101
|
Fujioka M, Jaynes JB, Goto T. Early even-skipped stripes act as morphogenetic gradients at the single cell level to establish engrailed expression. Development 1995; 121:4371-82. [PMID: 8575337 PMCID: PMC2693940 DOI: 10.1242/dev.121.12.4371] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
even-skipped (eve) has been proposed to set up parasegment borders at the anterior edge of each of its seven stripes by providing a sharp expression boundary, where engrailed is activated on one side and wingless on the other. By expressing bell-shaped early eve stripes without the sharp boundary provided by narrow, late stripes, we find that the early gradient is sufficient for generating stable parasegment borders. Based on several lines of evidence, we propose that the anterior portion of each early stripe has morphogenic activity, repressing different target genes at different concentrations. These distinct repression thresholds serve to both limit and subdivide a narrow zone of paired expression. Within this zone, single cell rows express either engrailed, where runt and sloppy-paired are repressed, or wingless, where they are not. While the early eve gradient is sufficient to establish parasegmental borders without refined, late expression, late eve expression has a role in augmenting this boundary to provide for strong, continuous stripes or engrailed expression. In addition, we show that the early eve gradient is sufficient, at its posterior edge, for subdividing the ftz domain into engrailed expressing and non-expressing cells.
Collapse
Affiliation(s)
- M Fujioka
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
102
|
Briata P, Van De Werken R, Airoldi I, Ilengo C, Di Blas E, Boncinelli E, Corte G. Transcriptional repression by the human homeobox protein EVX1 in transfected mammalian cells. J Biol Chem 1995; 270:27695-701. [PMID: 7499236 DOI: 10.1074/jbc.270.46.27695] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The human homeobox protein EVX1 (EVX1) is thought to play an important role during embryogenesis. In this study, the effect of EVX1 on gene transcription has been investigated in transfected mammalian cells. EVX1 expression represses transcription of a reporter gene directed by either cell-specific or viral promoter/enhancer sequences in a variety of mammalian cell lines and in a concentration-dependent manner. Transcriptional repression is independent of the presence of DNA-binding sites for EVX1 in all the promoters we tested. Furthermore, repression by EVX1 is evident also using a TATA-less minimal promoter in the reporter construct. A carboxyl-terminal proline/alanine-rich region of EVX1 seems to be responsible for the transcriptional repression activity, as suggested by transfection of EVX1 mutants. We speculate that the repressor function of EVX1 contributes to its proposed role in embryogenesis.
Collapse
Affiliation(s)
- P Briata
- Laboratory of Immunobiology I.S.T., Advanced Biotechnology Center, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
103
|
Williams AJ, Khachigian LM, Shows T, Collins T. Isolation and characterization of a novel zinc-finger protein with transcription repressor activity. J Biol Chem 1995; 270:22143-52. [PMID: 7673192 DOI: 10.1074/jbc.270.38.22143] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To identify genes that can repress the expression of growth regulatory molecules, a human fetal cDNA library was screened with a degenerate oligonucleotide that corresponds to the conserved stretch of 6 amino acids connecting successive zinc-finger regions in the Wilms' tumor suppressor/Egr-1 family of DNA-binding proteins. One clone, designated zinc-finger protein 174 (ZNF174), corresponds to a putative transcription factor with three zinc fingers and a novel finger-associated domain, designated the SCAN box. The three Cys2-His2-type zinc fingers are positioned at the carboxyl terminus, while the 65-amino acid finger-associated SCAN box is located near the amino terminus. Chromosomal localization using somatic cell hybrid analysis and fluorescent in situ hybridization mapped the gene for ZNF174 to human chromosome 16p13.3. The 2.5-kilobase transcript from this gene is expressed in a variety of human organs, but most strongly in adult testis and ovary. Fusion of the upstream regulatory region of ZNF174 to the DNA-binding domain of GAL4 revealed that the gene could confer a repression function on the heterologous DNA-binding domain. ZNF174 selectively repressed reporter activity driven by the platelet-derived growth factor-B chain and transforming growth factor-beta 1 promoters and bound to DNA in a specific manner. This member of the C2H2-type zinc-finger family is a novel transcriptional repressor.
Collapse
Affiliation(s)
- A J Williams
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
104
|
Um M, Li C, Manley JL. The transcriptional repressor even-skipped interacts directly with TATA-binding protein. Mol Cell Biol 1995; 15:5007-16. [PMID: 7651419 PMCID: PMC230748 DOI: 10.1128/mcb.15.9.5007] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Drosophila homeodomain protein Even-skipped (Eve) has previously been shown to function as a sequence-specific transcriptional repressor, and in vitro and in vivo experiments have shown that the protein can actively block basal transcription. However, the mechanism of repression is not known. Here, we present evidence establishing a direct interaction between Eve and the TATA-binding protein (TBP). Using cotransfection assays with minimal basal promoters whose activity can be enhanced by coexpression of TBP, we found that Eve could efficiently block, or squelch, this enhancement. Squelching did not require Eve DNA-binding sites on the reporter plasmids but was dependent on the presence of the Eve repression domain. Further support for an in vivo interaction between the Eve repression domain and TBP was derived from a two-hybrid-type assay with transfected cells. Evidence that Eve and TBP interact directly was provided by in vitro binding assays, which revealed a specific protein-protein interaction that required an intact Eve repression domain and the conserved C terminus of TBP. The Eve homeodomain was also required for these associations, suggesting that it may function in protein-protein interactions. We also show that a previously characterized artificial repression region behaves in a manner similar to that of the Eve repression domain, including its ability to squelch TBP-enhanced expression in vivo and to bind TBP specifically in vitro. Our results suggest a model for transcriptional repression that involves an interaction between Eve and TBP.
Collapse
Affiliation(s)
- M Um
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
105
|
Zuo J, Rungger D, Voellmy R. Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 1995; 15:4319-30. [PMID: 7623826 PMCID: PMC230671 DOI: 10.1128/mcb.15.8.4319] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Upon heat stress, monomeric human heat shock transcription factor 1 (hHSF1) is converted to a trimer, acquires DNA-binding ability, is transported to the nucleus, and becomes transcriptionally competent. It was not known previously whether these regulatory changes are caused by a single activation event or whether they occur independently from one another, providing a multilayered control that may prevent inadvertant activation of hHSF1. Comparison of wild-type and mutant hHSF1 expressed in Xenopus oocytes and human HeLa cells suggested that retention of hHSF1 in the monomeric form depends on hydrophobic repeats (LZ1 to LZ3) and a carboxy-terminal sequence element in hHSF1 as well as on the presence of a titratable factor in the cell. Oligomerization of hHSF1 appears to induce DNA-binding activity as well as to uncover an amino-terminally located nuclear localization signal. A mechanism distinct from that controlling oligomerization regulates the transcriptional competence of hHSF1. Components of this mechanism were mapped to a region, including LZ2 and nearby sequences downstream from LZ2, that is clearly separated from the carboxy-terminally located transcription activation domain(s). We propose the existence of a fold-back structure that masks the transcription activation domain in the unstressed cell but is opened up by modification of hHSF1 and/or binding of a factor facilitating hHSF1 unfolding in the stressed cell. Activation of hHSF1 appears to involve at least two independently regulated structural transitions.
Collapse
Affiliation(s)
- J Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | | | |
Collapse
|
106
|
Abstract
We report the isolation and characterization of a putative angiotensin converting enzyme (ACE) in Drosophila, called Race. General interest in mammalian ACE stems from its association with high blood pressure; ACE has also been implicated in a variety of other physiological processes including the processing of neuropeptides and gut peristalsis. Mammalian ACE is a membrane associated zinc binding protease that converts angiotensin I (A I) into angiotensin II (A II). A II functions as a potent vasoconstrictor by triggering a G-coupled receptor system in the smooth muscles that line blood vessels. Drosophila Race is composed of 615 amino acid residues, and shares extensive sequence identity with mammalian ACE over its entire length (over 42% overall identity and greater than 60% similarity). Evidence is presented that Race might correspond to a target of the homeobox regulatory gene, zerknullt (zen). Soon after zen expression is restricted to the dorsal-most regions of the embryonic ectoderm, Race is activated in a coincident pattern and becomes associated with the amnioserosa during germ band elongation, shortening and heart morphogenesis. After germ band elongation, Race is also expressed in both the anterior and posterior midgut, where it persists throughout embryogenesis. Race expression is lost from the dorsal ectoderm in either zen- or dpp- mutants, although gut expression is unaffected. P-transformation assays and genetic complementation tests suggest that Race corresponds to a previously characterized lethal complementation group, 1(2)34Eb. Mutants die during larval/pupal development, and transheterozygotes for two different lethal alleles exhibit male sterility. We propose that Race might play a role in the contractions of the heart, gut, or testes and also suggest that Hox genes might be important for coordinating both developmental and physiological processes.
Collapse
Affiliation(s)
- K Tatei
- Department of Biology, UCSD, La Jolla 92093-0322, USA
| | | | | | | |
Collapse
|
107
|
Abstract
The even-skipped (eve) gene of Drosophila melanogaster has been intensively studied as a model for spatial and temporal control of gene expression, using in vitro and transgenic techniques. Here, the study of eve is extended, using evolutionary conservation of DNA sequences. Conservation of much of the protein, and of known regulatory elements, supports models for eve function and regulation that have previously been advanced, and extensive conservation found in noncoding sequences predicts that functional elements exist that have yet to be defined. In contrast, a part of the protein implicated in transcriptional repression has diverged extensively while preserving overall amino acid composition, highlighting potentially essential features of this domain. Also, the basal promoter has diverged extensively, indicating evolutionary flexibility of promoter function.
Collapse
Affiliation(s)
- C Sackerson
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| |
Collapse
|
108
|
Terol J, Perez-Alonso M, de Frutos R. Molecular characterization of the zerknüllt region of the Antennapedia complex of D. subobscura. Chromosoma 1995; 103:613-24. [PMID: 7587584 DOI: 10.1007/bf00357688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have characterized at the molecular level the zerknüllt (zen) region of the Drosophila subobscura Antennapedia complex. The sequence comparison between D. subobscura and D. melanogaster shows an irregular distribution of the conserved and diverged regions, with the homeobox and a putative activating domain completely conserved. Comparisons of the promoter sequence and pattern of expression of the gene during development suggest that the regulation of zen has been conserved during evolution. The conservation of zen expression in a subpopulation of the polar cells indicates the existence of an important role in such cells. We describe a transitory segmented pattern of expression of zen in both species, suggesting the existence of interactions with a pair rule gene. Some indirect clues indicate that the z2 gene might be absent from the D. subobscura genome. A chromosome walk initiated to reach the proboscipedia gene of D. subobscura reveals that the distance between pb and zen is at least four times the one described for D. melanogaster and for D. pseudoobscura. Finally, we present cytological evidence showing that the ANT-C is inverted in D. subobscura as compared to D. melanogaster.
Collapse
Affiliation(s)
- J Terol
- Department of Biochemistry, Imperial College, London, UK
| | | | | |
Collapse
|
109
|
Colgan J, Ashali H, Manley JL. A direct interaction between a glutamine-rich activator and the N terminus of TFIIB can mediate transcriptional activation in vivo. Mol Cell Biol 1995; 15:2311-20. [PMID: 7891725 PMCID: PMC230459 DOI: 10.1128/mcb.15.4.2311] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Studies examining the mechanism by which transcriptional activators function have suggested that the general transcription factor IIB (TFIIB) can be a target for certain regulatory proteins. For example, we showed previously that expression of a mutant form of TFIIB can specifically inhibit activation in vivo mediated by the strong, glutamine-rich activator protein GAL4-ftzQ. Using transient cotransfection assays, we have defined the regions in both GAL4-ftzQ and TFIIB that are required for activity in vivo and provide evidence that a potential zinc finger structure at the N terminus of TFIIB is necessary for the observed functional interaction between the two proteins. Using a protein binding assay, we have demonstrated that GAL4-ftzQ can specifically interact with TFIIB in vitro. This interaction requires the same regions in both molecules necessary for function in vivo and is reduced or eliminated by mutations predicted to disrupt the zinc finger in TFIIB. These results support the idea that a direct interaction between a regulatory protein and TFIIB can be important for transcriptional activation in vivo and, combined with previous data of others, suggest that different activators can function by contacting distinct regions of TFIIB.
Collapse
Affiliation(s)
- J Colgan
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
110
|
Colgan J, Manley JL. Cooperation between core promoter elements influences transcriptional activity in vivo. Proc Natl Acad Sci U S A 1995; 92:1955-9. [PMID: 7892207 PMCID: PMC42401 DOI: 10.1073/pnas.92.6.1955] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Core promoters for RNA polymerase II frequently contain either (or both) of two consensus sequence elements, a TATA box and/or an initiator (Inr). Using test promoters consisting of prototypical TATA and/or Inr elements, together with binding sites for sequence-specific activators, we have analyzed the function of TATA and Inr elements in vivo. In the absence of activators, the TATA element was significantly more active than the Inr, and the combination of elements was only slightly more effective than the TATA-only promoter. In the presence of any of several coexpressed activator proteins, the TATA elements was again most active, but here addition of the Inr allowed significant increases in activity, indicating a cooperative interaction between the two elements. An interesting exception was observed with the activator Sp1, which was more effective with the Inr-only promoter, and addition of a TATA box did not enhance activity. Finally, in all cases the TATA plus Inr promoters were found to be partially or completely resistant to the dominant negative effects of a transcription factor TFIIB mutant previously shown to interfere with expression from TATA-only promoters. This result strengthens the conclusion that TATA and Inr elements can cooperate in vivo.
Collapse
Affiliation(s)
- J Colgan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
111
|
Fredericks WJ, Galili N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG, Rauscher FJ. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995; 15:1522-35. [PMID: 7862145 PMCID: PMC230376 DOI: 10.1128/mcb.15.3.1522] [Citation(s) in RCA: 244] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alveolar rhabdomyosarcomas are pediatric solid tumors with a hallmark cytogenetic abnormality: translocation of chromosomes 2 and 13 [t(2;13) (q35;q14)]. The genes on each chromosome involved in this translocation have been identified as the transcription factor-encoding genes PAX3 and FKHR. The NH2-terminal paired box and homeodomain DNA-binding domains of PAX3 are fused in frame to COOH-terminal regions of the chromosome 13-derived FKHR gene, a novel member of the forkhead DNA-binding domain family. To determine the role of the fusion protein in transcriptional regulation and oncogenesis, we identified the PAX3-FKHR fusion protein and characterized its function(s) as a transcription factor relative to wild-type PAX3. Antisera specific to PAX3 and FKHR were developed and used to examine PAX3 and PAX3-FKHR expression in tumor cell lines. Sequential immunoprecipitations with anti-PAX3 and anti-FKHR sera demonstrated expression of a 97-kDa PAX3-FKHR fusion protein in the t(2;13)-positive rhabdomyosarcoma Rh30 cell line and verified that a single polypeptide contains epitopes derived from each protein. The PAX3-FKHR protein was localized to the nucleus in Rh30 cells, as was wild-type PAX3, in t(2;13)-negative A673 cells. In gel shift assays using a canonical PAX binding site (e5 sequence), we found that DNA binding of PAX3-FKHR was significantly impaired relative to that of PAX3 despite the two proteins having identical PAX DNA-binding domains. However, the PAX3-FKHR fusion protein was a much more potent transcriptional activator than PAX3 as determined by transient cotransfection assays using e5-CAT reporter plasmids. The PAX3-FKHR protein may function as an oncogenic transcription factor by enhanced activation of normal PAX3 target genes.
Collapse
Affiliation(s)
- W J Fredericks
- Wistar Institute, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | | | | | | | |
Collapse
|
112
|
Norris JL, Manley JL. Regulation of dorsal in cultured cells by Toll and tube: tube function involves a novel mechanism. Genes Dev 1995; 9:358-69. [PMID: 7867932 DOI: 10.1101/gad.9.3.358] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We described previously a transient cotransfection assay that allows us to study regulation of the Drosophila Dorsal protein (dl) in cultured cells. For example, we showed that over-expression of the Toll transmembrane receptor was sufficient to cause relocalization of dl from the cytoplasm to the nucleus. Here we present data that the tube protein, shown previously by genetic studies to act downstream of Toll, can function in a novel way to enhance dl activity. In the absence of dl, or when dl is cytoplasmic, tube is also found in the cytoplasm of transfected cells. But when dl is localized to the nucleus, so is tube. tube can then function to enhance reporter gene expression, either by cooperation with dl or as a GAL4-tube fusion protein. tube thus appears capable of acting both as a chaperon or escort for dl as it moves to the nucleus, and then as a transcriptional coactivator. We also show that the intracytoplasmic domain of Toll, and specifically the region sharing homology with the interleukin-1 receptor, is sufficient to induce dl-tube nuclear translocation.
Collapse
Affiliation(s)
- J L Norris
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
113
|
Reinitz J, Mjolsness E, Sharp DH. Model for cooperative control of positional information in Drosophila by bicoid and maternal hunchback. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1995; 271:47-56. [PMID: 7852948 DOI: 10.1002/jez.1402710106] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The blastoderm of the fruit fly Drosophila melanogaster is unusually well suited for analysis of fundamental questions in animal development. One such question is how genes specify the positional information which determines the developmental pathways (fate) of cells at appropriate spatial locations. In this paper we propose a dynamical model of gene regulation which explicitly describes how positional information is used in the blastoderm. The model is applied to analyze important experimental findings on the dependence of cell fate on the concentration of the Bicoid morphogen. The model shows that positional information in the presumptive middle body is cooperatively determined by maternal products of the bicoid and hunchback genes.
Collapse
Affiliation(s)
- J Reinitz
- Center for Medical Informatics, Yale Medical School, New Haven, Connecticut 06510
| | | | | |
Collapse
|
114
|
Van Doren M, Bailey AM, Esnayra J, Ede K, Posakony JW. Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev 1994; 8:2729-42. [PMID: 7958929 DOI: 10.1101/gad.8.22.2729] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
hairy (h) acts as a negative regulator in both embryonic segmentation and adult peripheral nervous system (PNS) development in Drosophila. Here, we demonstrate that h, a basic-helix-loop-helix (bHLH) protein, is a sequence-specific DNA-binding protein and transcriptional repressor. We identify the proneural gene achaete (ac) as a direct downstream target of h regulation in vivo. Mutation of a single, evolutionarily conserved, high-affinity h binding site in the upstream region of ac results in the appearance of ectopic sensory organs in adult flies, in a pattern that strongly resembles the phenotype of h mutants. This indicates that direct repression of ac by h plays an essential role in pattern formation in the PNS. Our results demonstrate that HLH proteins negatively regulate ac transcription by at least two distinct mechanisms.
Collapse
Affiliation(s)
- M Van Doren
- Department of Biology, University of California San Diego, La Jolla 92093-0322
| | | | | | | | | |
Collapse
|
115
|
Ohsako S, Hyer J, Panganiban G, Oliver I, Caudy M. Hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev 1994; 8:2743-55. [PMID: 7958930 DOI: 10.1101/gad.8.22.2743] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sensory organ formation in Drosophila is activated by proneural genes that encode basic-helix-loop-helix (bHLH) transcription factors. These genes are antagonized by hairy and other proline-bHLH proteins. hairy has not been shown to bind to DNA and has been proposed to form inactive heterodimers with proneural activator proteins. Here, we show that hairy does bind to DNA and has novel DNA-binding activity: hairy prefers a noncanonical site, CACGCG, although it also binds to related sites. Mutation of a single CACGCG site in the achaete (ac) proneural gene blocks hairy-mediated repression of ac transcription in cultured Drosophila cells. Moreover, the same CACGCG mutation in an ac minigene transformed into Drosophila creates ectopic sensory hair organs like those seen in hairy mutants. Together these results indicate that hairy represses sensory organ formation by directly repressing transcription of the ac proneural gene.
Collapse
Affiliation(s)
- S Ohsako
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| | | | | | | | | |
Collapse
|
116
|
Heberlein U, Penton A, Falsafi S, Hackett D, Rubin GM. The C-terminus of the homeodomain is required for functional specificity of the Drosophila rough gene. Mech Dev 1994; 48:35-49. [PMID: 7833288 DOI: 10.1016/0925-4773(94)90004-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In contrast to most Drosophila homeobox genes, which are required during embryogenesis, the rough gene is involved in photoreceptor cell specification in the compound eye. Taking advantage of the viability of null rough alleles and the small size of the rough gene, we have combined in vivo and in vitro mutagenesis to define important functional domains in the rough protein. All missense mutations found to disrupt rough function mapped to highly conserved amino acids in the homeodomain (HD), suggesting that the nature of few, if any, single amino acids outside the HD is critical for rough activity. The analysis of chimeric proteins, in which the whole HD or parts of it were swapped between the rough and Antennapedia (Antp) proteins, revealed that the C-terminus of the rough HD is important for rough activity in vivo. This C-terminal region was also found to be required for the recognition of rough binding sites in vitro. Our data suggest that amino acids located in the C-terminus of the homeodomain may play important roles in selective binding site recognition.
Collapse
Affiliation(s)
- U Heberlein
- HHMI, University of California at Berkeley 94220
| | | | | | | | | |
Collapse
|
117
|
DNA methylation represses the murine alpha 1(I) collagen promoter by an indirect mechanism. Mol Cell Biol 1994. [PMID: 8065328 DOI: 10.1128/mcb.14.9.5950] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence indicate that DNA methylation plays a role in the transcriptional regulation of the murine alpha 1(I) collagen gene. To study the molecular mechanisms involved, a reporter gene construct containing the alpha 1(I) promoter and part of the first exon linked to the luciferase gene (Col3luc) was methylated in vitro and transfected into murine fibroblasts and embryonal carcinoma cells. Methylation resulted in repression of the alpha 1(I) promoter in both cell types, although it was less pronounced in embryonal carcinoma cells than in fibroblasts. The extent of repression depended on the density of methylation. DNase footprint and mobility shift assays indicated that the trans-acting factors binding to the alpha 1(I) promoter and first exon are ubiquitous factors and that their DNA binding is not inhibited by methylation. Transfection of Col3luc into Drosophila SL2 cells together with expression vectors for the transcription factors Sp1 and NF-1 showed that DNA methylation also inhibits the alpha 1(I) promoter in nonvertebrate cells, although to a much lesser extent than in murine cells. However, Sp1 and NF-1 transactivated the unmethylated and methylated reporter gene in SL2 cells equally well, confirming that these factors can bind and transactivate methylated DNA and indicating that DNA methylation represses the alpha 1(I) promoter by an indirect mechanism. This was further confirmed by cotransfection experiments with unspecific methylated competitor DNA which partially restored the activity of the methylated alpha 1(I) promoter. Our results suggest that DNA methylation can inhibit promoter activity by an indirect mechanism independent of methyl-C-binding proteins and that in vertebrate cells, chromatin structure and methyl-C-binding proteins cooperatively mediate the transcriptional inhibitory effect of DNA methylation.
Collapse
|
118
|
Rhodes K, Rippe RA, Umezawa A, Nehls M, Brenner DA, Breindl M. DNA methylation represses the murine alpha 1(I) collagen promoter by an indirect mechanism. Mol Cell Biol 1994; 14:5950-60. [PMID: 8065328 PMCID: PMC359121 DOI: 10.1128/mcb.14.9.5950-5960.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Several lines of evidence indicate that DNA methylation plays a role in the transcriptional regulation of the murine alpha 1(I) collagen gene. To study the molecular mechanisms involved, a reporter gene construct containing the alpha 1(I) promoter and part of the first exon linked to the luciferase gene (Col3luc) was methylated in vitro and transfected into murine fibroblasts and embryonal carcinoma cells. Methylation resulted in repression of the alpha 1(I) promoter in both cell types, although it was less pronounced in embryonal carcinoma cells than in fibroblasts. The extent of repression depended on the density of methylation. DNase footprint and mobility shift assays indicated that the trans-acting factors binding to the alpha 1(I) promoter and first exon are ubiquitous factors and that their DNA binding is not inhibited by methylation. Transfection of Col3luc into Drosophila SL2 cells together with expression vectors for the transcription factors Sp1 and NF-1 showed that DNA methylation also inhibits the alpha 1(I) promoter in nonvertebrate cells, although to a much lesser extent than in murine cells. However, Sp1 and NF-1 transactivated the unmethylated and methylated reporter gene in SL2 cells equally well, confirming that these factors can bind and transactivate methylated DNA and indicating that DNA methylation represses the alpha 1(I) promoter by an indirect mechanism. This was further confirmed by cotransfection experiments with unspecific methylated competitor DNA which partially restored the activity of the methylated alpha 1(I) promoter. Our results suggest that DNA methylation can inhibit promoter activity by an indirect mechanism independent of methyl-C-binding proteins and that in vertebrate cells, chromatin structure and methyl-C-binding proteins cooperatively mediate the transcriptional inhibitory effect of DNA methylation.
Collapse
Affiliation(s)
- K Rhodes
- Department of Biology, San Diego State University, California 92182
| | | | | | | | | | | |
Collapse
|
119
|
Cai J, Lan Y, Appel LF, Weir M. Dissection of the Drosophila paired protein: functional requirements for conserved motifs. Mech Dev 1994; 47:139-50. [PMID: 7811637 DOI: 10.1016/0925-4773(94)90086-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Drosophila paired gene encodes three conserved motifs: a homeodomain, paired domain and PRD (his/pro) repeat. To investigate the functional importance of the PRD repeat and paired domain, we tested deletion mutants using an ectopic expression assay in embryos. Our results suggest that the PRD repeat is not required for the in vivo regulation of the target genes, engrailed and gooseberry. However, the PRD repeat appears to be embedded within a proline-rich transcriptional activation domain required for the regulation of these genes. Our analysis of the paired domain indicated that its N-terminal half, which is required for DNA binding in vitro, is also required for in vivo function, whereas surprisingly, the C-terminal half is dispensable for the regulation of engrailed and gooseberry.
Collapse
Affiliation(s)
- J Cai
- Department of Biology, Wesleyan University, Middletown, CT 06459
| | | | | | | |
Collapse
|
120
|
Moretti P, Simmons P, Thomas P, Haylock D, Rathjen P, Vadas M, D'Andrea R. Identification of homeobox genes expressed in human haemopoietic progenitor cells. Gene 1994; 144:213-9. [PMID: 7518789 DOI: 10.1016/0378-1119(94)90380-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homeodomain (HD)-containing proteins have been shown to regulate cellular commitment and differentiation in fungal, invertebrate and vertebrate systems. Bone marrow cells synthesizing the CD34 antigen are a complex mix of early, stem and progenitor cells at various stages of commitment to the many haemopoietic lineages. Here, we report the cloning and sequencing of 31 homeobox (HB) sequences, identified using degenerate oligodeoxyribonucleotide primers, in a polymerase chain reaction with cDNA derived from a purified CD34+ population of human haemopoietic cells. Of these sequences, 16 correspond to previously identified genes, and 13 are located within the HOX A, B and C clusters. Ten of the clones most likely represent human homologues of genes identified previously in other species. Five of the clones reported here represent novel HD sequences. The identification of five new genes using a subclass-specific 5' primer, designed from the engrailed and Xanf1 sequences, suggests that there still remain several uncharacterized HB genes in the human genome. Haemopoietic cells purified on the basis of CD34 antigen synthesis are a rich source of regulatory genes consistent with their ability to differentiate into diverse haemopoietic cell types.
Collapse
Affiliation(s)
- P Moretti
- Division of Human Immunology, Hanson Centre for Cancer Research, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
121
|
Dynlacht BD, Brook A, Dembski M, Yenush L, Dyson N. DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc Natl Acad Sci U S A 1994; 91:6359-63. [PMID: 8022787 PMCID: PMC44201 DOI: 10.1073/pnas.91.14.6359] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The temporal activation of E2F transcriptional activity appears to be an important component of the mechanisms that prepare mammalian cells for DNA replication. Regulation of E2F activity appears to be a highly complex process, and the dissection of the E2F pathway will be greatly facilitated by the ability to use genetic approaches. We report the isolation of two Drosophila genes that can stimulate E2F-dependent transcription in Drosophila cells. One of these genes, dE2F, contains three domains that are highly conserved in the human homologs E2F-1, E2F-2, and E2F-3. Interestingly, one of these domains is highly homologous to the retinoblastoma protein (RB)-binding sequences of human E2F genes. The other gene, dDP, is closely related to the human DP-1 and DP-2 genes. We demonstrate that dDP and dE2F interact and cooperate to give sequence-specific DNA binding and optimal trans-activation. These features suggest that endogenous Drosophila E2F, like human E2F, may be composed of heterodimers and may be regulated by RB-like proteins. The isolation of these genes will provide important reagents for the genetic analysis of the E2F pathway.
Collapse
Affiliation(s)
- B D Dynlacht
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Charlestown 02129
| | | | | | | | | |
Collapse
|
122
|
The Drosophila tissue-specific factor Grainyhead contains novel DNA-binding and dimerization domains which are conserved in the human protein CP2. Mol Cell Biol 1994. [PMID: 8196641 DOI: 10.1128/mcb.14.6.4020] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have mapped the regions in the Drosophila melanogaster tissue-specific transcription factor Grainyhead that are required for DNA binding and dimerization. These functional domains correspond to regions conserved between Grainyhead and the vertebrate transcription factor CP2, which we show has similar activities. The identified DNA-binding domain is large (263 amino acids) but contains a smaller core that is able to interact with DNA at approximately 400-fold lower affinity. The major dimerization domain is located in a separate region of the protein and is required to stabilize the interactions with DNA. Our data also suggest that Grainyhead activity can be modulated by an N-terminal inhibitory domain.
Collapse
|
123
|
Uv AE, Thompson CR, Bray SJ. The Drosophila tissue-specific factor Grainyhead contains novel DNA-binding and dimerization domains which are conserved in the human protein CP2. Mol Cell Biol 1994; 14:4020-31. [PMID: 8196641 PMCID: PMC358768 DOI: 10.1128/mcb.14.6.4020-4031.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have mapped the regions in the Drosophila melanogaster tissue-specific transcription factor Grainyhead that are required for DNA binding and dimerization. These functional domains correspond to regions conserved between Grainyhead and the vertebrate transcription factor CP2, which we show has similar activities. The identified DNA-binding domain is large (263 amino acids) but contains a smaller core that is able to interact with DNA at approximately 400-fold lower affinity. The major dimerization domain is located in a separate region of the protein and is required to stabilize the interactions with DNA. Our data also suggest that Grainyhead activity can be modulated by an N-terminal inhibitory domain.
Collapse
Affiliation(s)
- A E Uv
- Department of Anatomy, University of Cambridge, England
| | | | | |
Collapse
|
124
|
Jensen S, Cavarec L, Dhellin O, Heidmann T. Retrotransposition of a marked Drosophila line-like I element in cells in culture. Nucleic Acids Res 1994; 22:1484-8. [PMID: 8190641 PMCID: PMC308009 DOI: 10.1093/nar/22.8.1484] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have marked a Drosophila transposable element--the LINE-like I element--with an intron-containing indicator gene inserted in place of a large deletion in the I element second ORF encompassing the reverse transcriptase domain, and this marked element was placed downstream to a potent actin promoter. An expression vector for the I element ORFs was also constructed, under the same heterologous promoter. The indicator gene contains a lacZ reporter gene the expression of which is conditioned by retrotransposition of the marked element, thus allowing detection of transposition events by testing for either beta-galactosidase expression or occurrence of spliced DNA molecules. The marked I element was introduced into Drosophila melanogaster cells in culture by transfection. Spliced DNA copies of the marked element and specifically stained beta-galactosidase-expressing cells were detected only upon co-transfection with the I expression vector, thus indicating that an ORF2-deleted element can be complemented in trans for transposition. This simple assay for retrotransposition in Drosophila cells in culture provides a tool for the rapid analysis of the mechanism of I transposition in its cis and trans sequence requirements.
Collapse
Affiliation(s)
- S Jensen
- Unités de Physicochimie et Pharmacologie des Macromolécules Biologiques, CNRS, Villejuif, France
| | | | | | | |
Collapse
|
125
|
Zappavigna V, Sartori D, Mavilio F. Specificity of HOX protein function depends on DNA-protein and protein-protein interactions, both mediated by the homeo domain. Genes Dev 1994; 8:732-44. [PMID: 7926763 DOI: 10.1101/gad.8.6.732] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcription of human HOX gene promoters in cultured cells is positively and negatively regulated by HOX proteins interacting with specific target sequences. The human HOXD9 protein activates transcription of the HOXD9 promoter by interacting with the HCR sequence and is antagonized by the HOXD8 protein. HOXD8 is not intrinsically a repressor, since it can activate transcription on different targets. Complete or partial HOXD8/HOXD9 homeo domain swapping indicates that the ability to recognize, and activate transcription from, the HCR target in vivo depends on the amino terminus and helix 1 of the homeo domain. The inhibitory activity of HOXD8 is not affected by deletion of the homeo domain helix 2/3 region, whereas it requires the amino terminus/helix 1 region and an additional, effector domain located at the protein amino-terminal end. This activity is therefore DNA-binding independent, and possibly mediated by protein-protein interactions. Affinity chromatography experiments show that the homeo domain amino terminus/helix 1 region is able to mediate direct interactions between HOX proteins in solution. These data indicate that specificity of HOX protein function in vivo depends on both DNA-protein and protein-protein interactions, mediated by the same sub region of the homeo domain.
Collapse
Affiliation(s)
- V Zappavigna
- Department of Biology and Technology (DIBIT), Istituto Scientifico H.S. Raffaele, Milan, Italy
| | | | | |
Collapse
|
126
|
Krauskopf A, Aloni Y. A cellular repressor regulates transcription initiation from the minute virus of mice P38 promoter. Nucleic Acids Res 1994; 22:828-34. [PMID: 8139925 PMCID: PMC307889 DOI: 10.1093/nar/22.5.828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We previously reported that the P38 promoter of minute virus of mice (MVM) is trans activated by the viral nonstructural protein, NS1, through an interaction with a downstream promoter element designated DPE. In this communication we report the identification of a distinct downstream promoter element which inhibits transcription from the P38 promoter in vitro, in the absence of the DPE. Removal of 34 bp from the region between +95 and +129 downstream from the P38 initiation start site relieved inhibition of transcription in whole-cell extract. Inhibition was also relieved by the addition, to the transcription reaction, of excess DNA fragments which span the putative inhibiting element. This indicated the involvement of a trans-acting factor, in inhibition of transcription from the P38. Gel retardation experiments demonstrated the specific binding of a cellular protein to the inhibitory element. This P38 inhibitory element shows spacing and orientation dependence as well as promoter specificity. The regulation of viral transcription by a cellular repressor may play an important role in obtaining a fine temporal order of viral gene expression during the course of infection.
Collapse
Affiliation(s)
- A Krauskopf
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
127
|
Goping I, Shore G. Interactions between repressor and anti-repressor elements in the carbamyl phosphate synthetase I promoter. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41944-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
128
|
Functional analysis of mouse Hoxa-7 in Saccharomyces cerevisiae: sequences outside the homeodomain base contact zone influence binding and activation. Mol Cell Biol 1994. [PMID: 8264592 DOI: 10.1128/mcb.14.1.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The murine developmental control gene product, Hoxa-7, was shown to function as a DNA-binding transactivator in Saccharomyces cerevisiae. The importance of the ATTA core, the preference for antp class flanking nucleotides, the importance of Asn-51 of the homeodomain (HD), and the synergism of multiple binding sites all reflect properties that have previously been described for HOM or Hox proteins in tissue culture systems. A comparison of contact positions among genes of paralog groups and classes of mammalian HDs points to a lack of diversity in positions that make base contact, suggesting that besides the combination of HD amino acid-base pair contacts, another means of recognizing differences between targets must exist if Hox genes select different targets. The HD of antennapedia is identical to the Hoxa-7 HD. The interaction of Hoxa-7 with the exact sequence used in the nuclear magnetic resonance three-dimensional structural analysis on the antennapedia HD was studied. Hoxa-7 binding and transactivation was influenced by sequences outside of the known base contact zone of this site. We conclude that Hoxa-7 protein has a second means to interact with DNA or/and that the sequences flanking the base contact zone influence HD interactions by distorting DNA within the contact zone (base or backbone). This result is discussed in terms of DNA flexure and two modes of transcription used in S. cerevisiae.
Collapse
|
129
|
Flickinger RA. Cell differentiation: an evolutionary perspective. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 148:81-118. [PMID: 7509780 DOI: 10.1016/s0074-7696(08)62406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R A Flickinger
- Department of Biological Sciences, State University of New York at Buffalo 14260
| |
Collapse
|
130
|
Hirose F, Yamaguchi M, Matsukage A. Repression of regulatory factor for Drosophila DNA replication-related gene promoters by zerknüllt homeodomain protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42031-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
131
|
Wu K, Wilson D, Shih C, Darlington G. The transcription factor HNF1 acts with C/EBP alpha to synergistically activate the human albumin promoter through a novel domain. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42239-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
132
|
Gross MK, Gruss P. Functional analysis of mouse Hoxa-7 in Saccharomyces cerevisiae: sequences outside the homeodomain base contact zone influence binding and activation. Mol Cell Biol 1994; 14:238-54. [PMID: 8264592 PMCID: PMC358374 DOI: 10.1128/mcb.14.1.238-254.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The murine developmental control gene product, Hoxa-7, was shown to function as a DNA-binding transactivator in Saccharomyces cerevisiae. The importance of the ATTA core, the preference for antp class flanking nucleotides, the importance of Asn-51 of the homeodomain (HD), and the synergism of multiple binding sites all reflect properties that have previously been described for HOM or Hox proteins in tissue culture systems. A comparison of contact positions among genes of paralog groups and classes of mammalian HDs points to a lack of diversity in positions that make base contact, suggesting that besides the combination of HD amino acid-base pair contacts, another means of recognizing differences between targets must exist if Hox genes select different targets. The HD of antennapedia is identical to the Hoxa-7 HD. The interaction of Hoxa-7 with the exact sequence used in the nuclear magnetic resonance three-dimensional structural analysis on the antennapedia HD was studied. Hoxa-7 binding and transactivation was influenced by sequences outside of the known base contact zone of this site. We conclude that Hoxa-7 protein has a second means to interact with DNA or/and that the sequences flanking the base contact zone influence HD interactions by distorting DNA within the contact zone (base or backbone). This result is discussed in terms of DNA flexure and two modes of transcription used in S. cerevisiae.
Collapse
Affiliation(s)
- M K Gross
- Abteilung für Molekulare Zellbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | | |
Collapse
|
133
|
Functional interaction of the v-Rel and c-Rel oncoproteins with the TATA-binding protein and association with transcription factor IIB. Mol Cell Biol 1993. [PMID: 8413269 DOI: 10.1128/mcb.13.11.6733] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rel family proteins regulate the expression of genes linked to kappa B-binding motifs. Little is known, however, of the mechanism by which they enhance transcription. We have investigated the ability of the v-Rel and c-Rel oncoproteins to interact with components of the basal transcription machinery. Here we report that both the acidic transcription activation domain mapping to the unique C terminus of chicken c-Rel and the F9 cell-specific activation region common to both v-Rel and c-Rel interact with the TATA-binding protein (TBP) and transcription factor IIB (TFIIB) in vitro and in vivo. We also demonstrate that TPB interaction with Rel activation regions leads to synergistic activation of transcription of a kappa B-linked reporter gene. Combined with the observation that the mouse c-Rel and human RelA proteins also interact with TBP and TFIIB in vitro, these results suggest that association with basal transcription factors is important for the transcriptional activities of Rel family proteins.
Collapse
|
134
|
Cavarec L, Heidmann T. The Drosophila copia retrotransposon contains binding sites for transcriptional regulation by homeoproteins. Nucleic Acids Res 1993; 21:5041-9. [PMID: 8255758 PMCID: PMC310615 DOI: 10.1093/nar/21.22.5041] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have identified in the 5' untranslated region of the Drosophila copia retrotransposon, 3' to the left LTR, a sequence for transcriptional regulation by homeoproteins. Co-transfection assays using expression vectors for homeoproteins and reporter vectors containing the lacZ gene under the control of either the entire copia LTR with 5' untranslated sequence, or a minimal heterologous promoter flanked with a 130 bp fragment containing the copia untranslated region, disclosed both positive and negative modulations of promoter activity in Drosophila cells in culture: a 5-10 fold decrease with engrailed, even-skipped and zerknüllt in DH33 cells, and a 10-30 fold increase with fushi tarazu and zerknüllt in Schneider II cells. In all cases, the regulatory effects were abolished with reporter plasmids deleted for a 58 bp fragment encompassing the putative homeoprotein binding sites. Mobility shift assays with a purified homeodomain-containing peptide demonstrated direct interaction with the 58 bp fragment, with an affinity in the 1-10 nM range as reported with the same peptide for other well characterized homeodomain binding regulatory sites. Foot-printing experiments with the extended LTR demonstrated protection of 'consensus' sequences, located within the 58 bp fragment. These homeodomain binding sites could be involved in the developmental regulation of the copia retrotransposon.
Collapse
Affiliation(s)
- L Cavarec
- Unités de Physicochimie et Pharmacologie des Macromolécules Biologiques, CNRS U147 et INSERM U140, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
135
|
Xu X, Prorock C, Ishikawa H, Maldonado E, Ito Y, Gélinas C. Functional interaction of the v-Rel and c-Rel oncoproteins with the TATA-binding protein and association with transcription factor IIB. Mol Cell Biol 1993; 13:6733-41. [PMID: 8413269 PMCID: PMC364736 DOI: 10.1128/mcb.13.11.6733-6741.1993] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rel family proteins regulate the expression of genes linked to kappa B-binding motifs. Little is known, however, of the mechanism by which they enhance transcription. We have investigated the ability of the v-Rel and c-Rel oncoproteins to interact with components of the basal transcription machinery. Here we report that both the acidic transcription activation domain mapping to the unique C terminus of chicken c-Rel and the F9 cell-specific activation region common to both v-Rel and c-Rel interact with the TATA-binding protein (TBP) and transcription factor IIB (TFIIB) in vitro and in vivo. We also demonstrate that TPB interaction with Rel activation regions leads to synergistic activation of transcription of a kappa B-linked reporter gene. Combined with the observation that the mouse c-Rel and human RelA proteins also interact with TBP and TFIIB in vitro, these results suggest that association with basal transcription factors is important for the transcriptional activities of Rel family proteins.
Collapse
Affiliation(s)
- X Xu
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5638
| | | | | | | | | | | |
Collapse
|
136
|
Chen X, Farmer G, Zhu H, Prywes R, Prives C. Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev 1993; 7:1837-49. [PMID: 8405994 DOI: 10.1101/gad.7.10.1837] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The p53 tumor-suppressor gene product, a sequence-specific DNA-binding protein, has been shown to act both as a transcriptional activator and repressor in vivo and in vitro. Consistent with its roles in regulating transcription are recent observations that p53 binds directly to the TATA box-binding protein (TBP) subunit of the basal transcription factor TFIID. Here, we show that p53 cooperates with either recombinant TBP or partially purified TFIID in binding to a DNA fragment containing both a specific p53-binding site (RGC) and a TATA box (RGC-TATA). Surprisingly, both TBP and TFIID also stimulate p53 binding to DNA containing a specific p53-binding site but lacking a TATA box. These data are supported by the observation that p53 and Drosophila TBP combinatorily activate transcription in vivo. Our results suggest that p53 activates transcription through the formation of a more stable p53-TFIID-promoter complex. We also examined whether p53 might affect the ability of TBP or TFIID to interact with DNA containing a TATA box but lacking a p53-binding site. Although p53 strongly inhibited the interaction of TBP with such DNA, it had virtually no effect on TFIID binding. Thus, transcriptional repression by p53 may require additional functions other than inhibiting TBP binding.
Collapse
Affiliation(s)
- X Chen
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | | | |
Collapse
|
137
|
Farr CJ, Easty DJ, Ragoussis J, Collignon J, Lovell-Badge R, Goodfellow PN. Characterization and mapping of the human SOX4 gene. Mamm Genome 1993; 4:577-84. [PMID: 8268656 DOI: 10.1007/bf00361388] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The SOX genes comprise a large family related by homology to the HMG-box region of the testis-determining gene SRY. We have cloned and sequenced the human SOX4 gene. The open reading frame encodes a 474 amino acid protein, which includes an HMG-box. The non-box sequence is particularly rich in serine residues and has several polyglycine and polyalanine stretches. With somatic cell hybrids, human SOX4 has been mapped to Chromosome (Chr) 6p distal to the MHC region. There is no evidence for clustering of other members of the SOX1, -2, and -3 or SOX4 gene families around the SOX4 locus.
Collapse
Affiliation(s)
- C J Farr
- Department of Genetics, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
A basal level of transcription is usually observed when all but a small region of DNA has been deleted from a eukaryotic gene promoter. These promoter elements, which are necessary and sufficient for specific transcription initiation, are referred to as minimal or core promoter elements. One element that is commonly present in a core promoter is the initiator. It has been demonstrated that the presence of Sp1 binding sites can greatly enhance the level of transcription initiation at initiator elements. A binding site for the YY1 transcription factor, located at the initiation site of the adeno-associated virus P5 promoter, functions as an initiator element; a synergistic enhancement of its activity is observed in vitro when upstream Sp1 binding sites are present. Here we report that this synergistic activation probably occurs through protein-protein interactions.
Collapse
Affiliation(s)
- E Seto
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio 78245-3207
| | | | | |
Collapse
|
139
|
A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol 1993. [PMID: 8336701 DOI: 10.1128/mcb.13.8.4556] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Egr-1 is an immediate-early response gene induced transiently and ubiquitously by mitogenic stimuli and also regulated in response to signals that initiate differentiation. The Egr-1 gene product, a nuclear phosphoprotein with three zinc fingers of the Cys2His2 class, binds to the sequence CGCCCCCGC and transactivates a synthetic promoter construct 10-fold in transient-transfection assays. We have analyzed the structure and function of the Egr-1 protein in detail, delineating independent and modular activation, repression, DNA-binding, and nuclear localization activities. Deletion analysis, as well as fusions to the DNA-binding domain of GAL4, indicated that the activation potential of Egr-1 is distributed over an extensive serine/threonine-rich N-terminal domain. In addition, a novel negative regulatory function has been precisely mapped 5' of the zinc fingers: amino acids 281 to 314 are sufficient to confer the ability to repress transcription on a heterologous DNA-binding domain. Specific DNA-binding activity was shown to reside in the three zinc fingers of Egr-1, as predicted by homology to other known DNA-binding proteins. Finally, nuclear localization of Egr-1 is specified by signals in the DNA-binding domain and basic flanking sequences, as determined by subcellular fractionation and indirect immunofluorescence. Basic residues 315 to 330 confer partial nuclear localization on the bacterial protein beta-galactosidase. A bipartite signal consisting of this basic region in conjunction with either the second or third zinc finger, but not the first, suffices to target beta-galactosidase exclusively to the nucleus. Our work shows that Egr-1 is a functionally complex protein and suggests that it may play different roles in the diverse settings in which it is induced.
Collapse
|
140
|
Dollé P, Lufkin T, Krumlauf R, Mark M, Duboule D, Chambon P. Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1.6) mutant embryos. Proc Natl Acad Sci U S A 1993; 90:7666-70. [PMID: 8102800 PMCID: PMC47203 DOI: 10.1073/pnas.90.16.7666] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It is unknown whether cross-regulatory interactions between homeotic genes, which have been shown to play an important role in the maintenance of their expression domains during Drosophila development, are also important during mammalian development. We have analyzed here the expression of Hox genes in Hoxa-1 (Hox-1.6) null mutant embryos to investigate the possible existence of regulatory interactions between Hoxa-1 and other Hox genes. We show that the absence of a functional Hoxa-1 gene product does not globally interfere with the expression of other Hox genes in terms of both spatial boundaries and transcript abundance. However, a limited area of the hindbrain shows a strong reduction in Hoxb-1 (Hox-2.9) and Krox-20 transcripts, which most likely reflects a marked reduction in size of the former fourth and fifth rhombomeres. These alterations coincide with the region that is subsequently affected in Hoxa-1 null mutant mice and suggest that the primary defects in this mutation are spatially restricted deletions of some rhombomeric structures.
Collapse
Affiliation(s)
- P Dollé
- Laboratoire de Génétique Moléculaire des Eucaryotes, Centre National de la Recherche Scientifique, l'Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
141
|
Nelson HB, Laughon A. Drosophila glial architecture and development: analysis using a collection of new cell-specific markers. ACTA ACUST UNITED AC 1993; 202:341-354. [DOI: 10.1007/bf00188733] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/1993] [Accepted: 02/04/1993] [Indexed: 10/26/2022]
|
142
|
Gashler AL, Swaminathan S, Sukhatme VP. A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol 1993; 13:4556-71. [PMID: 8336701 PMCID: PMC360074 DOI: 10.1128/mcb.13.8.4556-4571.1993] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Egr-1 is an immediate-early response gene induced transiently and ubiquitously by mitogenic stimuli and also regulated in response to signals that initiate differentiation. The Egr-1 gene product, a nuclear phosphoprotein with three zinc fingers of the Cys2His2 class, binds to the sequence CGCCCCCGC and transactivates a synthetic promoter construct 10-fold in transient-transfection assays. We have analyzed the structure and function of the Egr-1 protein in detail, delineating independent and modular activation, repression, DNA-binding, and nuclear localization activities. Deletion analysis, as well as fusions to the DNA-binding domain of GAL4, indicated that the activation potential of Egr-1 is distributed over an extensive serine/threonine-rich N-terminal domain. In addition, a novel negative regulatory function has been precisely mapped 5' of the zinc fingers: amino acids 281 to 314 are sufficient to confer the ability to repress transcription on a heterologous DNA-binding domain. Specific DNA-binding activity was shown to reside in the three zinc fingers of Egr-1, as predicted by homology to other known DNA-binding proteins. Finally, nuclear localization of Egr-1 is specified by signals in the DNA-binding domain and basic flanking sequences, as determined by subcellular fractionation and indirect immunofluorescence. Basic residues 315 to 330 confer partial nuclear localization on the bacterial protein beta-galactosidase. A bipartite signal consisting of this basic region in conjunction with either the second or third zinc finger, but not the first, suffices to target beta-galactosidase exclusively to the nucleus. Our work shows that Egr-1 is a functionally complex protein and suggests that it may play different roles in the diverse settings in which it is induced.
Collapse
Affiliation(s)
- A L Gashler
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637-1963
| | | | | |
Collapse
|
143
|
Jones FS, Holst BD, Minowa O, De Robertis EM, Edelman GM. Binding and transcriptional activation of the promoter for the neural cell adhesion molecule by HoxC6 (Hox-3.3). Proc Natl Acad Sci U S A 1993; 90:6557-61. [PMID: 8393570 PMCID: PMC46971 DOI: 10.1073/pnas.90.14.6557] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Scores of homeobox gene-encoded transcription factors are expressed in a definite spatiotemporal pattern during embryogenesis and regulate a series of as yet unidentified target genes to help coordinate the morphogenetic process. We have suggested that homeobox gene products modulate the expression of adhesion molecule genes and have shown in cotransfection experiments that the promoters for the neural cell adhesion molecule (N-CAM) and cytotactin/tenascin genes respond to cues from different homeobox-containing genes. In this study, we show that the HoxC6 (Hox-3.3)-encoded homeoprotein binds to a DNA sequence in the N-CAM promoter CCTAATTATTAA, designated homeodomain binding site I (HBS-I). To test whether HoxC6 regulated N-CAM promoter activity, we cotransfected the Long and Short reading frame variants of Xenopus HoxC6 (CMV-HoxC6-L and CMV-HoxC6-S) driven by the human cytomegalovirus (CMV) promoter together with a chloramphenicol acetyltransferase (CAT) reporter gene driven by the mouse N-CAM promoter (N-CAM-Pro-CAT). Cotransfection of NIH 3T3 cells with either of the CMV-HoxC6 expression vectors stimulated N-CAM promoter-driven CAT expression. A 47-bp region from the N-CAM promoter that included HBS-I and an adjacent potential HBS, HBS-II, conferred HoxC6 regulation on a simian virus 40 minimal promoter. HBS-I was sufficient for transactivation of the minimal promoter by CMV-HoxC6-S. However, transcriptional activation by CMV-HoxC6-L required both HBS-I and HBS-II, inasmuch as mutation of either HBS-I, HBS-II, or both motifs abolished the response. These studies suggest that HBS-I is a target site for binding and transcriptional control of the N-CAM promoter by homeoproteins, although accessory DNA sequences (such as HBS-II) may also be required. Together with previous studies, these results support the notion that N-CAM gene expression may be controlled by different combinations of homeoproteins that appear in a place-dependent manner during embryogenesis.
Collapse
Affiliation(s)
- F S Jones
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | |
Collapse
|
144
|
Abstract
We have studied the transcriptional activity of the Drosophila homeodomain protein Engrailed (En) by using a transient expression assay employing Schneider L2 cells. En was found to very strongly repress promoters activated by a variety of different activator proteins. However, unlike another Drosophila homeodomain-containing repressor, Even-skipped (Eve), En was unable to repress the activity of several basal promoters in the absence of activator expression. These findings indicate that En is a specific repressor of activated transcription, and suggest that En may repress transcription by a different mechanism than Eve, perhaps by interfering with interactions between transcriptional activators and the general transcription machinery. By analyzing the properties of a variety of En mutants, we identified a minimal repression domain composed of 55 residues, which can function when fused to a heterologous DNA binding domain. Like repression domains identified in the Drosophila repressors Eve and Krüppel, the En repression domain is rich in alanine residues (26%), but unlike these other domains, is moderately charged (six arginine and three glutamic acid residues). Separate regions of En that may in some circumstances function in transcriptional activation were also identified.
Collapse
Affiliation(s)
- K Han
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
145
|
Abstract
During Drosophila development, an important aspect of body patterning is the division of the embryo into repeating morphological units referred to as parasegments. The parasegmental domains are first defined at the blastoderm stage by alternating stripes of transcripts encoded by the pair-rule genes fushi tarazu (ftz) and even-skipped (eve) and later by stripes encoded by the segment polarity genes engrailed (en) and wingless. Here, we show that the runt gene (run) is required to generate asymmetries within these parasegmental domains. Using a heat-shock-inducible run transgene, we found that ectopic run expression leads to rapid repression of eve stripes and a somewhat delayed expansion of ftz stripes. Unexpectedly, we also found that ectopic run was a rapid and potent repressor of odd-numbered en stripes. Two remarkably different segmental phenotypes were generated as a consequence of these effects. In solving the mechanisms underlying these phenotypes, we discovered that the positioning of en stripes is largely determined by the actions of negative regulators. Our data indicate that run is required to limit the domains of en expression in the odd-numbered parasegments, while the odd-skipped gene is required to limit the domains of en expression in the even-numbered parasegments. Activation of en at the anterior margins of both sets of parasegments requires the repression of run and odd by the product of the eve gene. The spatial restriction of gene expression via negative and double negative pathways such as these is likely to be a common theme during development.
Collapse
Affiliation(s)
- A S Manoukian
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Ontario, Canada
| | | |
Collapse
|
146
|
Bruhat A, Dréau D, Drake ME, Tourmente S, Chapel S, Couderc JL, Dastugue B. Intronic and 5' flanking sequences of the Drosophila beta 3 tubulin gene are essential to confer ecdysone responsiveness. Mol Cell Endocrinol 1993; 94:61-71. [PMID: 8375576 DOI: 10.1016/0303-7207(93)90052-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of the beta 3 tubulin gene is regulated, at the transcriptional level, by the steroid hormone ecdysone, in Drosophila Kc cells. Using a transient expression assay, we show that 360 bp from the first intron of the beta 3 tubulin gene, associated with the 5' flanking sequences, are essential to confer ecdysone inducibility on a minimum promoter driving the chloramphenicol acetyl transferase (CAT) gene. The 5' flanking region contains ecdysone-independent cis-positive elements located in proximity to the promoter. Deletion analysis of the 360 bp intronic region reveals that a fragment of 57 bp is crucial for the ecdysone response of the beta 3 tubulin gene. This fragment contains 5'-TGA(A/C)C-3' motifs homologous to ecdysone responsive elements (EcRE) half sites. Band shift assays show that this 57-bp fragment is bound by three specific complexes. One of them appears to be involved in the level of the ecdysone response.
Collapse
Affiliation(s)
- A Bruhat
- Laboratoire de Biochimie Médicale, C.J.F. INSERM 88.06, U.F.R. de Médecine, Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
147
|
NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3' alpha enhancer at early stages of B-cell differentiation. Mol Cell Biol 1993. [PMID: 8497273 DOI: 10.1128/mcb.13.6.3611] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a nuclear factor expressed in pro-B-, pre-B-, and B-cell lines that binds to two sites within the murine immunoglobulin heavy-chain (IgH) 3' alpha enhancer (3' alpha E). These sites were defined by oligonucleotide competition in an electrophoretic mobility shift assay (EMSA) and methylation interference footprinting. The 3' alpha E-binding factor is indistinguishable from NF-HB (B-lineage-specific nuclear factor that binds to the IgH gene) and the B-lineage-specific transcription factor BSAP by several criteria, including similar cell type distribution of binding activity, cross-competition of binding sites in EMSA, similar protein size as demonstrated by UV cross-linking, and sequence identity of one of the 3' alpha E-binding sites with a BSAP-binding site within the promoter of the sea urchin late histone gene H2A-2.2. These observations indicate that 3' alpha E is one of the mammalian targets for NF-HB (BSAP). Transient-transfection assays with chloramphenicol acetyltransferase gene constructs containing 3' alpha E and mutant 3' alpha E, in which one of the NF-HB binding sites was inactivated by site-specific mutagenesis, showed ca. five- to sixfold-enhanced activity of mutated 3' alpha E over parental 3' alpha E in B-cell lines (NF-HB+), while no significant difference was observed in plasmacytoma cells (NF-HB-). We conclude from these observations that NF-HB (BSAP) acts as a repressor of the mouse IgH 3' alpha E.
Collapse
|
148
|
Singh M, Birshtein BK. NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3' alpha enhancer at early stages of B-cell differentiation. Mol Cell Biol 1993; 13:3611-22. [PMID: 8497273 PMCID: PMC359830 DOI: 10.1128/mcb.13.6.3611-3622.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have identified a nuclear factor expressed in pro-B-, pre-B-, and B-cell lines that binds to two sites within the murine immunoglobulin heavy-chain (IgH) 3' alpha enhancer (3' alpha E). These sites were defined by oligonucleotide competition in an electrophoretic mobility shift assay (EMSA) and methylation interference footprinting. The 3' alpha E-binding factor is indistinguishable from NF-HB (B-lineage-specific nuclear factor that binds to the IgH gene) and the B-lineage-specific transcription factor BSAP by several criteria, including similar cell type distribution of binding activity, cross-competition of binding sites in EMSA, similar protein size as demonstrated by UV cross-linking, and sequence identity of one of the 3' alpha E-binding sites with a BSAP-binding site within the promoter of the sea urchin late histone gene H2A-2.2. These observations indicate that 3' alpha E is one of the mammalian targets for NF-HB (BSAP). Transient-transfection assays with chloramphenicol acetyltransferase gene constructs containing 3' alpha E and mutant 3' alpha E, in which one of the NF-HB binding sites was inactivated by site-specific mutagenesis, showed ca. five- to sixfold-enhanced activity of mutated 3' alpha E over parental 3' alpha E in B-cell lines (NF-HB+), while no significant difference was observed in plasmacytoma cells (NF-HB-). We conclude from these observations that NF-HB (BSAP) acts as a repressor of the mouse IgH 3' alpha E.
Collapse
Affiliation(s)
- M Singh
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
149
|
Cooperative binding at a distance by even-skipped protein correlates with repression and suggests a mechanism of silencing. Mol Cell Biol 1993. [PMID: 8097276 DOI: 10.1128/mcb.13.5.2742] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we examined how the Drosophila developmental control gene even-skipped (eve) represses transcription. Tissue culture cells were used to show that eve contains domains which inhibit transcriptional activators present at the Ultrabithorax (Ubx) proximal promoter when bound up to 1.5 kb away from these activators. Different portions of eve were fused to a heterologous DNA binding domain to show that three adjacent regions of eve contribute to silencing. There appear to be two mechanisms by which eve protein represses transcription. In this study, we used in vitro transcription and DNA binding experiments to provide evidence for one of these mechanisms. Repression in vitro correlates with binding of eve protein to two low-affinity sites in the Ubx proximal promoter. Occupancy of these low-affinity sites is dependent upon cooperative binding of other eve molecules to a separate high-affinity site. Some of these sites are separated by over 150 bp of DNA, and the data suggest that this intervening DNA is bent to form a looped structure similar to those caused by prokaryotic repressors. One of the low-affinity sites overlaps an activator element bound by the zeste transcription factor. Binding of eve protein is shown to exclude binding by zeste protein. These data suggest a mechanism for silencing whereby a repressor protein would be targeted to DNA by a high-affinity element, which itself does not overlap activator elements. Cooperative binding of further repressor molecules to distant low-affinity sites, and competition with activators bound at these sites lead to repression at a distance.
Collapse
|
150
|
TenHarmsel A, Austin RJ, Savenelli N, Biggin MD. Cooperative binding at a distance by even-skipped protein correlates with repression and suggests a mechanism of silencing. Mol Cell Biol 1993; 13:2742-52. [PMID: 8097276 PMCID: PMC359652 DOI: 10.1128/mcb.13.5.2742-2752.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, we examined how the Drosophila developmental control gene even-skipped (eve) represses transcription. Tissue culture cells were used to show that eve contains domains which inhibit transcriptional activators present at the Ultrabithorax (Ubx) proximal promoter when bound up to 1.5 kb away from these activators. Different portions of eve were fused to a heterologous DNA binding domain to show that three adjacent regions of eve contribute to silencing. There appear to be two mechanisms by which eve protein represses transcription. In this study, we used in vitro transcription and DNA binding experiments to provide evidence for one of these mechanisms. Repression in vitro correlates with binding of eve protein to two low-affinity sites in the Ubx proximal promoter. Occupancy of these low-affinity sites is dependent upon cooperative binding of other eve molecules to a separate high-affinity site. Some of these sites are separated by over 150 bp of DNA, and the data suggest that this intervening DNA is bent to form a looped structure similar to those caused by prokaryotic repressors. One of the low-affinity sites overlaps an activator element bound by the zeste transcription factor. Binding of eve protein is shown to exclude binding by zeste protein. These data suggest a mechanism for silencing whereby a repressor protein would be targeted to DNA by a high-affinity element, which itself does not overlap activator elements. Cooperative binding of further repressor molecules to distant low-affinity sites, and competition with activators bound at these sites lead to repression at a distance.
Collapse
Affiliation(s)
- A TenHarmsel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | |
Collapse
|