101
|
Vargas AC, Turner J, Burchett I, Ho LL, Zumbo R, Gill AJ, Maclean FM. Myeloid sarcoma and extramedullary hematopoiesis expand the spectrum of ERG-positive proliferations; an ancillary tool in the diagnosis. Hum Pathol 2022; 124:1-13. [DOI: 10.1016/j.humpath.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
102
|
Chen Y, Zheng Y, Hong Y, Wen J, Li J, Huang Y, Chen Y, Zheng X, Yang T, Xu Y, Zheng J, Hu J. Genomic heterogeneity contributed to different prognosis between adult and pediatric acute lymphoblastic. J Leukoc Biol 2022; 112:513-522. [PMID: 35172382 DOI: 10.1002/jlb.5a0721-361r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The prognosis of acute lymphoblastic leukemia (ALL) in adults is inferior to that in children. Hence, ALL remains challenging to cure in the adult population. Aberrant genetic alterations have been observed in ALL, although the patterns of differential gene alterations in adult and pediatric ALL have not been comprehensively determined on a genome-wide scale. We investigated the biologic differences in genomic profiles between adults (n = 64) and children (n = 54) with ALL and relationship between genomic heterogeneity and prognosis. The 2 populations showed similar common mutation types but an increased prevalence of genetic alterations in adult ALL. The median numbers of gene mutations were 17 (range: 1-53) and 4.5 (range: 1-19) per sample in adult and pediatric ALL, respectively (p < 0.001). An increased number of gene mutations and age were significantly correlated (R2 = 0.5853, p < 0.001). We identified 122 and 53 driver genes in adult and pediatric ALL samples, respectively. IKZF1, IDH1, and TTN mutations were significantly enriched in adult patients with ALL. KRAS, ARID1A, and CREBBP mutations were significantly enriched in pediatric patients with ALL (p < 0.05). The incidence of relapse was 40.0% and 9.6% in adult and pediatric patients with ALL, respectively (p = 0.003). The overall survival and relapse-free survival of adult patients with ALL were poorer than those of pediatric patients with ALL (p = 0.002 and p < 0.001, respectively). This genomic landscape enhances the understanding of the biologic differences in ALL between the 2 populations and provides insight for developing therapeutic approaches.
Collapse
Affiliation(s)
- Yanxin Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yongzhi Zheng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yunda Hong
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jingjing Wen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiazheng Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yan Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yi Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaoyun Zheng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ting Yang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yangqi Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jing Zheng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
103
|
ZNF384 rearrangement in acute lymphocytic leukemia with renal involvement as the first manifestation is associated with a poor prognosis: a case report. Mol Cytogenet 2022; 15:4. [PMID: 35164825 PMCID: PMC8842518 DOI: 10.1186/s13039-022-00583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background Novel fusion genes such as ZNF384, have been identified in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in recent years. Patients harboring ZNF384 rearrangements have a distinctive immunophenotype with weak CD10 and aberrant CD13 and/or CD33 expression. Thus, ZNF384-rearranged ALL is a unique subtype of BCP-ALL. However, research on the prognostic significance of ZNF384 rearrangements has been limited to date, especially in adolescents. Case presentation We described a 17-year-old adolescent who was diagnosed with ALL and had renal involvement as the first manifestation, which was very rare in the existing studies. FISH analysis indicated a rearrangement of ZNF384 according to its probe. The patient had a typical characteristic immunophenotype of ZNF384 rearrangement, with CD10 negativity and CD13 and CD33 positivity. She had an unfavorable prognosis because she responded poorly to chemotherapy and developed a relapse shortly after reaching CR. Conclusion The importance of ZNF384 rearrangements in terms of prognosis remains unclear. We reported an adolescent who was diagnosed with ZNF384-rearranged ALL with renal involvement. She underwent different therapies, but her prognosis remained poor. Since ZNF384 rearrangements may act as a prognostic predictor in children or adolescents, early detection based on its characteristic immunophenotype is of great necessity. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-022-00583-4.
Collapse
|
104
|
Elucidating minimal residual disease of paediatric B-cell acute lymphoblastic leukaemia by single-cell analysis. Nat Cell Biol 2022; 24:242-252. [PMID: 35145224 DOI: 10.1038/s41556-021-00814-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022]
Abstract
Minimal residual disease that persists after chemotherapy is the most valuable prognostic marker for haematological malignancies and solid cancers. Unfortunately, our understanding of the resistance elicited in minimal residual disease is limited due to the rarity and heterogeneity of the residual cells. Here we generated 161,986 single-cell transcriptomes to analyse the dynamic changes of B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis, residual and relapse by combining single-cell RNA sequencing and B-cell-receptor sequencing. In contrast to those at diagnosis, the leukaemic cells at relapse tended to shift to poorly differentiated states, whereas the changes in the residual cells were more complicated. Differential analyses highlighted the activation of the hypoxia pathway in residual cells, resistant clones and B-ALL with MLL rearrangement. Both in vitro and in vivo models demonstrated that inhibition of the hypoxia pathway sensitized leukaemic cells to chemotherapy. This single-cell analysis of minimal residual disease opens up an avenue for the identification of potent treatment opportunities for B-ALL.
Collapse
|
105
|
Kantarjian HM, Jain N, Garcia-Manero G, Welch MA, Ravandi F, Wierda WG, Jabbour EJ. The cure of leukemia through the optimist's prism. Cancer 2022; 128:240-259. [PMID: 34614211 PMCID: PMC8738114 DOI: 10.1002/cncr.33933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023]
Abstract
Progress is occurring at a dizzying rate across all leukemias. Since the authors' review of the topic in Cancer in 2018, numerous discoveries have been made that have improved the therapy and outcomes of several leukemia subsets. Hairy cell leukemia is potentially curable with a single course of cladribine followed by rituximab (10-year survival, ≥90%). Acute promyelocytic leukemia is curable at a rate of 80% to 90% with a nonchemotherapy regimen of all-trans retinoic acid and arsenic trioxide. The cure rate for core-binding factor acute myeloid leukemia (AML) is ≥75% with fludarabine, high-dose cytarabine, and gemtuzumab ozogamicin. Survival for patients with chronic myeloid leukemia is close to that for an age-matched normal population with BCR-ABL1 tyrosine kinase inhibitors (TKIs). Chronic lymphocytic leukemia, a previously incurable disease, may now be potentially curable with a finite duration of therapy with Bruton tyrosine kinase inhibitors and venetoclax. The estimated 5-year survival rate for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL) exceeds 70% with intensive chemotherapy and ponatinib, a third-generation BCR-ABL1 TKI, and more recent nonchemotherapy regimens using dasatinib or ponatinib with blinatumomab are producing outstanding results. Survival in both younger and older patients with ALL has improved with the addition of antibodies targeting CD20, CD19 (blinatumomab), and CD22 (inotuzumab) to chemotherapy. Several recent drug discoveries (venetoclax, FLT3 and IDH inhibitors, and oral hypomethylating agents) are also improving outcomes for younger and older patients with AML and for those with higher risk myelodysplastic syndrome.
Collapse
Affiliation(s)
- Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Mary Alma Welch
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
106
|
Hangul C, Tokta O, Berker Karauzum S, Akkaya B, Yıldırım H, Tayfun Kupesiz F, Akınel AN. Analysis of DUX4 Expression in Bone Marrow and Re-Discussion of DUX4 Function in the Health and Disease. Turk Patoloji Derg 2022; 38:219-226. [PMID: 34854471 PMCID: PMC10508413 DOI: 10.5146/tjpath.2021.01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE DUX4 is an embryonic transcription factor (TF) later silenced in somatic tissues, while active in germline testis cells. Re-expression in somatic cells has been revealed to be present in pathologic conditions such as dystrophy, leukemia, and other cancer types. Embryonic cells, cancer cells and testis cells that show DUX4 expression are pluri-multipotent cells. This lead us to question "Could DUX4 be a TF that is active in certain types of potent somatic cells?" As a perfect reflection of the potent cell pool, we aimed to reveal DUX4 expression in the bone marrow. MATERIAL AND METHOD Bone marrow aspiration materials of seven healthy donors aged between 3 and 32 (2 males/5 females) were investigated with qPCR analysis after RNA isolation for the presence of DUX4 full length mRNA expression. Samples have been investigated for protein existence of DUX4 via immunohistochemistry in two donors that had sufficient aspiration material. RESULTS DUX4 mRNA expression was present in all donors, with higher expression compared to B-actin. DUX4 positive stained cells were also detected by immunohistochemistry. CONCLUSION With these results, novel expression for DUX4 in hematopoietic tissue is described. Further studies on the function of DUX4 in hematopoietic cells can shed light on DUX4-related pathways, and contribute to the treatment of DUX4-related diseases such as B-ALL, other cancers, and facioscapulohumeral muscular dystrophy.
Collapse
Affiliation(s)
- Ceren Hangul
- Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Oznur Tokta
- Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Sibel Berker Karauzum
- Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Bahar Akkaya
- Department of Pathology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Hulya Yıldırım
- Department of Pathology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Funda Tayfun Kupesiz
- Department of Pediatric Hematology and Oncology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Ayse Nur Akınel
- Department of Pediatric Hematology and Oncology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
107
|
Distinct clinical characteristics of DUX4- and PAX5-altered childhood B-lymphoblastic leukemia. Blood Adv 2021; 5:5226-5238. [PMID: 34547766 PMCID: PMC9152998 DOI: 10.1182/bloodadvances.2021004895] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/11/2021] [Indexed: 12/05/2022] Open
Abstract
Despite poor end-of-induction MRD, DUX4 B-ALL has excellent outcome. PAX5alt B-ALL with IKZF1 codeletion is associated with poor outcome, which can be improved by treatment intensification.
Among the recently described subtypes in childhood B-lymphoblastic leukemia (B-ALL) were DUX4- and PAX5-altered (PAX5alt). By using whole transcriptome RNA sequencing in 377 children with B-ALL from the Malaysia-Singapore ALL 2003 (MS2003) and Malaysia-Singapore ALL 2010 (MS2010) studies, we found that, after hyperdiploid and ETV6-RUNX1, the third and fourth most common subtypes were DUX4 (n = 51; 14%) and PAX5alt (n = 36; 10%). DUX4 also formed the largest genetic subtype among patients with poor day-33 minimal residual disease (MRD; n = 12 of 44). But despite the poor MRD, outcome of DUX4 B-ALL was excellent (5-year cumulative risk of relapse [CIR], 8.9%; 95% confidence interval [CI], 2.8%-19.5% and 5-year overall survival, 97.8%; 95% CI, 85.3%-99.7%). In MS2003, 21% of patients with DUX4 B-ALL had poor peripheral blood response to prednisolone at day 8, higher than other subtypes (8%; P = .03). In MS2010, with vincristine at day 1, no day-8 poor peripheral blood response was observed in the DUX4 subtype (P = .03). The PAX5alt group had an intermediate risk of relapse (5-year CIR, 18.1%) but when IKZF1 was not deleted, outcome was excellent with no relapse among 23 patients. Compared with MS2003, outcome of PAX5alt B-ALL with IKZF1 codeletion was improved by treatment intensification in MS2010 (5-year CIR, 80.0% vs 0%; P = .05). In conclusion, despite its poor initial response, DUX4 B-ALL had a favorable overall outcome, and the prognosis of PAX5alt was strongly dependent on IKZF1 codeletion.
Collapse
|
108
|
Xu H, Yu H, Jin R, Wu X, Chen H. Genetic and Epigenetic Targeting Therapy for Pediatric Acute Lymphoblastic Leukemia. Cells 2021; 10:cells10123349. [PMID: 34943855 PMCID: PMC8699354 DOI: 10.3390/cells10123349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Acute lymphoblastic leukemia is the most common malignancy in children and is characterized by numerous genetic and epigenetic abnormalities. Epigenetic mechanisms, including DNA methylations and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. Emerging studies are increasing our understanding of the epigenetic role of leukemogenesis and have demonstrated the potential of DNA methylations and histone modifications as a biomarker for lineage and subtypes classification, predicting relapse, and disease progression in acute lymphoblastic leukemia. Epigenetic abnormalities are relatively reversible when treated with some small molecule-based agents compared to genetic alterations. In this review, we conclude the genetic and epigenetic characteristics in ALL and discuss the future role of DNA methylation and histone modifications in predicting relapse, finally focus on the individual and precision therapy targeting epigenetic alterations.
Collapse
|
109
|
Deng W, Pan M, Zhu S, Chao R, Wang L. Emerging roles of microRNAs in acute lymphoblastic leukemia and their clinical prospects. Expert Rev Hematol 2021; 14:987-992. [PMID: 34784832 DOI: 10.1080/17474086.2021.2007763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Targeted therapy with microRNAs (miRNAs) has been a significant challenge in recent years. Studying the role and mechanism through which miRNAs regulate various cancer processes is very critical in cancer treatment, including acute lymphoblastic leukemia (ALL). AREAS COVERED This review summarizes the diverse roles of miRNAs in ALL and provides new perspectives in miRNA-based therapeutic strategies. EXPERT OPINION MiRNAs belong to a kind of endogenous non-coding small RNA with the length of 19 ~ 25 nucleotides. They inhibit the expression of target genes and participate in almost all essential physiological processes such as cell proliferation, apoptosis, differentiation, and inflammatory responses. Many miRNAs are abnormally expressed in tumor cells, suggesting that they might be related to the occurrence and development of tumor. ALL is a common hematological malignancy in children. Its clinical manifestation, morphology, immunophenotype, and genetic characteristics are highly heterogeneous. A number of miRNAs have been found to be abnormally expressed in ALL and related to the biological characteristics, clinical features, diagnosis, and treatment in ALL patients. The understanding of miRNAs could help reveal ALL pathogenesis and identify accurate molecular markers for ALL diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Ming Pan
- Department of Hematology, Wuwei People's Hospital, Wuwei, Gansu, China
| | - Shengdong Zhu
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Rong Chao
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Li Wang
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| |
Collapse
|
110
|
Mocciaro E, Runfola V, Ghezzi P, Pannese M, Gabellini D. DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 2021; 10:3322. [PMID: 34943834 PMCID: PMC8699294 DOI: 10.3390/cells10123322] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (E.M.); (V.R.); (P.G.); (M.P.)
| |
Collapse
|
111
|
Transcription factor MEF2D is required for the maintenance of MLL-rearranged acute myeloid leukemia. Blood Adv 2021; 5:4727-4740. [PMID: 34597364 PMCID: PMC8759131 DOI: 10.1182/bloodadvances.2021004469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
MEF2D is highly expressed in MLL-rearranged AML and required for leukemia development in vitro and in vivo. MEF2D suppresses CEBPE-mediated myeloid differentiation in AML.
Acute myeloid leukemia (AML) with MLL-rearrangement (MLL-r) comprises ∼10% of all AML cases and portends poor outcomes. Much remains uncovered on how MLL-r AML drives leukemia development while preventing cells from normal myeloid differentiation. Here, we identified that transcription factor MEF2D is a super-enhancer-associated, highly expressed gene in MLL-r AML. Knockout of MEF2D profoundly impaired leukemia growth, induced myeloid differentiation, and delayed oncogenic progression in vivo. Mechanistically, MEF2D loss led to robust activation of a CEBPE-centered myeloid differentiation program in AML cells. Chromatin profiling revealed that MEF2D binds to and suppresses the chromatin accessibility of CEBPE cis-regulatory regions. In human acute leukemia samples, MEF2D expression showed a strong negative correlation with the expression of CEBPE. Depletion of CEBPE partially rescued the cell growth defect and myeloid cell differentiation induced by the loss of MEF2D. Lastly, we show that MEF2D is positively regulated by HOXA9, and downregulation of MEF2D is an important mechanism for DOT1L inhibitor-induced antileukemia effects. Collectively, our findings suggest that MEF2D plays a critical role in human MLL-r AML and uncover the MEF2D-CEBPE axis as a crucial transcriptional mechanism regulating leukemia cell self-renewal and differentiation block.
Collapse
|
112
|
Transcriptional and Mutational Profiling of B-Other Acute Lymphoblastic Leukemia for Improved Diagnostics. Cancers (Basel) 2021; 13:cancers13225653. [PMID: 34830809 PMCID: PMC8616234 DOI: 10.3390/cancers13225653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common cancer in children, and significant progress has been made in diagnostics and the treatment of this disease based on the subtypes of BCP-ALL. However, in a large proportion of cases (B-other), recurrent BCP-ALL-associated genomic alterations remain unidentifiable by current diagnostic procedures. In this study, we performed RNA sequencing and analyzed gene fusions, expression profiles, and mutations in diagnostic samples of 185 children with BCP-ALL. Gene expression clustering showed that a subset of B-other samples partially clusters with some of the known subgroups, particularly DUX4-positive. Mutation analysis coupled with gene expression profiling revealed the presence of distinctive BCP-ALL subgroups, characterized by the presence of mutations in known ALL driver genes, e.g., PAX5 and IKZF1. Moreover, we identified novel fusion partners of lymphoid lineage transcriptional factors ETV6, IKZF1 and PAX5. In addition, we report on low blast count detection thresholds and show that the use of EDTA tubes for sample collection does not have adverse effects on sequencing and downstream analysis. Taken together, our findings demonstrate the applicability of whole-transcriptome sequencing for personalized diagnostics in pediatric ALL, including tentative classification of the B-other cases that are difficult to diagnose using conventional methods.
Collapse
|
113
|
Zhang XY, Dai HP, Zhang L, Liu SN, Dai Y, Wu DP, Tang XW. MRD-Negative Remission Induced in EP300-ZNF384 Positive B-ALL Patients by Tandem CD19/CD22 CAR T-Cell Therapy Bridging to Allogeneic Stem Cell Transplantation. Onco Targets Ther 2021; 14:5197-5204. [PMID: 34744437 PMCID: PMC8565984 DOI: 10.2147/ott.s324765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
EP300-ZNF384-positive B cell acute lymphoblastic leukemia (B-ALL) patients are reported to have a unique immunophenotype with high expression of CD19 and CD22, weak expression of CD20 and aberrant expression of CD13 and/or CD33, sensitivity to chemotherapy and a favorable outcome. To date, the cases of only 53 patients have been reported, albeit few reports on salvage therapy when conventional chemotherapies failed. Here, we describe two relapsed and refractory adult B-ALL patients with EP300-ZNF384 who achieved second remission through tandem CD19/CD22 CAR T-cell therapy. Grade 3 and 2 cytokine release syndrome were observed in cases 1 and 2, respectively. No immune effector cell-associated neurotoxicity syndrome was detected. Both patients underwent consolidate haploidentical hematopoietic stem cell transplantation (HSCT), and each maintained measurable residual disease-negative remission for 14 and 13 months, respectively. Our study suggests that CD19/CD22 CAR T-cell therapy bridging to allogeneic HSCT may be a viable option for EP300-ZNF384-positive B-ALL.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Si-Ning Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yin Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xiao-Wen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| |
Collapse
|
114
|
Abstract
Fusion of the ZNF384 gene as the 3' partner to several different 5' partner genes occurs recurrently in B-cell precursor acute lymphoblastic and mixed phenotype B/myeloid leukemia. These canonical fusions (ZNF384r) contain the complete ZNF384 coding sequence and are associated with a specific gene expression signature. Cases with this signature, but without canonical ZNF384 fusions (ZNF384r-like cases), have been described previously. Although some have been shown to harbor ZNF362 fusions, the primary aberrations remain unknown in a major proportion. We studied 3 patients with the ZNF384r signature and unknown primary genetic background and identified a previously unknown class of genetic aberration affecting the last exon of ZNF384 and resulting in disruption of the C-terminal portion of the ZNF384 protein. Importantly, in 2 cases, the ZNF384 aberration, indel, was missed during the bioinformatic analysis but revealed by the manual, targeted reanalysis. Two cases with the novel aberrations had a mixed (B/myeloid) immunophenotype commonly associated with canonical ZNF384 fusions. In conclusion, we present leukemia cases with a novel class of ZNF384 aberrations that phenocopy leukemia with ZNF384r. Therefore, we show that part of the so-called ZNF384r-like cases represent the same genetic subtype as leukemia with canonical ZNF384 fusions.
Collapse
|
115
|
Studd JB, Cornish AJ, Hoang PH, Law P, Kinnersley B, Houlston R. Cancer drivers and clonal dynamics in acute lymphoblastic leukaemia subtypes. Blood Cancer J 2021; 11:177. [PMID: 34753926 PMCID: PMC8578656 DOI: 10.1038/s41408-021-00570-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
To obtain a comprehensive picture of composite genetic driver events and clonal dynamics in subtypes of paediatric acute lymphoblastic leukaemia (ALL) we analysed tumour-normal whole genome sequencing and expression data from 361 newly diagnosed patients. We report the identification of both structural drivers, as well as recurrent non-coding variation in promoters. Additionally we found the transcriptional profile of histone gene cluster 1 and CTCF altered tumours shared hallmarks of hyperdiploid ALL suggesting a 'hyperdiploid like' subtype. ALL subtypes are driven by distinct mutational processes with AID mutagenesis being confined to ETV6-RUNX1 tumours. Subclonality is a ubiquitous feature of ALL, consistent with Darwinian evolution driving selection and expansion of tumours. Driver mutations in B-cell developmental genes (IKZF1, PAX5, ZEB2) tend to be clonal and RAS/RTK mutations subclonal. In addition to identifying new avenues for therapeutic exploitation, this analysis highlights that targeted therapies should take into account composite mutational profile and clonality.
Collapse
Affiliation(s)
- James B Studd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK.
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Phuc H Hoang
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, ML, USA
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| |
Collapse
|
116
|
Zhou B, Chu X, Tian H, Liu T, Liu H, Gao W, Chen S, Hu S, Wu D, Xu Y. The clinical outcomes and genomic landscapes of acute lymphoblastic leukemia patients with E2A-PBX1: A 10-year retrospective study. Am J Hematol 2021; 96:1461-1471. [PMID: 34406703 DOI: 10.1002/ajh.26324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/06/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
The clinical outcomes and genomic features of E2A-PBX1 (TCF3-PBX1)-positive B-cell acute lymphoblastic leukemia (B-ALL) patients remain unclear. A total of 137 patients carrying E2A-PBX1 among 3164 B-ALL patients between 2009 and 2019 were retrospectively analyzed. The 5-year overall survival (OS) and disease-free survival (DFS) rates of the whole cohort were 68.6% and 61.0%, respectively. Age [DFS, p = 0.037; cumulative incidence of relapse (CIR), p = 0.005] and the level of minimal residual disease (MRD) after induction chemotherapy (OS, p = 0.020; DFS, p = 0.002; CIR, p = 0.006) were independent risk factors. In adolescents/adults, allogeneic hematopoietic stem cell transplantation (allo-HSCT) at first complete remission (CR1) significantly improved the 5-year prognosis (OS, p < 0.001; DFS, p < 0.001; CIR, p < 0.001). Haploidentical HSCT decreased the CIR compared with human leukocyte antigen-matched HSCT in adolescents/adults (p = 0.017). Mutations in PBX1, PAX5, CTCF and SETD2, amplification of AKT3, and deletion of CDKN2A/B were common in the total cohort, while transcriptome differences were found in the cell cycle, nerve growth factor (NGF) signaling pathway and transcriptional regulation by TP53 between adolescents/adults and children. Patients with multiple subclones at diagnosis tended to have unfavorable 3-year prognoses (DFS, p = 0.010; CIR, p = 0.021). Leukemia clones with DNA repair gene mutations showed aggressive and treatment-refractory phenotypes in this subtype of ALL. Our study indicated that age, the level of MRD and DNA repair gene mutations were associated with E2A-PBX1-positive B-ALL outcomes. Allo-HSCT, especially haploidentical HSCT, could improve the prognosis of adolescent/adult patients.
Collapse
Affiliation(s)
- Biqi Zhou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinran Chu
- Department of Hematology and Oncology, The Children's Hospital of Soochow University, Suzhou, China
| | - Hong Tian
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianhui Liu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong Liu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Gao
- Department of Hematology and Oncology, The Children's Hospital of Soochow University, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, The Children's Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
117
|
Zhang H, Cheng N, Li Z, Bai L, Fang C, Li Y, Zhang W, Dong X, Jiang M, Liang Y, Zhang S, Mi J, Zhu J, Zhang Y, Chen SJ, Zhao Y, Weng XQ, Hu W, Chen Z, Huang J, Meng G. DNA crosslinking and recombination-activating genes 1/2 (RAG1/2) are required for oncogenic splicing in acute lymphoblastic leukemia. Cancer Commun (Lond) 2021; 41:1116-1136. [PMID: 34699692 PMCID: PMC8626599 DOI: 10.1002/cac2.12234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Background Abnormal alternative splicing is frequently associated with carcinogenesis. In B‐cell acute lymphoblastic leukemia (B‐ALL), double homeobox 4 fused with immunoglobulin heavy chain (DUX4/IGH) can lead to the aberrant production of E‐26 transformation‐specific family related gene abnormal transcript (ERGalt) and other splicing variants. However, the molecular mechanism underpinning this process remains elusive. Here, we aimed to know how DUX4/IGH triggers abnormal splicing in leukemia. Methods The differential intron retention analysis was conducted to identify novel DUX4/IGH‐driven splicing in B‐ALL patients. X‐ray crystallography, small angle X‐ray scattering (SAXS), and analytical ultracentrifugation were used to investigate how DUX4/IGH recognize double DUX4 responsive element (DRE)‐DRE sites. The ERGalt biogenesis and B‐cell differentiation assays were performed to characterize the DUX4/IGH crosslinking activity. To check whether recombination‐activating gene 1/2 (RAG1/2) was required for DUX4/IGH‐driven splicing, the proximity ligation assay, co‐immunoprecipitation, mammalian two hybrid characterizations, in vitro RAG1/2 cleavage, and shRNA knock‐down assays were performed. Results We reported previously unrecognized intron retention events in C‐type lectin domain family 12, member A abnormal transcript (CLEC12Aalt) and chromosome 6 open reading frame 89 abnormal transcript (C6orf89alt), where also harbored repetitive DRE‐DRE sites. Supportively, X‐ray crystallography and SAXS characterization revealed that DUX4 homeobox domain (HD)1‐HD2 might dimerize into a dumbbell‐shape trans configuration to crosslink two adjacent DRE sites. Impaired DUX4/IGH‐mediated crosslinking abolishes ERGalt, CLEC12Aalt, and C6orf89alt biogenesis, resulting in marked alleviation of its inhibitory effect on B‐cell differentiation. Furthermore, we also observed a rare RAG1/2‐mediated recombination signal sequence‐like DNA edition in DUX4/IGH target genes. Supportively, shRNA knock‐down of RAG1/2 in leukemic Reh cells consistently impaired the biogenesis of ERGalt, CLEC12Aalt, and C6orf89alt. Conclusions All these results suggest that DUX4/IGH‐driven DNA crosslinking is required for RAG1/2 recruitment onto the double tandem DRE‐DRE sites, catalyzing V(D)J‐like recombination and oncogenic splicing in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Hao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Nuo Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Zhihui Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Ling Bai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, P. R. China
| | - Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuwen Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Weina Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Xue Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yang Liang
- Department of Hematologic Oncology, State key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jianqing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Weiguo Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Biomedical Big Data Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, P. R. China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, P. R. China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| |
Collapse
|
118
|
Two novel high-risk adult B-cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations. Blood 2021; 139:1850-1862. [PMID: 34695176 DOI: 10.1182/blood.2021011921] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
The genetic basis of leukemogenesis in adults with B-cell acute lymphoblastic leukemia (B-ALL) is largely unclear and its clinical outcome remains unsatisfactory. This study aimed to advance the understanding of biological characteristics, improve disease stratification, and identify molecular targets of adult B-ALL. Adolescents and young adults (AYA; 15-39 years old, n = 193) and adults (40-64 years old, n = 161) with Philadelphia chromosome-negative B-ALL were included in this study. Integrated transcriptomic and genetic analyses were used to classify the cohort into defined subtypes. Of the 323 cases included in the RNA sequencing analysis, 278 (86.1%) were classified into 18 subtypes. The ZNF384 subtype (22.6%) was the most prevalent, with two novel subtypes (CDX2-high and IDH1/2-mut) identified among cases not assigned to the established subtypes. The CDX2-high subtype (3.4%) was characterized by high expression of CDX2 and recurrent gain of chromosome 1q. The IDH1/2-mut subtype (1.9%) was defined by IDH1 R132C or IDH2 R140Q mutations with specific transcriptional and high-methylation profiles. Both subtypes showed poor prognosis and were considered inferior prognostic factors independent of clinical parameters. Comparison with a previously reported pediatric B-ALL cohort (n = 1003) showed that the frequencies of these subtypes were significantly higher in AYA/adults than in children. We delineated the genetic and transcriptomic landscape of adult B-ALL and identified two novel subtypes that predict poor disease outcomes. Our findings highlight the age-dependent distribution of subtypes, which partially accounts for the prognostic differences between adult and pediatric B-ALL.
Collapse
|
119
|
Lilljebjörn H, Orsmark-Pietras C, Mitelman F, Hagström-Andersson A, Fioretos T. Transcriptomics paving the way for improved diagnostics and precision medicine of acute leukemia. Semin Cancer Biol 2021; 84:40-49. [PMID: 34606984 DOI: 10.1016/j.semcancer.2021.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
Transcriptional profiling of acute leukemia, specifically by RNA-sequencing or whole transcriptome sequencing (WTS), has provided fundamental insights into its underlying disease biology and allows unbiased detection of oncogenic gene fusions, as well as of gene expression signatures that can be used for improved disease classification. While used as a research tool for many years, RNA-sequencing is becoming increasingly used in clinical diagnostics. Here, we highlight key transcriptomic studies of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) that have improved our biological understanding of these heterogeneous malignant disorders and have paved the way for translation into clinical diagnostics. Recent single-cell transcriptomic studies of ALL and AML, which provide new insights into the cellular ecosystem of acute leukemia and point to future clinical utility, are also reviewed. Finally, we discuss current challenges that need to be overcome for a more wide-spread adoption of RNA-sequencing in clinical diagnostics and how this technology significantly can aid the identification of genetic alterations in current guidelines and of newly emerging disease entities, some of which are critical to identify because of the availability of targeted therapies, thereby paving the way for improved precision medicine of acute leukemia.
Collapse
Affiliation(s)
- Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Christina Orsmark-Pietras
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden; Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Felix Mitelman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Hagström-Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Center for Translational Genomics, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Center for Translational Genomics, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden; Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.
| |
Collapse
|
120
|
Paietta E, Roberts KG, Wang V, Gu Z, Buck GAN, Pei D, Cheng C, Levine RL, Abdel-Wahab O, Cheng Z, Wu G, Qu C, Shi L, Pounds S, Willman CL, Harvey R, Racevskis J, Barinka J, Zhang Y, Dewald GW, Ketterling RP, Alejos D, Lazarus HM, Luger SM, Foroni L, Patel B, Fielding AK, Melnick A, Marks DI, Moorman AV, Wiernik PH, Rowe JM, Tallman MS, Goldstone AH, Mullighan CG, Litzow MR. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL. Blood 2021; 138:948-958. [PMID: 33895809 PMCID: PMC9069478 DOI: 10.1182/blood.2020010144] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Genomic classification has improved risk assignment of pediatric, but not adult B-lineage acute lymphoblastic leukemia (B-ALL). The international UKALLXII/ECOG-ACRIN E2993 (#NCT00002514) trial accrued 1229 adolescent/adult patients with BCR-ABL1- B-ALL (aged 14 to 65 years). Although 93% of patients achieved remission, 41% relapsed at a median of 13 months (range, 28 days to 12 years). Five-year overall survival (OS) was 42% (95% confidence interval, 39, 44). Transcriptome sequencing, gene expression profiling, cytogenetics, and fusion polymerase chain reaction enabled genomic subtyping of 282 patient samples, of which 264 were eligible for trial, accounting for 64.5% of E2993 patients. Among patients with outcome data, 29.5% with favorable outcomes (5-year OS 65% to 80%) were deemed standard risk (DUX4-rearranged [9.2%], ETV6-RUNX1/-like [2.3%], TCF3-PBX1 [6.9%], PAX5 P80R [4.1%], high-hyperdiploid [6.9%]); 50.2% had high-risk genotypes with 5-year OS of 0% to 27% (Ph-like [21.2%], KMT2A-AFF1 [12%], low-hypodiploid/near-haploid [14.3%], BCL2/MYC-rearranged [2.8%]); 20.3% had intermediate-risk genotypes with 5-year OS of 33% to 45% (PAX5alt [12.4%], ZNF384/-like [5.1%], MEF2D-rearranged [2.8%]). IKZF1 alterations occurred in 86% of Ph-like, and TP53 mutations in patients who were low-hypodiploid (54%) and BCL2/MYC-rearranged (33%) but were not independently associated with outcome. Of patients considered high risk based on presenting age and white blood cell count, 40% harbored subtype-defining genetic alterations associated with standard- or intermediate-risk outcomes. We identified distinct immunophenotypic features for DUX4-rearranged, PAX5 P80R, ZNF384-R/-like, and Ph-like genotypes. These data in a large adult B-ALL cohort treated with a non-risk-adapted approach on a single trial show the prognostic importance of genomic analyses, which may translate into future therapeutic benefits.
Collapse
Affiliation(s)
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Victoria Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Zhaohui Gu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Georgina A N Buck
- Clinical Trial Service Unit, Nuttfield Department of Population Health, Oxford, United Kingdom
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Ross L Levine
- Human Oncology and Pathogenesis Program-Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program-Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhongshan Cheng
- Centre for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Gang Wu
- Centre for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheryl L Willman
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Richard Harvey
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Janis Racevskis
- Department of Oncology, Montefiore Medical Center, Bronx, NY
| | - Jan Barinka
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gordon W Dewald
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - David Alejos
- Department of Oncology, Montefiore Medical Center, Bronx, NY
| | - Hillard M Lazarus
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Selina M Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Letizia Foroni
- Centre for Haematology, Department of Medicine, Imperial College London Hammersmith Hospital, London, United Kingdom
| | - Bela Patel
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - David I Marks
- Bristol Haematology and Oncology Centre, Bristol, United Kingdom
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
| | | | - Jacob M Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | | | | | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
121
|
Cao Z, Budinich KA, Huang H, Ren D, Lu B, Zhang Z, Chen Q, Zhou Y, Huang YH, Alikarami F, Kingsley MC, Lenard AK, Wakabayashi A, Khandros E, Bailis W, Qi J, Carroll MP, Blobel GA, Faryabi RB, Bernt KM, Berger SL, Shi J. ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Mol Cell 2021; 81:3604-3622.e10. [PMID: 34358447 PMCID: PMC8932643 DOI: 10.1016/j.molcel.2021.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.
Collapse
Affiliation(s)
- Zhendong Cao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krista A Budinich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Huang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diqiu Ren
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhen Zhang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qingzhou Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yeqiao Zhou
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Fatemeh Alikarami
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Molly C Kingsley
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra K Lenard
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aoi Wakabayashi
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Martin P Carroll
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerd A Blobel
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathrin M Bernt
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
122
|
Abstract
The detection of gene rearrangements in pediatric leukemia is an essential component of the work-up, with implications for accurate diagnosis, proper risk stratification, and therapeutic decisions, including the use of targeted therapies. The traditional methods of karyotype and fluorescence in situ hybridization are still valuable, but many new assays are also available, with different strengths and weaknesses. These assays include next-generation sequencing-based assays that have the potential for highly multiplexed and/or unbiased detection of rearrangements.
Collapse
Affiliation(s)
- Marian H Harris
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
123
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
124
|
Bhavsar S, Liu YC, Gibson SE, Moore EM, Swerdlow SH. Mutational Landscape of TdT+ Large B-cell Lymphomas Supports Their Distinction From B-lymphoblastic Neoplasms: A Multiparameter Study of a Rare and Aggressive Entity. Am J Surg Pathol 2021; 46:71-82. [PMID: 34392269 DOI: 10.1097/pas.0000000000001750] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the current World Health Organization classification, terminal deoxynucleotidyl transferase (TdT) expression in a high grade/large cell B-cell lymphoma (LBCL) indicates a B-lymphoblastic lymphoma/leukemia (B-LBL), although TdT expression in what appear to be mature LBCL or following mature B-cell neoplasms is reported. The frequency of TdT+ LBCL, how to best categorize these cases, and their clinicopathologic features, molecular landscape, and relationship to classic B-LBL remain to be better defined. TdT expression was therefore assessed in 258 LBCL and the results correlated with the cytologic, phenotypic, and cytogenetic findings. Targeted mutational analysis, review of prior biopsies, and assessment of clinical associations was performed in the 6 cases with >10% TdT+ cells. All 6 TdT+ LBCL were blastoid-appearing, CD34-, MYC+, BCL2+, and had MYC rearrangements (R) (5/6 with BCL2 and/or BCL6-R). 5/6 had a prior TdT- LBCL and/or follicular lymphoma and all had an aggressive course. Fifteen nonsynonymous variants in 11 genes were seen in the 4/5 tested cases with mutations. TdT+ and TdT- areas in 1 case showed identical mutations. The mutational profiles were more like those reported in germinal center B-cell type-diffuse LBCL rather than B-LBL. Evolution from preceding TdT- lymphomas was nondivergent in 1/3 tested cases and partially divergent in 2. The clinicopathologic and cytogenetic features of these 6 cases were similar to those found in a meta-analysis that included additional cases of TdT+ LBCL or B-LBL following follicular lymphoma. Thus, TdT+, CD34- large B-cell neoplasms with MYC rearrangements and often a "double hit" are rare, frequently a transformational event and aggressive but are distinct from classic B-LBL.
Collapse
Affiliation(s)
- Shweta Bhavsar
- Department of Pathology, UPMC Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | | | |
Collapse
|
125
|
KMT2A-ARHGEF12, a therapy related fusion with poor prognosis. Mol Biol Rep 2021; 48:7021-7027. [PMID: 34383244 DOI: 10.1007/s11033-021-06621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The detection of KMT2A gene rearrangements have an important impact on the prognosis and management of acute leukemias. These alterations most commonly involve reciprocal translocations at specific breakpoint regions within KMT2A. To date, more than 100 translocation partner genes of KMT2A have been identified, with different effects on risk stratification. METHODS AND RESULTS We report the case of a mature plasmacytoid dendritic cells proliferation associated with B lymphoblasts harboring a KMT2A-ARHGEF12 fusion. This rare rearrangement, resulting from a cryptic deletion on the long arm of chromosome 11, is located outside the known major and minor breakpoint regions of KMT2A, not reported to date. The review of the few cases of KMT2A-ARHGEF12 reveals the tendency of this deletion to occur in therapy related hematologic neoplasm and confer unfavorable prognosis. CONCLUSION This review sheds light into the rare KMT2A-ARHGEF12 fusion in leukemia. Reporting rare chimeras is essential to improve knowledge about the biological mechanism and associated clinical consequences.
Collapse
|
126
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
127
|
Why Do Children with Acute Lymphoblastic Leukemia Fare Better Than Adults? Cancers (Basel) 2021; 13:cancers13153886. [PMID: 34359787 PMCID: PMC8345615 DOI: 10.3390/cancers13153886] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
It is a new and exciting time for acute lymphoblastic leukemia (ALL). While nearly 50 years ago, only one in nine children with ALL survived with chemotherapy, nowadays nearly 90% of children have a chance of long-term survival. Adults with ALL, as well as the special category of adolescents and young adult (AYA) patients, are catching up with the new developments seen in children, but still their prognosis is much worse. A plethora of factors are regarded as responsible for the differences in treatment response, such as age, ethnicity, disease biology, treatment regimens and toxicities, drug tolerance and resistance, minimal residual disease evaluation, hematopoietic stem cell transplantation timing and socio-economic factors. Taking these factors into account, bringing pediatric-like protocols to adult patient management and incorporating new agents into frontline treatment could be the key to improve the survival rates in adults and AYA.
Collapse
|
128
|
Lin N, Yan X, Cai D, Wang L. Leukemia With TCF3-ZNF384 Rearrangement as a Distinct Subtype of Disease With Distinct Treatments: Perspectives From A Case Report and Literature Review. Front Oncol 2021; 11:709036. [PMID: 34395283 PMCID: PMC8357369 DOI: 10.3389/fonc.2021.709036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background ZNF384 rearrangements are found in 5-10% of B-cell acute lymphoblastic leukemia (B-ALL) and 48% of B cell/myeloid mixed phenotype acute leukemia (B/M MPAL). ZNF384-rearranged B-ALL is prone to lineage conversion after chemotherapy. TCF3 is the second most common rearrangement partner of ZNF384 in B-ALL (27.5%) and the most common partner in B/M MPAL (53.3%). TCF3-ZNF384 fusion is related to a poor steroid response and a high frequency of relapse. It is mostly reported in children and adolescents but rarely seen in adults. Patients and Methods Here, we report a rare case of adult common B-ALL with TCF3-ZNF384 fusion in which the patient relapsed after one cycle of consolidation chemotherapy. Relapsed leukemia cells from the bone marrow were cultured for 72 hours ex vivo, and a panel of 156 kinds of cytotoxic drugs, targeted therapy drugs, combination chemotherapy drugs, etc., was used for sensitivity screening. The literature on TCF3-ZNF384 fusion was reviewed, and reported cases with TCF3-ZNF384 fusion were summarized. Clinical characteristics were compared between B-ALL and MPAL with TCF3-ZNF384 fusion. Results The relapsed lymphoblasts showed moderate sensitivity to both acute myelocytic leukemia (AML) - and acute lymphoblastic leukemia (ALL)-directed combination chemotherapy schemes, as well as to multiple targeted therapeutic drugs. The hyper-CVAD (B) scheme showed synergistic effects with multiple targeted compounds and had the highest sensitivity. The patient chose the hyper-CVAD (B) scheme combined with sorafenib and achieved complete remission (CR), then consolidated with myeloid-directed homoharringtonine+cytarabine+daunorubicin (HAD) scheme and gained molecular CR. By reviewing the literature, we found that both the genomic landscapes and gene expression profiles of ZNF384-rearranged B-ALL and MPAL are similar and that both diseases have lineage plasticity. The gene expression profile in TCF3-ZNF384-positive patients shows enrichment of hematopoietic stem cell features. No significant differences in clinical characteristics were found between TCF3-ZNF384-positive ALL and MPAL. Conclusion TCF3-ZNF384-positive leukemia may be a distinct subtype of leukemia regardless of immunophenotype. Considering the frequent lineage switches and sensitivity to both ALL- and AML-directed schemes, a uniform strategy directed at both lymphoid and myeloid lineages or at hematopoietic stem cells may be better for TCF3-ZNF384-positive leukemia. Small molecule targeted therapies may be promising treatment options and deserve further investigation.
Collapse
Affiliation(s)
- Na Lin
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dali Cai
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
129
|
Orlandella FM, Smaldone G, Salvatore G, Vitagliano L, Cianflone A, Parasole R, Beneduce G, Menna G, Salvatore M, Mirabelli P. The lncRNA TEX41 is upregulated in pediatric B-Cells Acute Lymphoblastic Leukemia and it is necessary for leukemic cell growth. Biomark Res 2021; 9:54. [PMID: 34233751 PMCID: PMC8261931 DOI: 10.1186/s40364-021-00307-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) represent a diverse class of RNAs involved in the regulation of various physiological and pathological cellular processes, including transcription, intracellular trafficking, and chromosome remodeling. LncRNAs deregulation was linked to the development and progression of various cancer types, such as acute leukemias. In this context, lncRNAs were also evaluated as a novel class of biomarkers for cancer diagnosis and prognosis. Here, we analyzed TEX41 in childhood B cell acute lymphoid leukemia (B-ALL). Methods Total RNA was extracted from pediatric B-ALL patients (at diagnosis and after induction of therapy) and from healthy subjects. Total RNA was also extracted from different leukemia cell line models. The expression level of TEX41 was evaluated by q-RT-PCR. Also, the dataset deposited by St. Jude Children’s Research Hospital was consulted. Furthermore, the silencing of TEX41 in RS4;11 cell line was obtained by 2′-Deoxy, 2′Fluroarabino Nucleic Acids (2′F-ANAs) Oligonucleotides, and the effect on cell proliferation was evaluated. Cell cycle progression and its regulators were analyzed by flow cytometry and immunoblotting. Results We exploited the St Jude Cloud database and found that TEX41 is a lncRNA primarily expressed in the case of B-ALL (n = 79) while its expression levels are low/absent for T-cell ALL (n = 25) and acute myeloid leukemia (n = 38). The association of TEX41 with B-ALL was confirmed by real-time PCR assays. TEX41 disclosed increased expression levels in bone marrow from patients with B-ALL at diagnosis, while its expression levels became low or absent when retested in Bone Marrow cells of the same patient after 1 month of induction therapy. Also, silencing experiments performed on RS4;11 cells showed that TEX41 downregulation impaired in vitro leukemic cell growth determining their arrest in the G2-M phase and the deregulation of cell cycle proteins. Conclusions Our findings highlight that TEX41 is an upregulated lncRNA in the case of B-ALL and this feature makes it a novel potential biomarker for the diagnosis of this leukemia subtype in pediatric patients. Finally, TEX41 expression seems to be critical for leukemic proliferation, indeed, silencing experiments targeting TEX41 mRNA in the RS4;11 cell line hampered in vitro cell growth and cell cycle progression, by inducing G2-M arrest as confirmed propidium iodide staining and by the upregulation of p53 and p21 proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00307-7.
Collapse
Affiliation(s)
| | | | - Giuliana Salvatore
- IRCCS, SDN, Via E. Gianturco 113, 80143, Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, University of Naples Parthenope, Via Medina 40, 80133, Naples, Italy.,CEINGE - Biotecnologie Avanzate S.c.a.r.l, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R, Via Mezzocannone 16, 80134, Napoli, Italy
| | | | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Giuliana Beneduce
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Giuseppe Menna
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | | | | |
Collapse
|
130
|
Schafernak KT, Williams JA, Clyde BI, Marcus C, Decker B, Toydemir RM. Identification of KMT2A-ARHGEF12 fusion in a child with a high-grade B-cell lymphoma. Cancer Genet 2021; 258-259:23-26. [PMID: 34237703 DOI: 10.1016/j.cancergen.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/22/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Rearrangements involving KMT2A are common in de novo and therapy-related acute myeloid and lymphoblastic leukemias. There is a diverse recombinome associated with KMT2A involving at least 135 partner genes, with more being discovered due to advances in molecular genetic diagnostics. KMT2A-ARHGEF12 fusion has only rarely been reported, in five cases of acute leukemia and a single case of high-grade B-cell lymphoma. We present a 12-year-old boy with high-grade B-cell lymphoma and KMT2A-ARHGEF12 fusion, whose clinical, morphologic, phenotypic and genotypic profile is strikingly similar to the other case of high grade B cell lymphoma, both otherwise perfectly mimicking Burkitt lymphoma.
Collapse
Affiliation(s)
- Kristian T Schafernak
- Department of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - James A Williams
- Center for Cancer & Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, United States
| | | | | | | | - Reha M Toydemir
- ARUP Laboratories, Salt Lake City, UT, United States; Department of Pathology, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
131
|
Hrabovsky S, Vrzalova Z, Stika J, Jelinkova H, Jarosova M, Navrkalova V, Martenek J, Folber F, Salek C, Horacek JM, Pospisilova S, Mayer J, Doubek M. Genomic landscape of B-other acute lymphoblastic leukemia in an adult retrospective cohort with a focus on BCR-ABL1-like subtype. Acta Oncol 2021; 60:760-770. [PMID: 33750258 DOI: 10.1080/0284186x.2021.1900908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION BCR-ABL1-like acute lymphoblastic leukemia (ALL) is a high-risk disease with a complex genomic background. Though extensively studied, data on the frequency and mutual associations of present mutations are still incomplete in adult patients. This retrospective study aims to map the genomic landscape of B-other ALL in a cohort of adult patients with a focus on the BCR-ABL1-like ALL subtype. METHODS We analyzed bone marrow and peripheral blood samples of adult B-other ALL patients treated consecutively at three major Czech teaching hospitals. Samples were analyzed by cytogenetic methods, gene expression profiling, multiplex ligation-dependent probe amplification (MLPA), and next-generation sequencing (NGS). RESULTS Fifty-eight B-other ALL patients (not BCR-ABL1, KMT2A-rearranged, ETV6-RUNX1, TCF3-PBX1, or iAMP21) were included in the study. Median follow-up was 23.8 months. Samples from 33 patients were available for a gene expression analysis, 48.9% identified as BCR-ABL1-like ALL. Of the BCR-ABL1-like ALL cases, 18.8% harbored IGH-CRLF2 and 12.5% P2RY8-CRLF2 fusion gene. We observed a higher MRD failure rate in BCR-ABL1-like than in non-BCR-ABL1-like ALL patients after the induction treatment (50.0 vs. 13.3%, p=.05). There was a trend to worse progression-free and overall survival in the BCR-ABL1-like group, though not statistically significant. Deletions in IKZF1 gene were found in 31.3% of BCR-ABL1-like cases. Patients with concurrent IKZF1 and CDKN2A/B, PAX5 or PAR1 region deletions (IKZF1plus profile) had significantly worse progression-free survival than those with sole IKZF1 deletion or IKZF1 wild-type (p=.02). NGS analysis was performed in 54 patients and identified 99 short variants in TP53, JAK2, NRAS, PAX5, CREBBP, NF1, FLT3, ATM, KRAS, RUNX1, and other genes. Seventy-five of these gene variants have not yet been described in B-cell precursor ALL to date. CONCLUSION This study widens existing knowledge of the BCR-ABL1-like and B-other ALL genomic landscape in the adult population, supports previous findings, and identifies a number of novel gene variants.
Collapse
Affiliation(s)
- Stepan Hrabovsky
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Zuzana Vrzalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Stika
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Hana Jelinkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Marie Jarosova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Veronika Navrkalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Martenek
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Frantisek Folber
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Cyril Salek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan M. Horacek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Fourth Department of Internal Medicine – Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
- Department of Military Internal Medicine and Hygiene, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| |
Collapse
|
132
|
Lestringant V, Duployez N, Penther D, Luquet I, Derrieux C, Lutun A, Preudhomme C, West M, Ouled-Haddou H, Devoldere C, Marolleau JP, Garçon L, Jedraszak G, Ferret Y. Optical genome mapping, a promising alternative to gold standard cytogenetic approaches in a series of acute lymphoblastic leukemias. Genes Chromosomes Cancer 2021; 60:657-667. [PMID: 33982372 DOI: 10.1002/gcc.22971] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemias (ALL) are characterized by a large number of cytogenetic abnormalities of clinical interest that require the use of several complementary techniques. Optical genome mapping (OGM) is based on analysis of ultra-high molecular weight DNA molecules that provides a high-resolution genome-wide analysis highlighting copy number and structural anomalies, including balanced translocations. We compared OGM to standard techniques (karyotyping, fluorescent in situ hybridization, single nucleotide polymorphism-array and reverse transcription multiplex ligation-dependent probe amplification) in 10 selected B or T-ALL. Eighty abnormalities were found using standard techniques of which 72 (90%) were correctly detected using OGM. Eight discrepancies were identified, while 12 additional anomalies were found by OGM. Among the discrepancies, four were detected in raw data but not retained because of filtering issues. However, four were truly missed, either because of a low variant allele frequency or because of a low coverage of some regions. Of the additional anomalies revealed by OGM, seven were confirmed by another technique, some of which are recurrent in ALL such as LMO2-TRA and MYC-TRB fusions. Despite false positive anomalies due to background noise and a case of inter-sample contamination secondarily identified, the OGM technology was relatively simple to use with little practice. Thus, OGM represents a promising alternative to cytogenetic techniques currently performed for ALL characterization. It enables a time and cost effective analysis allowing identification of complex cytogenetic events, including those currently inaccessible to standard techniques.
Collapse
Affiliation(s)
| | - Nicolas Duployez
- Univ. Lille, CNRS, Inserm, CHU Lille, Département d'Hématologie, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Dominique Penther
- Department of Oncology Genetics, Henri Becquerel Center, Rouen, France
| | | | - Coralie Derrieux
- Laboratoire d'hématologie, Centre de Biologie - Pathologie- génétique, Lille, France
| | - Anne Lutun
- Service d'Hématologie, Oncologie, Immunologie et Rhumatologie Pédiatriques, CHU Amiens Picardie, France
| | - Claude Preudhomme
- Univ. Lille, CNRS, Inserm, CHU Lille, Département d'Hématologie, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Michaela West
- Genotyping, Sequencing and optical mapping Platform (Gentyane), Clermont-Ferrand, France
| | | | - Catherine Devoldere
- Service d'Hématologie, Oncologie, Immunologie et Rhumatologie Pédiatriques, CHU Amiens Picardie, France
| | - Jean-Pierre Marolleau
- EA4666 HEMATIM, UPJV, Amiens, France.,Service d'Hématologie Clinique, CHU Amiens Picardie, France
| | - Loïc Garçon
- Service d'Hématologie Biologique, CHU Amiens Picardie, France.,EA4666 HEMATIM, UPJV, Amiens, France.,Laboratoire de Génétique Constitutionnelle, CHU Amiens Picardie, France
| | - Guillaume Jedraszak
- EA4666 HEMATIM, UPJV, Amiens, France.,Laboratoire de Génétique Constitutionnelle, CHU Amiens Picardie, France
| | - Yann Ferret
- Service d'Hématologie Biologique, CHU Amiens Picardie, France
| |
Collapse
|
133
|
Janet NB, Kulkarni U, Arun AK, Bensega B, Devasia AJ, Korula A, Abraham A, George B, Mathews V, Balasubramanian P. Systematic application of fluorescence in situ hybridization and immunophenotype profile for the identification of ZNF384 gene rearrangements in B cell acute lymphoblastic leukemia. Int J Lab Hematol 2021; 43:658-663. [PMID: 33988307 DOI: 10.1111/ijlh.13580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION ZNF384 gene fusions resulting from translocations with several partner genes have been described in B cell acute lymphoblastic leukemia (B-ALL) with a characteristic immunophenotype (aberrant CD13 and or CD33 with dim CD10). The prognosis of patients with this rearrangement appears to depend on the fusion partner. ZNF384 rearrangements have been identified by high through put technologies such as RNA sequencing in most of the studies published. We tested the feasibility of using the characteristic immunophenotype as a tool to screen for patients with ZNF384 translocations which can be subsequently confirmed by cytogenetic / molecular methodologies. METHODS ZNF384 rearrangements in B-ALL patients at diagnosis with CD10 <80% and were negative for the BCR-ABL1 fusion (n = 109) were identified by fluorescence in situ hybridization followed by confirmation by reverse transcriptase-polymerase chain reaction and Sanger sequencing. The end of induction measurable residual disease evaluated by flow cytometry for these patients was obtained from patient records. RESULTS ZNF384 translocations were identified in 14 patients and were cytogenetically cryptic in 13. EP300-ZNF384 was the most common fusion partner (n = 12), while TAF15-ZNF384 and TCF3-ZNF384 were identified in 1 patient each. End of induction MRD by flow cytometry was positive in 5 of 8 patients with the EP300-ZNF384 fusion treated at our center. CONCLUSION Our findings show a practical approach for the identification of ZNF384 gene rearrangements by widely available technologies and indicate that the response to therapy may be heterogeneous even in this subset, which has been reported as having a favorable prognosis.
Collapse
Affiliation(s)
- Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, India
| | - Uday Kulkarni
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Bexy Bensega
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anup J Devasia
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
134
|
Inaba H, Pui CH. Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:1926. [PMID: 33946897 PMCID: PMC8124693 DOI: 10.3390/jcm10091926] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
The outcomes of pediatric acute lymphoblastic leukemia (ALL) have improved remarkably during the last five decades. Such improvements were made possible by the incorporation of new diagnostic technologies, the effective administration of conventional chemotherapeutic agents, and the provision of better supportive care. With the 5-year survival rates now exceeding 90% in high-income countries, the goal for the next decade is to improve survival further toward 100% and to minimize treatment-related adverse effects. Based on genome-wide analyses, especially RNA-sequencing analyses, ALL can be classified into more than 20 B-lineage subtypes and more than 10 T-lineage subtypes with prognostic and therapeutic implications. Response to treatment is another critical prognostic factor, and detailed analysis of minimal residual disease can detect levels as low as one ALL cell among 1 million total cells. Such detailed analysis can facilitate the rational use of molecular targeted therapy and immunotherapy, which have emerged as new treatment strategies that can replace or reduce the use of conventional chemotherapy.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
135
|
Lin X, Qiao N, Shen Y, Fang H, Xue Q, Cui B, Chen L, Zhu H, Zhang S, Chen Y, Jiang L, Wang S, Li J, Wang B, Chen B, Chen Z, Chen S. Integration of Genomic and Transcriptomic Markers Improves the Prognosis Prediction of Acute Promyelocytic Leukemia. Clin Cancer Res 2021; 27:3683-3694. [PMID: 33893160 DOI: 10.1158/1078-0432.ccr-20-4375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The current stratification system for acute promyelocytic leukemia (APL) is based on the white blood cell (WBC) and the platelet counts (i.e., Sanz score) over the past two decades. However, the borderlines among different risk groups are sometimes ambiguous, and for some patients, early death and relapse remained challenges. Besides, with the evolving of the treatment strategy from all-trans-retinoic acid (ATRA) and chemotherapy to ATRA-arsenic trioxide-based synergistic targeted therapy, the precise risk stratification with molecular markers is needed. EXPERIMENTAL DESIGN This study performed a systematic analysis of APL genomics and transcriptomics to identify genetic abnormalities in 348 patients mainly from the APL2012 trial (NCT01987297) to illustrate the potential molecular background of Sanz score and further optimize it. The least absolute shrinkage and selection operator algorithm was used to analyze the gene expression in 323 cases to establish a scoring system (i.e., APL9 score). RESULTS Through combining NRAS mutations, APL9 score, and WBC, 321 cases can be stratified into two groups with significantly different outcomes. The estimated 5-year overall (P = 0.00031), event-free (P < 0.0001), and disease-free (P = 0.001) survival rates in the revised standard-risk group (95.6%, 93.8%, and 98.1%, respectively) were significantly better than those in the revised high-risk group (82.9%, 77.4%, and 88.4%, respectively), which could be validated using The Cancer Genome Atlas dataset. CONCLUSIONS We have proposed a two-category system for improving prognosis in patients with APL. Molecular markers identified in this study may also provide genomic insights into the disease mechanism for improved therapy.
Collapse
Affiliation(s)
- Xiaojing Lin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bingshun Wang
- Department of Biostatistics and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
136
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
137
|
Karpukhina A, Tiukacheva E, Dib C, Vassetzky YS. Control of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Cancer. Trends Mol Med 2021; 27:588-601. [PMID: 33863674 DOI: 10.1016/j.molmed.2021.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
DUX4, a gene encoding a transcription factor involved in early embryogenesis, is located within the D4Z4 subtelomeric repeat on chromosome 4q35. In most healthy somatic tissues, DUX4 is heavily repressed by multiple genetic and epigenetic mechanisms, and its aberrant expression is linked to facioscapulohumeral muscular dystrophy (FSHD) where it has been extensively studied. Recently, DUX4 expression has been implicated in oncogenesis, although this is much less explored. In this review, we discuss multiple levels of control of DUX4 expression, including enhancer-promoter interactions, DNA methylation, histone modifications, noncoding RNAs, and telomere positioning effect. We also connect disparate data on intrachromosomal contacts involving DUX4 and emphasize the feedback loops in DUX4 regulation. Finally, we bridge data on DUX4 in FSHD and cancer and discuss prospective approaches for future FSHD therapies and the potential outcomes of DUX4 inhibition in cancer.
Collapse
Affiliation(s)
- Anna Karpukhina
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France
| | - Carla Dib
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Stanford University School of Medicine, Stanford, CA 94305-510, USA
| | - Yegor S Vassetzky
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia.
| |
Collapse
|
138
|
Jeha S, Choi J, Roberts KG, Pei D, Coustan-Smith E, Inaba H, Rubnitz JE, Ribeiro RC, Gruber TA, Raimondi SC, Karol SE, Qu C, Brady SW, Gu Z, Yang JJ, Cheng C, Downing JR, Evans WE, Relling MV, Campana D, Mullighan CG, Pui CH. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy. Blood Cancer Discov 2021; 2:326-337. [PMID: 34250504 DOI: 10.1158/2643-3230.bcd-20-0229] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We evaluate clinical significance of recently identified subtypes of acute lymphoblastic leukemia (ALL) in 598 children treated with minimal residual disease (MRD)-directed therapy. Among the 16 B-ALL and 8 T-ALL subtypes identified by next generation sequencing, ETV6-RUNX1, high-hyperdiploid and DUX4-rearranged B-ALL had the best five-year event-free survival rates (95% to 98.4%); TCF3-PBX1, PAX5alt, T-cell, ETP, iAMP21, and hypodiploid ALL intermediate rates (80.0% to 88.2%); and BCR-ABL1, BCR-ABL1-like and ETV6-RUNX1-like and KMT2A-rearranged ALL the worst rates (64.1% to 76.2%). All but three of the 142 patients with day-8 blood MRD <0.01% remained in remission. Among new subtypes, intensified therapy based on day-15 MRD≥1% improved outcome of DUX4-rearranged, BCR-ABL1-like, and ZNF384-rearranged ALL, and achievement of day-42 MRD<0.01% did not preclude relapse of PAX5alt, MEF2D-rearranged and ETV6-RUNX1-like ALL. Thus, new subtypes including DUX4-rearranged, PAX5alt, BCR-ABL1-like, ETV6-RUNX1-like, MEF2D-rearranged and ZNF384-rearranged ALL have important prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Sima Jeha
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pediatric Global Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Choi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kathryn G Roberts
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deqing Pei
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Elaine Coustan-Smith
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hiroto Inaba
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeffrey E Rubnitz
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raul C Ribeiro
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tanja A Gruber
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Susana C Raimondi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seth E Karol
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chunxu Qu
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, and the University of Tennessee Health Science Center, Memphis, TN
| | - Zhaohui Gu
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, and the University of Tennessee Health Science Center, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James R Downing
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Williams E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, and the University of Tennessee Health Science Center, Memphis, TN
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, and the University of Tennessee Health Science Center, Memphis, TN
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charles G Mullighan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ching-Hon Pui
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pediatric Global Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
139
|
Teixeira da Silva JA. Multiple co-first authors, co-corresponding authors and co-supervisors: a synthesis of shared authorship credit. ONLINE INFORMATION REVIEW 2021. [DOI: 10.1108/oir-06-2020-0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeAuthorship is the ultimate status of intellectual recognition in academic publishing. Although fairly robust guidelines have already been in place for a considerable amount of time regarding authorship criteria and credit, such as those by the International Committee of Medical Journal Editors or Contributor Roles Taxonomy, the lack of reliable verification techniques hamper their accuracy, thereby reducing the validity of authorship claims in such statements. This paper aims to focus on the authorship status and responsibilities of co-first authors and co-corresponding authors.Design/methodology/approachTo appreciate authorship responsibilities in this subset of authors, the broader academic authorship literature, as well as position statements, rules and guidelines, were consulted.FindingsAcademic publishing that relies on metrics is a global multi-billion-dollar business, so strict measures to assess and confirm authorship, which can be intellectually or financially “profitable” among academics that game such metrics, are needed. The current assessment is that there are inconsistent rules for equally credited authors such as co-first authors, co-corresponding authors and co-supervisors. In shared and collaborative authorship, there are also shared authorship-related responsibilities, but these are infrequently discussed, or tend to only be dealt with broadly.Originality/valueWithin the wider, and important, discussion about authorship, which is one of the most central issues in academic publishing, there has been a limited focus on equally credited authors such as co-first authors, co-corresponding authors and co-supervisors. This paper expands and fortifies that discussion.
Collapse
|
140
|
Qin YZ, Jiang Q, Xu LP, Wang Y, Jiang H, Dao FT, Chen WM, Zhao XS, Liu YR, Zhang XH, Liu KY, Huang XJ. The Prognostic Significance of ZNF384 Fusions in Adult Ph-Negative B-Cell Precursor Acute Lymphoblastic Leukemia: A Comprehensive Cohort Study From a Single Chinese Center. Front Oncol 2021; 11:632532. [PMID: 33816270 PMCID: PMC8010301 DOI: 10.3389/fonc.2021.632532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Novel recurrent fusion gene types such as zinc finger protein 384 (ZNF384) fusions have been identified in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with the application of next-generation sequencing technologies. However, the comprehensive large-scale clinical cohort study for clarifying their prognostic significance remains scarce to date. A total of 242 consecutive adult Ph-negative BCP-ALL patients treated in our institute were retrospectively screened ZNF384 fusions at diagnosis by multiplex real time quantitative PCR. ZNF384 fusions were identified in 47 patients (19.4%) and all belonged to B-other ALL (having no high hyperdiploid karyotype, BCR-ABL1, TCF3-PBX1, ETV6-RUNX1, or MLL rearrangement). In the whole cohort, patients with ZNF384 fusions had significantly higher 3-year relapse-free-survival (RFS) and tended to have a higher 3-year overall survival (OS) than those with no ZNF384 fusions (80.1% vs. 52.5%, P = 0.013; 67.6% vs. 54.0%, P = 0.10). For patients receiving chemotherapy alone and received allogeneic-hematologic stem cell transplantation (allo-HSCT) were censored at the time of transplantation, patients with ZNF384 fusions had both similar RFS and similar OS to B-other ALL patients with no ZNF384 fusions (RFS: P =0.94 and 0.30; OS: P =0.94 and 0.51). For patients receiving transplantation, those with ZNF384 fusions had significantly higher 3-year RFS than B-other ALL patients with no ZNF384 fusions and their OS were similar (P = 0.022 and 0.24). Only two of 31 patients with ZNF384 fusions and receiving allo-HSCT relapsed, individually occurred 66.8 and 69.8 months after transplantation. Therefore, ZNF384 fusion is common in adult BCP-ALL, which may define a new group from BCP-ALL containing no classical fusion transcript with better prognosis through receiving allo-HSCT.
Collapse
Affiliation(s)
- Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Feng-Ting Dao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
141
|
Li Z, Chu X, Gao L, Ling J, Xiao P, Lu J, Wang Y, He H, Li J, Hu Y, Li J, Pan J, Xiao S, Hu S. High Expression of Interleukin-3 Receptor Alpha Chain (CD123) Predicts Favorable Outcome in Pediatric B-Cell Acute Lymphoblastic Leukemia Lacking Prognosis-Defining Genomic Aberrations. Front Oncol 2021; 11:614420. [PMID: 33796456 PMCID: PMC8008053 DOI: 10.3389/fonc.2021.614420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background Aberrant expression of CD123 (IL-3Rα) was observed in various hematological malignancies including acute lymphoblastic leukemia (ALL), which is the most common malignancy in childhood. Although widely used for minimal residual disease (MRD) monitoring, the prognostic value of CD123 has not been fully characterized in pediatric B-ALL. This retrospective study aims to evaluate the association between the CD123 expression of leukemic blasts and the outcomes of the pediatric B-ALL patients. Methods A total of 976 pediatric B-ALL, including 328 treated with CCLG-ALL-2008 protocol and 648 treated with CCCG-ALL-2015 protocol, were recruited in this retrospective study. CD123 expression was evaluated by flow cytometry. Patients with >50, 20–50, or <20% of CD123 expressing blasts were grouped into CD123high, CD123low, and CD123neg, respectively. The correlation between CD123 expression and the patients’ clinical characteristics, overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were studied statistically. Results Of 976 pediatric B-ALL, 53.4% from the CCLG-ALL-2008 cohort and 49.2% from the CCCG-ALL-2015 cohort were CD123high. In the CCLG-ALL-2008 cohort, CD123high was significantly associated with chromosome hyperdiploidy (p < 0.0001), risk stratification (p = 0.004), and high survival rate (p = 0.005). By comparing clinical outcomes, patients with CD123high displayed favorable prognosis, with a significantly better OS (p = 0.005), EFS (p = 0.017), and RFS (p = 0.045), as compared to patients with CD123low and CD123neg. The prognostic value of CD123 expression was subsequently confirmed in the CCCG-ALL-2015 cohort. Univariate and multivariate cox regression model analysis showed that high CD123 expression was independently associated with favorable EFS (OR: 0.528; 95% CI: 0.327 to 0.853; p = 0.009) in this cohort. In patients without prognosis-defining genomic abnormalities, high CD123 expression strongly indicated superior survival rates and was identified as an independent prognosis factor for EFS and RFS in both cohorts. Conclusions A group of B-ALL lacks prognosis-defining genomic aberrations, which proposes a challenge in risk stratification. Our findings revealed that high CD123 expression of leukemic blasts was associated with favorable clinical outcomes in pediatric B-ALL and CD123 could serve as a promising prognosis predictor, especially in patients without prognosis-defining genetic aberrations.
Collapse
Affiliation(s)
- Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Xinran Chu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Gao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Peifang Xiao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Hailong He
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jianqin Li
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Li
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
142
|
Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia with kinase fusions in Taiwan. Sci Rep 2021; 11:5802. [PMID: 33707599 PMCID: PMC7952704 DOI: 10.1038/s41598-021-85213-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukaemia (ALL), a high-risk subtype characterised by genomic alterations that activate cytokine receptor and kinase signalling, is associated with inferior outcomes in most childhood ALL clinical trials. Half of the patients with Ph-like ALL have kinase rearrangements or fusions. We examined the frequency and spectrum of these fusions using a retrospective cohort of 212 newly diagnosed patients with childhood B-cell ALL. Samples without known chromosomal alterations were subject to multiplex reverse transcription polymerase chain reaction to identify known Ph-like kinase fusions. Immunoglobulin heavy chain locus (IGH) capture and kinase capture were applied to samples without known kinase fusions. We detected known kinase fusions in five of 212 patients, comprising EBF1-PDGFRB, ETV6-ABL1, ZC3HAV1-ABL2, EPOR-IGH, and CNTRL-ABL1. Two patients with P2RY8-CRLF2 were identified. Patients with non-Ph kinase fusions had inferior 5-year event-free survival and overall survival compared with patients with other common genetic alterations. The prevalence of non-Ph kinase fusions in our Taiwanese cohort was lower than that reported in Caucasian populations. Future clinical trials with tyrosine kinase inhibitors may be indicated in Taiwan because of the inferior outcomes for B-cell ALL with kinase fusions.
Collapse
|
143
|
Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group. Leukemia 2021; 35:3272-3277. [PMID: 33692463 PMCID: PMC8550960 DOI: 10.1038/s41375-021-01199-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022]
|
144
|
Wu L, Jiang M, Yu P, Li J, Ouyang W, Feng C, Zhao WL, Dai Y, Huang J. Single-Cell Transcriptome Analysis Identifies Ligand-Receptor Pairs Associated With BCP-ALL Prognosis. Front Oncol 2021; 11:639013. [PMID: 33777800 PMCID: PMC7987943 DOI: 10.3389/fonc.2021.639013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a blood cancer that originates from the abnormal proliferation of B-lymphoid progenitors. Cell population components and cell–cell interaction in the bone marrow microenvironment are significant factors for progression, relapse, and therapy resistance of BCP-ALL. In this study, we identified specifically expressed genes in B cells and myeloid cells by analyzing single-cell RNA sequencing data for seven BCP-ALL samples and four healthy samples obtained from a public database. Integrating 1356 bulk RNA sequencing samples from a public database and our previous study, we found a total of 57 significant ligand–receptor pairs (24 upregulated and 33 downregulated) in the autocrine crosstalk network of B cells. Via assessment of the communication between B cells and myeloid cells, another 29 ligand–receptor pairs were discovered, some of which notably affected survival outcomes. A score-based model was constructed with least absolute shrinkage and selection operator (LASSO) using these ligand–receptor pairs. Patients with higher scores had poorer prognoses. This model can be applied to create predictions for both pediatric and adult BCP-ALL patients.
Collapse
Affiliation(s)
- Liang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Feng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
145
|
Feusier JE, Arunachalam S, Tashi T, Baker MJ, VanSant-Webb C, Ferdig A, Welm BE, Rodriguez-Flores JL, Ours C, Jorde LB, Prchal JT, Mason CC. Large-Scale Identification of Clonal Hematopoiesis and Mutations Recurrent in Blood Cancers. Blood Cancer Discov 2021; 2:226-237. [PMID: 34027416 DOI: 10.1158/2643-3230.bcd-20-0094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by detectable hematopoietic-associated gene mutations in a person without evidence of hematologic malignancy. We sought to identify additional cancer-presenting mutations useable for CHIP detection by performing a data mining analysis of 48 somatic mutation studies reporting mutations at diagnoses of 7,430 adult and pediatric patients with hematologic malignancies. Following extraction of 20,141 protein-altering mutations, we identified 434 significantly recurrent mutation hotspots, 364 of which occurred at loci confidently assessable for CHIP. We then performed an additional large-scale analysis of whole exome sequencing data from 4,538 persons belonging to three non-cancer cohorts for clonal mutations. We found the combined cohort prevalence of CHIP with mutations identical to those reported at blood cancer mutation hotspots to be 1.8%, and that some of these CHIP mutations occurred in children. Our findings may help to improve CHIP detection and pre-cancer surveillance for both children and adults.
Collapse
Affiliation(s)
- Julie E Feusier
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA.,Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sasi Arunachalam
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tsewang Tashi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,VA Medical Center, Salt Lake City, UT, USA
| | - Monika J Baker
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Chad VanSant-Webb
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Amber Ferdig
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Christopher Ours
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Josef T Prchal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,VA Medical Center, Salt Lake City, UT, USA
| | - Clinton C Mason
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
146
|
Zaliova M, Potuckova E, Lukes J, Winkowska L, Starkova J, Janotova I, Sramkova L, Stary J, Zuna J, Stanulla M, Zimmermann M, Bornhauser B, Bourquin JP, Eckert C, Cario G, Trka J. Frequency and prognostic impact of ZEB2 H1038 and Q1072 mutations in childhood B-other acute lymphoblastic leukemia. Haematologica 2021; 106:886-890. [PMID: 32499245 PMCID: PMC7927996 DOI: 10.3324/haematol.2020.249094] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marketa Zaliova
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| | - Eliska Potuckova
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julius Lukes
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Winkowska
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Lucie Sramkova
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| | - Jan Zuna
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig- Holstein, Kiel, Germany
| | - Jan Trka
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
147
|
Rahul E, Goel H, Chopra A, Ranjan A, Gupta AK, Meena JP, Bakhshi S, Misra A, Hussain S, Viswanathan GK, Rath GK, Tanwar P. An updated account on molecular heterogeneity of acute leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:22-43. [PMID: 33796387 PMCID: PMC8010602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The progress in the field of personalized therapy has been the backbone for the improved mortality and morbidity figure in cancer especially with reference to acute leukemia. The same has been supported by evolving research and development in the field of genomics. The newer discoveries of mutations and the account of already discovered mutations have been playing a pivotal role to refine management strategy. Here, in this review, we are giving an account of relevant mutations and their potential role in the pathogenesis of acute leukemia. The article discusses the old and newly discovered mutations in acute myeloid/lymphoblastic leukemia. The various pathways and cross-talks between the mutations have been briefly described to develop insight towards their contributory and consequent role in the neoplastic process. The article is to sensitize the students, clinicians, and researchers towards the recent updates and development in genomics of acute leukemia.
Collapse
Affiliation(s)
- Ekta Rahul
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Harsh Goel
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Amar Ranjan
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | | | - Showket Hussain
- Division of Molecular Oncology, National Institute of Cancer Prevention & Research I-7Sector-39, Noida 201301, India
| | | | - Goura Kishor Rath
- Department of Radiotherapy, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
148
|
Gupta A, Damania RC, Talati R, O'Riordan MA, Matloub YH, Ahuja SP. Increased Toxicity Among Adolescents and Young Adults Compared with Children Hospitalized with Acute Lymphoblastic Leukemia at Children's Hospitals in the United States. J Adolesc Young Adult Oncol 2021; 10:645-653. [PMID: 33512257 DOI: 10.1089/jayao.2020.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose: Adolescent and young adult (AYA) patients (15-39 years old) with acute lymphoblastic leukemia (ALL) have less favorable outcomes and higher treatment-related mortality as compared with older children with ALL. Minimal data exist regarding how well AYA patients tolerate the intensity of chemotherapy at doses and regimens designed for children, and the toxicities suffered by this population at children's hospitals have not been thoroughly characterized. Methods: Pediatric Health Information Systems database was queried to analyze health care outcomes in pediatric (ages 10-14) and AYA patients (ages 15-39) with ALL hospitalized between January 1999 and December 2014. We extracted relevant ICD-9 data for each patient related to grades 3 or 4 toxicities as outlined by the NCI. Results: A total of 5345 hospital admissions met inclusion criteria, representing 4046 unique patients. Of these admissions, 2195 (41.1%) were in the AYA age group, and the remainder were in the 10-14-year-old group. AYA patients had a significantly higher incidence of intensive care unit stay but no difference in median hospital stay nor mortality. AYA patients had increased toxicities in almost every organ system as compared with older children. Conclusions: In this large multicenter US database study, we found an overall increased number of toxicities among AYA patients with ALL in children's hospitals. Compared with children between the ages of 10 and 15, AYA patients developed disproportionately higher toxicities from drugs commonly used in pediatric protocols for ALL. Prospective studies are needed to assess whether dose modifications for certain chemotherapeutics may improve the toxicity profile and health care burden of AYA patients with ALL treated in children's hospitals.
Collapse
Affiliation(s)
- Ajay Gupta
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Rahul C Damania
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Ravi Talati
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Cleveland Clinic Children's Hospital, Cleveland, Ohio, USA
| | - Mary Ann O'Riordan
- Women's & Children's Services, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| | - Yousif H Matloub
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjay P Ahuja
- Division of Pediatric Hematology/Oncology, Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| |
Collapse
|
149
|
Chew GL, Bleakley M, Bradley RK, Malik HS, Henikoff S, Molaro A, Sarthy J. Short H2A histone variants are expressed in cancer. Nat Commun 2021; 12:490. [PMID: 33473122 PMCID: PMC7817690 DOI: 10.1038/s41467-020-20707-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization. We posit that short H2As are a class of "ready-made" oncohistones, whose inappropriate expression contributes to chromatin dysfunction in cancer.
Collapse
Affiliation(s)
- Guo-Liang Chew
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Antoine Molaro
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Genetics, Reproduction and Development (GReD) Institute, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Jay Sarthy
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
150
|
Cazzola A, Cazzaniga G, Biondi A, Meneveri R, Brunelli S, Azzoni E. Prenatal Origin of Pediatric Leukemia: Lessons From Hematopoietic Development. Front Cell Dev Biol 2021; 8:618164. [PMID: 33511126 PMCID: PMC7835397 DOI: 10.3389/fcell.2020.618164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence suggest that childhood leukemia, the most common cancer in young age, originates during in utero development. However, our knowledge of the cellular origin of this large and heterogeneous group of malignancies is still incomplete. The identification and characterization of their cell of origin is of crucial importance in order to define the processes that initiate and sustain disease progression, to refine faithful animal models and to identify novel therapeutic approaches. During embryogenesis, hematopoiesis takes place at different anatomical sites in sequential waves, and occurs in both a hematopoietic stem cell (HSC)-dependent and a HSC-independent fashion. Despite the recently described relevance and complexity of HSC-independent hematopoiesis, few studies have so far investigated its potential involvement in leukemogenesis. Here, we review the current knowledge on prenatal origin of leukemias in the context of recent insights in developmental hematopoiesis.
Collapse
Affiliation(s)
- Anna Cazzola
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Centro Ricerca Tettamanti, University of Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Centro Ricerca Tettamanti, University of Milano-Bicocca, Milan, Italy.,Pediatrics, Fondazione MBBM/Ospedale San Gerardo, University of Milano-Bicocca, Milan, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|