cardiomyopathy in zebrafish.
Collapse
Affiliation(s)
- Yu-Huan Shih
- From the Department of Biochemistry and Molecular Biology (Y.-H.S., Y.D., X.X.), Information Technology (C.A.R.), Department of Molecular Pharmacology and Experimental Therapeutics (H.L.), Department of Pediatric and Adolescent Medicine (T.M.O.), and Division of Cardiovascular Diseases (T.M.O., X.X.), Mayo Clinic, Rochester, MN; Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore (Y.Z.); and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.)
| | - Yuji Zhang
- From the Department of Biochemistry and Molecular Biology (Y.-H.S., Y.D., X.X.), Information Technology (C.A.R.), Department of Molecular Pharmacology and Experimental Therapeutics (H.L.), Department of Pediatric and Adolescent Medicine (T.M.O.), and Division of Cardiovascular Diseases (T.M.O., X.X.), Mayo Clinic, Rochester, MN; Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore (Y.Z.); and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.)
| | - Yonghe Ding
- From the Department of Biochemistry and Molecular Biology (Y.-H.S., Y.D., X.X.), Information Technology (C.A.R.), Department of Molecular Pharmacology and Experimental Therapeutics (H.L.), Department of Pediatric and Adolescent Medicine (T.M.O.), and Division of Cardiovascular Diseases (T.M.O., X.X.), Mayo Clinic, Rochester, MN; Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore (Y.Z.); and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.)
| | - Christian A Ross
- From the Department of Biochemistry and Molecular Biology (Y.-H.S., Y.D., X.X.), Information Technology (C.A.R.), Department of Molecular Pharmacology and Experimental Therapeutics (H.L.), Department of Pediatric and Adolescent Medicine (T.M.O.), and Division of Cardiovascular Diseases (T.M.O., X.X.), Mayo Clinic, Rochester, MN; Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore (Y.Z.); and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.)
| | - Hu Li
- From the Department of Biochemistry and Molecular Biology (Y.-H.S., Y.D., X.X.), Information Technology (C.A.R.), Department of Molecular Pharmacology and Experimental Therapeutics (H.L.), Department of Pediatric and Adolescent Medicine (T.M.O.), and Division of Cardiovascular Diseases (T.M.O., X.X.), Mayo Clinic, Rochester, MN; Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore (Y.Z.); and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.)
| | - Timothy M Olson
- From the Department of Biochemistry and Molecular Biology (Y.-H.S., Y.D., X.X.), Information Technology (C.A.R.), Department of Molecular Pharmacology and Experimental Therapeutics (H.L.), Department of Pediatric and Adolescent Medicine (T.M.O.), and Division of Cardiovascular Diseases (T.M.O., X.X.), Mayo Clinic, Rochester, MN; Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore (Y.Z.); and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.)
| | - Xiaolei Xu
- From the Department of Biochemistry and Molecular Biology (Y.-H.S., Y.D., X.X.), Information Technology (C.A.R.), Department of Molecular Pharmacology and Experimental Therapeutics (H.L.), Department of Pediatric and Adolescent Medicine (T.M.O.), and Division of Cardiovascular Diseases (T.M.O., X.X.), Mayo Clinic, Rochester, MN; Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore (Y.Z.); and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.).
| |
Collapse
|
107
|
Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the zebrafish. PLoS One 2014; 9:e115604. [PMID: 25532015 PMCID: PMC4274112 DOI: 10.1371/journal.pone.0115604] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022] Open
Abstract
Aims While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters. Methods and Results Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored. Conclusion Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models.
Collapse
|
108
|
Sun Y, Fang Y, Xu X, Lu G, Chen Z. Evidence of an Association between Age-Related Functional Modifications and Pathophysiological Changes in Zebrafish Heart. Gerontology 2014; 61:435-47. [PMID: 25531915 DOI: 10.1159/000369094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Zebrafish have become a valuable model for the study of developmental biology and human disease, such as cardiovascular disease. It is difficult to discriminate between disease-related and age-related alterations. OBJECTIVE This study was aimed to investigate the effects and potential mechanisms of age-related cardiac modifications in an older zebrafish population. METHODS In this study, we calculated the survival rate and measured the spinal curvature through the aging process. A swimming challenge test was performed and showed that swimming capacity and endurance dramatically dropped in older fish groups. RESULTS To find out the effect of stress on zebrafish during the aging process, we recorded electrocardiograms on zebrafish and showed that during stress, aging not only led to a significant reduction in heart rate, but also caused other age-related impairments, such as arrhythmias and ST-T depression. Echocardiography showed a marked increase in end-diastolic ventricular dimensions and in isovolumic relaxation time and a notably slower mean and peak velocity of the bulboventricular valve in older zebrafish, but stroke volume and cardiac output were not different in young and old zebrafish. Both nppa and nppb (cardiac fetal genes for natriuretic factor) expression detected by real-time polymerase chain reaction analysis increased in older fish compared to the younger group. Histological staining revealed fibrosis within cardiomyocytes and an increase in ventricular myocardial density and a decrease in epicardial vessel dimensions in older fish hearts that may correlate with a deterioration of cardiac function and exercise capacity. CONCLUSION These data suggest that cardiac functional modifications in zebrafish are comparable to those in humans and may partly be due to changes in the cardiovascular system including cardiac fetal gene reprogramming, myocardial density, and epicardial vessel dimensions.
Collapse
Affiliation(s)
- Yanyi Sun
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
109
|
Huang CC, Su TH, Shih CC. High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration. Zebrafish 2014; 12:48-57. [PMID: 25517185 DOI: 10.1089/zeb.2014.1026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, the dynamic functions of the zebrafish heart during regeneration are not yet understood. This study established a high-resolution echocardiography for tissue Doppler imaging (TDI) of the zebrafish heart to explore the cardiac functions during different regeneration phases. Experiments were performed on AB-line adult zebrafish (n=40) in which 15% of the ventricle was surgically removed. An 80-MHz ultrasound TDI based on color M-mode imaging technology was employed. The cardiac flow velocities and patterns from both the ventricular chamber and myocardium were measured at different regeneration phases relative to the day of amputation. The peak velocities of early diastolic inflow, early diastolic myocardial motion, late diastolic myocardial motion, early diastolic deceleration slope, and heart rate were increased at 3 days after the myocardium amputation, but these parameters gradually returned to close to their baseline values for the normal heart at 7 days after amputation. The peak velocities of late diastolic inflow, ventricular systolic outflow, and systolic myocardial motion did not significantly differ during the heart regeneration.
Collapse
Affiliation(s)
- Chih-Chung Huang
- 1 Department of Biomedical Engineering, National Cheng Kung University , Tainan, Taiwan
| | | | | |
Collapse
|
110
|
Itou J, Akiyama R, Pehoski S, Yu X, Kawakami H, Kawakami Y. Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish. Dev Dyn 2014; 243:1477-86. [PMID: 25074230 DOI: 10.1002/dvdy.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The zebrafish heart regenerates after various severe injuries. Common processes of heart regeneration are cardiomyocyte proliferation, activation of epicardial tissue, and neovascularization. In order to further characterize heart regeneration processes, we introduced milder injuries and compared responses to those induced by ventricular apex resection, a widely used injury method. We used scratching of the ventricular surface and puncturing of the ventricle with a fine tungsten needle as injury-inducing techniques. RESULTS Scratching the ventricular surface induced subtle cardiomyocyte proliferation and responses of the epicardium. Endothelial cell accumulation was limited to the surface of the heart. Ventricular puncture induced cardiomyocyte proliferation, endocardial and epicardial activation, and neo-vascularization, similar to the resection method. However, the degree of the responses was milder, correlating with milder injury. Sham operation induced epicardial aldh1a2 expression but not tbx18 and WT1. CONCLUSIONS Puncturing the ventricle induces responses equivalent to resection at milder degrees in a shorter time frame and can be used as a simple injury model. Scratching the ventricle did not induce heart regeneration and can be used for studying wound responses to epicardium.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | | | |
Collapse
|
111
|
Kikuchi K. Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Res 2014; 13:542-55. [PMID: 25127427 DOI: 10.1016/j.scr.2014.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 01/14/2023] Open
Abstract
The adult mammalian heart was once believed to be a post-mitotic organ without any capacity for regeneration, but recent findings have challenged this dogma. A modified view assigns the mammalian heart a measurable capacity for regeneration throughout its lifetime, with the implication that endogenous regenerative capacity can be therapeutically stimulated in the injury setting. Although extremely limited in adult mammals, the natural capacity for organ regeneration is a conserved trait in certain vertebrates. Urodele amphibians and teleosts are well-known examples of such animals that can efficiently regenerate various organs including the heart as adults. By understanding how these animals regenerate a damaged heart, one might obtain valuable insights into how regeneration can be augmented in injured human hearts. Among the regenerative vertebrate models, the teleost zebrafish, Danio rerio, is arguably the best characterized with respect to cardiac regenerative responses. Knowledge is still limited, but a decade of research in this model has led to results that may help to understand how cardiac regeneration is naturally stimulated and maintained. This review surveys recent advances in the field and discusses current understanding of the endogenous mechanisms of cardiac regeneration in zebrafish.
Collapse
Affiliation(s)
- Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
112
|
Ito K, Morioka M, Kimura S, Tasaki M, Inohaya K, Kudo A. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev Dyn 2014; 243:1106-15. [PMID: 24947076 DOI: 10.1002/dvdy.24154] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zebrafish have the ability for heart regeneration. However, another teleost animal model, the medaka, had not yet been investigated for this capacity. RESULTS Compared with zebrafish, the medaka heart responded differently to an injury: An excessive fibrotic response occurred in the medaka heart, and existing cardiomyocytes or cardiac progenitor cells remained dormant, resulting in no numerical difference between the uncut and injured heart with respect to the number of EdU-incorporated cardiomyocytes. The results obtained from the analysis of the medaka raldh2-GFP transgenic line showed a lack of raldh2 expression in the endocardium. Regarding periostin expression, the localization of medaka periostin-b, a marker of fibrillogenesis, in the medaka heart remained at the wound site at 30 dpa; whereas zebrafish periostin-b was no longer localized at the wound but was detected in the epicardium at that time. CONCLUSIONS Compared with zebrafish heart regeneration, the medaka heart phenotypes suggest the possibility that the medaka could hardly regenerate its heart tissue or that these phenotypes for heart regeneration showed a delay.
Collapse
Affiliation(s)
- Kohei Ito
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
113
|
Vostarek F, Sankova B, Sedmera D. Studying dynamic events in the developing myocardium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:261-9. [PMID: 24954141 DOI: 10.1016/j.pbiomolbio.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/25/2023]
Abstract
Differentiation and conduction properties of the cardiomyocytes are critically dependent on physical conditioning both in vitro and in vivo. Historically, various techniques were introduced to study dynamic events such as electrical currents and changes in ionic concentrations in live cells, multicellular preparations, or entire hearts. Here we review this technological progress demonstrating how each improvement in spatial or temporal resolution provided answers to old and provoked new questions. We further demonstrate how high-speed optical mapping of voltage and calcium can uncover pacemaking potential within the outflow tract myocardium, providing a developmental explanation of ectopic beats originating from this region in the clinical settings.
Collapse
Affiliation(s)
- Frantisek Vostarek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Sankova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Institute of Anatomy, First Medical Faculty, Charles University, Prague, Czech Republic
| | - David Sedmera
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Institute of Anatomy, First Medical Faculty, Charles University, Prague, Czech Republic.
| |
Collapse
|
114
|
Apschner A, Huitema LFA, Ponsioen B, Peterson-Maduro J, Schulte-Merker S. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE). Dis Model Mech 2014; 7:811-22. [PMID: 24906371 PMCID: PMC4073271 DOI: 10.1242/dmm.015693] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf), which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1), a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI) is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE) have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues - most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin). Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord mineralization phenotype. This indicates that enpp1 can exert its function in tissues that are remote from its site of expression.
Collapse
Affiliation(s)
- Alexander Apschner
- Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands
| | - Leonie F A Huitema
- Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands
| | - Bas Ponsioen
- Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands
| | | | - Stefan Schulte-Merker
- Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands. WUR, Experimental Zoology, 3700AH Wageningen, The Netherlands. Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
115
|
Pieperhoff S, Wilson KS, Baily J, de Mora K, Maqsood S, Vass S, Taylor J, Del-Pozo J, MacRae CA, Mullins JJ, Denvir MA. Heart on a plate: histological and functional assessment of isolated adult zebrafish hearts maintained in culture. PLoS One 2014; 9:e96771. [PMID: 24824845 PMCID: PMC4019527 DOI: 10.1371/journal.pone.0096771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/11/2014] [Indexed: 12/03/2022] Open
Abstract
The zebrafish is increasingly used for cardiovascular genetic and functional studies. We present a novel protocol to maintain and monitor whole isolated beating adult zebrafish hearts in culture for long-term experiments. Excised whole adult zebrafish hearts were transferred directly into culture dishes containing optimized L-15 Leibovitz growth medium and maintained for 5 days. Hearts were assessed daily using video-edge analysis of ventricle function using low power microscopy images. High-throughput histology techniques were used to assess changes in myocardial architecture and cell viability. Mean spontaneous Heart rate (HR, min−1) declined significantly between day 0 and day 1 in culture (96.7±19.5 to 45.2±8.2 min−1, mean±SD, p = 0.001), and thereafter declined more slowly to 27.6±7.2 min−1 on day 5. Ventricle wall motion amplitude (WMA) did not change until day 4 in culture (day 0, 46.7±13.0 µm vs day 4, 16.9±1.9 µm, p = 0.08). Contraction velocity (CV) declined between day 0 and day 3 (35.6±14.8 vs 15.2±5.3 µms−1, respectively, p = 0.012) while relaxation velocity (RV) declined quite rapidly (day 0, 72.5±11.9 vs day 1, 29.5±5.8 µms−1, p = 0.03). HR and WMA responded consistently to isoproterenol from day 0 to day 5 in culture while CV and RV showed less consistent responses to beta-agonist. Cellular architecture and cross-striation pattern of cardiomyocytes remained unchanged up to day 3 in culture and thereafter showed significant deterioration with loss of striation pattern, pyknotic nuclei and cell swelling. Apoptotic markers within the myocardium became increasingly frequent by day 3 in culture. Whole adult zebrafish hearts can be maintained in culture-medium for up to 3 days. However, after day-3 there is significant deterioration in ventricle function and heart rate accompanied by significant histological changes consistent with cell death and loss of cardiomyocyte cell integrity. Further studies are needed to assess whether this preparation can be optimised for longer term survival.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- UoE/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Kathryn S. Wilson
- UoE/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - James Baily
- UoE/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Kim de Mora
- UoE/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Sana Maqsood
- UoE/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Sharron Vass
- UoE/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jonathan Taylor
- School of Physics and Astronomy, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jorge Del-Pozo
- Royal Dick School of Veterinary Studies, Division of Veterinary Clinical Sciences, The University of Edinburgh, Hospital for Small Animals, Easter Bush Veterinary Centre, Roslin, Midlothian, Scotland, United Kingdom
| | - Calum A. MacRae
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, The Broad Institute of MIT and Harvard, Boston, Massachusetts, United States of America
| | - John J. Mullins
- UoE/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Martin A. Denvir
- UoE/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
116
|
The epicardium signals the way towards heart regeneration. Stem Cell Res 2014; 13:683-92. [PMID: 24933704 PMCID: PMC4241487 DOI: 10.1016/j.scr.2014.04.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/12/2014] [Accepted: 04/18/2014] [Indexed: 11/23/2022] Open
Abstract
From historical studies of developing chick hearts to recent advances in regenerative injury models, the epicardium has arisen as a key player in heart genesis and repair. The epicardium provides paracrine signals to nurture growth of the developing heart from mid-gestation, and epicardium-derived cells act as progenitors of numerous cardiac cell types. Interference with either process is terminal for heart development and embryogenesis. In adulthood, the dormant epicardium reinstates an embryonic gene programme in response to injury. Furthermore, injury-induced epicardial signalling is essential for heart regeneration in zebrafish. Given these critical roles in development, injury response and heart regeneration, the application of epicardial signals following adult heart injury could offer therapeutic strategies for the treatment of ischaemic heart disease and heart failure. The epicardium is a dynamic signalling centre during heart development and injury. Heart repair in lower vertebrates highlights the importance of epicardial signalling. Epicardial signals may be targeted to regenerate adult mammalian hearts.
Collapse
|
117
|
Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood 2014; 124:142-50. [PMID: 24782510 DOI: 10.1182/blood-2014-03-561027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathologic blood clotting is a leading cause of morbidity and mortality in the developed world, underlying deep vein thrombosis, myocardial infarction, and stroke. Genetic predisposition to thrombosis is still poorly understood, and we hypothesize that there are many additional risk alleles and modifying factors remaining to be discovered. Mammalian models have contributed to our understanding of thrombosis, but are low throughput and costly. We have turned to the zebrafish, a tool for high-throughput genetic analysis. Using zinc finger nucleases, we show that disruption of the zebrafish antithrombin III (at3) locus results in spontaneous venous thrombosis in larvae. Although homozygous mutants survive into early adulthood, they eventually succumb to massive intracardiac thrombosis. Characterization of null fish revealed disseminated intravascular coagulation in larvae secondary to unopposed thrombin activity and fibrinogen consumption, which could be rescued by both human and zebrafish at3 complementary DNAs. Mutation of the human AT3-reactive center loop abolished the ability to rescue, but the heparin-binding site was dispensable. These results demonstrate overall conservation of AT3 function in zebrafish, but reveal developmental variances in the ability to tolerate excessive clot formation. The accessibility of early zebrafish development will provide unique methods for dissection of the underlying mechanisms of thrombosis.
Collapse
|
118
|
|
119
|
Ali S, Aalders J, Richardson MK. Teratological effects of a panel of sixty water-soluble toxicants on zebrafish development. Zebrafish 2014; 11:129-41. [PMID: 24650241 DOI: 10.1089/zeb.2013.0901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay.
Collapse
Affiliation(s)
- Shaukat Ali
- 1 Sylvius Laboratory, Institute of Biology, Leiden University , Leiden, The Netherlands
| | | | | |
Collapse
|
120
|
Abstract
INTRODUCTION Off-target effects represent one of the major concerns in the development of new pharmaceuticals, requiring large-scale animal toxicity testing. Faster, cheaper and more reliable assays based on zebrafish embryos (ZE) are being developed as major tools for assessing toxicity of chemicals during the drug-discovery process. AREAS COVERED This paper reviews techniques aimed to the analysis of in vivo sublethal toxic effects of drugs on major physiological functions, including the cardiovascular, nervous, neuromuscular, gastrointestinal and thyroid systems among others. Particular emphasis is placed on high-throughput screening techniques (HTS), including robotics, imaging technologies and image-analysis software. EXPERT OPINION The analysis of off-target effects of candidate drugs requires systemic analyses, as they often involve the complete organism rather than specific, tissue- or cell-specific targets. The unique physical and physiological characteristics of ZE make this system an essential tool for drug discovery and toxicity assessment. Different HTS methodologies applicable to ZE allow the screening of large numbers of different chemicals for many diverse and relevant toxic endpoints.
Collapse
Affiliation(s)
- Demetrio Raldúa
- IDAEA-CSIC, Environmental Chemistry , Jordi Girona 18, 08034 Barcelona , Spain +34 93400 6157 ; +34 93204 5904 ;
| | | |
Collapse
|
121
|
Whitesell TR, Kennedy RM, Carter AD, Rollins EL, Georgijevic S, Santoro MM, Childs SJ. An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS One 2014; 9:e90590. [PMID: 24594685 PMCID: PMC3940907 DOI: 10.1371/journal.pone.0090590] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
Mural cells of the vascular system include vascular smooth muscle cells (SMCs) and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma), which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.
Collapse
Affiliation(s)
- Thomas R. Whitesell
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Regan M. Kennedy
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Alyson D. Carter
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Evvi-Lynn Rollins
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Sonja Georgijevic
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Massimo M. Santoro
- VIB Vesalius Research Center, University of Leuven (KU Leuven), Leuven, Belgium
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
122
|
Van Slyke CE, Bradford YM, Westerfield M, Haendel MA. The zebrafish anatomy and stage ontologies: representing the anatomy and development of Danio rerio. J Biomed Semantics 2014; 5:12. [PMID: 24568621 PMCID: PMC3944782 DOI: 10.1186/2041-1480-5-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
Background The Zebrafish Anatomy Ontology (ZFA) is an OBO Foundry ontology that is used in conjunction with the Zebrafish Stage Ontology (ZFS) to describe the gross and cellular anatomy and development of the zebrafish, Danio rerio, from single cell zygote to adult. The zebrafish model organism database (ZFIN) uses the ZFA and ZFS to annotate phenotype and gene expression data from the primary literature and from contributed data sets. Results The ZFA models anatomy and development with a subclass hierarchy, a partonomy, and a developmental hierarchy and with relationships to the ZFS that define the stages during which each anatomical entity exists. The ZFA and ZFS are developed utilizing OBO Foundry principles to ensure orthogonality, accessibility, and interoperability. The ZFA has 2860 classes representing a diversity of anatomical structures from different anatomical systems and from different stages of development. Conclusions The ZFA describes zebrafish anatomy and development semantically for the purposes of annotating gene expression and anatomical phenotypes. The ontology and the data have been used by other resources to perform cross-species queries of gene expression and phenotype data, providing insights into genetic relationships, morphological evolution, and models of human disease.
Collapse
|
123
|
Johnson AC, Turko AJ, Klaiman JM, Johnston EF, Gillis TE. Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart. J Exp Biol 2014; 217:1868-75. [DOI: 10.1242/jeb.101196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Thermal acclimation can alter cardiac function and morphology in a number of fish species, but little is known about the regulation of these changes. The purpose of the current study was to determine how cold acclimation affects zebrafish (Danio rerio) cardiac morphology, collagen composition, and connective tissue regulation. Heart volume, the thickness of the compact myocardium, collagen content, and collagen fiber composition were compared between control (27°C) and cold acclimated (20°C) zebrafish using serially sectioned hearts stained with picrosirius red. Collagen content and fiber composition of the pericardial membrane were also examined. Cold acclimation did not affect the volume of the contracted heart, however there was a significant decrease in the thickness of the compact myocardium. There was also a decrease in the collagen content of the compact myocardium and in amount of thick collagen fibers throughout the heart. Cold-acclimated zebrafish also increased expression of the gene transcript for matrix metalloproteinase 2, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 2, and collagen Type 1 α1. We propose that the reduction in the thickness of the compact myocardium as well as the change in collagen content may help to maintain the compliance of the ventricle as temperatures decrease. Together, these results clearly demonstrate that the zebrafish heart undergoes significant remodelling in response to cold acclimation.
Collapse
|
124
|
Mackay EW, Apschner A, Schulte-Merker S. A bone to pick with zebrafish. BONEKEY REPORTS 2013; 2:445. [PMID: 24422140 DOI: 10.1038/bonekey.2013.179] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/07/2023]
Abstract
The development of high-throughput sequencing and genome-wide association studies allows us to deduce the genetic factors underlying diseases much more rapidly than possible through classical genetics, but a true understanding of the molecular mechanisms of these diseases still relies on integrated approaches including in vitro and in vivo model systems. One such model that is particularly suitable for studying bone diseases is the zebrafish (Danio rerio), a small fresh-water teleost that is highly amenable to genetic manipulation and in vivo imaging. Zebrafish physiology and genome organization are in many aspects similar to those of humans, and the skeleton and mineralizing tissues are no exception. In this review, we highlight some of the contributions that have been made through the study of mutant zebrafish that feature bone and/or mineralization disorders homologous to human diseases, including osteogenesis imperfecta, fibrodysplasia ossificans progressiva and generalized arterial calcification of infancy. The genomic and phenotypic similarities between the zebrafish and human cases are illustrated. We show that, despite some systemic physiological differences between mammals and teleosts, and a relative lack of a history as a model for bone research, the zebrafish represents a useful complement to mouse and tissue culture systems in the investigation of genetic bone disorders.
Collapse
Affiliation(s)
- Eirinn W Mackay
- Hubrecht Institute-KNAW & University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Alexander Apschner
- Hubrecht Institute-KNAW & University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW & University Medical Centre Utrecht , Utrecht, The Netherlands
| |
Collapse
|
125
|
Lee J, Moghadam ME, Kung E, Cao H, Beebe T, Miller Y, Roman BL, Lien CL, Chi NC, Marsden AL, Hsiai TK. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis. PLoS One 2013; 8:e72924. [PMID: 24009714 PMCID: PMC3751826 DOI: 10.1371/journal.pone.0072924] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/12/2013] [Indexed: 12/12/2022] Open
Abstract
Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP) (y1) transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.
Collapse
Affiliation(s)
- Juhyun Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mahdi Esmaily Moghadam
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Ethan Kung
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Hung Cao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tyler Beebe
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Yury Miller
- Division of Cardiology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Beth L. Roman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ching-Ling Lien
- Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Neil C. Chi
- Division of Cardiology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Alison L. Marsden
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Tzung K. Hsiai
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
126
|
Lafontant PJ, Behzad AR, Brown E, Landry P, Hu N, Burns AR. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy. PLoS One 2013; 8:e72388. [PMID: 24058412 PMCID: PMC3751930 DOI: 10.1371/journal.pone.0072388] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/09/2013] [Indexed: 01/08/2023] Open
Abstract
The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.
Collapse
Affiliation(s)
- Pascal J. Lafontant
- Department of Biology, DePauw University, Greencastle, Indiana, United States of America
- * E-mail:
| | - Ali R. Behzad
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Evelyn Brown
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Paul Landry
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Norman Hu
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
127
|
Crucke J, Huysseune A. Unravelling the blood supply to the zebrafish pharyngeal jaws and teeth. J Anat 2013; 223:399-409. [PMID: 23937397 DOI: 10.1111/joa.12096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 01/02/2023] Open
Abstract
We describe the vascular supply to the pharyngeal jaws and teeth in zebrafish, from larval stages to juveniles, using serial high quality semithin sections and 3D reconstructions. We have identified that the arterial blood supply to the last pair of branchial arches, which carries the teeth, issues from the hypobranchial artery. Surprisingly, the arteries supplying the pharyngeal jaws show an asymmetric branching pattern that is modified over ontogeny. Moreover, the blood vessel pattern that serves each jaw can best be described as a sinusoidal cavity encircling the bases of both the functional and replacement teeth. Capillaries branching from this sinusoidal cavity enter the pulp and constitute the intrinsic blood supply to the attached teeth. The role of these blood vessels during tooth development (whether instructive or nutritive) remains to be determined and requires further study. However, we have provided a firm morphological basis that will aid in the interpretation of experiments addressing this question.
Collapse
Affiliation(s)
- Jeroen Crucke
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
128
|
Jensen B, van den Berg G, van den Doel R, Oostra RJ, Wang T, Moorman AFM. Development of the hearts of lizards and snakes and perspectives to cardiac evolution. PLoS One 2013; 8:e63651. [PMID: 23755108 PMCID: PMC3673951 DOI: 10.1371/journal.pone.0063651] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022] Open
Abstract
Birds and mammals both developed high performance hearts from a heart that must have been reptile-like and the hearts of extant reptiles have an unmatched variability in design. Yet, studies on cardiac development in reptiles are largely old and further studies are much needed as reptiles are starting to become used in molecular studies. We studied the growth of cardiac compartments and changes in morphology principally in the model organism corn snake (Pantherophis guttatus), but also in the genotyped anole (Anolis carolinenis and A. sagrei) and the Philippine sailfin lizard (Hydrosaurus pustulatus). Structures and chambers of the formed heart were traced back in development and annotated in interactive 3D pdfs. In the corn snake, we found that the ventricle and atria grow exponentially, whereas the myocardial volumes of the atrioventricular canal and the muscular outflow tract are stable. Ventricular development occurs, as in other amniotes, by an early growth at the outer curvature and later, and in parallel, by incorporation of the muscular outflow tract. With the exception of the late completion of the atrial septum, the adult design of the squamate heart is essentially reached halfway through development. This design strongly resembles the developing hearts of human, mouse and chicken around the time of initial ventricular septation. Subsequent to this stage, and in contrast to the squamates, hearts of endothermic vertebrates completely septate their ventricles, develop an insulating atrioventricular plane, shift and expand their atrioventricular canal toward the right and incorporate the systemic and pulmonary venous myocardium into the atria.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Bioscience-Zoophysiology, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
129
|
Zhou X, Sun L, Yu Y, Qiu W, Lien CL, Shung KK, Yu W. Ultrasound bio-microscopic image segmentation for evaluation of zebrafish cardiac function. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:718-726. [PMID: 23549532 PMCID: PMC3750995 DOI: 10.1109/tuffc.2013.2620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Zebrafish can fully regenerate their myocardium after ventricular resection without evidence of scars. This extraordinary regenerative ability provides an excellent model system to study the activation of the regenerative potential for human heart tissue. In addition to the morphology, it is vital to understand the cardiac function of zebrafish. To characterize adult zebrafish cardiac function, an ultrasound biomicroscope (UBM) was customized for real-time imaging of the zebrafish heart (about 1 mm in diameter) at a resolution of around 37 μm. Moreover, we developed an image segmentation algorithm to track the cardiac boundary and measure the dynamic size of the zebrafish heart for further quantification of zebrafish cardiac function. The effectiveness and accuracy of the proposed segmentation algorithm were verified on a tissuemimicking phantom and in vivo zebrafish echocardiography. The quantitative evaluation demonstrated that the accuracy of the proposed algorithm is comparable to the manual delineation by experts.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
130
|
Collagen and elastin histochemistry of the teleost bulbus arteriosus: false positives. Acta Histochem 2013; 115:185-9. [PMID: 22494613 DOI: 10.1016/j.acthis.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 11/20/2022]
Abstract
This report analyzes the localization of collagen and elastin in the teleost bulbus arteriosus by histochemistry and by transmission electron microscopy. Martin's trichrome staining shows widespread distribution of collagen in the wall of the bulbus. However, Sirius red indicates that collagen is mostly restricted to the valves and to the subepicardial layer. This is confirmed by transmission electron microscopy. Trichrome staining gives false positives that may be related to the chemical characteristics of both matrix components and dyes. By contrast, Sirius red constitutes a highly reliable method to detect collagen distribution. On the other hand, orcein heavily stains the bulbus of all teleosts examined. This includes the bulbus of the Antarctic teleosts, which do not show structurally discernable elastin fibers. In these cases, orcein may be staining non-elastin components, or basic elastin components not assembled into larger units. In the teleost bulbus, accurate identification of collagen and elastin cannot be based solely on histochemistry, but should be accompanied by structural identification of the components under study.
Collapse
|
131
|
Medaka fish, Oryzias latipes, as a model for human obesity-related glomerulopathy. Biochem Biophys Res Commun 2013; 431:712-7. [PMID: 23353086 DOI: 10.1016/j.bbrc.2013.01.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/12/2013] [Indexed: 01/10/2023]
Abstract
Obesity, an ongoing significant public health problem, is a part of complex disease characterized as metabolic syndrome. Medaka and zebrafish are useful aquatic experimental animals widely used in the field of toxicology and environmental health sciences and as a human disease models. In medaka, simple feeding of a high fat diet (HFD) can induce body weight gain, excessive accumulation of visceral adipose tissue, hyperglycemia, hyperlipidemia, and steatohepatitis, which mimics human metabolic syndrome. In the present study, to explore the possibility that the adult medaka fed with HFD (HFD-medaka) can be used as an animal model for human metabolic syndrome-associated glomerular disease, including obesity-related glomerulopathy (ORG), we analyzed structural alterations and protein expression in the mesonephric kidney of HFD-medaka. We found that the histopathology was consistent with glomerulomegaly accompanied by the dilation of glomerular capillaries and proliferative expansion of the mesangium, a condition partially comparable to human ORG. Moreover, expressions of several kinds of kidney disease-related proteins (such as MYH9, SM22α) were significantly elevated. Thus, the HFD-medaka has a high potential as an animal model useful for exploring the mechanism underling human ORG.
Collapse
|
132
|
Parente V, Balasso S, Pompilio G, Verduci L, Colombo GI, Milano G, Guerrini U, Squadroni L, Cotelli F, Pozzoli O, Capogrossi MC. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart. PLoS One 2013; 8:e53748. [PMID: 23341992 PMCID: PMC3547061 DOI: 10.1371/journal.pone.0053748] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/03/2012] [Indexed: 01/12/2023] Open
Abstract
Aims the adult zebrafish heart regenerates spontaneously after injury and has been used to study the mechanisms of cardiac repair. However, no zebrafish model is available that mimics ischemic injury in mammalian heart. We developed and characterized zebrafish cardiac injury induced by hypoxia/reoxygenation (H/R) and the regeneration that followed it. Methods and Results adult zebrafish were kept either in hypoxic (H) or normoxic control (C) water for 15 min; thereafter fishes were returned to C water. Within 2–6 hours (h) after reoxygenation there was evidence of cardiac oxidative stress by dihydroethidium fluorescence and protein nitrosylation, as well as of inflammation. We used Tg(cmlc2:nucDsRed) transgenic zebrafish to identify myocardial cell nuclei. Cardiomyocyte apoptosis and necrosis were evidenced by TUNEL and Acridine Orange (AO) staining, respectively; 18 h after H/R, 9.9±2.6% of myocardial cell nuclei were TUNEL+ and 15.0±2.5% were AO+. At the 30-day (d) time point myocardial cell death was back to baseline (n = 3 at each time point). We evaluated cardiomyocyte proliferation by Phospho Histone H3 (pHH3) or Proliferating Cell Nuclear Antigen (PCNA) expression. Cardiomyocyte proliferation was apparent 18–24 h after H/R, it achieved its peak 3–7d later, and was back to baseline at 30d. 7d after H/R 17.4±2.3% of all cardiomyocytes were pHH3+ and 7.4±0.6% were PCNA+ (n = 3 at each time point). Cardiac function was assessed by 2D-echocardiography and Ventricular Diastolic and Systolic Areas were used to compute Fractional Area Change (FAC). FAC decreased from 29.3±2.0% in normoxia to 16.4±1.8% at 18 h after H/R; one month later ventricular function was back to baseline (n = 12 at each time point). Conclusions zebrafish exposed to H/R exhibit evidence of cardiac oxidative stress and inflammation, myocardial cell death and proliferation. The initial decrease in ventricular function is followed by full recovery. This model more closely mimics reperfusion injury in mammals than other cardiac injury models.
Collapse
Affiliation(s)
- Valeria Parente
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Istituto Nazionale Genetica Molecolare, Milan, Italy
| | - Serena Balasso
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Giulio Pompilio
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Lorena Verduci
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Gualtiero I. Colombo
- Laboratorio di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Giuseppina Milano
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Laboratorio di Farmacologia della Trombosi e dell’Aterosclerosi, Università degli Studi di Milano, Milan, Italy
| | - Lidia Squadroni
- Divisione di Cardiologia, Ospedale S. Carlo Borromeo, Milan, Italy
| | - Franco Cotelli
- Dipartimento di Biologia e Dipartimento di Bioscienze, Laboratorio di Biologia dello Sviluppo, Università degli Studi di Milano, Milan, Italy
| | - Ombretta Pozzoli
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Maurizio C. Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell’Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- * E-mail:
| |
Collapse
|
133
|
Singleman C, Holtzman NG. Analysis of postembryonic heart development and maturation in the zebrafish, Danio rerio. Dev Dyn 2012; 241:1993-2004. [PMID: 23074141 DOI: 10.1002/dvdy.23882] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cardiac maturation is vital for animal survival and must occur throughout the animal's life. Zebrafish are increasingly used to model cardiac disease; however, little is known about how the cardiovascular system matures. We conducted a systematic analysis of cardiac maturation from larvae through to adulthood and assessed cardiac features influenced by genetic and environmental factors. RESULTS We identified a novel step in cardiac maturation, termed cardiac rotation, where the larval heart rotates into its final orientation within the thoracic cavity with the atrium placed behind the ventricle. This rotation is followed by linear ventricle growth and an increase in the angle between bulbous arteriosus and the ventricle. The ventricle transitions from a rectangle, to a triangle and ultimately a sphere that is significantly enveloped by the atrium. In addition, trabeculae are similarly patterned in the zebrafish and humans, both with muscular fingerlike projections and muscle bands that span the cardiac chamber. Of interest, partial loss of atrial contraction in myosin heavy chain 6 (myh6/wea(hu423/+)) mutants result in the adult maintaining a larval cardiac form. CONCLUSIONS These findings serve as a foundation for the study of defects in cardiovascular development from both genetic and environmental factors.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Flushing New York and The Graduate Center, City University of New York, New York, New York, USA
| | | |
Collapse
|
134
|
Faucherre A, Jopling C. The heart's content-renewable resources. Int J Cardiol 2012; 167:1141-6. [PMID: 23044434 DOI: 10.1016/j.ijcard.2012.09.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/23/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
Abstract
Heart regeneration is a huge, complex area involving numerous lines of research ranging from the stem cell therapy to xenografts and bioengineering. This review will focus on two avenues of regenerative research, cardiac progenitor cells and adult cardiomyocyte proliferation, both of which offer great promise for the field of heart regeneration. However, the principles behind how this could be achieved by either technique are very different. Cardiac progenitor cells represent a population of somatic stem cells which reside within the adult heart. These cells appear to have the capacity to proliferate and differentiate into the different cell types found within the adult heart and thus have the potential, if the correct stimuli can be found, to effectively regenerate a heart damaged by ischemia/infarction. Inducing adult cardiomyocytes to proliferate offers a different approach to achieving the same goal. In this case, the cardiomyocytes that remain after the damage has occurred would need to be stimulated into effecting a regenerative response. In this review, we will discuss the current understanding of how heart regeneration could be achieved by either of these very different approaches.
Collapse
Affiliation(s)
- Adèle Faucherre
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Labex ICST, Montpellier F-34094, France
| | | |
Collapse
|
135
|
Lien CL, Harrison MR, Tuan TL, Starnes VA. Heart repair and regeneration: recent insights from zebrafish studies. Wound Repair Regen 2012; 20:638-46. [PMID: 22818295 DOI: 10.1111/j.1524-475x.2012.00814.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 03/31/2012] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and worldwide. Failure to properly repair or regenerate damaged cardiac tissues after myocardial infarction is a major cause of heart failure. In contrast to humans and other mammals, zebrafish hearts regenerate after substantial injury or tissue damage. Here, we review recent progress in studying zebrafish heart regeneration, addressing the molecular and cellular responses in the three tissue layers of the heart: myocardium, epicardium, and endocardium. We also compare different injury models utilized to study zebrafish heart regeneration and discuss the differences in responses to injury between mammalian and zebrafish hearts. By learning how zebrafish hearts regenerate naturally, we can better design therapeutic strategies for repairing human hearts after myocardial infarction.
Collapse
Affiliation(s)
- Ching-Ling Lien
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
136
|
Gupta V, Poss KD. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 2012; 484:479-84. [PMID: 22538609 PMCID: PMC3340018 DOI: 10.1038/nature11045] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 03/15/2012] [Indexed: 12/23/2022]
Abstract
As vertebrate embryos develop to adulthood, their organs undergo marked changes in size and tissue architecture. The heart acquires muscle mass and matures structurally to fulfil increasing circulatory needs, a process that is incompletely understood. Here we used multicolour clonal analysis to define the contributions of individual cardiomyocytes as the zebrafish heart undergoes morphogenesis from a primitive embryonic structure into its complex adult form. We find that the single-cardiomyocyte-thick wall of the juvenile ventricle forms by lateral expansion of several dozen cardiomyocytes into muscle patches of variable sizes and shapes. As juvenile zebrafish mature into adults, this structure becomes fully enveloped by a new lineage of cortical muscle. Adult cortical muscle originates from a small number of cardiomyocytes--an average of approximately eight per animal--that display clonal dominance reminiscent of stem cell populations. Cortical cardiomyocytes initially emerge from internal myofibres that in rare events breach the juvenile ventricular wall, and then expand over the surface. Our results illuminate the dynamic proliferative behaviours that generate adult cardiac structure, revealing clonal dominance as a key mechanism that shapes a vertebrate organ.
Collapse
Affiliation(s)
- Vikas Gupta
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
137
|
Kim J, Rubin N, Huang Y, Tuan TL, Lien CL. In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat Protoc 2012; 7:247-55. [PMID: 22262006 DOI: 10.1038/nprot.2011.440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe here a protocol for culturing epicardial cells from adult zebrafish hearts, which have a unique regenerative capacity after injury. Briefly, zebrafish hearts first undergo ventricular amputation or sham operation. Next, the hearts are excised and explanted onto fibrin gels prepared in advance in a multiwell tissue culture plate. The procedure allows the epicardial cells to outgrow from the ventricle onto a fibrin matrix in vitro. This protocol differs from those used in other organisms by using a fibrin gel to mimic blood clots that normally form after injury and that are essential for proper cell migration. The culture procedure can be accomplished within 5 h; epicardial cells can be obtained within 24-48 h and can be maintained in culture for 5-6 d. This protocol can be used to investigate the mechanisms underlying epicardial cell migration, proliferation and epithelial-to-mesenchymal transition during heart regeneration, homeostatic cardiac growth or other physiological processes.
Collapse
Affiliation(s)
- Jieun Kim
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
138
|
Ali S, Champagne DL, Richardson MK. Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 2011; 228:272-83. [PMID: 22138507 DOI: 10.1016/j.bbr.2011.11.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/04/2011] [Accepted: 11/17/2011] [Indexed: 11/17/2022]
Abstract
The zebrafish is a powerful whole animal model which is complementary to in vitro and mammalian models. It has been shown to be applicable to the high-throughput behavioral screening of compound libraries. We have analysed 60 water-soluble toxic compounds covering a range of common drugs, toxins and chemicals, and representing various pharmacological mechanisms. Wild-type zebrafish larvae were cultured individually in defined buffer in 96 well plates. They were exposed for a 96h period starting at 24h post fertilization (hpf). A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC(50) determination. LC(50) values were determined at 24h intervals and behavioral testing was carried out on day 5. We used the visual motor response test, in which movement of individual larvae was analysed using automated video-tracking. For all compounds, LC(50) values were found to decrease as the embryo developed. The majority of compounds (57/60) produced an effect in both the basal (lights on) and challenge phases (lights off) of the behavioral assay. These effects were either (i) suppression of locomotor activity (monotonic concentration-response); (ii) stimulation then suppression (biphasic response); (iii) stimulation (monotonic response). We conclude that behavioral assays with zebrafish embryos could be useful for pharmaceutical efficacy and toxicity screening. The precise phenotypic outcome obtained with behavioral assay varies with compound class.
Collapse
Affiliation(s)
- Shaukat Ali
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, Leiden, The Netherlands
| | | | | |
Collapse
|
139
|
Ali S, van Mil HGJ, Richardson MK. Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS One 2011; 6:e21076. [PMID: 21738604 PMCID: PMC3125172 DOI: 10.1371/journal.pone.0021076] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/18/2011] [Indexed: 12/14/2022] Open
Abstract
Background In the drug discovery pipeline, safety pharmacology is a major issue. The zebrafish has been proposed as a model that can bridge the gap in this field between cell assays (which are cost-effective, but low in data content) and rodent assays (which are high in data content, but less cost-efficient). However, zebrafish assays are only likely to be useful if they can be shown to have high predictive power. We examined this issue by assaying 60 water-soluble compounds representing a range of chemical classes and toxicological mechanisms. Methodology/Principal Findings Over 20,000 wild-type zebrafish embryos (including controls) were cultured individually in defined buffer in 96-well plates. Embryos were exposed for a 96 hour period starting at 24 hours post fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC50 determination. Zebrafish embryo LC50 (log mmol/L), and published data on rodent LD50 (log mmol/kg), were found to be strongly correlated (using Kendall's rank correlation tau and Pearson's product-moment correlation). The slope of the regression line for the full set of compounds was 0.73403. However, we found that the slope was strongly influenced by compound class. Thus, while most compounds had a similar toxicity level in both species, some compounds were markedly more toxic in zebrafish than in rodents, or vice versa. Conclusions For the substances examined here, in aggregate, the zebrafish embryo model has good predictivity for toxicity in rodents. However, the correlation between zebrafish and rodent toxicity varies considerably between individual compounds and compound class. We discuss the strengths and limitations of the zebrafish model in light of these findings.
Collapse
Affiliation(s)
- Shaukat Ali
- Institute of Biology, Sylvius Laboratory, Leiden University, Leiden, The Netherlands
| | - Harald G. J. van Mil
- Institute of Biology, Sylvius Laboratory, Leiden University, Leiden, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Michael K. Richardson
- Institute of Biology, Sylvius Laboratory, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
140
|
McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA. Developmental toxicity screening in zebrafish. ACTA ACUST UNITED AC 2011; 93:67-114. [DOI: 10.1002/bdrc.20210] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
141
|
Menke AL, Spitsbergen JM, Wolterbeek APM, Woutersen RA. Normal anatomy and histology of the adult zebrafish. Toxicol Pathol 2011; 39:759-75. [PMID: 21636695 DOI: 10.1177/0192623311409597] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.
Collapse
Affiliation(s)
- Aswin L Menke
- Department of Toxicology and Applied Pharmacology, TNO Quality of Life, Zeist, The Netherlands.
| | | | | | | |
Collapse
|
142
|
Iorga B, Neacsu CD, Neiss WF, Wagener R, Paulsson M, Stehle R, Pfitzer G. Micromechanical function of myofibrils isolated from skeletal and cardiac muscles of the zebrafish. ACTA ACUST UNITED AC 2011; 137:255-70. [PMID: 21357732 PMCID: PMC3047611 DOI: 10.1085/jgp.201010568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zebrafish is a potentially important and cost-effective model for studies of development, motility, regeneration, and inherited human diseases. The object of our work was to show whether myofibrils isolated from zebrafish striated muscle represent a valid subcellular contractile model. These organelles, which determine contractile function in muscle, were used in a fast kinetic mechanical technique based on an atomic force probe and video microscopy. Mechanical variables measured included rate constants of force development (kACT) after Ca2+ activation and of force decay (τREL−1) during relaxation upon Ca2+ removal, isometric force at maximal (Fmax) or partial Ca2+ activations, and force response to an external stretch applied to the relaxed myofibril (Fpass). Myotomal myofibrils from larvae developed greater active and passive forces, and contracted and relaxed faster than skeletal myofibrils from adult zebrafish, indicating developmental changes in the contractile organelles of the myotomal muscles. Compared with murine cardiac myofibrils, measurements of adult zebrafish ventricular myofibrils show that kACT, Fmax, Ca2+ sensitivity of the force, and Fpass were comparable and τREL−1 was smaller. These results suggest that cardiac myofibrils from zebrafish, like those from mice, are suitable contractile models to study cardiac function at the sarcomeric level. The results prove the practicability and usefulness of mechanical and kinetic investigations on myofibrils isolated from larval and adult zebrafish muscles. This novel approach for investigating myotomal and myocardial function in zebrafish at the subcellular level, combined with the powerful genetic manipulations that are possible in the zebrafish, will allow the investigation of the functional primary consequences of human disease–related mutations in sarcomeric proteins in the zebrafish model.
Collapse
Affiliation(s)
- Bogdan Iorga
- Institute of Vegetative Physiology, University of Cologne, Cologne 50931, Germany.
| | | | | | | | | | | | | |
Collapse
|
143
|
Peshkovsky C, Totong R, Yelon D. Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Dev Dyn 2011; 240:446-56. [DOI: 10.1002/dvdy.22526] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2010] [Indexed: 12/27/2022] Open
|
144
|
The Atrioventricular Region of the Teleost Heart. A Distinct Heart Segment. Anat Rec (Hoboken) 2010; 294:236-42. [DOI: 10.1002/ar.21320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/08/2010] [Indexed: 11/07/2022]
|
145
|
Poon KL, Liebling M, Kondrychyn I, Garcia-Lecea M, Korzh V. Zebrafish cardiac enhancer trap lines: new tools for in vivo studies of cardiovascular development and disease. Dev Dyn 2010; 239:914-26. [PMID: 20063419 DOI: 10.1002/dvdy.22203] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using the transposon-mediated enhancer trap (ET), we generated 18 cardiac enhancer trap (CET) transgenic zebrafish lines. They exhibit EGFP expression in defined cell types--the endocardium, myocardium, and epicardium--or in anatomical regions of the heart--the atrium, ventricle, valves, or bulbus arteriosus. Most of these expression domains are maintained into adulthood. The genomic locations of the transposon insertions were determined by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The expression pattern of EGFP in some CETs is unique and recapitulates expression of genes flanking the transposon insertion site. The CETs enabled us to capture the dynamics of the embryonic heart beating in vivo using fast scanning confocal microscopy coupled with image reconstruction, producing three-dimensional movies in time (4D) illustrating region-specific features of heart contraction. This collection of CET lines represents a toolbox of markers for in vivo studies of heart development, physiology, and drug screening.
Collapse
Affiliation(s)
- Kar-Lai Poon
- Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | |
Collapse
|
146
|
PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci U S A 2010; 107:17206-10. [PMID: 20858732 DOI: 10.1073/pnas.0915016107] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A zebrafish heart can fully regenerate after amputation of up to 20% of its ventricle. During this process, newly formed coronary blood vessels revascularize the regenerating tissue. The formation of coronary blood vessels during zebrafish heart regeneration likely recapitulates embryonic coronary vessel development, which involves the activation and proliferation of the epicardium, followed by an epithelial-to-mesenchymal transition. The molecular and cellular mechanisms underlying these processes are not well understood. We examined the role of PDGF signaling in explant-derived primary cultured epicardial cells in vitro and in regenerating zebrafish hearts in vivo. We observed that mural and mesenchymal cell markers, including pdgfrβ, are up-regulated in the regenerating hearts. Using a primary culture of epicardial cells derived from heart explants, we found that PDGF signaling is essential for epicardial cell proliferation. PDGF also induces stress fibers and loss of cell-cell contacts of epicardial cells in explant culture. This effect is mediated by Rho-associated protein kinase. Inhibition of PDGF signaling in vivo impairs epicardial cell proliferation, expression of mesenchymal and mural cell markers, and coronary blood vessel formation. Our data suggest that PDGF signaling plays important roles in epicardial function and coronary vessel formation during heart regeneration in zebrafish.
Collapse
|
147
|
Sleep E, Boué S, Jopling C, Raya M, Raya A, Izpisua Belmonte JC. Transcriptomics approach to investigate zebrafish heart regeneration. J Cardiovasc Med (Hagerstown) 2010; 11:369-80. [PMID: 20179605 DOI: 10.2459/jcm.0b013e3283375900] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mammals, after a myocardial infarction episode, the damaged myocardium is replaced by scar tissue with negligible cardiomyocyte proliferation. Zebrafish, in contrast, display an extensive regenerative capacity, as they are able to restore completely lost cardiac tissue after partial ventricular amputation. Although questions about the early signals that drive the regenerative response and the relative role of each cardiac cell type in this process still need to be answered, the zebrafish is emerging as a very valuable tool to understand heart regeneration and to devise strategies that may be of potential value to treat human cardiac disease. Here, we performed a genome-wide transcriptome profile analysis focusing on the early time points of zebrafish heart regeneration and compared our results with those of previously published data. Our analyses confirmed the differential expression of several transcripts and identified additional genes whose expression is differentially regulated during zebrafish heart regeneration. We validated the microarray data by conventional and/or quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For a subset of these genes, their expression pattern was analyzed by in-situ hybridization and shown to be upregulated in the regenerating area of the heart. Our results offer new insights into the biology of heart regeneration in the zebrafish and, together with future experiments in mammals, may be of potential interest for clinical applications.
Collapse
Affiliation(s)
- Eduard Sleep
- Center for Regenerative Medicine, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
Over the last 20 years, the zebrafish has become a powerful model organism for understanding vertebrate development and disease. Although experimental analysis of the embryo and larva is extensive and the morphology has been well documented, descriptions of adult zebrafish anatomy and studies of development of the adult structures and organs, together with techniques for working with adults are lacking. The organs of the larva undergo significant changes in their overall structure, morphology, and anatomical location during the larval to adult transition. Externally, the transparent larva develops its characteristic adult striped pigment pattern and paired pelvic fins, while internally, the organs undergo massive growth and remodeling. In addition, the bipotential gonad primordium develops into either testis or ovary. This protocol identifies many of the organs of the adult and demonstrates methods for dissection of the brain, gonads, gastrointestinal system, heart, and kidney of the adult zebrafish. The dissected organs can be used for in situ hybridization, immunohistochemistry, histology, RNA extraction, protein analysis, and other molecular techniques. This protocol will assist in the broadening of studies in the zebrafish to include the remodeling of larval organs, the morphogenesis of organs specific to the adult and other investigations of the adult organ systems.
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine.
| | | |
Collapse
|
149
|
Leknes IL. Structural and Histochemical Studies on the Teleostean Bulbus Arteriosus. Anat Histol Embryol 2009; 38:424-8. [DOI: 10.1111/j.1439-0264.2009.00963.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Luttun A, Verhamme P. Keeping your vascular integrity: What can we learn from fish? Bioessays 2008; 30:418-22. [PMID: 18404689 DOI: 10.1002/bies.20755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cardiovascular system has the life-providing task of delivering oxygen and any flaw in this system can be life-threatening. This has encouraged extensive studies to elucidate the mechanisms behind cardiovascular development/homeostasis. The zebrafish has emerged as a formidable tool to speed up this quest, as illustrated in a recent issue of Nature Genetics.1 Baculovirus IAP repeat c2 (BIRC2), also termed cellular inhibitor of apoptosis (cIAP)-1, was found to specifically prevent endothelial cells (ECs, lining the inside of vessels) from going into suicide mode ('apoptosis') and so preserve vessel integrity. Here, we summarize the factors determining vascular integrity and elaborate on the suitability of the zebrafish to study this phenomenon.
Collapse
Affiliation(s)
- Aernout Luttun
- Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium.
| | | |
Collapse
|