101
|
Borekci S, Karakas FG, Sirekbasan S, Kubat B, Karaali R, Can G, Kocazeybek BS, Gemicioglu B. The Relationship between Pre-Pandemic Interferon Gamma Release Assay Test Results and COVID-19 Infection: Potential Prognostic Value of Indeterminate IFN- γ Release Assay Results. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:1989277. [PMID: 34367385 PMCID: PMC8342180 DOI: 10.1155/2021/1989277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To reveal the relationship between interferon-gamma release assay (IGRA) test (Standard ETB-Feron ELISA (TBF)) results performed within 12 months before the COVID-19 pandemic and the frequency of COVID-19 infections and the severity of COVID-19. METHODS The retrospective TBF test results and contact information of 684 patients aged over 18 years who underwent TBF testing between March 11th, 2019, and March 10th, 2020, were obtained. Of the 684 patients contacted by phone, 365 agreed to participate in the study and were enrolled. The patients were divided into three groups (TBF test positive, negative, and indeterminate). The data obtained from the questionnaire were compared statistically. RESULTS According to the TBF test results, positive (n = 51, 14%), negative (n = 286, 78.3%), and indeterminate (n = 28, 7.7%) groups were compared. The frequency of COVID-19 infections in the indeterminate group was found significantly higher than that in the positive and negative groups (p=0.005). When the group with COVID-19 (n = 46, 12.6%) was compared with the group without (n = 319, 87.4%), no difference was found in terms of age, sex, body mass index, smoking history and number of cigarettes smoked, TB history, diabetes mellitus, hypertension, coronary artery disease, and biologic and corticosteroid therapy use. Only the frequency of obstructive pulmonary disease was significantly higher in the group without COVID-19 (p=0.033). CONCLUSION The frequency of COVID-19 infection was increased in patients with indeterminate TBF test results. Indeterminate TBF test results may be a guide in terms of risk stratification in groups at risk for COVID-19.
Collapse
Affiliation(s)
- Sermin Borekci
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fatma Gulsum Karakas
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serhat Sirekbasan
- Department of Medical Laboratory Techniques, Eldivan Vocational School of Health Services, Cankırı Karatekin University, Cankırı, Turkey
| | - Bahar Kubat
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rıdvan Karaali
- Department of Infectious Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gunay Can
- Department of Public Health, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bekir Sami Kocazeybek
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bilun Gemicioglu
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
102
|
Kaplonek P, Wang C, Bartsch Y, Fischinger S, Gorman MJ, Bowman K, Kang J, Dayal D, Martin P, Nowak R, Hsieh CL, Feldman J, Julg B, Nilles EJ, Musk ER, Menon AS, Fischer ES, McLellan JS, Schmidt A, Goldberg MB, Filbin M, Hacohen N, Lauffenburger DA, Alter G. Early cross-coronavirus reactive signatures of protective humoral immunity against COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.11.443609. [PMID: 34013263 PMCID: PMC8132219 DOI: 10.1101/2021.05.11.443609] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The introduction of vaccines has inspired new hope in the battle against SARS-CoV-2. However, the emergence of viral variants, in the absence of potent antivirals, has left the world struggling with the uncertain nature of this disease. Antibodies currently represent the strongest correlate of immunity against COVID-19, thus we profiled the earliest humoral signatures in a large cohort of severe and asymptomatic COVID-19 individuals. While a SARS-CoV-2-specific immune response evolved rapidly in survivors of COVID-19, non-survivors exhibited blunted and delayed humoral immune evolution, particularly with respect to S2-specific antibody evolution. Given the conservation of S2 across β-coronaviruses, we found the early development of SARS-CoV-2-specific immunity occurred in tandem with pre-existing common β-coronavirus OC43 humoral immunity in survivors, which was selectively also expanded in individuals that develop paucisymptomatic infection. These data point to the importance of cross-coronavirus immunity as a correlate of protection against COVID-19.
Collapse
Affiliation(s)
| | - Chuangqi Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Yannic Bartsch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | - Kathryn Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jaewon Kang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | - Ching-Lin Hsieh
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Space Exploration Technologies Corp, USA
- Brigham Women's Hospital, USA
- Massachusetts General Hospital, USA
- Broad Institute, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Jason S McLellan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Space Exploration Technologies Corp, USA
- Brigham Women's Hospital, USA
- Massachusetts General Hospital, USA
- Broad Institute, USA
| | - Aaron Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | - Nir Hacohen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
103
|
Niu Y, Chen Y, Sun P, Wang Y, Luo J, Ding Y, Xie W. Intragastric and atomized administration of canagliflozin inhibit inflammatory cytokine storm in lipopolysaccharide-treated sepsis in mice: A potential COVID-19 treatment. Int Immunopharmacol 2021; 96:107773. [PMID: 34020392 PMCID: PMC8106881 DOI: 10.1016/j.intimp.2021.107773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
To date, drugs to attenuate cytokine storm in severe cases of Corona Virus Disease 2019 (COVID-19) are not available. In this study, we investigated the effects of intragastric and atomized administration of canagliflozin (CAN) on cytokine storm in lung tissues of lipopolysaccharides (LPS)-induced mice. Results showed that intragastric administration of CAN significantly and widely inhibited the production of inflammatory cytokines in lung tissues of LPS-induced sepsis mice. Simultaneously, intragastric administration of CAN significantly improved inflammatory pathological changes of lung tissues. Atomized administration of CAN also exhibited similar effects in LPS-induced sepsis mice. Furthermore, CAN significantly inhibited hypoxia inducible factor 1α (HIF-1α) and phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) protein levels in LPS-treated lung tissues. These results indicated that CAN might attenuate cytokine storm and reduce the inflammatory symptoms in critical cases in COVID-19. Its action mechanism might involve the regulation of HIF-1α and glycolysis in vivo. However, further studies about clinical application and mechanism analysis should be validated in the future.
Collapse
Affiliation(s)
- Yaoyun Niu
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang Chen
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pengbo Sun
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yangyang Wang
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingyi Luo
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yipei Ding
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
104
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Benahmed AG, Bjørklund G. The microbiota-mediated dietary and nutritional interventions for COVID-19. Clin Immunol 2021; 226:108725. [PMID: 33845194 PMCID: PMC8032598 DOI: 10.1016/j.clim.2021.108725] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Worldwide, scientists are looking for specific treatment for COVID-19. Apart from the antiviral approach, the interventions to support healthy immune responses to the virus are feasible through diet, nutrition, and lifestyle approaches. This narrative review explores the recent studies on dietary, nutritional, and lifestyle interventions that influence the microbiota-mediated immunomodulatory effects against viral infections. Cumulative studies reported that the airway microbiota and SARS-CoV-2 leverage each other and determine the pathogen-microbiota-host responses. Cigarette smoking can disrupt microbiota abundance. The composition and diversification of intestinal microbiota influence the airway microbiota and the innate and adaptive immunity, which require supports from the balance of macro- and micronutrients from the diet. Colorful vegetables supplied fermentable prebiotics and anti-inflammatory, antioxidant phytonutrients. Fermented foods and beverages support intestinal microbiota. In sensitive individuals, the avoidance of the high immunoreactive food antigens contributes to antiviral immunity. This review suggests associations between airway and intestinal microbiota, antiviral host immunity, and the influences of dietary, nutritional, and lifestyle interventions to prevent the clinical course toward severe COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Thailand Institute for Functional Medicine, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| |
Collapse
|
105
|
Aleksova A, Gagno G, Sinagra G, Beltrami AP, Janjusevic M, Ippolito G, Zumla A, Fluca AL, Ferro F. Effects of SARS-CoV-2 on Cardiovascular System: The Dual Role of Angiotensin-Converting Enzyme 2 (ACE2) as the Virus Receptor and Homeostasis Regulator-Review. Int J Mol Sci 2021; 22:4526. [PMID: 33926110 PMCID: PMC8123609 DOI: 10.3390/ijms22094526] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the entry receptor for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of Coronavirus Disease-2019 (COVID-19) in humans. ACE-2 is a type I transmembrane metallocarboxypeptidase expressed in vascular endothelial cells, alveolar type 2 lung epithelial cells, renal tubular epithelium, Leydig cells in testes and gastrointestinal tract. ACE2 mediates the interaction between host cells and SARS-CoV-2 spike (S) protein. However, ACE2 is not only a SARS-CoV-2 receptor, but it has also an important homeostatic function regulating renin-angiotensin system (RAS), which is pivotal for both the cardiovascular and immune systems. Therefore, ACE2 is the key link between SARS-CoV-2 infection, cardiovascular diseases (CVDs) and immune response. Susceptibility to SARS-CoV-2 seems to be tightly associated with ACE2 availability, which in turn is determined by genetics, age, gender and comorbidities. Severe COVID-19 is due to an uncontrolled and excessive immune response, which leads to acute respiratory distress syndrome (ARDS) and multi-organ failure. In spite of a lower ACE2 expression on cells surface, patients with CVDs have a higher COVID-19 mortality rate, which is likely driven by the imbalance between ADAM metallopeptidase domain 17 (ADAM17) protein (which is required for cleavage of ACE-2 ectodomain resulting in increased ACE2 shedding), and TMPRSS2 (which is required for spike glycoprotein priming). To date, ACE inhibitors and Angiotensin II Receptor Blockers (ARBs) treatment interruption in patients with chronic comorbidities appears unjustified. The rollout of COVID-19 vaccines provides opportunities to study the effects of different COVID-19 vaccines on ACE2 in patients on treatment with ACEi/ARB.
Collapse
Affiliation(s)
- Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (G.G.); (G.S.); (M.J.); (A.L.F.); (F.F.)
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (G.G.); (G.S.); (M.J.); (A.L.F.); (F.F.)
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (G.G.); (G.S.); (M.J.); (A.L.F.); (F.F.)
| | | | - Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (G.G.); (G.S.); (M.J.); (A.L.F.); (F.F.)
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00135 Rome, Italy;
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London NW3 2PF, UK;
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals, London NW1 2BU, UK
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (G.G.); (G.S.); (M.J.); (A.L.F.); (F.F.)
| | - Federico Ferro
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (G.G.); (G.S.); (M.J.); (A.L.F.); (F.F.)
| |
Collapse
|
106
|
Bjørklund G, Peana M, Pivina L, Dosa A, Aaseth J, Semenova Y, Chirumbolo S, Medici S, Dadar M, Costea DO. Iron Deficiency in Obesity and after Bariatric Surgery. Biomolecules 2021; 11:biom11050613. [PMID: 33918997 PMCID: PMC8142987 DOI: 10.3390/biom11050613] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Iron deficiency (ID) is particularly frequent in obese patients due to increased circulating levels of acute-phase reactant hepcidin and adiposity-associated inflammation. Inflammation in obese subjects is closely related to ID. It induces reduced iron absorption correlated to the inhibition of duodenal ferroportin expression, parallel to the increased concentrations of hepcidin. Obese subjects often get decreased inflammatory response after bariatric surgery, accompanied by decreased serum hepcidin and therefore improved iron absorption. Bariatric surgery can induce the mitigation or resolution of obesity-associated complications, such as hypertension, insulin resistance, diabetes mellitus, and hyperlipidemia, adjusting many parameters in the metabolism. However, gastric bypass surgery and sleeve gastrectomy can induce malabsorption and may accentuate ID. The present review explores the burden and characteristics of ID and anemia in obese patients after bariatric surgery, accounting for gastric bypass technique (Roux-en-Y gastric bypass-RYGB) and sleeve gastrectomy (SG). After bariatric surgery, obese subjects' iron status should be monitored, and they should be motivated to use adequate and recommended iron supplementation.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence: (G.B.); (M.P.)
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
- Correspondence: (G.B.); (M.P.)
| | - Lyudmila Pivina
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan; (L.P.); (Y.S.)
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Alexandru Dosa
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.D.); (D.-O.C.)
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, 2380 Brumunddal, Norway;
| | - Yuliya Semenova
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan; (L.P.); (Y.S.)
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
- CONEM Scientific Secretary, 37134 Verona, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran;
| | - Daniel-Ovidiu Costea
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.D.); (D.-O.C.)
| |
Collapse
|
107
|
Tippairote T, Peana M, Chirumbolo S, Bjørklund G. Individual risk management strategy for SARS-CoV-2 infection: A step toward personalized healthcare. Int Immunopharmacol 2021; 96:107629. [PMID: 33862554 PMCID: PMC8015431 DOI: 10.1016/j.intimp.2021.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 12/05/2022]
Abstract
Lethal or critical COVID-19 occurs most in infected hosts with certain risk factors such as advanced age or pre-existing disease. Host metabolic status significantly affects the clinical presentations of SARS-CoV-2 infection. Individual risk management is thus crucial for preventing severe COVID-19. Such susceptibility is individual, depending on a multitude of factors. Personalized risk assessment requires the inclusive analysis of big health data to stratify individual risk and derive a customized action plan. Personalized medicine requires shifting from the virology aspect per se to the whole individual's consideration, including dietary pattern, nutritional status, supporting lifestyle, co-existing diseases, and environmental factors. In this short communication, we discuss the individual management strategy for SARS-CoV2 infection as a step towards future personalized healthcare.
Collapse
Affiliation(s)
- Torsak Tippairote
- Nutritional and Environmental Medicine Department, Healing Passion Medical Center, Bangkok, Thailand
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|