101
|
Kulik A, Brockhaus J, Pedarzani P, Ballanyi K. Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ. Neuroscience 2002; 110:541-54. [PMID: 11906792 DOI: 10.1016/s0306-4522(01)00468-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The contribution of subclasses of K(+) channels to the response of mammalian neurons to anoxia is not yet clear. We investigated the role of ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) currents (small conductance, SK, big conductance, BK) in mediating the effects of chemical anoxia by cyanide, as determined by electrophysiological analysis and fluorometric Ca(2+) measurements in dorsal vagal neurons of rat brainstem slices. The cyanide-evoked persistent outward current was abolished by the K(ATP) channel blocker tolbutamide, but not changed by the SK and BK channel blockers apamin or tetraethylammonium. The K(+) channel blockers also revealed that ongoing activation of K(ATP) and SK channels counteracts a tonic, spike-related rise in intracellular Ca(2+) ([Ca(2+)](i)) under normoxic conditions, but did not modify the rise of [Ca(2+)](i) associated with the cyanide-induced outward current. Cyanide depressed the SK channel-mediated afterhyperpolarizing current without changing the depolarization-induced [Ca(2+)](i) transient, but did not affect spike duration that is determined by BK channels. The afterhyperpolarizing current and the concomitant [Ca(2+)](i) rise were abolished by Ca(2+)-free superfusate that changed neither the cyanide-induced outward current nor the associated [Ca(2+)](i) increase. Intracellular BAPTA for Ca(2+) chelation blocked the afterhyperpolarizing current and the accompanying [Ca(2+)](i) increase, but had no effect on the cyanide-induced outward current although the associated [Ca(2+)](i) increase was noticeably attenuated. Reproducing the cyanide-evoked [Ca(2+)](i) transient with the Ca(2+) pump blocker cyclopiazonic acid did not evoke an outward current. Our results show that anoxia mediates a persistent hyperpolarization due to activation of K(ATP) channels, blocks SK channels and has no effect on BK channels, and that the anoxic rise of [Ca(2+)](i) does not interfere with the activity of these K(+) channels.
Collapse
Affiliation(s)
- A Kulik
- II. Physiologisches Institut, Universität Göttingen, Germany
| | | | | | | |
Collapse
|
102
|
Zhang J, Gibney GT, Zhao P, Xia Y. Neuroprotective role of delta-opioid receptors in cortical neurons. Am J Physiol Cell Physiol 2002; 282:C1225-34. [PMID: 11997236 DOI: 10.1152/ajpcell.00226.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that delta-opioid receptor (DOR) activation protects cortical neurons against glutamate-induced injury. Because glutamate is a mediator of hypoxic injury in neurons, we hypothesized that DOR is involved in neuroprotection during O2 deprivation and that its activation/inhibition may alter neuronal susceptibility to hypoxic stress. In this work, we tested the effect of opioid receptor activation and inhibition on cultured cortical neurons in hypoxia (1% O2). Cell injury was assessed by lactate dehydrogenase release, morphology-based quantification, and live/dead staining. Our results show that 1) immature neurons (days 4 and 6) were not significantly injured by hypoxia until 72 h of exposure, whereas day 8 neurons were injured after only 24-h hypoxia; 2) DOR inhibition (naltrindole) caused neuronal injury in both day 4 and day 8 normoxic cultures and further augmented hypoxic injury in these neurons; 3) DOR activation ([D-Ala2,D-Leu5]enkephalin) reduced neuronal injury in day 8 cultures after 24 h of normoxic or hypoxic exposure and attenuated naltrindole-induced injury with prolonged exposure; and 4) mu- or kappa-opioid receptor inhibition (beta-funaltrexamine or nor-binaltorphimine) had little effect on neurons in either normoxic or hypoxic conditions. Collectively, these data suggest that DOR plays a crucial role in neuroprotection in normoxic and hypoxic environments.
Collapse
MESH Headings
- Animals
- Cell Count
- Cell Differentiation/physiology
- Cell Hypoxia/physiology
- Cell Survival/physiology
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Enkephalin, Leucine-2-Alanine/pharmacology
- Hypoxia, Brain/metabolism
- L-Lactate Dehydrogenase/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Time Factors
Collapse
Affiliation(s)
- Junhui Zhang
- Department of Pediatrics, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
103
|
Blitz DM, Ramirez JM. Long-term modulation of respiratory network activity following anoxia in vitro. J Neurophysiol 2002; 87:2964-71. [PMID: 12037199 DOI: 10.1152/jn.2002.87.6.2964] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural networks that produce rhythmic behaviors require flexibility to respond to changes in the internal and external state of the animal. It is important to not only understand how a network responds during such perturbations but also how the network recovers. For example, the respiratory network needs to respond to and recover from temporary changes in oxygen level that can occur during sleep, exercise, and respiratory disorders. During a temporary decrease in oxygen level, there is an increase in respiratory frequency followed by a depression that can lead to complete apnea. Here we used a mouse brain stem slice preparation as a model system to examine the recovery of respiratory network activity after brief episodes of anoxia. We found the respiratory network recovers from a single anoxic episode with a transient increase in fictive respiratory frequency. Although repetitive anoxia does not elicit a greater frequency increase, it does elicit a longer lasting frequency increase persisting < or =90 min. Thus there is a centrally mediated long-lasting influence on the respiratory network elicited by decreased oxygen levels. This modulation occurs as a prolonged facilitation of fictive respiratory frequency after brief repetitive but not single anoxic exposure. These data are important to consider in the context of disorders such as sleep apnea in which brief periodic anoxic episodes are experienced.
Collapse
Affiliation(s)
- Dawn M Blitz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
104
|
Bickler PE, Donohoe PH, Buck LT. Molecular adaptations for survival during anoxia: lessons from lower vertebrates. Neuroscientist 2002; 8:234-42. [PMID: 12061503 DOI: 10.1177/1073858402008003009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anoxia-tolerant neurons from several species of animals may offer unparalleled opportunities to identify strategies that might be employed to enhance the hypoxia or ischemia tolerance of vulnerable neurons. In this review, the authors describe how the response of hypoxia-tolerant neurons to limited oxygen supply involves a suite of mechanisms that reduce energy expenditure in concert with decreased energy availability. This response avoids energy depletion, excitotoxic neuronal death, and apoptosis. Suppression of ion channel functions, particularly those of the ionotropic glutamate receptors, is a response common in hypoxia-tolerant neurons. The depression of excitability thereby achieved is essential given that the fundamental response to oxygen lack in anoxia-tolerant cells is a throttling down of metabolism to "pilot-light" levels. Many different types of processes have been found to down-regulate ion channel function. These include phosphorylation control, interactions with intracellular and extracellular ions, removal of active receptors from the neurolemma, and the direct sensing of oxygen by Na+ and K+ channels. Changes in [Ca2+]i may initiate a protective down-regulation of many different pumps or channels. Transcriptional events leading to differential and/or decreased expression of receptors, proteins, and their subunits are probably very important but little studied.
Collapse
Affiliation(s)
- Philip E Bickler
- Department of Anesthesia, University of California, San Francisco, USA.
| | | | | |
Collapse
|
105
|
Müller M, Brockhaus J, Ballanyi K. ATP-independent anoxic activation of ATP-sensitive K+ channels in dorsal vagal neurons of juvenile mice in situ. Neuroscience 2002; 109:313-28. [PMID: 11801367 DOI: 10.1016/s0306-4522(01)00498-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of ATP in anoxic activation of ATP-sensitive K+ (KATP) channels was studied in dorsal vagal neurons of mouse brainstem slices. In the whole-cell configuration, cyanide-induced chemical anoxia evoked within 10 s a 300-pA outward current that gave rise to a hyperpolarization of 24 mV. These responses were mimicked by nitrogen-aerated saline, rotenone or diazoxide and abolished by tolbutamide. The cyanide-induced hyperpolarization was due to activation of 70 pS K(ATP) channels that were half-maximally blocked by 5 microM internal ATP. Dialyzing the cells with either 1, 20 or 0 mM ATP did not, however, affect the time to onset, the kinetics or the magnitude of the cyanide-induced hyperpolarization. Impairment of ATP consumption by ouabain, vanadate or reduced temperature had no effect either. Thus, anoxia-induced activation of these KATP channels cannot be explained by a fall of cellular ATP or a concomitant rise of ADP. Anoxia-related changes of the actin cytoskeleton or the composition of the plasma membrane are also not likely to be involved, as cytochalasin D did not affect the cyanide-evoked hyperpolarization and phosphatidylinositol 4,5-bisphosphate failed to decrease the ATP sensitivity of single KATP channels. Finally, because of a lack of effects of reduced/oxidized glutathione and the oxidase blocker diphenyliodonium on the cyanide-induced hyperpolarization, cellular redox state does not appear to be involved. Our results indicate that despite a high sensitivity to ATP in excised patches, anoxic activation of KATP channels is independent of cellular ATP. Rather the ATP block seems to be removed as a consequence of impaired mitochondrial function.
Collapse
Affiliation(s)
- M Müller
- II. Physiologisches Institut, Georg-August-Universität Göttingen, Humboldtalle 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
106
|
Chi XX, Xu ZC. Alterations of single potassium channel activity in CA1 pyramidal neurons after transient forebrain ischemia. Neuroscience 2002; 108:535-40. [PMID: 11738492 DOI: 10.1016/s0306-4522(01)00549-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Selective neuronal injury in the CA1 zone of hippocampus following transient cerebral ischemia has been well documented. Extracellular potassium concentration markedly increases during ischemia/hypoxia. Accumulating evidence has indicated that the outward potassium currents, including delayed rectifier potassium current, not only influence membrane excitability but also mediate apoptosis. It has been shown that the amplitude of delayed rectifier potassium current in CA1 neurons significantly increased after cerebral ischemia. To elucidate the mechanisms underlying the changes of potassium currents following ischemia, single potassium channel activities of rat CA1 neurons were compared before and after transient forebrain ischemia. Using cell-attached configuration, depolarizing voltage steps activated outward single channel events. The channel properties, the kinetics and pharmacology of these events resemble the delayed rectifier potassium current. After ischemia, the unitary amplitude of single channels significantly increased, the open probability, mean open time and open time constant also significantly increased while the conductance remained unchanged. These data indicate that the increase of single channel activity is responsible, at least in part, for the increase of delayed rectifier potassium current in CA1 neurons after cerebral ischemia.
Collapse
Affiliation(s)
- X X Chi
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|
107
|
Cervantes M, González-Vidal MD, Ruelas R, Escobar A, Moralí G. Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate nucleus. Arch Med Res 2002; 33:6-14. [PMID: 11825624 DOI: 10.1016/s0188-4409(01)00347-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND In addition to the hippocampus, the dorsolateral caudate nucleus (CN) and the pars reticularis of the substantia nigra (SNr) are among the most vulnerable brain areas to ischemia. A possible association of the neuronal injury in these two subcortical nuclei has been proposed, the primary damage affecting the CN GABAergic neurons innervating the SNr, and secondarily the SNr neurons as a result of an imbalance of GABAergic and glutamatergic input to the SNr. Progesterone (P(4)) exerts a GABAergic action on the central nervous system (CNS) and is known to protect neurons in the cat hippocampus from the damaging effect of acute global cerebral ischemia (AGCI). The effects of AGCI on the neuronal populations of the CN and SNr, in addition to the possible neuroprotective effects of P(4), were assessed in cats in the present study. METHODS Ovariectomized adult cats were treated subcutaneously (s.c.) with either P(4) (10 mg/kg/day) or corn oil during the 7 days before and 7 days after being subjected to a period of AGCI by 15 min of cardiorespiratory arrest followed by 4 min of reanimation. After 14 days of survival, animals were sacrificed and their brains perfused in situ with phosphate-buffered 10% formaldehyde for histologic examination. RESULTS ACGI resulted in an intense glial reaction in the CN and a significant loss (43%) of medium-sized neurons of the CN, but no difference was found in the densities of SNr neurons between controls and ischemic oil- and P(4)-treated cats. Progesterone treatment completely prevented CN neuronal loss. CONCLUSIONS The overall results point to the higher vulnerability of CN neurons to ischemia as compared to neurons in the SNr and show the protective effects of P(4) upon CN neuronal damage after ischemia.
Collapse
Affiliation(s)
- Miguel Cervantes
- Laboratorio de Neurofarmacología, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Michoacán, Mexico
| | | | | | | | | |
Collapse
|
108
|
Haddad GG, Ma E. Neuronal tolerance to O2 deprivation in drosophila: novel approaches using genetic models. Neuroscientist 2001; 7:538-50. [PMID: 11765131 DOI: 10.1177/107385840100700610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In spite of many advances in monitoring oxygenation and preventing cerebro-vascular accidents, there is still considerable morbidity and mortality from conditions with cerebral blood flow impairment and O2 deprivation leading to hypoxic/ischemic brain injury. Part of this failure is related to the complexity of the cascade of events that ensue after hypoxia or ischemia, but also part of it may be related to the fact that most research in the previous few decades has focused, justifiably, on cerebral vessel disease. However, an important aspect of the cascade is dependent on many factors that are inherent to the nature and response of the tissue itself. Hence, there is more need now for a two-pronged approach to hypoxic/ischemic brain injury, one focusing on vessel disease, its prevention, and treatment, and the other centering on the brain tissue itself and the factors that render neurons and glia more susceptible or more tolerant to a lack of oxygenation. In the past several years, a number of methods, techniques, and animal models have been used to address the response of neurons and glia to lack of oxygen. In this review, we highlight some novel ideas and some results that we and others have obtained, mostly pertaining to the genetic endowment and responses of the central nervous system to O2 deprivation. The role and importance of genetic models, such as the Drosophila melanogaster, are discussed, and an example illustrating how to harness the power of Drosophila genetics is detailed.
Collapse
Affiliation(s)
- G G Haddad
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticutt 06520, USA
| | | |
Collapse
|
109
|
Erecińska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. RESPIRATION PHYSIOLOGY 2001; 128:263-76. [PMID: 11718758 DOI: 10.1016/s0034-5687(01)00306-1] [Citation(s) in RCA: 449] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian brain is a highly oxidative organ and although it constitutes only a small fraction of total body weight it accounts for a disproportionately large percentage of bodily oxygen consumption (in humans about 2 and 20%, respectively). Yet, the partial pressure and concentration of oxygen in the brain are low and non-uniform. There is a large number of enzymes that use O(2) as a substrate, the most important of which is cytochrome c oxidase, the key to mitochondrial ATP production. The affinity of cytochrome c oxidase for oxygen is very high, which under normal conditions ensures undiminished activity of oxidative phosphorylation down to very low P(O(2)). By contrast, many other relevant enzymes have K(m) values for oxygen within, or above, the ambient cerebral gas tension, thus making their operations very dependent on oxygen level in the physiological range. Among its multiple, versatile functions, oxygen partial pressure and concentration control production of reactive oxygen species, expression of genes and functions of ion channels. Limitation of oxygen supply to the brain below a 'critical' level reduces, and eventually blocks oxidative phosphorylation, drastically decreases cellular (ATP) and leads to a collapse of ion gradients. Neuronal activity ceases and if oxygen is not re-introduced quickly, cells die. The object of this review is to discuss briefly the central oxygen-dependent processes in mammalian brain and the short-term consequences of O(2) deprivation, but not the mechanisms of long-term adaptation to chronic hypoxia. Particular emphasis is placed on issues which have been the focus of recent attention and/or controversy.
Collapse
Affiliation(s)
- M Erecińska
- Department of Anatomy, School of Veterinary Science, Bristol University, Southwell Street, BS2 8EJ, Bristol, UK.
| | | |
Collapse
|
110
|
Gu XQ, Haddad GG. Decreased neuronal excitability in hippocampal neurons of mice exposed to cyclic hypoxia. J Appl Physiol (1985) 2001; 91:1245-50. [PMID: 11509522 DOI: 10.1152/jappl.2001.91.3.1245] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study the physiological effects of chronic intermittent hypoxia on neuronal excitability and function in mice, we exposed animals to cyclic hypoxia for 8 h daily (12 cycles/h) for approximately 4 wk, starting at 2-3 days of age, and examined the properties of freshly dissociated hippocampal neurons in vitro. Compared with control (Con) hippocampal CA1 neurons, exposed (Cyc) neurons showed action potentials (AP) with a smaller amplitude and a longer duration and a more depolarized resting membrane potential. They also have a lower rate of spontaneous firing of AP and a higher rheobase. Furthermore, there was downregulation of the Na(+) current density in Cyc compared with Con neurons (356.09 +/- 54.03 pA/pF in Cyc neurons vs. 508.48 +/- 67.30 pA/pF in Con, P < 0.04). Na(+) channel characteristics, including activation, steady-state inactivation, and recovery from inactivation, were similar in both groups. The deactivation rate, however, was much larger in Cyc than in Con (at -100 mV, time constant for deactivation = 0.37 +/- 0.04 ms in Cyc neurons and 0.18 +/- 0.01 ms in Con neurons). We conclude that the decreased neuronal excitability in mice neurons treated with cyclic hypoxia is due, at least in part, to differences in passive properties (e.g., resting membrane potential) and in Na(+) channel expression and/or regulation. We hypothesize that this decreased excitability is an adaptive response that attempts to decrease the energy expenditure that is used for adjusting disturbances in ionic homeostasis in low-O(2) conditions.
Collapse
Affiliation(s)
- X Q Gu
- Department of Pediatrics (Section of Respiratory Medicine), Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
111
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
112
|
Youssef FF, Addae JI, McRae A, Stone TW. Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia. Brain Res 2001; 907:144-50. [PMID: 11430897 DOI: 10.1016/s0006-8993(01)02594-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously shown that long-term potentiation (LTP) decreases the sensitivity of glutamate receptors in the rat hippocampal CA1 region to exogenously applied glutamate agonists. Since the pathophysiology of hypoxia/ischemia involves increased concentration of endogenous glutamate, we tested the hypothesis that LTP could reduce the effects of hypoxia in the hippocampal slice. The effects of LTP on hypoxia were measured by the changes in population spike potentials (PS) or field excitatory post-synaptic potentials (fepsps). Hypoxia was induced by perfusing the slice with (i) artificial CSF which had been pre-gassed with 95%N2/5% CO2; (ii) artificial CSF which had not been pre-gassed with 95% O2/5% CO2; or (iii) an oxygen-glucose deprived (OGD) medium which was similar to (ii) and in which the glucose had been replaced with sucrose. Exposure of a slice to a hypoxic medium for 1.5-3.0 min led to a decrease in the PS or fepsps; the potentials recovered to control levels within 3-5 min. Repeat exposure, 45 min later, of the same slice to the same hypoxic medium for the same duration as the first exposure caused a reduction in the potentials again; there were no significant differences between the degree of reduction caused by the first or second exposure for all three types of hypoxic media (P>0.05; paired t-test). In some of the slices, two episodes of LTP were induced 25 and 35 min after the first hypoxic exposure; this caused inhibition of reduction in potentials caused by the second hypoxic insult which was given at 45 min after the first; the differences in reduction in potentials were highly significant for all the hypoxic media used (P<0.01; paired t-test). The neuroprotective effects of LTP were not prevented by cyclothiazide or inhibitors of NO synthetase compounds that have been shown to be effective in blocking the effects of LTP on the actions of exogenously applied AMPA and NMDA, respectively. The neuroprotective effects of LTP were similar to those of propentofylline, a known neuroprotective compound. We conclude that LTP causes an appreciable protection of hippocampal slices to various models of acute hypoxia. This phenomenon does not appear to involve desensitisation of AMPA receptors or mediation by NO, but may account for the recognised inverse relationship between educational attainment and the development of dementia.
Collapse
Affiliation(s)
- F F Youssef
- Department of Preclinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | | | | | | |
Collapse
|
113
|
Zhang JH, Gibney GT, Xia Y. Effect of prolonged hypoxia on Na+ channel mRNA subtypes in the developing rat cortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:154-8. [PMID: 11457503 DOI: 10.1016/s0169-328x(01)00114-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Voltage-gated Na+ channels are regulated in response to oxygen deprivation in the mammalian cortex. Past investigations have demonstrated that Na+ channel protein expression is up-regulated in the immature brain exposed to prolonged hypoxia. Since it is unknown as to which Na+ channel subtype(s) is involved in this regulation, we used RT-PCR to assess the effect of hypoxia on Na+ channel I, II and III alpha-subunit mRNA expression in the developing rat cortex. Na+ channel II mRNA tended to increase during early development, whereas Na+ channel I and III did not change or slightly decreased with age. Hypoxic exposure for 1-day had no effect on Na+ channel expression, while 5-day hypoxia significantly increased Na+ channel III density, with a slight increase in Na+ channel I and no appreciable change in Na+ channel II. These results suggest that Na+ channel subtype expression in the developing cortex is differentially regulated in response to prolonged hypoxic exposure.
Collapse
Affiliation(s)
- J H Zhang
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, LMP 3107, New Haven CT 06520, USA
| | | | | |
Collapse
|
114
|
Haller M, Mironov SL, Richter DW. Intrinsic optical signals in respiratory brain stem regions of mice: neurotransmitters, neuromodulators, and metabolic stress. J Neurophysiol 2001; 86:412-21. [PMID: 11431521 DOI: 10.1152/jn.2001.86.1.412] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rhythmic brain stem slice preparation, spontaneous respiratory activity is generated endogenously and can be recorded as output activity from hypoglossal XII rootlets. Here we combine these recordings with measurements of the intrinsic optical signal (IOS) of cells in the regions of the periambigual region and nucleus hypoglossus of the rhythmic slice preparation. The IOS, which reflects changes of infrared light transmittance and scattering, has been previously employed as an indirect sensor for activity-related changes in cell metabolism. The IOS is believed to be primarily caused by cell volume changes, but it has also been associated with other morphological changes such as dendritic beading during prolonged neuronal excitation or mitochondrial swelling. An increase of the extracellular K(+) concentration from 3 to 9 mM, as well as superfusion with hypotonic solution induced a marked increase of the IOS, whereas a decrease in extracellular K(+) or superfusion with hypertonic solution had the opposite effect. During tissue anoxia, elicited by superfusion of N(2)-gassed solution, the biphasic response of the respiratory activity was accompanied by a continuous rise in the IOS. On reoxygenation, the IOS returned to control levels. Cells located at the surface of the slice were observed to swell during periods of anoxia. The region of the nucleus hypoglossus exhibited faster and larger IOS changes than the periambigual region, which presumably reflects differences in sensitivities of these neurons to metabolic stress. To analyze the components of the hypoxic IOS response, we investigated the IOS after application of neurotransmitters known to be released in increasing amounts during hypoxia. Indeed, glutamate application induced an IOS increase, whereas adenosine slightly reduced the IOS. The IOS response to hypoxia was diminished after application of glutamate uptake blockers, indicating that glutamate contributes to the hypoxic IOS. Blockade of the Na(+)/K(+)-ATPase by ouabain did not provoke a hypoxia-like IOS change. The influences of K(ATP) channels were analyzed, because they contribute significantly to the modulation of neuronal excitability during hypoxia. IOS responses obtained during manipulation of K(ATP) channel activity could be explained only by implicating mitochondrial volume changes mediated by mitochondrial K(ATP) channels. In conclusion, the hypoxic IOS response can be interpreted as a result of cell and mitochondrial swelling. Cell swelling can be attributed to hypoxic release of neurotransmitters and neuromodulators and to inhibition of Na(+)/K(+)-pump activity.
Collapse
Affiliation(s)
- M Haller
- Physiologisches Institut, Georg-August-Universität Göttingen, D-37073 Gottingen, Germany.
| | | | | |
Collapse
|
115
|
Abstract
O2 sensing is a fundamental biological process necessary for adaptation of living organisms to variable habitats and physiological situations. Cellular responses to hypoxia can be acute or chronic. Acute responses rely mainly on O2-regulated ion channels, which mediate adaptive changes in cell excitability, contractility, and secretory activity. Chronic responses depend on the modulation of hypoxia-inducible transcription factors, which determine the expression of numerous genes encoding enzymes, transporters and growth factors. O2-regulated ion channels and transcription factors are part of a widely operating signaling system that helps provide sufficient O2 to the tissues and protect the cells against damage due to O2 deficiency. Despite recent advances in the molecular characterization of O2-regulated ion channels and hypoxia-inducible factors, several unanswered questions remain regarding the nature of the O2 sensor molecules and the mechanisms of interaction between the sensors and the effectors. Current models of O2 sensing are based on either a heme protein capable of reversibly binding O2 or the production of oxygen reactive species by NAD(P)H oxidases and mitochondria. Complete molecular characterization of the hypoxia signaling pathways will help elucidate the differential sensitivity to hypoxia of the various cell types and the gradation of the cellular responses to variable levels of PO2. A deeper understanding of the cellular mechanisms of O2 sensing will facilitate the development of new pharmacological tools effective in the treatment of diseases such as stroke or myocardial ischemia caused by localized deficits of O2.
Collapse
Affiliation(s)
- J Lopez-Barneo
- Departamento de Fisiología, Facultad de Medicina y Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, E-41009, Spain.
| | | | | |
Collapse
|
116
|
Douglas RM, Schmitt BM, Xia Y, Bevensee MO, Biemesderfer D, Boron WF, Haddad GG. Sodium-hydrogen exchangers and sodium-bicarbonate co-transporters: ontogeny of protein expression in the rat brain. Neuroscience 2001; 102:217-28. [PMID: 11226686 DOI: 10.1016/s0306-4522(00)00473-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We used western blotting to examine the developmental profiles (at embryonic day 16 and postnatal days 1, 13, 23, 33 and 105) of protein expression for three sodium-hydrogen exchanger isoforms (1, 2 and 4) and for a sodium-bicarbonate co-transporter in three CNS regions (cortex, cerebellum and brainstem-diencephalon). In microsomal preparations, sodium-hydrogen exchanger isoform 1 and sodium-bicarbonate co-transporter protein expression in the CNS increases gradually from embryonic day 16 (25-40% of the adult level) to postnatal day 105. In contrast, sodium-hydrogen exchanger isoform 2 and 4 expression reaches a maximum (three to 20 times the adult level) at around three to four weeks of age. There is significant regional heterogeneity in the expression of sodium-hydrogen exchanger and sodium-bicarbonate co-transporter proteins in the rat CNS. Sodium-hydrogen exchanger isoform 1 was highly expressed in the brainstem-diencephalon, whereas the sodium-bicarbonate co-transporter was robustly expressed in the cerebellum and brainstem-diencephalon. These data indicate that the expression of sodium-hydrogen exchanger and sodium-bicarbonate co-transporter proteins varies as a function of both development and specific brain region.
Collapse
Affiliation(s)
- R M Douglas
- Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Douglas RM, Xu T, Haddad GG. Cell cycle progression and cell division are sensitive to hypoxia in Drosophila melanogaster embryos. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1555-63. [PMID: 11294781 DOI: 10.1152/ajpregu.2001.280.5.r1555] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We and others recently demonstrated that Drosophila melanogaster embryos arrest development and embryonic cells cease dividing when they are deprived of O2. To further characterize the behavior of these embryos in response to O2 deprivation and to define the O2-sensitive checkpoints in the cell cycle, embryos undergoing nuclear cycles 3-13 were subjected to O2 deprivation and examined by confocal microscopy under control, hypoxic, and reoxygenation conditions. In vivo, real-time analysis of embryos carrying green fluorescent protein-kinesin demonstrated that cells arrest at two major points of the cell cycle, either at the interphase (before DNA duplication) or at metaphase, depending on the cell cycle phase at which O2 deprivation was induced. Immunoblot analysis of embryos whose cell divisions are synchronized by inducible String (cdc25 homolog) demonstrated that cyclin B was degraded during low O2 conditions in interphase-arrested embryos but not in those arrested in metaphase. Embryos resumed cell cycle activity within ~20 min of reoxygenation, with very little apparent change in cell cycle kinetics. We conclude that there are specific points during the embryonic cell cycle that are sensitive to the O2 level in D. melanogaster. Given the fact that O2 deprivation also influences the growth and development of other species, we suggest that similar hypoxia-sensitive cell cycle checkpoints may also exist in mammalian cells.
Collapse
Affiliation(s)
- R M Douglas
- Department of Pediatrics, Section of Respiratory Medicine, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
118
|
Chung YH, Shin CM, Kim MJ, Cha CI. Enhanced expression of L-type Ca2+ channels in reactive astrocytes after ischemic injury in rats. Neurosci Lett 2001; 302:93-6. [PMID: 11290395 DOI: 10.1016/s0304-3940(01)01683-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present study, we have examined the expression of voltage-gated calcium channels in a rat model of transient focal ischemia using immunohistochemistry. Increased expression of class C L-type Ca2+ channels was clearly detected in reactive astrocytes in each region of the hippocampus 7 days after ischemic injury. On the contrary, class D L-type Ca2+ channels were not expressed in reactive astrocytes under these conditions. These patterns were also observed in reactive astrocytes in the affected cerebral cortex and fiber tracts. Our study showed the spatial and temporal localization of class C L-type Ca2+ channels in reactive astrocytes in ischemic rat brain, for the first time. The present studies may provide useful data for future investigations to understand the role of Ca2+ channels in reactive astrocytes following ischemia or glutamate toxicity.
Collapse
Affiliation(s)
- Y H Chung
- Department of Anatomy, Seoul National University, College of Medicine, 28 Yongon-Dong, Chongno-Gu, 110-799, Seoul, South Korea.
| | | | | | | |
Collapse
|
119
|
Centonze D, Marfia GA, Pisani A, Picconi B, Giacomini P, Bernardi G, Calabresi P. Ionic mechanisms underlying differential vulnerability to ischemia in striatal neurons. Prog Neurobiol 2001; 63:687-96. [PMID: 11165001 DOI: 10.1016/s0301-0082(00)00037-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Brain cells express extremely different sensitivity to ischemic insults. The reason for this differential vulnerability is still largely unknown. Here we discuss the ionic bases underlying the physiological responses to in vitro ischemia in two neostriatal neuronal subtypes exhibiting respectively high sensitivity and high resistance to energy deprivation. Vulnerable neostriatal neurons respond to ischemia with a membrane depolarization. This membrane depolarization mainly depends on the increased permeability to Na+ ions. In contrast, resistant neostriatal neurons respond to ischemia with a membrane hyperpolarization due to the opening of K+ channels. Interestingly, in both neuronal subtypes the ischemia-dependent membrane potential changes can be significantly enhanced or attenuated by a variety of pharmacological agents interfering with intracellular Ca2+ entry, ATP-dependent K+ channels opening, and Na+/Ca2+ exchanger functioning. The understanding of the ionic mechanisms underlying the differential membrane responses to ischemia represents the basis for the development of rational neuroprotective treatments during acute cerebrovascular insults.
Collapse
|
120
|
Marinelli S, Federici M, Giacomini P, Bernardi G, Mercuri NB. Hypoglycemia enhances ionotropic but reduces metabotropic glutamate responses in substantia nigra dopaminergic neurons. J Neurophysiol 2001; 85:1159-66. [PMID: 11247985 DOI: 10.1152/jn.2001.85.3.1159] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that energy deprivation causes a neuronal death that is mainly determined by an increase in the extracellular level of glutamate. Consequently an excessive membrane depolarization and a rise in the intracellular concentration of sodium and calcium are produced. In spite of this scenario, the function of excitatory and inhibitory amino acids during an episode of energy failure has not been studied yet at a cellular level. In a model of cerebral hypoglycemia in the rat substantia nigra pars compacta, we measured neuronal responses to excitatory amino acid agonists. Under single-electrode voltage-clamp mode at -60 mV, the application of the ionotropic glutamate receptor agonists N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, kainate, and the metabotropic group I agonist (S)-3,5-dihydroxyphenilglycine (DHPG) produced reversible inward currents in the dopaminergic cells. In addition, an outward current was caused by the superfusion of the metabotropic GABA(B) agonist baclofen. Glucose deprivation enhanced the inward responses caused by each ionotropic glutamate agonist. In contrast, hypoglycemia depressed the DHPG-induced inward current and the baclofen-induced outward current. These effects of hypoglycemia were reversible. To test whether a failure of the Na(+)/K(+) ATPase pump could account for the modification of the agonist-induced currents during hypoglycemia, we treated the midbrain slices with strophanthidin (1-3 microM). Strophanthidin enhanced the inward currents caused by glutamate agonists. However, it did not modify the GABA(B)-induced outward current. Our data suggest that glucose deprivation enhances the inward current caused by the stimulation of ionotropic glutamate receptors while it dampens the responses caused by the activation of metabotropic receptors. Thus a substantial component of the augmented neuronal response to glutamate, during energy deprivation, is very likely due to the failure of Na(+) and Ca(2+) extrusion and might ultimately favor excitotoxic processes in the dopaminergic cells.
Collapse
Affiliation(s)
- S Marinelli
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico, Universita' di Roma "La Sapienza," 00179 Rome, Italy
| | | | | | | | | |
Collapse
|
121
|
Horn EM, Kramer JM, Waldrop TG. Development of hypoxia-induced Fos expression in rat caudal hypothalamic neurons. Neuroscience 2001; 99:711-20. [PMID: 10974434 DOI: 10.1016/s0306-4522(00)00221-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The caudal hypothalamus is an important CNS site controlling cardiorespiratory integration during systemic hypoxia. Previous findings from this laboratory have identified caudal hypothalamic neurons of anesthetized rats that are stimulated during hypoxia. In addition, patch-clamp recordings in an in vitro brain slice preparation have revealed that there is an age-dependent response to hypoxia in caudal hypothalamic neurons. The present study utilized the expression of the transcription factor Fos as an indicator of neuronal depolarization to determine the hypoxic response of caudal hypothalamic neurons throughout postnatal development in conscious rats. Sprague-Dawley rats, aged three to 56 days, were placed in a normobaric chamber circulated with either 10% oxygen or room air for 3h. Following the hypoxic/normoxic exposure period, tissues from the caudal hypothalamus, periaqueductal gray, rostral ventrolateral medulla and nucleus tractus solitarius were processed immunocytochemically for the presence of the Fos protein. There was a significant increase in the density of neurons expressing Fos in the caudal hypothalamus of hypoxic compared to normoxic adult rats that was maintained in the absence of peripheral chemoreceptors. In contrast, no increase in the density of Fos-expressing caudal hypothalamic neurons was observed during hypoxia in rats less than 12 days old. Increases in Fos expression were also observed in an age-dependent manner in the periaqueductal gray, rostral ventrolateral medulla and nucleus tractus solitarius. These results show an increase in Fos expression in caudal hypothalamic neurons during hypoxia in conscious rats throughout development, supporting the earlier in vitro reports suggesting that these neurons are stimulated by hypoxia.
Collapse
Affiliation(s)
- E M Horn
- Department of Molecular and Integrative Physiology, Neuroscience Program, and College of Medicine, University of Illinois, Urbana, IL 61803, USA
| | | | | |
Collapse
|
122
|
Manzur A, Sosa M, Seltzer AM. Transient increase in rab 3A and synaptobrevin immunoreactivity after mild hypoxia in neonatal rats. Cell Mol Neurobiol 2001; 21:39-52. [PMID: 11440197 PMCID: PMC11533811 DOI: 10.1023/a:1007169228329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. In the present work we describe the short term effects of mild neonatal hypoxia on the synapse as assessed by the immunoreactivity (IR) of two synaptic proteins: rab 3A and synaptobrevin (VAMP). 2. Using the sensitive methodology of immunoblotting, we measured rab 3A and VAMP-IR in homogenates from the cerebral cortex, hippocampus, and corpus striatum of control (breathing room air) and hypoxiated (breathing 95.5% N2-6.5% O2 for 70 min) 4-day-old rats at 1, 2, and 6 h after the end of the hypoxia. Immunostaining with examination by light microscopy was performed using the synaptic protein-specific antibodies on fixed brain sections from animals belonging to the same litter and submitted to hypoxia. 3. A transient increase of VAMP-IR was observed in the hippocampus and corpus striatum, and for rab 3A in the striatum, 1 h after initiating reoxygenation. At the following time points the values returned to control levels. This effect was less clearly observed in the immunostained sections. 4. Mild hypoxia has an effect on sensitive brain regions, eliciting an increase in the IR of at least two proteins involved in the synaptic vesicle cycle. The transient nature of this effect possibly indicates the activation of endogenous neuroprotective mechanisms.
Collapse
Affiliation(s)
- A Manzur
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | |
Collapse
|
123
|
|
124
|
Xia Y, Haddad GG. Major difference in the expression of ?- and ?-opioid receptors between turtle and rat brain. J Comp Neurol 2001. [DOI: 10.1002/cne.1061] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
125
|
Zhang J, Haddad GG, Xia Y. delta-, but not mu- and kappa-, opioid receptor activation protects neocortical neurons from glutamate-induced excitotoxic injury. Brain Res 2000; 885:143-53. [PMID: 11102568 DOI: 10.1016/s0006-8993(00)02906-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent observations from our laboratory have led us to hypothesize that delta-opioid receptors may play a role in neuronal protection against hypoxic/ischemic or glutamate excitotocity. To test our hypothesis in this work, we used two independent methods, i.e., "same field quantification" of morphologic criteria and a biochemical assay of lactate dehydrogenase (LDH) release (an index of cellular injury). We used neuronal cultures from rat neocortex and studied whether (1) glutamate induces neuronal injury as a function of age and (2) activation of opioid receptors (delta, mu and kappa subtypes) protects neurons from glutamate-induced injury. Our results show that glutamate induced neuronal injury and cell death and this was dependent on glutamate concentration, exposure period and days in culture. At 4 days, glutamate (up to 10 mM, 4 h-exposure) did not cause apparent injury. After 8-10 days in culture, neurons exposed to a much lower dose of glutamate (100 microM, 4 h) showed substantial neuronal injury as assessed by morphologic criteria (>65%, n=23, P<0.01) and LDH release (n=16, P<0. 001). Activation of delta-opioid receptors with 10 microM DADLE reduced glutamate-induced injury by almost half as assessed by the same criteria (morphologic criteria, n=21, P<0.01; LDH release, n=16, P<0.01). Naltrindole (10 microM), a delta-opioid receptor antagonist, completely blocked the DADLE protective effect. Administration of mu- and kappa-opioid receptor agonists (DAMGO and U50488H respectively, 5-10 microM) did not induce appreciable neuroprotection. Also, mu- or kappa-opioid receptor antagonists had no appreciable effect on the glutamate-induced injury. This study demonstrates that activation of neuronal delta-opioid receptors, but not mu- and kappa-opioid receptors, protect neocortical neurons from glutamate excitotoxicity.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Cells, Cultured
- Cytoprotection/drug effects
- Cytoprotection/physiology
- Embryo, Mammalian
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, Leucine-2-Alanine/pharmacology
- Excitatory Amino Acid Agonists/pharmacology
- Female
- Glutamic Acid/pharmacology
- L-Lactate Dehydrogenase/drug effects
- L-Lactate Dehydrogenase/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neocortex
- Neurons/drug effects
- Neurons/metabolism
- Pregnancy
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- J Zhang
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, LMP 3107, New Haven, CT 06520, USA
| | | | | |
Collapse
|
126
|
Chi XX, Xu ZC. Differential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia. J Neurophysiol 2000; 84:2834-43. [PMID: 11110813 DOI: 10.1152/jn.2000.84.6.2834] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CA1 pyramidal neurons are highly vulnerable to transient cerebral ischemia. In vivo studies have shown that the excitability of CA1 neurons progressively decreased following reperfusion. To reveal the mechanisms underlying the postischemic excitability change, total potassium current, transient potassium current, and delayed rectifier potassium current in CA1 neurons were studied in hippocampal slices prepared before ischemia and at different time points following reperfusion. Consistent with previous in vivo studies, the excitability of CA1 neurons decreased in brain slices prepared at 14 h following transient forebrain ischemia. The amplitude of total potassium current in CA1 neurons increased approximately 30% following reperfusion. The steady-state activation curve of total potassium current progressively shifted in the hyperpolarizing direction with a transient recovery at 18 h after ischemia. For transient potassium current, the amplitude was transiently increased approximately 30% at approximately 12 h after reperfusion and returned to control levels at later time points. The steady-state activation curve also shifted approximately 20 mV in the hyperpolarizing direction, and the time constant of removal of inactivation markedly increased at 12 h after reperfusion. For delayed rectifier potassium current, the amplitude significantly increased and the steady-state activation curve shifted in the hyperpolarizing direction at 36 h after reperfusion. No significant change in inactivation kinetics was observed in the above potassium currents following reperfusion. The present study demonstrates the differential changes of potassium currents in CA1 neurons after reperfusion. The increase of transient potassium current in the early phase of reperfusion may be responsible for the decrease of excitability, while the increase of delayed rectifier potassium current in the late phase of reperfusion may be associated with the postischemic cell death.
Collapse
Affiliation(s)
- X X Chi
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
127
|
Haddad GG, Liu H. Different O2-sensing mechanisms by different K+ channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 475:441-52. [PMID: 10849685 DOI: 10.1007/0-306-46825-5_43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- G G Haddad
- Department of Pediatrics (Section of Respiratory Medicine), Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
128
|
Chambers-Kersh L, Ritucci NA, Dean JB, Putnam RW. Response of intracellular pH to acute anoxia in individual neurons from chemosensitive and nonchemosensitive regions of the medulla. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 475:453-64. [PMID: 10849686 DOI: 10.1007/0-306-46825-5_44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The effect of acute (10 minutes) exposure to anoxia on intracellular pH (pHi) in individual brainstem neurons, in slices from neonatal (P7 to P11) rats, was studied using a fluorescence microscopy imaging technique. Neurons from 4 regions of the medulla were studied, two of which contained chemosensitive neurons (nucleus tractus solitarius, NTS, and ventrolateral medulla, VLM) and two regions which did not contain chemosensitive neurons (hypoglossal, Hyp, and inferior olivary, IO). Acute anoxia caused a rapid and maintained acidification of 0.1-0.3 pH unit that was not different in neurons from chemosensitive vs. nonchemosensitive regions. Blocking the contribution of Na+/H+ exchange (NHE) to pHi regulation by exposing neurons to acute anoxia in the presence of the exchange inhibitor amiloride (1 mM) did not affect the degree of acidification seen in neurons from the NTS and VLM region, but significantly increased acidification (to about 0.35 pH unit) in Hyp and IO neurons. In summary, anoxia-induced intracellular acidification is not different between neurons from chemosensitive and nonchemosensitive regions, but NHE activity blunts acidification in neurons from the latter regions. These data suggest that neurons from chemosensitive areas might have a smaller acid load in response to anoxia than neurons from nonchemosensitive regions of the brainstem.
Collapse
Affiliation(s)
- L Chambers-Kersh
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | | | | | |
Collapse
|
129
|
Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. J Neurosci 2000. [PMID: 10908629 DOI: 10.1523/jneurosci.20-15-05858.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In severe hypoxia the breathing frequency is modulated in a biphasic manner: an initial increase (augmentation) is followed by a depression and cessation of breathing (apnea). Using a mouse slice preparation that contains the functional respiratory network, we aimed at identifying the neurons responsible for this frequency modulation. Whole-cell patch recordings revealed that expiratory neurons become tonically active during anoxia, indicating that these neurons cannot be responsible for the respiratory frequency modulation. Inspiratory neurons tended to depolarize (by 6.9 mV; n = 9), and the frequency of rhythmic activity was significantly increased during anoxia (from 0.16 to 0.4 Hz; n = 9). After the blockade of network activity with 6-cyano-7-nitroquinoxaline-2, 3-dione, most inspiratory neurons became tonically active (72%; n = 25, non-pacemaker). In anoxia, the membrane potential of these non-pacemaker neurons did not change (-0.26 mV; n = 6), and their tonic activity ceased. Only a subpopulation of inspiratory neurons remained rhythmically active in the absence of network activity (pacemaker neurons, 28%, 7 of 25 inspiratory neurons). In anoxia two subgroups of pacemaker neurons were differentiated; one group showed a transient increase in the bursting activity, followed by a decrease and cessation of rhythmic activity. These neurons tended to depolarize (by 10.3 mV) during anoxia. The second group remained rhythmic during the entire anoxic exposure and exhibited no depolarization. The time course of the frequency modulation in all pacemaker neurons resembled that of the intact network. We conclude that pacemaker neurons are primarily responsible for the frequency modulation in anoxia and that in the respiratory network there is a strict separation between rhythm- and pattern-generating mechanisms.
Collapse
|
130
|
Abstract
1. Mammalian neurons in the central nervous system are vulnerable to oxygen deprivation. In clinical conditions, such as stroke or apnoea, permanent loss of neuronal functions can occur within minutes of severe hypoxia. 2. Recent studies have focused on the role of Na+ in acute neuronal responses to hypoxia. These studies have shown that the influx of extracellular Na+ is an important factor in hypoxia-induced injury and that blockade of voltage-gated Na+ channels reduces hypoxic responses and injury of neurons. Yet, the mechanism underlying the effect of blockade of Na+ channels on hypoxic injury is unclear. 3. The aim of the present review is to discuss the above topics given the current understanding of the role of Na+ channels in hypoxia and its implications on therapeutic strategy for preventing hypoxia-induced neurological damage. 4. It has been known that the maintenance of ionic homeostasis and membrane properties in neurons are improved by reducing the activity of voltaged-gated Na+ channels during acute hypoxia. 5. Recent studies suggest that persistent Na+ current and Na+-dependent exchangers may play a role in Na+ influx and neuronal injury during hypoxia. 6. The neuroprotective action of blockers of the Na+ channel may also be via the improved maintainance of intracellular energy levels because the action is dependent on cellular energy levels and extracellular glucose during hypoxia. 7. Hence, the blockade of voltage-gated Na+ channels reduces the excitability of neurons, Na+ influx and the accumulation of intracellular Na+. These improve the ionic homeostasis and cellular energy levels and, thus, prevent hypoxia-induced neuronal injury and neuronal damage mediated by Ca2+ overload.
Collapse
Affiliation(s)
- M L Fung
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Pokfulam.
| |
Collapse
|
131
|
Greenland JE, Hvistendahl JJ, Andersen H, Jörgensen TM, McMurray G, Cortina-Borja M, Brading AF, Frøkiaer J. The effect of bladder outlet obstruction on tissue oxygen tension and blood flow in the pig bladder. BJU Int 2000; 85:1109-14. [PMID: 10848706 DOI: 10.1046/j.1464-410x.2000.00611.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effect of partial bladder outlet obstruction on detrusor blood flow and oxygen tension (PdetO2) in female pigs. MATERIALS AND METHODS Detrusor-layer oxygen tension and blood flow were measured using oxygen-sensitive electrode and radiolabelled microsphere techniques in five female Large White pigs with a partial urethral obstruction and in five sham-operated controls. The effects of chronic outlet obstruction on bladder weight, and cholinergic nerve density and distribution, are also described. RESULTS In the obstructed bladders, blood flow and oxygen tension were, respectively, 54.9% and 74.3% of control values at low bladder volume, and 47.5% and 42.5% at cystometric capacity. Detrusor blood flow declined by 27.8% and 37.5% in the control and obstructed bladders, respectively, as a result of bladder filling, whilst PdetO2 did not decrease in the controls, but fell by 42.7% in the obstructed bladders. Bladder weight increased whilst cholinergic nerve density decreased in the obstructed animals. CONCLUSION In pigs with chronic bladder outlet obstruction, blood flow and oxygen tension in the detrusor layer were lower than in control animals. In addition, increasing detrusor pressure during filling caused significantly greater decreases in blood flow and oxygen tension in the obstructed than in the control bladders.
Collapse
Affiliation(s)
- J E Greenland
- Department of Urology, Churchill Hospital, Oxford, Institute of Experimental Clinical Research, Skejby University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Lieske SP, Thoby-Brisson M, Telgkamp P, Ramirez JM. Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps [see comment]. Nat Neurosci 2000; 3:600-7. [PMID: 10816317 DOI: 10.1038/75776] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Are different forms of breathing derived from one or multiple neural networks? We demonstrate that brainstem slices containing the pre-Bötzinger complex generated two rhythms when normally oxygenated, with striking similarities to eupneic ('normal') respiration and sighs. Sighs were triggered by eupneic bursts under control conditions, but not in the presence of strychnine (1 microM). Although all neurons received synaptic inputs during both activities, the calcium channel blocker cadmium (4 microM) selectively abolished sighs. In anoxia, sighs ceased, and eupneic activity was reconfigured into gasping, which like eupnea was insensitive to 4 microM cadmium. This reconfiguration was accompanied by suppression of synaptic inhibition. We conclude that a single medullary network underlies multiple breathing patterns.
Collapse
Affiliation(s)
- S P Lieske
- Committee on Neurobiology, The University of Chicago, 1027 East 57th Street Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
133
|
Kulik A, Trapp S, Ballanyi K. Ischemia but not anoxia evokes vesicular and Ca(2+)-independent glutamate release in the dorsal vagal complex in vitro. J Neurophysiol 2000; 83:2905-15. [PMID: 10805687 DOI: 10.1152/jn.2000.83.5.2905] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell recordings of fura-2 dialyzed vagal neurons of brain stem slices were used to monitor interstitial glutamate accumulation within the dorsal vagal complex. Anoxia produced a sustained outward current (60 pA) and a moderate [Ca(2+)](i) rise (40 nM). These responses were neither mimicked by [1S,3R]-1-aminocyclo-pentane-1, 3-dicarboxylic acid nor affected by Ca(2+)-free solution, 6-cyano-7-nitroquino-xaline-2,3-dione (CNQX), 2-amino-5-phosphonovalerate (APV), or tetrodotoxin. Anoxia or cyanide in glucose-free saline (in vitro ischemia) as well as ouabain or iodoacetate elicited an initial anoxia-like [Ca(2+)](i) increase that turned after several minutes into a prominent Ca(2+) transient (0.9 microM) and inward current (-1.8 nA). APV plus CNQX (plus methoxyverapamil) inhibited this inward current as well as accompanying spontaneous synaptic activity, and reduced the secondary [Ca(2+)](i) rise to values similar to those during anoxia. Each of the latter drugs delayed onset of both ischemic current and prominent [Ca(2+)](i) rise by several minutes and attenuated their magnitudes by up to 40%. Ca(2+)-free solution induced a twofold delay of the ischemic inward current and suppressed the prominent Ca(2+) increase but not the initial moderate [Ca(2+)](i) rise. Cyclopiazonic acid or arachidonic acid in Ca(2+)-free saline delayed further the ischemic current, whereas neither inhibitors of glutamate uptake (dihydrokainate, D,L-threo-beta-hydroxyaspartate, L-transpyrrolidone-2,4-dicarboxylate) nor the Cl(-) channel blocker 5-nitro-2-(3-phenylpropyl-amino) benzoic acid had any effect. In summary, the response to metabolic arrest is due to activation of ionotropic glutamate receptors causing Ca(2+) entry via N-methyl-D-aspartate receptors and voltage-activated Ca(2+) channels. An early Ca(2+)-dependent exocytotic phase of ischemic glutamate release is followed by nonvesicular release, not mediated by reversed glutamate uptake or Cl(-) channels. The results also show that glycolysis prevents glutamate release during anoxia.
Collapse
Affiliation(s)
- A Kulik
- II. Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
134
|
Haddad GG. Enhancing our understanding of the molecular responses to hypoxia in mammals using Drosophila melanogaster. J Appl Physiol (1985) 2000; 88:1481-7. [PMID: 10749845 DOI: 10.1152/jappl.2000.88.4.1481] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drosophila melanogaster has been used as a genetic model, especially in the past decade, to examine normative biological processes and disease conditions very effectively. These span a wide range of major issues such as aging, cancer, embryogenesis, neural development, apoptosis, and alcohol intoxication. Here, we detail how the Drosophila melanogaster can be used as a genetic model to study the molecular and genetic underpinnings of the response to hypoxia. In our study of the basis of anoxia tolerance, one of the potent approaches that we use is a mutagenesis screen to identify loss-of-function mutants that are anoxia sensitive. The major advantage of this approach is that it is not biased for any particular gene or gene product. Although our screen is in progress, we already have evidence that this approach is useful.
Collapse
Affiliation(s)
- G G Haddad
- Departments of Pediatrics, Section of Respiratory Medicine, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
135
|
Xia Y, Fung ML, O'Reilly JP, Haddad GG. Increased neuronal excitability after long-term O(2) deprivation is mediated mainly by sodium channels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:211-9. [PMID: 10762696 DOI: 10.1016/s0169-328x(99)00338-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously observed that prolonged O(2) deprivation alters membrane protein expression and membrane properties in the central nervous system. In this work, we studied the effect of prolonged O(2) deprivation on the electrical activity of rat cortical and hippocampal neurons during postnatal development and its relationship to Na(+) channels. Rats were raised in low O(2) environment (inspired O(2) concentration = 9.5+/-0.5%) for 3-4 weeks, starting at an early age (2-3 days old). Using electrophysiologic recordings in brain slices, RNA analysis (northern and slot blots) and saxitoxin (a specific ligand for Na(+) channels) binding autoradiography, we addressed two questions: (1) does long-term O(2) deprivation alter neuronal excitability in the neocortical and hippocampal neurons during postnatal development? and (2) if so, what are the main mechanisms responsible for the change in excitability in the exposed brain? Our results show that (i) baseline membrane properties of cortical and hippocampal CA1 neurons from rats chronically exposed to hypoxia were not substantially different from those of naive neurons; (ii) acute stress (e.g., hypoxia) elicited a markedly exaggerated response in the exposed neurons as compared to naive ones; (iii) chronic hypoxia tended to increase Na(+) channel mRNA and saxitoxin binding density in the cortex and hippocampus as compared to control ones; and (iv) the enhanced neuronal response to acute hypoxia in the exposed cortical and CA1 neurons was considerably attenuated by applying tetrodotoxin, a voltage-sensitive Na(+) channel blocker, in a dose-dependent manner. We conclude that prolonged O(2) deprivation can lead to major electrophysiological disturbances, especially when exposed neurons are stressed acutely, which renders the chronically exposed neurons more vulnerable to subsequent micro-environmental stress. We suggest that this Na(+) channel-related over-excitability is likely to constitute a molecular mechanism for some neurological sequelae, such as epilepsy, resulting from perinatal hypoxic encephalopathy.
Collapse
Affiliation(s)
- Y Xia
- Department of Pediatrics, Yale University School of Medicine, LMP 3107, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
136
|
Pagani M, Ansjön R, Lind F, Uusijärvi J, Sumen G, Jonsson C, Salmaso D, Jacobsson H, Larsson SA. Effects of acute hypobaric hypoxia on regional cerebral blood flow distribution: a single photon emission computed tomography study in humans. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 168:377-83. [PMID: 10712575 DOI: 10.1046/j.1365-201x.2000.00649.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single Photon Emission Computed Tomography (SPECT) and radiopharmaceutical stabilizing agents allowed us to investigate regional cerebral blood flow (CBF) distribution in six resting healthy subjects during acute laboratory hypobaric hypoxic conditions. In the hypobaric experiment stabilized 99mTc-D, L-hexamethyl-propylene amine oxime was injected 40 min after reaching hypoxic conditions corresponding to an altitude of 5500 m above sea level. Arterial blood sample was taken after five additional minutes. Mean arterial oxygen pressure and haemoglobin saturation were 28 mmHg and 56%, respectively. The control experiment was performed similarly, apart from barometric pressure and blood gas analysis. We analysed CBF distribution in 12 regions of functional interest bilaterally in frontal, parietal, temporal, occipital cortex, in the hippocampus, in the basal ganglia and other central structures of brain. No overall effect of hypoxia on normalized regional CBF distribution in the considered regions was found. Motor cortex (Brodmann 4) and basal ganglia were the only regions in which hypobaric hypoxia significantly increased relative distribution of the radiopharmaceutical [F(1,5)=18.30; P < 0.008 and F(1,5)=10.85; P < 0.022, respectively]. Despite severe hypoxia, we did not observe any major regional CBF redistribution. We found a small relative increase in blood flow to the motor cortex and the basal ganglia, at rest after 40 min of hypobaric hypoxia, suggesting a preferential compensatory mechanism of these functional regions of brain.
Collapse
Affiliation(s)
- M Pagani
- Section of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Calabresi P, Picconi B, Saulle E, Centonze D, Hainsworth AH, Bernardi G. Is pharmacological neuroprotection dependent on reduced glutamate release? Stroke 2000; 31:766-72; discussion 773. [PMID: 10700517 DOI: 10.1161/01.str.31.3.766] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to determinate the possible role of the ionotropic glutamate receptor in the expression of irreversible electrophysiological changes induced by in vitro ischemia and to test whether the neuroprotective action of various neurotransmitter agonists and drugs of clinical interest is related to a presynaptic inhibitory action at glutamatergic synapses. METHODS Intracellular and extracellular recordings have been performed in a rat corticostriatal slice preparation. Different pharmacological compounds have been tested on corticostriatal glutamatergic transmission in control conditions and in an in vitro model of ischemia (oxygen and glucose deprivation). RESULTS In vitro ischemia lasting 10 minutes produced an irreversible loss of the field potential recorded from striatal slices after cortical stimulation. Preincubation of the slices with 3 micromol/L 6-cyano-7-nitroquinoxaline-2,3-dione (an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid [AMPA] receptor antagonist) allowed a significant recovery of the field potential amplitude (P<0.05, n=6), whereas incubation with 30 micromol/L aminophosphonovaleric acid (an N-methyl-D-aspartate receptor antagonist) did not produce a significant recovery after 10 minutes of ischemia (P>0.05, n=7). Bath application of 3 mmol/L glutamate for 5 minutes produced a complete but reversible inhibition of the field potential amplitude. When a similar application was coupled with a brief period of ischemia (5 minutes), which produced, per se, only a transient inhibition of the field potential, it caused an irreversible loss of this parameter. We also tested the possible neuroprotective effect of neurotransmitter agonists reducing the release of glutamate from corticostriatal terminals. Agonists acting on purinergic (adenosine), muscarinic (oxotremorine), and metabotropic glutamate receptors (L-serine o-phosphate [L-SOP]) significantly (P<0.001, n=8 for each agonist) reduced glutamatergic synaptic potentials, with each showing different potencies. The EC(50) was 26.4 micromol/L for adenosine, 0. 08 micromol/L for oxotremorine, and 0.89 micromol/L for L-SOP. Concentrations of these agonists producing the maximal inhibition of the synaptic potential were tested on the ischemia-induced irreversible loss of field potential. Adenosine (P<0.05, n=9) and oxotremorine (P<0.05, n=8) showed significant neuroprotective action, whereas L-SOP was ineffective (P>0.05, n=10). Similarly, putative neuroprotective drugs significantly (P<0.001, n=10 for each drug) reduced the amplitude of corticostriatal potential, with different EC(50) values (phenytoin, 33.5 micromol/L; gabapentin, 96.8 micromol/L; lamotrigine, 26.7 micromol/L; riluzole, 6 micromol/L; and sipatrigine, 2 micromol/L). Concentration of these drugs producing maximal inhibition of the amplitude of corticostriatal potentials showed a differential neuroprotective action on the ischemic electrical damage. Phenytoin (P<0.05, n=10), lamotrigine (P<0.05, n=10), riluzole (P<0.05, n=9), and sipatrigine (P<0.001, n=10) produced a significant neuroprotection, whereas gabapentin (P>0.05, n=11) was ineffective. The neuroprotective action of transmitter agonists and clinical drugs was not related to their ability in decreasing glutamate release, as detected by changes in the paired-pulse facilitation protocol. CONCLUSIONS Ionotropic glutamate receptors, and particularly AMPA-like receptors, play a role in the irreversible loss of field potential amplitude induced by ischemia in the striatum. Drugs acting by reducing glutamatergic corticostriatal transmission may show a neuroprotective effect. However, their efficacy does not seem to be directly related to their capability to decrease glutamate release from corticostriatal terminals. We suggest that additional modulatory actions on voltage-dependent conductances and on ischemia-induced ion distribution at the postsynaptic site may also exert a crucial role.
Collapse
Affiliation(s)
- P Calabresi
- Clinica Neurologica, Dipartimiento Neuroscienze, Università di Tor Vergata, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
138
|
Xia Y, Haddad GG. Effect of prolonged O2 deprivation on Na+ channels: differential regulation in adult versus fetal rat brain. Neuroscience 2000; 94:1231-43. [PMID: 10625063 DOI: 10.1016/s0306-4522(99)00375-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal Na+ channels are functionally inhibited in the adult in response to acute O2 deprivation. Since prolonged hypoxia may not only affect channel function, but also its expression, we hypothesized that long-term hypoxia alters Na+ channel density. This alteration may depend on age, because we have found major differences in neuronal responses to hypoxia between the immature and adult. In the present work, we used northern blots, slot blots, saxitoxin binding and autoradiography to ask whether: (i) prolonged hypoxia alters Na+ channel messenger RNA and protein levels in the brain; (ii) there is a difference between the adult and prenatal brains regarding Na+ channel expression with hypoxic exposure; and (iii) regional differences in Na+ channel expression occur in hypoxia-exposed brains. Our results show the following. (1) Na+ channel messenger RNA and saxitoxin binding density decreased after prolonged hypoxia in adult brain homogenates; this is in sharp contrast to the changes observed in fetal brains, which tended to increase Na+ channel messenger RNA and protein after hypoxia. (2) Changes in saxitoxin binding density are related to alterations in the number of saxitoxin binding sites and not to binding affinity, since there was no major change in Kd values between the hypoxia and naive groups. (3) The hypoxia-induced Na+ channel expression was heterogeneous, with major differences between rostral regions (e.g., the cortex) and caudal regions (e.g., the medulla and pons). We speculate that down-regulation of Na+ channels during long-term hypoxia in mature brains is an adaptive cellular response, aimed at minimizing the mismatch between energy supply and demand, since maintenance of Na+ gradients is a major energy-requiring process. However, the prenatal brain does not depend on this adaptive mechanism in response to hypoxic stress.
Collapse
Affiliation(s)
- Y Xia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
139
|
Hayashi F, Fukuda Y. Neuronal mechanisms mediating the integration of respiratory responses to hypoxia. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:15-24. [PMID: 10866693 DOI: 10.2170/jjphysiol.50.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The activation of peripheral chemoreceptors by hypoxia or electrical stimulation of the carotid sinus nerve elicited a hypoxic respiratory response consisting of both stimulatory and subsequent or simultaneous inhibitory components (hypoxic respiratory stimulation and depression). Both components have different time domains of responses (time-dependent response), providing an integrated respiratory response to hypoxia. This review has focused on the neuroanatomical and neurophysiological correlations responsible for these responses and their neuropharmacological mechanisms. Hypoxic respiratory depression is characterized by the initial activation of respiration followed by a progressive and gradual decline in ventilation during prolonged and/or severe hypoxic exposure (biphasic response). The responsible mechanisms for the depression are located within the central nervous system and may be dependent upon activity from peripheral chemoreceptor. Two underlying mechanisms contributing to the depression have been advocated. (1) Change in synaptic transmission: Within the neuronal network controlling the hypoxic respiratory response, hypoxia might induce the enhancement of inhibitory neurotransmission (modulation), disfacilitation of excitatory neruotransmission or both. (2) Change in the membrane property of respiratory neurons: Hypoxia might suppress the membrane excitability of respiratory neurons composing the hypoxic respiratory response via modulating ion channels, leading to hyperpolarization or depolarization blocking of the neurons. However, the quantitative aspects of Pao(2) (degree and duration of hypoxic exposure) to induce these changes and the susceptibility of both mechanisms to the Pao(2) level have not yet been clearly elucidated.
Collapse
Affiliation(s)
- F Hayashi
- Department of Physiology II, School of Medicine, Chiba University, Japan.
| | | |
Collapse
|
140
|
Talley EM, Lei Q, Sirois JE, Bayliss DA. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 2000; 25:399-410. [PMID: 10719894 DOI: 10.1016/s0896-6273(00)80903-4] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inhibition of "leak" potassium (K+) channels is a widespread CNS mechanism by which transmitters induce slow excitation. We show that TASK-1, a two pore domain K+ channel, provides a prominent leak K+ current and target for neurotransmitter modulation in hypoglossal motoneurons (HMs). TASK-1 mRNA is present at high levels in motoneurons, including HMs, which express a K+ current with pH- and voltage-dependent properties virtually identical to those of the cloned channel. This pH-sensitive K+ channel was fully inhibited by serotonin, norepinephrine, substance P, thyrotropin-releasing hormone, and 3,5-dihydroxyphenylglycine, a group I metabotropic glutamate receptor agonist. The neurotransmitter effect was entirely reconstituted in HEK 293 cells coexpressing TASK-1 and the TRH-R1 receptor. Given its expression patterns and the widespread prevalence of this neuromodulatory mechanism, TASK-1 also likely supports this action in other CNS neurons.
Collapse
Affiliation(s)
- E M Talley
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA.
| | | | | | | |
Collapse
|
141
|
Ballanyi K, Onimaru H, Homma I. Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 1999; 59:583-634. [PMID: 10845755 DOI: 10.1016/s0301-0082(99)00009-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vitro brainstem-spinal cord preparation of newborn rats is an established model for the analysis of respiratory network functions. Respiratory activity is generated by interneurons, bilaterally distributed in the ventrolateral medulla. In particular non-NMDA type glutamate receptors constitute excitatory synaptic connectivity between respiratory neurons. Respiratory activity is modulated by a diversity of neuroactive substances such as serotonin, adenosine or norepinephrine. Cl(-)-mediated IPSPs provide a characteristic pattern of membrane potential fluctuations and elevation of the interstitial concentration of (endogenous) GABA or glycine leads to hyperpolarisation-related suppression of respiratory activity. Respiratory rhythm is not blocked upon inhibition of IPSPs with bicuculline, strychnine and saclofen. This indicates that GABA- and glycine-mediated mutual synaptic inhibition is not crucial for in vitro respiratory activity. The primary oscillatory activity is generated by neurons of a respiratory rhythm generator. In these cells, a set of intrinsic conductances such as P-type Ca2+ channels, persistent Na+ channels and G(i/o) protein-coupled K+ conductances mediates conditional bursting. The respiratory rhythm generator shapes the activity of an inspiratory pattern generator that provides the motor output recorded from cranial and spinal nerve rootlets in the preparation. Burst activity appears to be maintained by an excitatory drive due to tonic synaptic activity in concert with chemostimulation by H+. Evoked anoxia leads to a sustained decrease of respiratory frequency, related to K+ channel-mediated hyperpolarisation, whereas opiates or prostaglandins cause longlasting apnea due to a fall of cellular cAMP. The latter observations show that this in vitro model is also suited for analysis of clinically relevant disturbances of respiratory network function.
Collapse
Affiliation(s)
- K Ballanyi
- II Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
142
|
Ma E, Haddad GG. Isolation and characterization of the hypoxia-inducible factor 1beta in Drosophila melanogaster. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 73:11-6. [PMID: 10581393 DOI: 10.1016/s0169-328x(99)00224-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hypoxia-inducible factor 1 (HIF-1), a heterodimer composed of alpha and beta subunits, plays an important role in the cellular response to O(2) deprivation. In this paper, Drosophila HIF-1beta (dHIF-1beta) homolog is cloned and characterized. Further, Northern analyses showed that dHIF-1alpha and dHIF-1beta expressed their highest level at an embryonic stage. From the pupal stage on, their expression was sharply reduced and maintained at a steady level. Anoxia treatment up-regulated the expression of the both alpha and beta subunits. Over-expression of dHIF-1alpha in transgenic embryos resulted in embryonic lethality, while over-expression of dHIF-1beta significantly prolonged fly recovery time from a 5-min anoxic stupor. The cloning and characterization dHIF-1beta reported in this paper provide a framework for further genetic dissection of the HIF-1 complex in its role in the cellular or tissue response to O(2) deprivation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Blotting, Northern
- Central Nervous System/metabolism
- Chromosome Mapping
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- Drosophila melanogaster/chemistry
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Gene Expression Regulation, Developmental
- Hypoxia-Inducible Factor 1
- Hypoxia-Inducible Factor 1, alpha Subunit
- Insect Proteins/genetics
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/isolation & purification
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Transcription Factors
Collapse
Affiliation(s)
- E Ma
- Department of Pediatrics (Section of Respiratory Medicine), Yale University School of Medicine, PO Box 208064, 333 Cedar Street, New Haven, CT 06520-8064, USA.
| | | |
Collapse
|
143
|
Fung ML, Croning MD, Haddad GG. Sodium homeostasis in rat hippocampal slices during oxygen and glucose deprivation: role of voltage-sensitive sodium channels. Neurosci Lett 1999; 275:41-4. [PMID: 10554980 DOI: 10.1016/s0304-3940(99)00728-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The breakdown in brain ionic homeostasis during energy deprivation (anoxic depolarization [AD]) is intimately linked to neuronal injury. We studied the role of one particular route of Na+ influx, voltage-sensitive Na+ channels, in the AD induced by O2 and/or glucose deprivation. We recorded extracellular Na+ concentration ([Na+]e) and direct current potential (DCP) in the CA1 stratum pyramidale of hippocampal slices using Na+-selective microelectrodes. Tetrodotoxin (0.1-1 microM) delayed the occurrence of AD and reduced the peak change in both [Na+]e and DCP during AD. However the tetrodotoxin effects were overcome by a concomitant reduction in extracellular glucose during anoxia. We conclude that: (1) the activation of voltage-gated Na+ channels is involved in the triggering of AD; (2) there may be a critical level of energy depletion when AD occurs and different mechanisms may underlie AD during hypoxia, compared to O2 and glucose deprivation.
Collapse
Affiliation(s)
- M L Fung
- Department of Physiology, The University of Hong Kong, Pokfulam
| | | | | |
Collapse
|
144
|
Telgkamp P, Ramirez JM. Differential responses of respiratory nuclei to anoxia in rhythmic brain stem slices of mice. J Neurophysiol 1999; 82:2163-70. [PMID: 10561396 DOI: 10.1152/jn.1999.82.5.2163] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The response of the neonatal respiratory system to hypoxia is characterized by an initial increase in ventilation, which is followed within a few minutes by a depression of ventilation below baseline levels. We used the transverse medullary slice of newborn mice as a model system for central respiratory control to investigate the effects of short-lasting periods of anoxia. Extracellular population activity was simultaneously recorded from the ventral respiratory group (VRG) and the hypoglossus (XII) nucleus (a respiration-related motor output nucleus). During anoxia, respiratory frequency was modulated in a biphasic manner and phase-locked in both the VRG and the XII. The amplitude of phasic respiratory bursts was increased only in the XII and not in the VRG. This increase in XII burst amplitude commenced approximately 1 min after the anoxic onset concomitant with a transient increase in tonic activity. The burst amplitude remained elevated throughout the entire 5 min of anoxia. Inspiratory burst amplitude in the VRG, in contrary, remained constant or even decreased during anoxia. These findings represent the first simultaneous extracellular cell population recordings of two respiratory nuclei. They provide important data indicating that rhythm generation is altered in the VRG without a concomitant alteration in the VRG burst amplitude, whereas the burst amplitude is modulated only in the XII nucleus. This has important implications because it suggests that rhythm generation and motor pattern generation are regulated separately within the respiratory network.
Collapse
Affiliation(s)
- P Telgkamp
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
145
|
Abstract
With the approval of alteplase (tPA) therapy for stroke, it is likely that combination therapy with tPA to restore blood flow, and agents like glutamate receptor antagonists to halt or reverse the cascade of neuronal damage, will dominate the future of stroke care. The authors describe events and potential targets of therapeutic intervention that contribute to the excitotoxic cascade underlying cerebral ischemic cell death. The focal and global animal models of stroke are the basis for the identification of these events and therapeutic targets. The signalling pathways contributing to ischemic neuronal death are discussed based on their cellular localization. Cell surface signalling events include the activities of both voltage-gated K+, Na+, and Ca2+ channels and ligand-gated glutamate, gamma-aminobutyric acid and adenosine receptors and channels. Intracellular signalling events include alterations in cytosolic and subcellular Ca2+ dynamics, Ca2+ -dependent kinases and immediate early genes whereas intercellular mechanisms include free radical formation and the activation of the immune system. An understanding of the relative importance and temporal sequence of these processes may result in an effective stroke therapy targeting several points in the cascade. The overall goal is to reduce disability and enhance quality of life for stroke survivors.
Collapse
Affiliation(s)
- D L Small
- Receptor and Ion Channels Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | |
Collapse
|
146
|
Liu H, Moczydlowski E, Haddad GG. O(2) deprivation inhibits Ca(2+)-activated K(+) channels via cytosolic factors in mice neocortical neurons. J Clin Invest 1999; 104:577-88. [PMID: 10487772 PMCID: PMC408544 DOI: 10.1172/jci7291] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Accepted: 07/27/1999] [Indexed: 11/17/2022] Open
Abstract
O(2) deprivation induces membrane depolarization in mammalian central neurons. It is possible that this anoxia-induced depolarization is partly mediated by an inhibition of K(+) channels. We therefore performed experiments using patch-clamp techniques and dissociated neurons from mice neocortex. Three types of K(+) channels were observed in both cell-attached and inside-out configurations, but only one of them was sensitive to lack of O(2). This O(2)-sensitive K(+) channel was identified as a large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), as it exhibited a large conductance of 210 pS under symmetrical K(+) (140 mM) conditions, a strong voltage-dependence of activation, and a marked sensitivity to Ca(2+). A low-O(2) medium (PO(2) = 10-20 mmHg) markedly inhibited this BK(Ca) channel open probability in a voltage-dependent manner in cell-attached patches, but not in inside-out patches, indicating that the effect of O(2) deprivation on BK(Ca) channels of mice neocortical neurons was mediated via cytosol-dependent processes. Lowering intracellular pH (pH(i)), or cytosolic addition of the catalytic subunit of a cAMP-dependent protein kinase A in the presence of Mg-ATP, caused a decrease in BK(Ca) channel activity by reducing the sensitivity of this channel to Ca(2+). In contrast, the reducing agents glutathione and DTT increased single BK(Ca) channel open probability without affecting unitary conductance. We suggest that in neocortical neurons, (a) BK(Ca) is modulated by O(2) deprivation via cytosolic factors and cytosol-dependent processes, and (b) the reduction in channel activity during hypoxia is likely due to reduced Ca(2+) sensitivity resulting from cytosolic alternations such as in pH(i) and phosphorylation. Because of their large conductance and prevalence in the neocortex, BK(Ca) channels may be considered as a target for pharmacological intervention in conditions of acute anoxia or ischemia.
Collapse
Affiliation(s)
- H Liu
- Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
147
|
Ouanonou A, Zhang Y, Zhang L. Changes in the calcium dependence of glutamate transmission in the hippocampal CA1 region after brief hypoxia-hypoglycemia. J Neurophysiol 1999; 82:1147-55. [PMID: 10482734 DOI: 10.1152/jn.1999.82.3.1147] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using the model of hypoxia-hypoglycemia (HH) in rat brain slices, we asked whether glutamate transmission is altered following a brief HH episode. The HH challenge was conducted by exposing slices to a glucose-free medium aerated with 95% N2-5% CO2, for approximately 4 min, and glutamate transmission in the hippocampal CA1 region was monitored at different post HH times. In slices examined </=8 h post HH, CA1 synaptic field potentials are comparable in amplitude to controls, but are less sensitive to experimental manipulations designed to attenuate intracellular Ca2+ signals, as compared with controls. Reducing calcium influx, by applying a nonspecific calcium channel blocker Co2+ or lowering external Ca2+, attenuated CA1 synaptic potentials much less in challenged slices than in controls. Buffering intracellular Ca2+ by bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM) attenuated CA1 synaptic potentials in control but not in slices post HH. Furthermore, minimally evoked excitatory postsynaptic currents displayed a lower failure rate in post-hypoxic CA1 neurons compared with controls. Based on these convergent observations, we suggest that evoked CA1 glutamate transmission is altered in the first several hours after brief hypoxia, likely resulting from alterations in intracellular Ca2+ homeostasis and/or Ca2+-dependent processes governing transmitter release.
Collapse
Affiliation(s)
- A Ouanonou
- Playfair Neuroscience Unit, Toronto Hospital Research Institute, Department of Medicine (Neurology), Bloorview Epilepsy Program, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | | | |
Collapse
|
148
|
Gebhardt C, Heinemann U. Anoxic decrease in potassium outward currents of hippocampal cultured neurons in absence and presence of dithionite. Brain Res 1999; 837:270-6. [PMID: 10434012 DOI: 10.1016/s0006-8993(99)01616-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of brief anoxia on voltage dependent K(+)-currents of hippocampal cultured neurons was studied. The oxygen scavenger dithionite (hydrosulphite) was previously used for creating zero oxygen pressure. However, dithionite consumes O(2) in parallel with generation of superoxide radicals and is a strongly reducing agent. In this study anoxia was produced by perfusion of the neurons with a solution bubbled with nitrogen for 1 h using a chamber with an argon layer isolating the anoxic bath flow from atmospheric oxygen in presence and absence of dithionite. Oxygen partial pressure of dithionite-free solution was determined by oxygen dependent quenching of the phosphorescence of Pd-coproporphyrin to be 0.15+/-0. 02 Torr (values are given as mean+/-S.D., n=6). Slow (I(K))- and fast (I(A))-inactivating K(+)-currents were measured with the patch clamp technique in the whole cell configuration. Exposure of the neurons to anoxia reversibly decreased the amplitude of I(K) at a test pulse of 0 mV to 77+/-12% (n=7) in absence and to 83+/-7% (n=6) in presence of 2 mM dithionite; the amplitude of I(A) decreased to 78+/-11% in absence and to 82+/-9% in presence of 2 mM dithionite. Voltage dependence of activation and inactivation shifted 5 min after exposure to anoxia reversibly by about 6 mV in depolarizing direction. The decay times of inactivation were insensitive to anoxia. Dithionite had no significant effects on K(+)-currents. In 15 of 21 neurons not employed for analysis on K(+)-currents, a reversible increase in holding current under dithionite was observed. In absence of dithionite in 4 of 19 neurons the holding current reversibly increased during anoxia. Although dithionite does not affect K(+)-currents, changes in holding current show that the dithionite may affect neurons independently of oxygen deprivation.
Collapse
Affiliation(s)
- C Gebhardt
- Institute of Physiology, Charite, Humboldt University, Tucholskystr. 2, D 10117, Berlin, Germany.
| | | |
Collapse
|
149
|
Barbieri M, Nistri A. Electrophysiological actions of N-[1-[4-(4-fluorophenoxy)butyl]-4-piperidinyl]-N-methyl-2-benzothiazola mine (R56865) on CA1 neurons of the rat hippocampal slice during hypoxia. Neurosci Lett 1999; 270:161-4. [PMID: 10462119 DOI: 10.1016/s0304-3940(99)00502-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrophysiological effects of N-[1-[4-(4-fluorophenoxy)butyl]-4-piperidinyl]-N-methyl-2-benzothiazo lamine (R56865), a drug which protects heart cells from ischemia-induced arrhythmias, was studied on intracellularly-recorded CA1 neurons of the rat hippocampal slice under normal or hypoxic conditions. On normoxic cells R56865 (1 microM) reduced firing accommodation without changing passive membrane properties, spike characteristics or synaptic transmission. On hypoxic cells R56865 selectively reduced the amplitude of hypoxia-induced membrane depolarization and partly counteracted the depression of synaptic transmission evoked by Schaffers collateral stimulation. Despite its influence on repetitive firing properties, R56865 might be useful to limit the extent of cellular depolarizing responses to hypoxia.
Collapse
Affiliation(s)
- M Barbieri
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Trieste, Italy.
| | | |
Collapse
|
150
|
Kawai Y, Qi J, Comer AM, Gibbons H, Win J, Lipski J. Effects of cyanide and hypoxia on membrane currents in neurones acutely dissociated from the rostral ventrolateral medulla of the rat. Brain Res 1999; 830:246-57. [PMID: 10366681 DOI: 10.1016/s0006-8993(99)01397-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous reports suggested that some neurones located in the rostral ventrolateral medulla (RVL) can act as fast oxygen sensors which enhance the sympathetic activity and blood pressure independent of peripheral chemoreceptors. The aim of this study was to compare hypoxic responses of different subpopulations of RVL neurones to ascertain whether the hypoxic sensitivity is restricted to one group of these neurones. Whole-cell patch-clamp recordings were made from acutely dissociated neurones obtained from RVL of P13-P19 rats. Short-lasting hypoxia (1-2 min) was evoked by pressure injection of NaCN or lowering pO2. Cells projecting to the upper thoracic segments were retrogradely labelled with fluorescent beads. Catecholaminergic (CA) or non-catecholaminergic (non-CA) neurones were identified using single-cell reverse-transcription polymerase chain reaction (RT-PCR) or immunocytochemistry. Recordings were made from 38 neurones (26 spinally-projecting, 12 non-spinal) using Cs+/TEA or K+-containing pipettes. In most of the cells tested with slow depolarising ramp commands (78%; including spinally-projecting and non-spinal neurones, as well as CA and non-CA neurones), NaCN or hypoxia evoked a reversible increase of the sustained inward current. Extracellular application of 1 mM Co2+ or 25 nM TTX revealed three components of the hypoxia-sensitive inward current which resembled the persistent sodium (INaP), low threshold calcium (LVA Ca2+) and high threshold calcium (HVA Ca2+) currents. The NaCN or hypoxia induced increase of the current could also be observed during step commands. Recordings with K+-containing pipettes during similar depolarising ramps revealed, in addition, a reversible increase of IK in 78% of tested cells (in all four types of examined neurones). These results are consistent with the concepts that RVL neurones can act as a central oxygen sensor. However, in contrast to the previously published data demonstrating that in pentobarbital anaesthetised rats only the barosensitive and spinally projecting cells were affected by a short-lasting hypoxia, our findings obtained with dissociated RVL neurones indicate that sensitivity to hypoxia is widely distributed within this part of the medulla oblongata.
Collapse
Affiliation(s)
- Y Kawai
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|