101
|
Jones B. The therapeutic potential of GLP-1 receptor biased agonism. Br J Pharmacol 2022; 179:492-510. [PMID: 33880754 PMCID: PMC8820210 DOI: 10.1111/bph.15497] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments for type 2 diabetes as they stimulate insulin release and promote weight loss through appetite suppression. Their main side effect is nausea. All approved GLP-1 agonists are full agonists across multiple signalling pathways. However, selective engagement with specific intracellular effectors, or biased agonism, has been touted as a means to improve GLP-1 agonists therapeutic efficacy. In this review, I critically examine how GLP-1 receptor-mediated intracellular signalling is linked to physiological responses and discuss the implications of recent studies investigating the metabolic effects of biased GLP-1 agonists. Overall, there is little conclusive evidence that beneficial and adverse effects of GLP-1 agonists are attributable to distinct, nonoverlapping signalling pathways. Instead, G protein-biased GLP-1 agonists appear to achieve enhanced anti-hyperglycaemic efficacy by avoiding GLP-1 receptor desensitisation and downregulation, partly via reduced β-arrestin recruitment. This effect seemingly applies more to insulin release than to appetite regulation and nausea, possible reasons for which are discussed. At present, most evidence derives from cellular and animal studies, and more human data are required to determine whether this approach represents a genuine therapeutic advance. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
102
|
Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nat Commun 2022; 13:92. [PMID: 35013280 PMCID: PMC8748714 DOI: 10.1038/s41467-021-27760-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists. The glucagon-like peptide-1 receptor (GLP-1R) can be targeted in the treatment of diabetes, obesity and other metabolic disorders. Here, the authors assess the molecular mechanisms of peptide agonists binding to GLP-1R and the responses elucidated by these ligands, including distinct kinetics of G protein activation.
Collapse
|
103
|
Cong Z, Liang YL, Zhou Q, Darbalaei S, Zhao F, Feng W, Zhao L, Xu HE, Yang D, Wang MW. Structural perspective of class B1 GPCR signaling. Trends Pharmacol Sci 2022; 43:321-334. [DOI: 10.1016/j.tips.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
|
104
|
Lees JA, Dias JM, Han S. Applications of Cryo-EM in small molecule and biologics drug design. Biochem Soc Trans 2021; 49:2627-2638. [PMID: 34812853 PMCID: PMC8786282 DOI: 10.1042/bst20210444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Electron cryo-microscopy (cryo-EM) is a powerful technique for the structural characterization of biological macromolecules, enabling high-resolution analysis of targets once inaccessible to structural interrogation. In recent years, pharmaceutical companies have begun to utilize cryo-EM for structure-based drug design. Structural analysis of integral membrane proteins, which comprise a large proportion of druggable targets and pose particular challenges for X-ray crystallography, by cryo-EM has enabled insights into important drug target families such as G protein-coupled receptors (GPCRs), ion channels, and solute carrier (SLCs) proteins. Structural characterization of biologics, such as vaccines, viral vectors, and gene therapy agents, has also become significantly more tractable. As a result, cryo-EM has begun to make major impacts in bringing critical therapeutics to market. In this review, we discuss recent instructive examples of impacts from cryo-EM in therapeutics design, focusing largely on its implementation at Pfizer. We also discuss the opportunities afforded by emerging technological advances in cryo-EM, and the prospects for future development of the technique.
Collapse
Affiliation(s)
- Joshua A. Lees
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| | - Joao M. Dias
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| |
Collapse
|
105
|
Wigge C, Stefanovic A, Radjainia M. The rapidly evolving role of cryo-EM in drug design. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:91-102. [PMID: 34895645 DOI: 10.1016/j.ddtec.2020.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
Since the early 2010s, cryo-electron microscopy (cryo-EM) has evolved to a mainstream structural biology method in what has been dubbed the "resolution revolution". Pharma companies also began to use cryo-EM in drug discovery, evidenced by a growing number of industry publications. Hitherto limited in resolution, throughput and attainable molecular weight, cryo-EM is rapidly overcoming its main limitations for more widespread use through a new wave of technological advances. This review discusses how cryo-EM has already impacted drug discovery, and how the state-of-the-art is poised to further revolutionize its application to previously intractable proteins as well as new use cases.
Collapse
Affiliation(s)
- Christoph Wigge
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, The Netherlands
| | | | - Mazdak Radjainia
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, The Netherlands.
| |
Collapse
|
106
|
Wang J, Yang D, Cheng X, Yang L, Wang Z, Dai A, Cai X, Zhang C, Yuliantie E, Liu Q, Jiang H, Liu H, Wang MW, Yang H. Allosteric Modulators Enhancing GLP-1 Binding to GLP-1R via a Transmembrane Site. ACS Chem Biol 2021; 16:2444-2452. [PMID: 34570476 DOI: 10.1021/acschembio.1c00552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a well-established drug target for the treatment of type II diabetes. The development of small-molecule positive allosteric modulators (PAMs) of GLP-1R is a promising therapeutic strategy. Here, we report the discovery and characterization of PAMs with distinct chemotypes, binding to a cryptic pocket formed by the cytoplasmic half of TM3, TM5, and TM6. Molecular dynamic simulations and mutagenesis studies indicate that the PAM enlarges the orthosteric pocket to facilitate GLP-1 binding. Further signaling assays characterized their probe-dependent signaling profiles. Our findings provide mechanistic insights into fine-tuning GLP-1R via this allosteric pocket and open up new avenues to design small-molecule drugs for class B G-protein-coupled receptors.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Dehua Yang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Antao Dai
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoqing Cai
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Elita Yuliantie
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Ming-Wei Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
107
|
Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochem Biophys Res Commun 2021; 578:84-90. [PMID: 34547628 DOI: 10.1016/j.bbrc.2021.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022]
Abstract
Dual agonists that can activate both the glucagon-like peptide-1 receptor (GLP-1R) and the gastric inhibitory polypeptide receptor (GIPR) have demonstrated high efficacy for the treatment of metabolic disease. Peptide-19 is a prototypical dual agonist that has high potency at both GLP-1R and GIPR but has a distinct signalling profile relative to the native peptides at the cognate receptors. In this study, we solved the structure of peptide-19 bound to the GLP-1R in complex with Gs protein, and compared the structure and dynamics of this complex to that of published structures of GLP-1R:Gs in complex with other receptor agonists. Unlike other peptide-bound receptor complexes, peptide-19:GLP-1R:Gs demonstrated a more open binding pocket where transmembrane domain (TM) 6, TM7 and the interconnecting extracellular loop 3 (ECL3) were located away from the peptide, with no interactions between peptide-19 and TM6/ECL3. Analysis of conformational variance of the complex revealed that peptide-19 was highly dynamic and underwent binding and unbinding motions facilitated by the more open TM binding pocket. Both the consensus structure of the GLP-1R complex with peptide-19 and the dynamics of this complex were distinct from previously described GLP-1R structures providing unique insights into the mode of GLP-1R activation by this dual agonist.
Collapse
|
108
|
Hauser AS, Kooistra AJ, Munk C, Heydenreich FM, Veprintsev DB, Bouvier M, Babu MM, Gloriam DE. GPCR activation mechanisms across classes and macro/microscales. Nat Struct Mol Biol 2021; 28:879-888. [PMID: 34759375 PMCID: PMC8580822 DOI: 10.1038/s41594-021-00674-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
Two-thirds of human hormones and one-third of clinical drugs activate ~350 G-protein-coupled receptors (GPCR) belonging to four classes: A, B1, C and F. Whereas a model of activation has been described for class A, very little is known about the activation of the other classes, which differ by being activated by endogenous ligands bound mainly or entirely extracellularly. Here we show that, although they use the same structural scaffold and share several 'helix macroswitches', the GPCR classes differ in their 'residue microswitch' positions and contacts. We present molecular mechanistic maps of activation for each GPCR class and methods for contact analysis applicable for any functional determinants. This provides a superfamily residue-level rationale for conformational selection and allosteric communication by ligands and G proteins, laying the foundation for receptor-function studies and drugs with the desired modality.
Collapse
Affiliation(s)
- Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Munk
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Data Tools Department, Novozymes A/S, Copenhagen, Denmark
| | - Franziska M Heydenreich
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Dmitry B Veprintsev
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - M Madan Babu
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
109
|
Kang S, Kim NH, Yu YG. Identification of novel positive allosteric modulators of GLP1R that stimulate its interaction with ligands and G α subunits. Biochem Biophys Res Commun 2021; 583:162-168. [PMID: 34739856 DOI: 10.1016/j.bbrc.2021.10.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a major incretin hormone that enhances the release of insulin from pancreatic β-cells by activating the glucagon-like peptide-1 receptor (GLP1R), which belongs to secretin-like class B of G protein-coupled receptors (GPCRs). Owing to the absence of small molecule agonist drugs to GLP1R, focus has been placed on chemical modulators that bind to the allosteric site of GLP1R. In this study, we identified novel small-molecule positive allosteric modulators of GLP1R from a chemical library consisting of commercial drug compounds using an assay system that measures the direct interaction between a purified GLP1R and its ligand, exendin-4. Two newly identified compounds, benzethonium and tamoxifen, significantly enhanced the affinity of peptide ligands for GLP1R although they lacked agonist activity by themselves. In addition, benzethonium augmented the ligand-induced accumulation of cAMP in GLP1R-transfected HEK293T cells. These compounds significantly increased the affinity of GLP1R to the alpha-subunit of G proteins, suggesting that they stabilize GLP1R in a conformation with a higher affinity to peptide ligand as well as G proteins. These compounds may lead to the design of an orally active positive allosteric modulator for GLP1R.
Collapse
Affiliation(s)
- Sumin Kang
- Department of Chemistry, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul, 136-702, Republic of Korea
| | - Nam Hyuk Kim
- Department of Chemistry, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul, 136-702, Republic of Korea
| | - Yeon Gyu Yu
- Department of Chemistry, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul, 136-702, Republic of Korea.
| |
Collapse
|
110
|
Zheng W, Li L, Li H. Phytochemicals modulate pancreatic islet β cell function through glucagon-like peptide-1-related mechanisms. Biochem Pharmacol 2021; 197:114817. [PMID: 34717897 DOI: 10.1016/j.bcp.2021.114817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor-based therapies have been developed and extensively applied in clinical practice. GLP-1 plays an important role in improving glycemic homeostasis by stimulating insulin biosynthesis and secretion, suppressing glucagon activity, delaying gastric emptying, and reducing appetite and food ingestion. Furthermore, GLP-1 has positive effects on β-cell function by promoting β-cell proliferation and neogenesis while simultaneously reducing apoptosis. Here, we summarize possible mechanisms of action of GLP-1 upon pancreatic islets as well as describe phytochemicals that modulate pancreatic islet β cell function through glucagon-like peptide-1-related mechanisms. Together, this information provides potential lead compound candidates against diabetes that function as GLP-1 receptor-based pharmacotherapy.
Collapse
Affiliation(s)
- Wanfang Zheng
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Section of Endocrinology, School of Medicine, Yale University, New Haven 06520, USA.
| |
Collapse
|
111
|
Bain EK, Bain SC. Recent developments in GLP-1RA therapy: A review of the latest evidence of efficacy and safety and differences within the class. Diabetes Obes Metab 2021; 23 Suppl 3:30-39. [PMID: 34324260 DOI: 10.1111/dom.14487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Evie K Bain
- Diabetes Research Unit, Swansea University Medical School, Swansea, UK
| | - Stephen C Bain
- Diabetes Research Unit, Swansea University Medical School, Swansea, UK
- Swansea Bay University Health Board, Swansea, UK
| |
Collapse
|
112
|
Deganutti G, Atanasio S, Rujan RM, Sexton PM, Wootten D, Reynolds CA. Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors. Front Mol Biosci 2021; 8:720561. [PMID: 34513925 PMCID: PMC8427520 DOI: 10.3389/fmolb.2021.720561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
Class B1 G protein-coupled receptors (GPCRs) are important targets for many diseases, including cancer, diabetes, and heart disease. All the approved drugs for this receptor family are peptides that mimic the endogenous activating hormones. An understanding of how agonists bind and activate class B1 GPCRs is fundamental for the development of therapeutic small molecules. We combined supervised molecular dynamics (SuMD) and classic molecular dynamics (cMD) simulations to study the binding of the calcitonin gene-related peptide (CGRP) to the CGRP receptor (CGRPR). We also evaluated the association and dissociation of the antagonist telcagepant from the extracellular domain (ECD) of CGRPR and the water network perturbation upon binding. This study, which represents the first example of dynamic docking of a class B1 GPCR peptide, delivers insights on several aspects of ligand binding to CGRPR, expanding understanding of the role of the ECD and the receptor-activity modifying protein 1 (RAMP1) on agonist selectivity.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Silvia Atanasio
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Roxana-Maria Rujan
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | |
Collapse
|
113
|
Molecular insights into differentiated ligand recognition of the human parathyroid hormone receptor 2. Proc Natl Acad Sci U S A 2021; 118:2101279118. [PMID: 34353904 PMCID: PMC8364112 DOI: 10.1073/pnas.2101279118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The parathyroid hormone receptor 2 (PTH2R) is a class B1 G protein-coupled receptor (GPCR) involved in the regulation of calcium transport, nociception mediation, and wound healing. Naturally occurring mutations in PTH2R were reported to cause hereditary diseases, including syndromic short stature. Here, we report the cryogenic electron microscopy structure of PTH2R bound to its endogenous ligand, tuberoinfundibular peptide (TIP39), and a heterotrimeric Gs protein at a global resolution of 2.8 Å. The structure reveals that TIP39 adopts a unique loop conformation at the N terminus and deeply inserts into the orthosteric ligand-binding pocket in the transmembrane domain. Molecular dynamics simulation and site-directed mutagenesis studies uncover the basis of ligand specificity relative to three PTH2R agonists, TIP39, PTH, and PTH-related peptide. We also compare the action of TIP39 with an antagonist lacking six residues from the peptide N terminus, TIP(7-39), which underscores the indispensable role of the N terminus of TIP39 in PTH2R activation. Additionally, we unveil that a disease-associated mutation G258D significantly diminished cAMP accumulation induced by TIP39. Together, these results not only provide structural insights into ligand specificity and receptor activation of class B1 GPCRs but also offer a foundation to systematically rationalize the available pharmacological data to develop therapies for various disorders associated with PTH2R.
Collapse
|
114
|
Marzook A, Chen S, Pickford P, Lucey M, Wang Y, Corrêa IR, Broichhagen J, Hodson DJ, Salem V, Rutter GA, Tan TM, Bloom SR, Tomas A, Jones B. Evaluation of efficacy- versus affinity-driven agonism with biased GLP-1R ligands P5 and exendin-F1. Biochem Pharmacol 2021; 190:114656. [PMID: 34129856 PMCID: PMC8346945 DOI: 10.1016/j.bcp.2021.114656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/09/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of glucose homeostasis and has been successfully targeted for the treatment of type 2 diabetes. Recently described biased GLP-1R agonists with selective reductions in β-arrestin versus G protein coupling show improved metabolic actions in vivo. However, two prototypical G protein-favouring GLP-1R agonists, P5 and exendin-F1, are reported to show divergent effects on insulin secretion. In this study we aimed to resolve this discrepancy by performing a side-by-side characterisation of these two ligands across a variety of in vitro and in vivo assays. Exendin-F1 showed reduced acute efficacy versus P5 for several readouts, including recruitment of mini-G proteins, G protein-coupled receptor kinases (GRKs) and β-arrestin-2. Maximal responses were also lower for both GLP-1R internalisation and the presence of active GLP-1R-mini-Gs complexes in early endosomes with exendin-F1 treatment. In contrast, prolonged insulin secretion in vitro and sustained anti-hyperglycaemic efficacy in mice were both greater with exendin-F1 than with P5. We conclude that the particularly low acute efficacy of exendin-F1 and associated reductions in GLP-1R downregulation appear to be more important than preservation of endosomal signalling to allow sustained insulin secretion responses. This has implications for the ongoing development of affinity- versus efficacy-driven biased GLP-1R agonists as treatments for metabolic disease.
Collapse
Affiliation(s)
- Amaara Marzook
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Phil Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Maria Lucey
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Yifan Wang
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | | | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Victoria Salem
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom; Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
115
|
Yuliantie E, van der Velden WJC, Labroska V, Dai A, Zhao F, Darbalaei S, Deganutti G, Xu T, Zhou Q, Yang D, Rosenkilde MM, Sexton PM, Wang MW, Wootten D. Insights into agonist-elicited activation of the human glucose-dependent insulinotropic polypeptide receptor. Biochem Pharmacol 2021; 192:114715. [PMID: 34339714 DOI: 10.1016/j.bcp.2021.114715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/30/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and β-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gαs-mediated cAMP accumulation and the recruitment of β-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gαs or β-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.
Collapse
Affiliation(s)
- Elita Yuliantie
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Viktorija Labroska
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Antao Dai
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Fenghui Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Alison Gingell Building, Coventry University, Coventry, CV1 2DS, UK
| | - Tongyang Xu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dehua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Ming-Wei Wang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
116
|
Danev R, Belousoff M, Liang YL, Zhang X, Eisenstein F, Wootten D, Sexton PM. Routine sub-2.5 Å cryo-EM structure determination of GPCRs. Nat Commun 2021; 12:4333. [PMID: 34267200 PMCID: PMC8282782 DOI: 10.1038/s41467-021-24650-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) of small membrane proteins, such as G protein-coupled receptors (GPCRs), remains challenging. Pushing the performance boundaries of the technique requires quantitative knowledge about the contribution of multiple factors. Here, we present an in-depth analysis and optimization of the main experimental parameters in cryo-EM. We combined actual structural studies with methods development to quantify the effects of the Volta phase plate, zero-loss energy filtering, objective lens aperture, defocus magnitude, total exposure, and grid type. By using this information to carefully maximize the experimental performance, it is now possible to routinely determine GPCR structures at resolutions better than 2.5 Å. The improved fidelity of such maps enables the building of better atomic models and will be crucial for the future expansion of cryo-EM into the structure-based drug design domain. The optimization guidelines given here are not limited to GPCRs and can be applied directly to other small proteins.
Collapse
Affiliation(s)
- Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Matthew Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Confo Therapeutics, Ghent (Zwijnaarde), Belgium
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
117
|
Zhao F, Zhang C, Zhou Q, Hang K, Zou X, Chen Y, Wu F, Rao Q, Dai A, Yin W, Shen DD, Zhang Y, Xia T, Stevens RC, Xu HE, Yang D, Zhao L, Wang MW. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. eLife 2021; 10:e68719. [PMID: 34254582 PMCID: PMC8298097 DOI: 10.7554/elife.68719] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone that exerts crucial metabolic functions by binding and activating its cognate receptor, GIPR. As an important therapeutic target, GIPR has been subjected to intensive structural studies without success. Here, we report the cryo-EM structure of the human GIPR in complex with GIP and a Gs heterotrimer at a global resolution of 2.9 Å. GIP adopts a single straight helix with its N terminus dipped into the receptor transmembrane domain (TMD), while the C terminus is closely associated with the extracellular domain and extracellular loop 1. GIPR employs conserved residues in the lower half of the TMD pocket to recognize the common segments shared by GIP homologous peptides, while uses non-conserved residues in the upper half of the TMD pocket to interact with residues specific for GIP. These results provide a structural framework of hormone recognition and GIPR activation.
Collapse
Affiliation(s)
- Fenghui Zhao
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Chao Zhang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
| | - Kaini Hang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Xinyu Zou
- School of Artificial Intelligence and Automation, Huazhong University of Science and TechnologyWuhanChina
| | - Yan Chen
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
| | - Fan Wu
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Qidi Rao
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Wanchao Yin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Tian Xia
- School of Artificial Intelligence and Automation, Huazhong University of Science and TechnologyWuhanChina
| | - Raymond C Stevens
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Lihua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ming-Wei Wang
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
118
|
Irwin DM. Variation in the Evolution and Sequences of Proglucagon and the Receptors for Proglucagon-Derived Peptides in Mammals. Front Endocrinol (Lausanne) 2021; 12:700066. [PMID: 34322093 PMCID: PMC8312260 DOI: 10.3389/fendo.2021.700066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 01/12/2023] Open
Abstract
The mammalian proglucagon gene (Gcg) encodes three glucagon like sequences, glucagon, glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 that are of similar length and share sequence similarity, with these hormones having cell surface receptors, glucagon receptor (Gcgr), GLP-1 receptor (Glp1r), and GLP-2 receptor (Glp2r), respectively. Gcgr, Glp1r, and Glp2r are all class B1 G protein-coupled receptors (GPCRs). Despite their sequence and structural similarity, analyses of sequences from rodents have found differences in patterns of sequence conservation and evolution. To determine whether these were rodent-specific traits or general features of these genes in mammals I analyzed coding and protein sequences for proglucagon and the receptors for proglucagon-derived peptides from the genomes of 168 mammalian species. Single copy genes for each gene were found in almost all genomes. In addition to glucagon sequences within Hystricognath rodents (e.g., guinea pig), glucagon sequences from a few other groups (e.g., pangolins and some bats) as well as changes in the proteolytic processing of GLP-1 in some bats are suggested to have functional effects. GLP-2 sequences display increased variability but accepted few substitutions that are predicted to have functional consequences. In parallel, Glp2r sequences display the most rapid protein sequence evolution, and show greater variability in amino acids at sites involved in ligand interaction, however most were not predicted to have a functional consequence. These observations suggest that a greater diversity in biological functions for proglucagon-derived peptides might exist in mammals.
Collapse
Affiliation(s)
- David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
119
|
Zhang X, Belousoff MJ, Liang YL, Danev R, Sexton PM, Wootten D. Structure and dynamics of semaglutide- and taspoglutide-bound GLP-1R-Gs complexes. Cell Rep 2021; 36:109374. [PMID: 34260945 DOI: 10.1016/j.celrep.2021.109374] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/14/2021] [Accepted: 06/18/2021] [Indexed: 12/01/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) regulates insulin secretion, carbohydrate metabolism, and appetite and is an important target for treatment of type 2 diabetes and obesity. Multiple GLP-1R agonists have entered into clinical trials, with some, such as semaglutide, progressing to approval. Others, including taspoglutide, failed due to the high incidence of side effects or insufficient efficacy. GLP-1R agonists have a broad spectrum of signaling profiles, but molecular understanding is limited by a lack of structural information on how different agonists engage with the GLP-1R. Here, we report cryoelectron microscopy (cryo-EM) structures and cryo-EM 3D variability analysis of semaglutide- and taspoglutide-bound GLP-1R-Gs protein complexes. These reveal similar peptide interactions to GLP-1 but different motions within the receptor and bound peptides, providing insights into the molecular determinants of GLP-1R peptide engagement.
Collapse
Affiliation(s)
- Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan.
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| |
Collapse
|
120
|
Cong Z, Chen LN, Ma H, Zhou Q, Zou X, Ye C, Dai A, Liu Q, Huang W, Sun X, Wang X, Xu P, Zhao L, Xia T, Zhong W, Yang D, Eric Xu H, Zhang Y, Wang MW. Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor. Nat Commun 2021; 12:3763. [PMID: 34145245 PMCID: PMC8213797 DOI: 10.1038/s41467-021-24058-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor is a validated drug target for metabolic disorders. Ago-allosteric modulators are capable of acting both as agonists on their own and as efficacy enhancers of orthosteric ligands. However, the molecular details of ago-allosterism remain elusive. Here, we report three cryo-electron microscopy structures of GLP-1R bound to (i) compound 2 (an ago-allosteric modulator); (ii) compound 2 and GLP-1; and (iii) compound 2 and LY3502970 (a small molecule agonist), all in complex with heterotrimeric Gs. The structures reveal that compound 2 is covalently bonded to C347 at the cytoplasmic end of TM6 and triggers its outward movement in cooperation with the ECD whose N terminus penetrates into the GLP-1 binding site. This allows compound 2 to execute positive allosteric modulation through enhancement of both agonist binding and G protein coupling. Our findings offer insights into the structural basis of ago-allosterism at GLP-1R and may aid the design of better therapeutics. The glucagon-like peptide-1 (GLP-1) receptor is a key regulator of glucose homeostasis and a drug target for type 2 diabetes but available GLP-1R agonists are suboptimal due to several side-effects. Here authors report the cryo-EM structure of GLP-1R bound to an ago-allosteric modulator in complex with heterotrimeric Gs which offers insights into the molecular details of ago-allosterism.
Collapse
Affiliation(s)
- Zhaotong Cong
- School of Pharmacy, Fudan University, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honglei Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinyu Zou
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Chenyu Ye
- School of Pharmacy, Fudan University, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Huang
- Qilu Regor Therapeutics, Inc., Shanghai, China
| | | | - Xi Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tian Xia
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Wenge Zhong
- Qilu Regor Therapeutics, Inc., Shanghai, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China. .,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
121
|
Lindquist P, Madsen JS, Bräuner-Osborne H, Rosenkilde MM, Hauser AS. Mutational Landscape of the Proglucagon-Derived Peptides. Front Endocrinol (Lausanne) 2021; 12:698511. [PMID: 34220721 PMCID: PMC8248487 DOI: 10.3389/fendo.2021.698511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Strong efforts have been placed on understanding the physiological roles and therapeutic potential of the proglucagon peptide hormones including glucagon, GLP-1 and GLP-2. However, little is known about the extent and magnitude of variability in the amino acid composition of the proglucagon precursor and its mature peptides. Here, we identified 184 unique missense variants in the human proglucagon gene GCG obtained from exome and whole-genome sequencing of more than 450,000 individuals across diverse sub-populations. This provides an unprecedented source of population-wide genetic variation data on missense mutations and insights into the evolutionary constraint spectrum of proglucagon-derived peptides. We show that the stereotypical peptides glucagon, GLP-1 and GLP-2 display fewer evolutionary alterations and are more likely to be functionally affected by genetic variation compared to the rest of the gene products. Elucidating the spectrum of genetic variations and estimating the impact of how a peptide variant may influence human physiology and pathophysiology through changes in ligand binding and/or receptor signalling, are vital and serve as the first important step in understanding variability in glucose homeostasis, amino acid metabolism, intestinal epithelial growth, bone strength, appetite regulation, and other key physiological parameters controlled by these hormones.
Collapse
Affiliation(s)
- Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob S. Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
122
|
Zhang X, Johnson RM, Drulyte I, Yu L, Kotecha A, Danev R, Wootten D, Sexton PM, Belousoff MJ. Evolving cryo-EM structural approaches for GPCR drug discovery. Structure 2021; 29:963-974.e6. [PMID: 33957078 DOI: 10.1016/j.str.2021.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell surface drug targets. Advances in stabilization of GPCR:transducer complexes, together with improvements in cryoelectron microscopy (cryo-EM) have recently been applied to structure-assisted drug design for GPCR agonists. Nonetheless, limitations in the commercial application of these approaches, including the use of nanobody 35 (Nb35) to aid complex stabilization and the high cost of 300 kV imaging, have restricted broad application of cryo-EM in drug discovery. Here, using the PF 06882961-bound GLP-1R as exemplar, we validated the formation of stable complexes with a modified Gs protein in the absence of Nb35. In parallel, we compare 200 versus 300 kV image acquisition using a Falcon 4 or K3 direct electron detector. Moreover, the 200 kV Glacios-Falcon 4 yielded a 3.2 Å map with clear density for bound drug and multiple structurally ordered waters. Our work paves the way for broader commercial application of cryo-EM for GPCR drug discovery.
Collapse
Affiliation(s)
- Xin Zhang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Rachel M Johnson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Ieva Drulyte
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, 5651 GG Eindhoven, the Netherlands
| | - Lingbo Yu
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, 5651 GG Eindhoven, the Netherlands
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, 5651 GG Eindhoven, the Netherlands
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| |
Collapse
|
123
|
Mizera M, Latek D. Ligand-Receptor Interactions and Machine Learning in GCGR and GLP-1R Drug Discovery. Int J Mol Sci 2021; 22:ijms22084060. [PMID: 33920024 PMCID: PMC8071054 DOI: 10.3390/ijms22084060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/03/2022] Open
Abstract
The large amount of data that has been collected so far for G protein-coupled receptors requires machine learning (ML) approaches to fully exploit its potential. Our previous ML model based on gradient boosting used for prediction of drug affinity and selectivity for a receptor subtype was compared with explicit information on ligand-receptor interactions from induced-fit docking. Both methods have proved their usefulness in drug response predictions. Yet, their successful combination still requires allosteric/orthosteric assignment of ligands from datasets. Our ligand datasets included activities of two members of the secretin receptor family: GCGR and GLP-1R. Simultaneous activation of two or three receptors of this family by dual or triple agonists is not a typical kind of information included in compound databases. A precise allosteric/orthosteric ligand assignment requires a continuous update based on new structural and biological data. This data incompleteness remains the main obstacle for current ML methods applied to class B GPCR drug discovery. Even so, for these two class B receptors, our ligand-based ML model demonstrated high accuracy (5-fold cross-validation Q2 > 0.63 and Q2 > 0.67 for GLP-1R and GCGR, respectively). In addition, we performed a ligand annotation using recent cryogenic-electron microscopy (cryo-EM) and X-ray crystallographic data on small-molecule complexes of GCGR and GLP-1R. As a result, we assigned GLP-1R and GCGR actives deposited in ChEMBL to four small-molecule binding sites occupied by positive and negative allosteric modulators and a full agonist. Annotated compounds were added to our recently released repository of GPCR data.
Collapse
|
124
|
Josephs TM, Belousoff MJ, Liang YL, Piper SJ, Cao J, Garama DJ, Leach K, Gregory KJ, Christopoulos A, Hay DL, Danev R, Wootten D, Sexton PM. Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science 2021; 372:science.abf7258. [DOI: 10.1126/science.abf7258] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Tracy M. Josephs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Sarah J. Piper
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Jianjun Cao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Daniel J. Garama
- Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton 3168, Victoria, Australia
| | - Katie Leach
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Karen J. Gregory
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
125
|
Choe HJ, Cho YM. Peptidyl and Non-Peptidyl Oral Glucagon-Like Peptide-1 Receptor Agonists. Endocrinol Metab (Seoul) 2021; 36:22-29. [PMID: 33677922 PMCID: PMC7937847 DOI: 10.3803/enm.2021.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are efficacious glucose-lowering medications with salient benefits for body weight and cardiovascular events. This class of medications is now recommended as the top priority for patients with established cardiovascular disease or indicators of high risk. Until the advent of oral semaglutide, however, GLP-1 receptor agonists were available only in the form of subcutaneous injections. Aversion to needles, discomfort with self-injection, or skin problems at the injection site are commonly voiced problems in people with diabetes, and thus, attempts for non-invasive delivery strategies have continued. Herein, we review the evolution of GLP-1 therapy from its discovery and the development of currently approved drugs to the unprecedented endeavor to administer GLP-1 receptor agonists via the oral route. We focus on the pharmacokinetic and pharmacodynamic properties of the recently approved oral GLP-1 receptor agonist, oral semaglutide. Small molecule oral GLP-1 receptor agonists are currently in development, and we introduce how these chemicals have addressed the challenge posed by interactions with the large extracellular ligand binding domain of the GLP-1 receptor. We specifically discuss the structure and pharmacological properties of TT-OAD2, LY3502970, and PF-06882961, and envision an era where more patients could benefit from oral GLP-1 receptor agonist therapy.
Collapse
Affiliation(s)
- Hun Jee Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
126
|
Abstract
Glucagon like peptide-1 (GLP-1), a peptide hormone from the intestinal tract, plays a central role in the coordination of postprandial glucose homeostasis through actions on insulin secretion, food intake and gut motility. GLP-1 forms the basis for a variety of current drugs for the treatment of type 2 diabetes and obesity, as well as new agents currently being developed. Here, we provide a concise overview of the core physiology of GLP-1 secretion and action, and the role of the peptide in human health, disease and therapeutics.
Collapse
Affiliation(s)
- Fiona M Gribble
- Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Frank Reimann
- Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
127
|
van der Velden WJC, Smit FX, Christiansen CB, Møller TC, Hjortø GM, Larsen O, Schiellerup SP, Bräuner-Osborne H, Holst JJ, Hartmann B, Frimurer TM, Rosenkilde MM. GLP-1 Val8: A Biased GLP-1R Agonist with Altered Binding Kinetics and Impaired Release of Pancreatic Hormones in Rats. ACS Pharmacol Transl Sci 2021; 4:296-313. [PMID: 33615180 DOI: 10.1021/acsptsci.0c00193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Biased ligands that selectively confer activity in one pathway over another are pharmacologically important because biased signaling may reduce on-target side effects and improve drug efficacy. Here, we describe an N-terminal modification in the incretin hormone glucagon-like peptide (GLP-1) that alters the signaling capabilities of the GLP-1 receptor (GLP-1R) by making it G protein biased over internalization but was originally designed to confer DPP-4 resistance and thereby prolong the half-life of GLP-1. Despite similar binding affinity, cAMP production, and calcium mobilization, substitution of a single amino acid (Ala8 to Val8) in the N-terminus of GLP-1(7-36)NH2 (GLP-1 Val8) severely impaired its ability to internalize GLP-1R compared to endogenous GLP-1. In-depth binding kinetics analyses revealed shorter residence time for GLP-1 Val8 as well as a slower observed association rate. Molecular dynamics (MD) displayed weaker and less interactions of GLP-1 Val8 with GLP-1R, as well as distinct conformational changes in the receptor compared to GLP-1. In vitro validation of the MD, by receptor alanine substitutions, confirmed stronger impairments of GLP-1 Val8-mediated signaling compared to GLP-1. In a perfused rat pancreas, acute stimulation with GLP-1 Val8 resulted in a lower insulin and somatostatin secretion compared to GLP-1. Our study illustrates that profound differences in molecular pharmacological properties, which are essential for the therapeutic targeting of the GLP-1 system, can be induced by subtle changes in the N-terminus of GLP-1. This information could facilitate the development of optimized GLP-1R agonists.
Collapse
Affiliation(s)
- Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Florent X Smit
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Charlotte B Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen 2200, Denmark
| | - Thor C Møller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Gertrud M Hjortø
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sine P Schiellerup
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen 2200, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen 2200, Denmark
| | - Thomas M Frimurer
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
128
|
Hamza A, Șaramet G. ACTUALITIES IN ENDOCRINE PHARMACOLOGY: ADVANCES IN THE DEVELOPMENT OF ORAL FORMULATIONS FOR CALCITONIN AND SEMAGLUTIDE. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 16:383-387. [PMID: 33363667 DOI: 10.4183/aeb.2020.383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As the medical utility of injectable therapeutic peptides is expanding, so is the challenge of developing technologies that allow the administration of such molecules via alternative routes, considering that chronic patients requiring treatment with parenteral formulations are less adherent and compliant to the therapeutic regimens. Hence, substantial efforts have been made to develop technologies that allow the oral formulation of peptides. Due to their importance in the field of pharmaceutical technology, we describe the latest advancements made in the development of oral salmon calcitonin and oral semaglutide, in co-formulation with absorption enhancers such as 8-[(5-chloro-2-hydroxybenzoyl) amino] octanoic acid (or 5-CNAC) and N-[8-(2-hydroxybenzoyl) amino] caprylate (or SNAC). Oral semaglutide is considered to be a landmark for oral peptide delivery technology, as it is one of the very few successful examples of peptides that can be administered orally. Unlike semaglutide, oral calcitonin is still not approved by the regulatory authorities because it failed to demonstrate the anticipated effects in phase III clinical trials conducted so far. However, the efforts for obtaining an oral form of calcitonin have significantly contributed to the development of technologies that facilitate the absorption of peptide-structure macromolecules.
Collapse
Affiliation(s)
- A Hamza
- "Carol Davila" University of Medicine and Pharmacy - Faculty of Pharmacy, Dept. of Pharmaceutical Technology and Biopharmacy, Bucharest, Romania
| | - G Șaramet
- "Carol Davila" University of Medicine and Pharmacy - Faculty of Pharmacy, Dept. of Pharmaceutical Technology and Biopharmacy, Bucharest, Romania
| |
Collapse
|