101
|
Luczak JA, Redick SD, Schwarzbauer JE. A single cysteine, Cys-64, is essential for assembly of tenascin-C hexabrachions. J Biol Chem 1998; 273:2073-7. [PMID: 9442046 DOI: 10.1074/jbc.273.4.2073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C is a large, multimeric extracellular matrix protein that is found in a variety of tissues and can have profound effects on cell adhesion. It is secreted from cells as a hexamer of six identical chains called a hexabrachion. Disulfide bonding among tenascin subunits mediates intracellular assembly into hexamers. The amino-terminal assembly domain consists of heptad repeats and at least six cysteine residues (Cys-64, -111, -113, -140, -146, -147) that could be involved in multimerization. We have now determined the requirements for these cysteine residues during hexamer assembly. Our results show that only Cys-64 is required to form the hexameric structure. Mutation of Cys-64 to glycine resulted in release of trimer intermediates, which probably form via the heptad repeats, but no hexamers were secreted. In contrast, individual or pairs of mutations of each of the other cysteines had no effect on tenascin hexamer formation, and inclusion of any other cysteine mutations along with C64G did not further disrupt the multimer pattern. However, when all six cysteines were mutated, monomers were the major extracellular form. Together, these results show that trimers are an intermediate of tenascin-C assembly and that Cys-64 is essential for formation of hexabrachions.
Collapse
Affiliation(s)
- J A Luczak
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
102
|
LaFleur DW, Chiang J, Fagin JA, Schwartz SM, Shah PK, Wallner K, Forrester JS, Sharifi BG. Aortic smooth muscle cells interact with tenascin-C through its fibrinogen-like domain. J Biol Chem 1997; 272:32798-803. [PMID: 9407055 DOI: 10.1074/jbc.272.52.32798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular matrix protein tenascin-C is a multidomain protein that regulates cell adhesion. We used two different smooth muscle cell subtypes derived from adult and newborn rat aorta to investigate the interaction of tenascin-C or its various domains with these cells using an adhesion assay. Newborn cells were three times more adherent to tenascin-C than adult cells. Tenascin C-adhering cells remained round, whereas they spread rapidly on a fibronectin substrate. Adhesion assays showed the interaction between tenascin-C and newborn cells to be predominantly RGD-independent. Mg2+ increased newborn cell adhesion to tenascin-C in a concentration-dependent manner, whereas Ca2+ had no effect. To analyze the structure-function relationships of different domains of tenascin-C, we used recombinant full-length fibronectin-like and fibrinogen-like domains and various subdomains corresponding to the alternatively spliced regions of tenascin-C. The cells adhered to the fibrinogen-like domain but not to the fibronectin-like domain or its subdomains. As with the intact tenascin-C molecule, adherent cells remained round, and the Mg2+, but not Ca2+, promoted this interaction. The interaction of cells with the fibrinogen-like region was further mapped to a 30-amino acid peptide located near the carboxyl-terminal part of the tenascin-C molecule. The same 30-amino acid peptide was active in promoting cell migration. Our results provide a basis for understanding the mechanism of interaction of tenascin-C with smooth muscle cells and a framework for isolating membrane binding sites that mediate the cellular responses to this molecule.
Collapse
Affiliation(s)
- D W LaFleur
- Atherosclerosis Research Center, Division of Cardiology, Burns and Allen Research Institute, Cedar-Sinai Medical Center, University of California School of Medicine, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Vollmer G, Tan MI, Wünsche W, Frank K. Expression of tenascin-C by human endometrial adenocarcinoma and stroma cells: heterogeneity of splice variants and induction by TGF- b. Biochem Cell Biol 1997. [DOI: 10.1139/o97-069] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Localization of tenascin-C in vivo and cell culture experiments in vitro have provided evidence for stromal production of tenascin-C in malignant tumors of a variety of organs. Here we raised the question of whether the mesenchymal stroma in the case of endometrial adenocarcinoma is the unique source of tenascin-C. Therefore, the expression of tenascin-C mRNA by human endometrial adenocarcinoma cells and endometrial stroma cells was investigated. Several preparations of endometrial stroma cells produced tenascin-C mRNA. Using a serum-free defined cell culture medium, production of tenascin-C mRNA could be increased by adding either serum or 20 ng TGF- beta /mL to the cell culture medium. Reverse transcriptase polymerase chain reaction analysis revealed that five out of six endometrial adenocarcinoma cell lines produced tenascin-C mRNA. Northern blot experiments and ribonuclease protection assays provided evidence that the number of copies of tenascin-C mRNA was small. Analysis of expressed splice variants by reverse transcriptase polymerase chain reaction analysis revealed the abundance of one major splice variant that lacked all potential alternatively spliced fibronectin type-III-like repeats. Regarding larger splice variants, all fragment sizes that could theoretically originate from seven alternatively spliced fibronectin type-III-like repeats were observed. Evaluating relative signal intensities, the splice variants containing a single fibronectin type-III-like repeat and the variant possessing all but one alternatively spliced repeats were most frequent. In summary, evidence is provided that tenascin-C can originate from both tissue compartments of the human endometrium stroma and (tumor) epithelium. Splice variant analysis revealed a high number of splice variants and a relative high proportion of variants that have so far been regarded as minor constituents of expressed tenascin-C. Key words: gene expression, splice variant analysis, extracellular matrix, endometrial cancer, growth factors.
Collapse
|
104
|
Meiners S, Geller HM. Long and short splice variants of human tenascin differentially regulate neurite outgrowth. Mol Cell Neurosci 1997; 10:100-16. [PMID: 9361291 DOI: 10.1006/mcne.1997.0643] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C has been implicated in regulation of neurite outgrowth both during development and after injury; however, its role as permissive vs inhibitory remains controversial. We report that different tenascin splice variants may have dramatically different impacts on neuronal growth. In a cell culture model, the largest and smallest splice variants (TN.L and TN.S) of human tenascin both promoted process extension when surface-bound. In contrast, soluble TN.S inhibited outgrowth, whereas soluble TN.L had no inhibitory effect. Perturbation experiments with antibodies, and outgrowth experiments with recombinant tenascin fragments, indicate that the differential properties of these molecules can be attributed to their distinctive array of FN-III repeats. Monoclonal antibodies were used to demonstrate at least two distinct neurite outgrowth promoting domains within the alternatively spliced region. These results suggest that the effect of tenascin on axon growth is a function of splice variants, as well as the form or conformation of those variants.
Collapse
Affiliation(s)
- S Meiners
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
105
|
Derr LB, Chiquet-Ehrismann R, Gandour-Edwards R, Spence J, Tucker RP. The expression of tenascin-C with the AD1 variable repeat in embryonic tissues, cell lines and tumors in various vertebrate species. Differentiation 1997; 62:71-82. [PMID: 9404002 DOI: 10.1046/j.1432-0436.1997.6220071.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tenascin-C is a modular glycoprotein composed of domains of amino acid repeats. All forms of tenascin-C have eight constant fibronectin type III repeats, but additional fibronectin type III repeats can be spliced into a variable domain found between the fifth and sixth constant repeats. Four extra repeats, named A, B, C and D, have been examined previously. Here, we have used in situ hybridization to determine the tissue origins of the novel AD1 and AD2 repeats. In the embryonic-day-10 chicken embryo, transcripts encoding the AD2 repeat are limited to the tips of lung bronchioles and the base of feather buds. In contrast the AD1 hybridization signal was widespread. Quantitative in situ hybridization reveals AD1-containing transcripts represent up to 85% of the total tenascin-C mRNA in some tissues (developing bone), and are undetectable in others (e.g. radial glia). Avian and human tumor cell lines were examined for the expression of the AD1 repeat using the reverse transcriptase polymerase chain reaction (RT-PCR). Transcripts encoding six different tenascin-C splice variants incorporating the AD1 repeat were found in the fibrosarcoma cell line, QT6. Many human tumor cells, including malignant melanoma and ductal breast carcinoma, were positive for AD1 tenascin-C expression. In addition, we found evidence of AD1 tenascin-C expression in samples of excised human tumors. Our results show that a novel variant may be a major part of the tenascin-C of the embryonic extracellular matrix, and may also be found in the stroma surrounding some human tumors.
Collapse
Affiliation(s)
- L B Derr
- Department of Neurobiology and Anatomy, Bowman Gray School of Medicine, Winston-Salem, NC 27510, USA
| | | | | | | | | |
Collapse
|
106
|
Fischer D, Tucker RP, Chiquet-Ehrismann R, Adams JC. Cell-adhesive responses to tenascin-C splice variants involve formation of fascin microspikes. Mol Biol Cell 1997; 8:2055-75. [PMID: 9348542 PMCID: PMC25670 DOI: 10.1091/mbc.8.10.2055] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1997] [Accepted: 07/16/1997] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C is an adhesion-modulating matrix glycoprotein that has multiple effects on cell behavior. Tenascin-C transcripts are expressed in motile cells and at sites of tissue modeling during development, and alternative splicing generates variants that encode different numbers of fibronectin type III repeats. We have examined the in vivo expression and cell adhesive properties of two full-length recombinant tenascin-C proteins: TN-190, which contains the eight constant fibronectin type III repeats, and TN-ADC, which contains the additional AD2, AD1, and C repeats. In situ hybridization with probes specific for the AD2, AD1, and C repeats shows that these splice variants are expressed at sites of active tissue modeling and fibronectin expression in the developing avian feather bud and sternum. Transcripts incorporating the AD2, AD1, and C repeats are present in embryonic day 10 wing bud but not in embryonic day 10 lung. By using a panel of nine cell lines in attachment assays, we have found that C2C12, G8, and S27 myoblastic cells undergo concentration-dependent adhesion to both variants, organize actin microspikes that contain the actin-bundling protein fascin, and do not assemble focal contacts. On a molar basis, TN-ADC is more active than TN-190 in promoting cell attachment and irregular cell spreading. The addition of either TN-190 or TN-ADC in solution to C2C12, COS-7, or MG-63 cells adherent on fibronectin decreases cell attachment and results in decreased organization of actin microfilament bundles, with formation of cortical membrane ruffles and retention of residual points of substratum contact that contain filamentous actin and fascin. These data establish a biochemical similarity in the processes of cell adhesion to tenascin-C and thrombospondin-1, also an "antiadhesive" matrix component, and also demonstrate that both the adhesive and adhesion-modulating properties of tenascin-C involve similar biochemical events in the cortical cytoskeleton. In addition to these generic properties, TN-ADC is less active in adhesion modulation than TN-190. The coordinated expression of different tenascin-C transcripts during development may, therefore, provide appropriate microenvironments for regulated changes in cell shape, adhesion, and movement.
Collapse
Affiliation(s)
- D Fischer
- Friedrich-Miescher Institut, Basel, Switzerland
| | | | | | | |
Collapse
|
107
|
Abstract
Tenascin-C is a hexameric extracellular matrix glycoprotein with multiple isoforms resulting from alternative splicing. Synthesis of tenascin-C occurs in the nervous system, the vasculature and connective tissue components of a number of organs, particularly during development and pathology. Most cells do not express tenascin-C constitutively but expression is induced by growth factors and hormones, such as transforming growth factor-beta and interleukin-1. Tenascin-C is anti-adhesive, but nevertheless is able to influence the differentiation of a variety of cell types. Selective expression of tenascin-C in tumours has led to development of radio-labelled monoclonal anti-tenascin-C antibodies for targeting tumour therapy, with promising results thus far in clinical trials.
Collapse
Affiliation(s)
- E J Mackie
- Department of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
108
|
Stein MA, Schäfer A, Giffhorn F. Cloning, nucleotide sequence, and overexpression of smoS, a component of a novel operon encoding an ABC transporter and polyol dehydrogenases of Rhodobacter sphaeroides Si4. J Bacteriol 1997; 179:6335-40. [PMID: 9335280 PMCID: PMC179547 DOI: 10.1128/jb.179.20.6335-6340.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene coding for sorbitol dehydrogenase (SDH) of Rhodobacter sphaeroides Si4 was located 55 nucleotides upstream of the mannitol dehydrogenase gene (mtlK) within a previously unrecognized polyol operon. This operon probably consists of all the proteins necessary for transport and metabolization of various polyols. The gene encoding SDH (smoS) was cloned and sequenced. Analysis of the deduced amino acid sequence revealed homology to enzymes of the short-chain dehydrogenase/reductase protein family. For structure analysis of this unique bacterial enzyme, smoS was subcloned into the overexpression vector pET-24a(+) and then overproduced in Escherichia coli BL21(DE3), which yielded a specific activity of 24.8 U/mg of protein and a volumetric yield of 38,000 U/liter. Compared to values derived with the native host, R. sphaeroides, these values reflected a 270-fold increase in expression of SDH and a 971-fold increase in the volumetric yield. SDH was purified to homogeneity, with a recovery of 49%, on the basis of a three-step procedure. Upstream from smoS, another gene (smoK), which encoded a putative ATP-binding protein of an ABC transporter, was identified.
Collapse
Affiliation(s)
- M A Stein
- Lehrstuhl für Angewandte Mikrobiologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | |
Collapse
|
109
|
Ramos DM, Chen BL, Boylen K, Stern M, Kramer RH, Sheppard D, Nishimura SL, Greenspan D, Zardi L, Pytela R. Stromal fibroblasts influence oral squamous-cell carcinoma cell interactions with tenascin-C. Int J Cancer 1997; 72:369-76. [PMID: 9219848 DOI: 10.1002/(sici)1097-0215(19970717)72:2<369::aid-ijc28>3.0.co;2-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study we identified tenascin-C (TN-C) and one of its integrin receptors, alpha(v)beta6, in oral squamous-cell carcinoma (SCC) specimens. Neither TN-C nor alpha(v)beta6 are expressed in normal oral mucosa. We also studied 2 human oral squamous-cell carcinoma cell lines: the highly invasive HSC-3 cells, and the poorly invasive SCC-25 cells. We determined that adhesion of these cells to TN-C involves both alpha2 and alpha(v) integrins. Migration on TN-C by oral SCC cells required fibroblast-conditioned medium and did not occur in its absence. This migration was blocked by anti-alpha2 and anti-alpha(v) antibodies and was partially inhibited by antibodies to hepatocyte growth factor, epidermal growth factor and transforming growth factor-beta1. When seeded on TN-C, the poorly invasive SCC-25 cells formed alpha(v)beta6-positive focal contacts; the HSC-3 cells did not. HSC-3, SCC-25 and PTF cells secrete TN-C into the culture medium, as determined by Western blot. However, when HSC-3 cells were inoculated into the floor of the mouth of nude mice, only murine TN-C could be identified in the reactive stroma adjacent to the resulting tumor nests, demonstrating that in vivo, HSC-3 cells do not secrete TN-C. Our results demonstrate that alpha(v)beta6 and tenascin-C are neo-expressed in oral squamous-cell carcinoma, and that the tumor stromal environment is influential in oral SCC behavior.
Collapse
Affiliation(s)
- D M Ramos
- Department of Stomatology, UCSF, San Francisco, CA 94143-0512, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Carr PA, Erickson HP, Palmer AG. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin. Structure 1997; 5:949-59. [PMID: 9261088 DOI: 10.1016/s0969-2126(97)00248-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Fibronectin type III domains are found as autonomously-folded domains in a large variety of multidomain proteins, including extracellular matrix proteins. A subset of these domains employ an Arg-Gly-Asp (RGD) tripeptide motif to mediate contact with cell-surface receptors (integrins). This motif mediates protein-protein interactions in a diverse range of biological processes, such as in tissue development, would healing and metastasis. The molecular basis for affinity and specificity of cell adhesion via type III domains has not been clearly established. The tenth type III domain from fibronectin (FNfn10) and the third type III domain from tenascin-C (TNfn3) have 27% sequence identity and share the same overall protein fold, but present the RGD motifs in different structural contexts. The dynamical properties of the RGD motifs may affect the specificity and affinity of the FNfn10 and TNfn3 domains. Structure-dynamics correlations for these structurally homologous proteins may reveal common molecular features which are important to the dynamical properties of proteins. RESULTS The intramolecular dynamics of the protein backbones of FNfn10 and TNfn3 have been studied by 15N nuclear spin relaxation. The FG loop in FNfn10, which contains the RGD motif, exhibits extensive flexibility on picosecond to nanosecond timescales, but motions on microsecond to millisecond timescales are not observed. The equivalent region in TNfn3 is as rigid as regular elements of secondary structure. The CC' loop also is more flexible on picosecond-nanosecond timescales in FNfn10 than in TNfn3. Conformational exchange, reflecting flexibility on microsecond-millisecond timescales, is observed in beta strands A and B of both FNfn10 and TNfn3. CONCLUSIONS Comparison of the structures of the FNfn10 and TNfn3 reveals several features related to their different dynamical properties. The larger amplitude motions of loops in FNfn10 are consistent with the hypothesis that flexibility of these regions facilitates induced-fit recognition of fibronectin by multiple receptors. Similarly, the more rigid loops of TNfn3 may reflect greater specificity for particular integrins. The correlations observed between structural features and dynamical properties of the homologous type III domains indicate the influence of hydrogen bonding and hydrophobic packing on dynamical fluctuations in proteins.
Collapse
Affiliation(s)
- P A Carr
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
111
|
Chung CY, Erickson HP. Glycosaminoglycans modulate fibronectin matrix assembly and are essential for matrix incorporation of tenascin-C. J Cell Sci 1997; 110 ( Pt 12):1413-9. [PMID: 9217327 DOI: 10.1242/jcs.110.12.1413] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the role of glycosaminoglycans in fibronectin matrix assembly and the incorporation of tenascin-C into matrix fibrils. Chinese hamster ovary cell mutants with a total block in heparan and chondroitin sulfate production failed to assemble a fibronectin matrix, and incorporated no tenascin-C. Another mutant with reduced heparan sulfate produced a normal fibronectin matrix but failed to incorporate tenascin-C. Excess soluble glycosaminoglycans inhibited the binding of tenascin-C to purified fibronectin in ELISA, and completely blocked incorporation into matrix fibrils. Treating cultured cells with xyloside, which interferes with glycosaminoglycan attachment to proteoglycans, also completely blocked their ability to incorporate tenascin-C into matrix fibrils. We conclude that proteoglycans bound to fibronectin fibrils play a major role in binding tenascin-C to these fibrils. We examined more closely the large heparan sulfate proteoglycan, perlecan, and found that it co-localizes with tenascin-C and fibronectin in the matrix. The perlecan binding site in tenascin-C was mapped to the fibronectin type III domains 3–5, but this binding was strongly enhanced for the small splice variant, which is the major form incorporated into the matrix. Apparently when the alternative splice segment is inserted after domain 5 it inhibits perlecan binding. Thus heparan sulfate glycosaminoglycans, and perlecan in particular, may play a role in incorporation of the small splice variant of tenascin-C into fibronectin matrix fibrils.
Collapse
Affiliation(s)
- C Y Chung
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
112
|
Milev P, Fischer D, Häring M, Schulthess T, Margolis RK, Chiquet-Ehrismann R, Margolis RU. The fibrinogen-like globe of tenascin-C mediates its interactions with neurocan and phosphacan/protein-tyrosine phosphatase-zeta/beta. J Biol Chem 1997; 272:15501-9. [PMID: 9182584 DOI: 10.1074/jbc.272.24.15501] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two nervous tissue-specific chondroitin sulfate proteoglycans, neurocan and phosphacan (the extracellular domain of protein-tyrosine phosphatase-zeta/beta), are high-affinity ligands of tenascin-C. Using portions of tenascin-C expressed as recombinant proteins in human fibrosarcoma cells, we have demonstrated both by direct radioligand binding assays and inhibition studies that phosphacan binding is retained in all deletion variants except those lacking the fibrinogen-like globe and that phosphacan binds to this single domain with nearly the same affinity (Kd approximately 12 nM) as to native or recombinant tenascin-C. However, maximum binding of neurocan requires both the fibrinogen globe and some of the adjacent fibronectin type III repeats. Binding of phosphacan and neurocan to intact tenascin-C, and of phosphacan to the fibrinogen globe, is significantly increased in the presence of calcium. Chondroitinase treatment of the proteoglycans did not affect their binding to either native tenascin-C or to any of the recombinant proteins, demonstrating that these interactions are mediated by the proteoglycan core proteins rather than through the glycosaminoglycan chains. These results are also consistent with rotary shadowing electron micrographs that show phosphacan as a rod terminated at one end by a globular domain that is frequently seen apposed to the fibrinogen globe in mixtures of phosphacan and tenascin-C. C6 glioma cells adhere to and spread on deletion variants of tenascin-C containing only the epidermal growth factor-like domains or the fibronectin type III repeats and the fibrinogen globe. In both cases cell adhesion was inhibited by similar concentrations of phosphacan, demonstrating that the fibrinogen globe is not necessary for this effect, which is apparently mediated by a direct action of phosphacan on the cells rather than by its interaction with the proteoglycan binding site on tenascin-C.
Collapse
Affiliation(s)
- P Milev
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Ohashi T, Erickson HP. Two oligomeric forms of plasma ficolin have differential lectin activity. J Biol Chem 1997; 272:14220-6. [PMID: 9162054 DOI: 10.1074/jbc.272.22.14220] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ficolins are plasma proteins with binding activity for carbohydrates, elastin, and corticosteroids. The ficolin polypeptide has a collagen-like domain that presumably brings three subunits together in a triple helical rod, a C-terminal fibrinogen-like domain (fbg) similar to that of tenascin, which presumably has the binding activities, and a small N-terminal domain that we find to be the primary site for forming the ficolin oligomer. By sedimentation equilibrium we determined that the main plasma form, which we call big ficolin, had mass of 827,000 Da, consistent with 24 subunits. Little ficolin, about half this size, was obtained after binding to a GlcNAc affinity column. Electron microscopy of little ficolin showed a parachute-like structure, with a small globe at one end, corresponding to the 12 N-terminal domains, and the fbg domains clustered together at the ends of the collagen rods. Big ficolin was formed by the face to face fusion of the fbg domains of two little ficolins, leaving the rods and N-terminal domains projecting at opposite ends. Little ficolin maintained a high affinity for the GlcNAc column, and big ficolin had a low affinity or none. The binding sites for ligands may be obscured in this big ficolin oligomer, providing a regulation of their activity.
Collapse
Affiliation(s)
- T Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
114
|
Clark RA, Erickson HP, Springer TA. Tenascin supports lymphocyte rolling. J Cell Biol 1997; 137:755-65. [PMID: 9151679 PMCID: PMC2139881 DOI: 10.1083/jcb.137.3.755] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/1997] [Revised: 03/06/1997] [Indexed: 02/04/2023] Open
Abstract
Tenascin is a large extracellular matrix molecule expressed at specific sites in the adult, including immune system tissues such as the bone marrow, thymus, spleen, and T cell areas of lymph nodes. Tenascin has been reported to have both adhesive and anti-adhesive effects in static assays. We report here that tenascin supports the tethering and rolling of lymphocytes and lymphoblastic cell lines under flow conditions. Binding was calcium dependent and was not inhibited by treatment of lymphocytes with O-glycoprotease or a panel of glycosidases including neuraminidase and heparitinase but was inhibited by treatment of cells with proteinase K. Binding was to the fibrinogen-like terminal domain of tenascin as determined by antibody blocking studies and binding to recombinant tenascin proteins. When compared to rolling of the same cell type on E-selectin, rolling on tenascin was found to be smoother at all shear stresses tested, suggesting that cells formed a larger number of bonds on the tenascin substrate than on the E-selectin substrate. When protein plating densities were adjusted to give similar profiles of cell detachment under increasing shears, the density of tenascin was 8.5-fold greater than that of E-selectin. Binding to tenascin was not dependent on any molecules previously identified as tenascin receptors and is likely to involve a novel tenascin receptor on lymphocytes. We postulate that the ability of tenascin to support lymphocyte rolling may reflect its ability to support cell migration and that this interaction may be used by lymphocytes migrating through secondary lymphoid organs.
Collapse
Affiliation(s)
- R A Clark
- The Center for Blood Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
115
|
Medved L, Litvinovich S, Ugarova T, Matsuka Y, Ingham K. Domain structure and functional activity of the recombinant human fibrinogen gamma-module (gamma148-411). Biochemistry 1997; 36:4685-93. [PMID: 9109680 DOI: 10.1021/bi962795l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human fibrinogen gamma-module comprising residues gamma148-411 was expressed in Escherichia coli and refolded in vitro. Differential scanning calorimetry revealed that in addition to the two previously identified independently folded thermolabile domains, one in each half of the module, the gamma-module also contains one or two thermostable domains that melt above 65 degrees C. To localize the latter, an NH2-terminal 6-kDa fragment was prepared by limited proteolysis of the recombinant gamma-module. It melted at high temperature, indicating that this portion is folded into a compact structure that represents a thermostable domain, also identified in the proteolytic fibrinogen fragment D1 which contains the natural gamma-module. Thus the NH2-terminal half of the gamma-module forms two domains, a thermostable one and a thermolabile one, leaving the rest of the module to be responsible for the formation of the other one or two domains. The thermal stability of some domains was lower in the recombinant gamma-module than in its natural counterpart in D1, reflecting most probably the loss of interactions with neighboring domains; however, the major functional sites were essentially preserved. The module bound Ca2+ and was stabilized by it against denaturation and proteolysis. It inhibited fibrin polymerization and was efficiently cross-linked by factor XIIIa. The gamma-module supported adhesion of platelets via their GP IIbIIIa (alpha(IIb)beta3) receptor in the same manner as D1 fragment. It also supported the adhesion of alpha(M)beta2- (Mac-1-) transfected cells and in the fluid phase was more effective than D1 as an inhibitor of that adhesion, suggesting that the Mac-1 binding site is better exposed.
Collapse
Affiliation(s)
- L Medved
- J. Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA.
| | | | | | | | | |
Collapse
|
116
|
Vollmer G. Biologic and oncologic implications of tenascin-C/hexabrachion proteins. Crit Rev Oncol Hematol 1997; 25:187-210. [PMID: 9177941 DOI: 10.1016/s1040-8428(97)00004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- G Vollmer
- Institut für Molekulare Medizin, Medizinische Universität, Lübeck, Germany.
| |
Collapse
|
117
|
Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L, Aukhil I, Juliano RL. Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol 1997; 136:1385-95. [PMID: 9087451 PMCID: PMC2132513 DOI: 10.1083/jcb.136.6.1385] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/1996] [Revised: 11/20/1996] [Indexed: 02/04/2023] Open
Abstract
Integrin-mediated cell adhesion causes activation of MAP kinases and increased tyrosine phosphorylation of focal adhesion kinase (FAK). Autophosphorylation of FAK leads to the binding of SH2-domain proteins including Src-family kinases and the Grb2-Sos complex. Since Grb2-Sos is a key regulator of the Ras signal transduction pathway, one plausible hypothesis has been that integrin-mediated tyrosine phosphorylation of FAK leads to activation of the Ras cascade and ultimately to mitogen activated protein (MAP) kinase activation. Thus, in this scenario FAK would serve as an upstream regulator of MAP kinase activity. However, in this report we present several lines of evidence showing that integrin-mediated MAP kinase activity in fibroblasts is independent of FAK. First, a beta1 integrin subunit deletion mutant affecting the putative FAK binding site supports activation of MAP kinase in adhering fibroblasts but not tyrosine phosphorylation of FAK. Second, fibroblast adhesion to bacterially expressed fragments of fibronectin demonstrates that robust activation of MAP kinase can precede tyrosine phosphorylation of FAK. Finally, we have used FRNK, the noncatalytic COOH-terminal domain of FAK, as a dominant negative inhibitor of FAK autophosphorylation and of tyrosine phosphorylation of focal contacts. Using retroviral infection, we demonstrate that levels of FRNK expression sufficient to completely block FAK tyrosine phosphorylation were without effect on integrin-mediated activation of MAP kinase. These results strongly suggest that integrin-mediated activation of MAP kinase is independent of FAK and indicate the probable existence of at least two distinct integrin signaling pathways in fibroblasts.
Collapse
Affiliation(s)
- T H Lin
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Koyama Y, Norose K, Kusubata M, Irie S, Kusakabe M. Differential expression of tenascin in the skin during hapten-induced dermatitis. Histochem Cell Biol 1996; 106:263-73. [PMID: 8897067 DOI: 10.1007/bf02473236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tenascin is a large extracellular matrix glycoprotein which is found in limited regions of normal adult tissues including the skin. We investigated the induction of tenascin expression in mouse skin during hapten-induced dermatitis. In the dorsal skin, hapten application first induced a transient expression of tenascin in deeper regions of the skin. Its distribution then spread over the whole dermis corresponding to the infiltration of Mac-2-positive macrophages. In the ear, tenascin was consistently found in the subcutaneous tissue on the inner side, but very little was seen on the outer side. Tenascin did appear transiently, however, on both sides under hapten treatment. In the early phase of allergic contact dermatitis, no apparent induction of tenascin expression was observed in the swollen ear. However, there was an abundant tenascin expression on both sides during healing. Tenascin expressed under normal conditions was mostly the 180-kDa isoform, while the 230-kDa isoform was markedly induced during healing of the dermatitis. These results suggest that tenascin, particularly the larger 230-kDa isoform, may play important roles in the pathogenesis and healing of hapten-induced dermatitis.
Collapse
Affiliation(s)
- Y Koyama
- Division of Experimental Animal Research, Tsukuba Life Science Center, Institute of Physical and Chemical Research, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
119
|
Giese A, Loo MA, Norman SA, Treasurywala S, Berens ME. Contrasting migratory response of astrocytoma cells to tenascin mediated by different integrins. J Cell Sci 1996; 109 ( Pt 8):2161-8. [PMID: 8856512 DOI: 10.1242/jcs.109.8.2161] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tenascin, an extracellular matrix protein, is expressed in human gliomas in vitro and in vivo. The distribution of tenascin at the invasive edge of these tumors, even surrounding solitary invading cells, suggests a role for this protein as a regulator of glioma cell migration. We tested whether purified tenascin, passively deposited on surfaces, influenced the adhesion or migration of a human gliomaderived cell line, SF-767. Adhesion of glioma cells to tenascin increased in a dose-dependent fashion up to a coating concentration of 10 micrograms/ml. Higher coating concentrations resulted in progressively fewer cells attaching. Cell adhesion could be blocked to basal levels using anti-beta 1 integrin antibodies. In contrast, when anti-alpha v antibodies were added to the medium of cells on tenascin, cell adhesion was enhanced slightly. Using a microliter scale migration assay, we found that cell motility on tenascin was dose dependently stimulated at coating concentrations of 1 and 3 micrograms/ml, but migration was inhibited below levels of non-specific motility when tested at coating concentrations of 30 and 100 micrograms/ml. Migration on permissive concentrations of tenascin could be reversibly inhibited with anti-beta 1, while treatment with anti-alpha v antibodies increased migration rates. We conclude that SF-767 glioma cells express two separate integrin receptors that mediate contrasting adhesive and migratory responses to tenascin.
Collapse
Affiliation(s)
- A Giese
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
120
|
Abstract
Invading glioma cells seem to follow distinct anatomic structures within the central nervous system. Tumor cell dissemination may occur along structures, such as the basement membranes of blood vessels or the glial limitans externa, that contain extracellular matrix (ECM) proteins. Frequently, invasive glioma cells are also found to migrate along myelinated fiber tracts of white matter. This behavior is most likely a consequence of using constitutive extracellular ligands expressed along the pathways of preferred dissemination. The extracellular space in anatomic structures, such as blood vessel basement membranes or between myelinated axons, is profoundly different, thus suggesting that glioma cells may be able to use a multiplicity of matrix ligands, possibly activating separate mechanisms for invasion. In addition, enzymatic modification of the extracellular space or deposition of ECM by the tumor cells may also create a more permissive environment for tumor spread into the adjacent brain. Tumor cell invasion is defined as translocation of neoplastic cells through host cellular and ECM barriers. This process has been studied in other cancers, in which a cascade of events has been described that involves receptor-mediated matrix adhesion, degradation of matrix by tumor-secreted metalloproteinases, and, subsequently, active cell locomotion into the newly created space. Although some of these mechanisms may play an important role in glioma invasion, there are some significant differences that are mainly the result of the profoundly different composition of the extracellular environment within the brain. This review focuses on the composition of central nervous system ECM and the recent evidence for the use by glioma cells of multiple invasion mechanisms in response to this unique environment.
Collapse
Affiliation(s)
- A Giese
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | | |
Collapse
|
121
|
Weber P, Ferber P, Fischer R, Winterhalter KH, Vaughan L. Binding of contactin/F11 to the fibronectin type III domains 5 and 6 of tenascin is inhibited by heparin. FEBS Lett 1996; 389:304-8. [PMID: 8766721 DOI: 10.1016/0014-5793(96)00609-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The structural basis for the interaction between tenascin-C and the neuronal cell adhesion molecule, contactin/F11, was investigated using plasmon surface resonance technology. The binding site on tenascin-C for contactin/F11 is shown to span the two fibronectin type III homology domains 5 and 6. Either domain alone is insufficient for binding. Heparin, heparan sulfate and dermatan sulfate inhibit this interaction through binding to a conserved heparin-binding site on domain 5. In contrast, chondroitin sulfates A and C have no such effect.
Collapse
Affiliation(s)
- P Weber
- Laboratorium für Biochemie I, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
122
|
Scholze A, Götz B, Faissner A. Glial cell interactions with tenascin-C: adhesion and repulsion to different tenascin-C domains is cell type related. Int J Dev Neurosci 1996; 14:315-29. [PMID: 8842807 DOI: 10.1016/0736-5748(96)00016-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The multimodular glycoprotein tenascin-C is transiently expressed, predominantly by glial cells, during the development of the central and peripheral nervous systems. This extracellular matrix glycoprotein is involved in the control of cell adhesion, neuron migration and neurite outgrowth. Distinct functional properties for neuronal cell types have been attributed to separate tenascin-C domains using antibody perturbation studies and in vitro experiments on tenascin-C fragments. In order to study potential roles of tenascin-C for glial cell biology, a library of recombinant tenascin-C domains was used in a bioassay in vitro. Embryonic day 14 astrocytes, various astroglial-derived cell lines (C6, A7 and Neu7) and oligodendroglial-derived cell types (Oli-neu and G26-20) were examined in an adhesion assay and compared to the neuroblastoma cell line N2A. A binding site for most cell types, except for A7 and N2A, could be assigned to the first three fibronectin type III domains. Repulsive properties could be mapped to three different sites the epidermal growth factor-like repeats, fibronectin type III repeats 4 and 5 and to the alternatively spliced region of the molecule. The responses to these repulsive sites varied according to the cell type. These data are consistent with the interpretation that different cell types express distinct sets of tenascin-C receptors which might regulate cellular responses via distinct second messenger pathways.
Collapse
Affiliation(s)
- A Scholze
- Department of Neurobiology, University of Heidelberg, Germany
| | | | | |
Collapse
|
123
|
Nörenberg U, Hubert M, Rathjen FG. Structural and functional characterization of tenascin-R (restrictin), an extracellular matrix glycoprotein of glial cells and neurons. Int J Dev Neurosci 1996; 14:217-31. [PMID: 8842800 DOI: 10.1016/0736-5748(96)00009-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tenascin-R (TN-R) is an extracellular matrix protein associated with the surface of neurons and glial cells. Immunohistological studies reveal that TN-R shows a restricted expression pattern in the developing nervous system. TN-R is the smallest member of the tenascin family and is composed of four structural motifs: a cysteine-rich segment at the N-terminus is followed by 4.5 EGF-like repeats. This region is followed by 9 consecutive fibronectin type III (FNIII)-like domains and at the C-terminus TN-R is related to the beta- and gamma- chains of fibrinogen. TN-R forms oligomeric structures as revealed by rotary shadowing electron microscopy of immunoaffinity-purified TN-R. TN-R interacts with the axon-associated F11 protein which results in an enhancement of F11 mediated neurite extension in in vitro assays. In short-term adhesion assays it was found that neural but not fibroblastic cells attach effectively on immobilized TN-R. The cell attachment site within TN-R was allocated to FNIII domain 8 while the site interacting with the F11 protein could be mapped to FNIII domain 2-3.
Collapse
Affiliation(s)
- U Nörenberg
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | |
Collapse
|
124
|
Abstract
The extracellular matrix protein tenascin is secreted by osteoblasts but absent from mineralized bone matrix. The current study was undertaken to test the hypothesis that tenascin regulates osteoblast behaviour. Three osteoblast-like cell lines UMR-106, ROS-17/2.8 (rat) and SAOS-2 (human) were used to investigate the role of tenascin in osteoblast morphology, differentiation and proliferation. Two of three cell lines adhered specifically to tenascin, remaining round and failing to spread. Tenascin as a substratum stimulated alkaline phosphatase activity (a marker of osteoblast differentiation) in two of three cell lines. Moreover, anti-tenascin in the medium caused a reduction in alkaline phosphatase levels in all three cell lines. Anti-tenascin also inhibited collagen synthesis, an important osteoblast function. Since it seemed possible that tenascin may exert its effects on cell function through its ability to cause cell rounding, the ability of cell shape change alone to influence alkaline phosphatase levels was investigated. Cells were incubated in the presence of cytochalasin D and alkaline phosphatase levels assayed. Alkaline phosphatase activity was not elevated by cytochalasin D treatment, indicating that cell rounding alone is insufficient to mimic the effect of tenascin. Anti-tenascin caused a slight increase in proliferation of SAOS-2 cells, indicating that tenascin is itself inhibitory. In ROS 17/2.8 and UMR-106 cells, in contrast, proliferation was inhibited by anti-tenascin. The results presented here indicate that tenascin is able to stimulate osteoblastic differentiation and that endogenous tenascin helps to maintain the functional state of cultured osteoblast-like cells.
Collapse
Affiliation(s)
- E J Mackie
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | |
Collapse
|
125
|
Koyama E, Shimazu A, Leatherman JL, Golden EB, Nah HD, Pacifici M. Expression of syndecan-3 and tenascin-C: possible involvement in periosteum development. J Orthop Res 1996; 14:403-12. [PMID: 8676253 DOI: 10.1002/jor.1100140310] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of cartilaginous elements of long bone during embryogenesis and postnatal bone repair processes is a complex process that involves skeletal cells and surrounding mesenchymal periosteal cells. Relatively little is known of the mechanisms underlying these processes. Previous studies from this and other laboratories have suggested that the extracellular matrix protein tenascin-C is involved in skeletogenesis. Using in situ hybridization and immunofluorescence, we extended those studies by comparing the expression of tenascin-C with that of syndecan-3, which belongs to a family of cell surface receptors with which tenascins are known to interact. We found that syndecan-3 transcripts at first were very abundant in the presumptive periosteum surrounding the diaphysis of early chondrocytic skeletal elements in chick limb. As the elements developed further, syndecan-3 gene expression decreased in the diaphyseal periosteum, whereas it became stronger around the early epiphysis and within the forming articular cells. However, as the diaphyseal periosteum initiated osteogenesis and gave rise to the intramembranous bone collar, syndecan-3 gene expression increased again. At early stages of skeletogenesis: the tenascin-C gene exhibited patterns of expression that were similar to and temporally followed, those of the syndecan-3 gene. At later stages, however, tenascin-C gene expression was markedly reduced during intramembranous osteogenesis around the diaphysis. In addition, although syndecan-3 gene expression was low in osteoblasts and osteocytes located deep into trabecular bone, tenascin-C gene expression remained strong. Thus, tenascin-C and syndecan-3 display distinct temporal and spatial patterns of expression in periosteum and during the development of long bone. Given their multidomain structure and specific patterns of expression, these macromolecules may regulate site-specific skeletal processes, including interactions between developing periosteum and chondrocytes and delineation of the early cartilaginous skeletal elements.
Collapse
Affiliation(s)
- E Koyama
- Departments of Anatomy and Histology School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003, USA
| | | | | | | | | | | |
Collapse
|
126
|
Mighell AJ, Robinson PA, Hume WJ. Immunolocalisation of tenascin-C in focal reactive overgrowths of oral mucosa. J Oral Pathol Med 1996; 25:163-9. [PMID: 8809684 DOI: 10.1111/j.1600-0714.1996.tb00214.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Focal reactive overgrowths of oral mucosa were investigated in the following groups: gingival pyogenic granuloma, fibrous epulis, calcifying fibrous epulis, peripheral giant cell granuloma, giant cell fibroma, fibroepithelial polyp and denture-related fibrous hyperplasia (n = 8 for each group). We hypothesised that immunoreactivity to tenascin-C, a functional protein associated with connective tissue organisation and cell migration, would be differentially distributed in individual lesions and between lesion groups. Staining patterns for giant cell fibromas and fibroepithelial polyps were similar to those reported for normal mucosa. By contrast, additional staining was observed in the other lesion groups, although immunoreactivity was variable and not specific to each lesion group. Strong immunoreactivity was observed around blood vessels lined with plump endothelial cells and in regions where keratinocytes were migrating over ulcerated surfaces. Interlacing collagenous fascicles could be either strongly or weakly immunoreactive, with either fibrillar or diffuse staining. Localised staining was observed around, but not within, areas of calcification.
Collapse
Affiliation(s)
- A J Mighell
- Division of Dental Surgery, Leeds Dental Institute, United Kingdom
| | | | | |
Collapse
|
127
|
Savarese JJ, Erickson H, Scully SP. Articular chondrocyte tenascin-C production and assembly into de novo extracellular matrix. J Orthop Res 1996; 14:273-81. [PMID: 8648506 DOI: 10.1002/jor.1100140216] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tenascin-C is an oligomeric glycoprotein of the extracellular matrix that is expressed in a variety of processes including development, tissue remodeling, wound healing, cell adhesion/antiadhesion, and cell/matrix interactions. Tenascin has recently been acknowledged as a component of the extracellular matrix of articular cartilage, but its function remains unclear. In this study, bovine articular chondrocytes were grown in alginate beads for 35 days to examine the kinetics of tenascin synthesis and incorporation into de novo extracellular matrix. During the culture period, 6 harvest days were established in which culture medium was recovered, alginate beads were dissociated with an EDTA solution, and chondrocytes were collected and lysed by sonication. Total DNA determination performed on the cell lysates demonstrated chondrocyte survival and proliferation. Western blotting performed on the medium, EDTA/alginate, and lysate samples demonstrated the production of both the 220 and 320 kDa tenascin size variants and their differential compartmentalization within the culture system. Tenascin was incorporated into the alginate bead matrix at a constant rate of 3.8 micrograms/day. The 320 kDa variant was produced in higher quantity, but the 220 kDa fragment was twice as likely to be incorporated into the de novo matrix. Methylene blue/acid fuchsin staining and tenascin immunohistochemistry demonstrated the incorporation of tenascin into a progressively expanding matrix surrounding the chondrocytes. The results suggest a role for tenascin in the assembly of the chondrocyte matrix and as a soluble mediator of chondrocytes with possible diverse functions for the tenascin size variants.
Collapse
Affiliation(s)
- J J Savarese
- Orthopedic Cell Biology Laboratory, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
128
|
Dörries U, Taylor J, Xiao Z, Lochter A, Montag D, Schachner M. Distinct effects of recombinant tenascin-C domains on neuronal cell adhesion, growth cone guidance, and neuronal polarity. J Neurosci Res 1996; 43:420-38. [PMID: 8699529 DOI: 10.1002/(sici)1097-4547(19960215)43:4<420::aid-jnr4>3.0.co;2-h] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using a set of recombinantly expressed proteins, distinct domains of the mouse extracellular matrix glycoprotein tenascin-C, hereafter called tenascin, have been identified to confer adhesion, anti-adhesion, and changes in morphology of neuronal cells. In short-term adhesion assays (1 hr), cerebellar and hippocampal neurons adhered to several domains, encompassing the fibronectin type III-like (FN III) repeats 1-2 and 6-8, as well as to the alternatively spliced FN III repeats and to tenascin itself. Although no short-term adhesion to the EGF repeats containing fragment could be detected under the conditions used, it was anti-adhesive for neuronal cell bodies and repellent for growth cone advance and neuritogenesis. FN III repeats 3-5 were repellent only for growth cones but not for neuronal cell bodies. Neurite outgrowth promoting activities at early stages and induction of a polarized neuronal morphology at later stages of differentiation were associated with the EGF repeats and the FN III repeats 6-8. These observations suggest differential effects of particular domains of the tenascin molecule on distinct cellular compartments, i.e., cell body, axon and dendrite, and existence of multiple neuronal receptors with distinct intracellular signaling features.
Collapse
Affiliation(s)
- U Dörries
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
129
|
Aukhil I, Sahlberg C, Thesleff I. Basal layer of epithelium expresses tenascin mRNA during healing of incisional skin wounds. J Periodontal Res 1996; 31:105-12. [PMID: 8708937 DOI: 10.1111/j.1600-0765.1996.tb00471.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tenascin is a large oligomeric glycoprotein of the extracellular matrix that is expressed prominently during embryonic development and wound healing. Previous studies on tenascin expression in wounds have used immunohistochemistry to describe the expression of tenascin in wounds. The present study used in situ hybridization to identify the cells expressing tenascin mRNA in healing wounds. The results demonstrate that the cells of the basal layer of epidermis, migrating over the healing wound, are expressing the mRNA for tenascin. Intense expression was seen during the first three days after wounding, but after seven days, after the epithelium had grown to cover the wound, no tenascin transcripts were seen in epithelial cells. The epithelial cells elsewhere in the skin were devoid of tenascin transcripts at all stages examined. Previously, prominent immunohistological staining for tenascin has been located in wounds below the migrating epithelial cells and it has been thought to be synthesized by stromal cells upon epithelial induction. Our findings in the present study indicate that tenascin is produced by epithelial cells, which apparently are induced to produce tenascin as they migrate after wounding.
Collapse
Affiliation(s)
- I Aukhil
- Department of Periodontics, University of North Carolina, Chapel Hill 27599-7450, USA
| | | | | |
Collapse
|
130
|
Leahy DJ, Aukhil I, Erickson HP. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 1996; 84:155-64. [PMID: 8548820 DOI: 10.1016/s0092-8674(00)81002-8] [Citation(s) in RCA: 524] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have determined the 2.0 A crystal structure of a fragment of human fibronectin encompassing the seventh through the RGD-containing tenth type III repeats (FN7-10). The structure reveals an extended rod-like molecule with a long axis of approximately 140 A and highly variable relationships between adjacent domains. An unusually small rotation between domains 9 and 10 creates a distinctive binding site, in which the RGD loop from domain 10 and the "synergy" region from domain 9 are on the same face of FN7-10 and thus easily accessible to a single integrin molecule. The cell-binding RGD loop is well-ordered in this structure and extends approximately 10 A away from the FN7-10 core.
Collapse
Affiliation(s)
- D J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
131
|
Siri A, Allemanni G, Gaggero B, Zardi L. Different human tenascin-C variants in the extracellular matrix of cultured human fibroblasts. Biochem Cell Biol 1996; 74:863-6. [PMID: 9164654 DOI: 10.1139/o96-091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Using an immunoadsorbent prepared with a monoclonal antibody specific for the high molecular mass isoform of human tenascin-C, we purified tenascin-C molecules containing at least one large subunit from the extracellular matrix of cultured normal human fibroblasts. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunoblotting analyses have shown that both high and low molecular mass subunits are present in these tenascin-C preparations. Because the monoclonal antibody used is able to bind only the high molecular mass isoform, the present data show that part of the tenascin-C present in the fibroblast extracellular matrix is made up of heterohexameric molecules.
Collapse
Affiliation(s)
- A Siri
- Laboratory of Cell Biology, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | |
Collapse
|
132
|
Chung CY, Zardi L, Erickson HP. Binding of tenascin-C to soluble fibronectin and matrix fibrils. J Biol Chem 1995; 270:29012-7. [PMID: 7499434 DOI: 10.1074/jbc.270.48.29012] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The small splice variant of tenascin-C (TN) has eight fibronectin type III (FN3) domains. The major large splice variant has three (in chicken) or seven (in human) additional FN3 domains inserted between domains five and six. Chiquet-Ehrismann et al. (Chiquet-Ehrismann, R., Matsuoka, Y., Hofer, U., Spring, J., Bernasconi, C., and Chiquet, M. (1991, Cell Regul. 2, 927-938) demonstrated that the small variant bound preferentially to fibronectin in enzyme-linked immunosorbent assay, and only the small variant was incorporated into the matrix by cultures of chicken fibroblasts. Here we have studied human TN, and confirmed that the small variant binds preferentially to purified fibronectin and to fibronectin-containing extracellular matrix. Thus this differential binding appears to be conserved across vertebrate species. Using bacterial expression proteins, we mapped the major binding site to the third FN3 domain of TN. Consistent with this mapping, a monoclonal antibody against an epitope in this domain did not stain TN segments bound to cell culture matrix fibrils. The enhanced binding of the small TN variant suggests the existence of another, weak binding site probably in FN3 domains 6-8, which is only positioned to bind fibronectin in the small splice variant. This binding of domains 6-8 may involve a third molecule present in matrix fibrils, as the enhanced binding of small TN was much more prominent to matrix fibrils than to purified fibronectin.
Collapse
Affiliation(s)
- C Y Chung
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
133
|
Tiitta O, Luomanen M, Hietanen J, Virtanen I. Tenascin expression in mucocutaneous diseases and related lesions of human oral mucosa. Arch Oral Biol 1995; 40:1039-45. [PMID: 8670022 DOI: 10.1016/0003-9969(95)00071-v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The expression of tenascin was assessed immunohistochemically. In normal oral mucosa, immunoreactivity for tenascin was seen either as a delicate line underlining the epithelium or in the stromal papillae. In oral lichen planus, a marked enhancement of tenascin immunoreactivity in the lamina propria was associated with focal infiltrates of inflammatory cells and seemed to reflect the intensity of inflammation. In lichenoid reactions in which only a sparse inflammatory infiltrate was present a band-like tenascin reactivity was seen. Oral psoriform reactions and chronic hyperplastic candidosis showed a prominent tenascin reaction in the connective tissue papillae among infiltrates of inflammatory cells. The results show that tenascin content is increased in oral mucocutaneous diseases and related lesions and that the abundance of tenascin reflects the intensity of the inflammatory reaction.
Collapse
Affiliation(s)
- O Tiitta
- Department of Anatomy, University of Helsinki, Finland
| | | | | | | |
Collapse
|
134
|
Abstract
The bone marrow microenvironment plays an important role in promoting hematopoietic progenitor cell proliferation and differentiation and the controlled egress of these developing hematopoietic cells. The establishment of long-term bone marrow cultures, which are thought to mimic hematopoiesis in vitro, and various stromal cell lines has greatly facilitated the analysis of the functions of this microenvironment. Extracellular matrix (ECM) molecules of all three categories (collagens, proteoglycans and glycoproteins) have been identified as part of this microenvironment and have been shown to be involved in different biological functions such as cell adhesion and anti-adhesion, binding and presentation of various cytokines and regulation of cell growth. It is suggested that these matrix molecules in combination with cytokines are crucial for compartmentalization of the bone marrow. Although many cell adhesion molecules have been characterized on the surface of hematopoietic progenitor cells, the nature of cellular receptors for the ECM components is less well defined. During leukemia, many immature blood cells are released from bone marrow, but it is not yet known whether these abnormalities in hematopoiesis are also caused by an altered microenvironment or altered composition of its extracellular matrix. The elucidation of the involvement of specific ECM-isoforms and as yet not characterized ECM components and their receptors in the bone marrow will certainly help towards a better understanding of these phenomena.
Collapse
Affiliation(s)
- G Klein
- University Medical Clinic, Department of Internal Medicine II, Tübingen, Germany
| |
Collapse
|
135
|
Chiquet-Ehrismann R. Tenascins, a growing family of extracellular matrix proteins. EXPERIENTIA 1995; 51:853-62. [PMID: 7556567 DOI: 10.1007/bf01921736] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The tenascins are a family of large multimeric extracellular matrix proteins consisting of repeated structural modules including heptad repeats, epidermal growth factor (EGF)-like repeats, fibronectin type III repeats, and a globular domain shared with the fibrinogens. The tenascins are believed to be involved in the morphogenesis of many organs and tissues. To date three members of the tenascin family have been described, tenascin-C, tenascin-R, and tenascin-X. Tenascin-R seems to be specific for the central and peripheral nervous system, tenascin-X is most prominent in skeletal and heart muscle, while tenascin-C is present in a large number of developing tissues including the nervous system, but is absent in skeletal and heart muscles. Tenascin-C was the original tenascin discovered, partly because of its overexpression in tumors. Inferring from cell biological studies, it has been proposed that tenascin-C is an adhesion-modulating protein.
Collapse
|
136
|
Phillips GR, Edelman GM, Crossin KL. Separate cell binding sites within cytotactin/tenascin differentially promote neurite outgrowth. CELL ADHESION AND COMMUNICATION 1995; 3:257-71. [PMID: 8846026 DOI: 10.3109/15419069509081291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytotactin/tenascin (CT/TN) is an extracellular matrix protein that binds to a variety of cell types and that influences neurite outgrowth. It has a multidomain structure with regions homologous to epidermal growth factor (EGF)-like repeats, fibronectin (FN) type II repeats, and the beta and gamma chains of fibrinogen (fg). The current study demonstrates that a fusion protein corresponding to the sixth fibronectin type III repeat in CT/TN (CTfn6) supported cell attachment and promoted an increase in the number of cells with neurites in both central and peripheral neurons in tissue culture. The third fibronectin type III repeat, CTfn3, like intact CT/TN, supported attachment of peripheral neurons but not of central neurons and, while it caused an increase in neurite length, it did not increase the number of cells that sprouted neurites. When CTfn3 and CTfn6 were combined, an increase in both the number of cells sprouting neurites and in neurite length was observed for peripheral neurons that resembled their response to intact CT/TN. Cell attachment to CTfn6 was inhibited in the presence of function-blocking antibodies against beta 1 integrins. In contrast, the interaction with CTfn3 was not inhibited by antibodies to beta 1 integrins, but was inhibited by RGD-containing peptides. The results suggest that cell binding to CT/TN involves two different sites within the molecule and occurs via different receptors which may be differentially expressed on different neuronal cell types. The location of these sites within the whole molecule in the context of other adhesive and counteradhesive domains may modulate their influence on cellular responses such as cell attachment and neurite outgrowth.
Collapse
Affiliation(s)
- G R Phillips
- Scripps Research Institute, Department of Neurobiology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
137
|
Burch GH, Bedolli MA, McDonough S, Rosenthal SM, Bristow J. Embryonic expression of tenascin-X suggests a role in limb, muscle, and heart development. Dev Dyn 1995; 203:491-504. [PMID: 7496040 DOI: 10.1002/aja.1002030411] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tenascin-X (TN-X) is the newest member of the tenascin family of extracellular matrix proteins and it is highly expressed in muscular tissues during development. To gain insight into the possible functions of TN-X during development, we evaluated its expression in the rat embryo. Using an 800 bp cDNA encoding the fibrinogen-like domain of TN-X, we show that TN-X expression begins in migrating cells of the epicardium in the E12 heart. The epicardium provides progenitors of fibrous and vascular tissue to the developing heart. After the epicardium is complete, TN-X is expressed in the sub-epicardial space in association with developing blood vessels, and later by non-myocytes dispersed through the myocardial wall. A similar pattern of TN-X expression, first in connective tissue surrounding muscle, and then by a subset of cells within muscle, was seen in para-axial, body wall, craniofacial, and appendicular muscle. This pattern suggests a role in connective tissue cell migration and late muscle morphogenesis. TN-X is also highly expressed in the interdigital space at E15 and surrounding developing tendons, suggesting an additional role in cell fate determination. Although the pattern of TN-X expression is distinct from that of tenascin C, they are frequently expressed in close proximity. Indirect genetic evidence in humans suggests an essential function for TN-X, and the pattern of TN-X expression in heart, skeletal muscle, and limb is consistent with this hypothesis.
Collapse
Affiliation(s)
- G H Burch
- Department of Pediatrics, University of California-San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
138
|
Paranko J, Haavisto M, Chiquet-Ehrismann R, Aukhil I, Kaipia A. Sex-dependent expression of tenascin-C in the differentiating fetal rat testis and ovary. Differentiation 1995; 58:329-39. [PMID: 7542612 DOI: 10.1046/j.1432-0436.1995.5850329.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cellular mechanisms controlling sexual differentiation of fetal gonads are poorly understood. By examining the protein and mRNA expression of tenascin-C in correlation with the immunocytochemical detection of alpha-smooth muscle actin (alpha-SMA) and basement membrane heparan sulfate proteoglycan (HSPG) we demonstrate a clear-cut sex-and development-dependent expression pattern of tenascin-C in the rat testis, ovary and mesonephros. Immunocytochemistry and in situ hybridization of tenascin-C in 15-day-pc fetal testis and ovary showed protein and mRNA accumulation within the mesenchyme of the mesogonadal connection. In addition to the male and female mesonephros, some labeling could also be seen within the testicular tunica albuginea and intraovarian mesenchymal septa. In the 17-day-pc testis abundant accumulation of tenascin mRNA and protein appeared in the tunica and mediastinum testis, but not at all in the intratesticular mesenchyme. A similar pattern was still seen in the newborns where, however, a decrease in the anti-tenascin immunoreactivity of the tunica and mediastinum could be demonstrated. In contrast to the testis, expression of tenascin in 17-day-pc ovaries was widespread within the hilus and the entire intragonadal mesenchyme where it continued to accumulate also in newborns. Northern blot analysis of tenascin-C mRNAs showed one message of 8.0 kb in the 15-day-pc male and female gonads. An additional weak signal of 6.5 kb was seen in the female mesonephros. In the 18-day-pc testis, the 6.5-kb signal appeared stronger than the 8.0-kb signal. In contrast to the testis, the 6.5-kb message was weak in the developing ovary where the 8.0-kb signal had an intense peak on the day 18 pc. Further, in the ovary, mesenchymal accumulation of HSPG coincided with the spatial distribution of tenascin. In the testicular tunica and in the mesenchyme of the male and female genital ducts expression of tenascin was parallel with the differentiation of smooth muscle tissue, detected by labeling for alpha-SMA, which also indicated the tenascin-negative myoid cells of the testis. Our results indicate that tenascin expression in the fetal rat internal genitalia is involved in the differentiation of smooth muscle cells but not intratesticular myoid cells. In the ovarian mesenchyme, tenascin-C may have a specific function in the dynamic remodeling of the ovarian cords.
Collapse
Affiliation(s)
- J Paranko
- Department of Anatomy, University of Turku, Finland
| | | | | | | | | |
Collapse
|
139
|
Koyama E, Leatherman JL, Shimazu A, Nah HD, Pacifici M. Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs. Dev Dyn 1995; 203:152-62. [PMID: 7544653 DOI: 10.1002/aja.1002030204] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mechanisms by which the early limb cell condensations and interzone mesenchyme give rise to skeletal elements and joints are poorly understood. Previous work from this laboratory has shown that the extracellular matrix protein tenascin-C is associated with articular cartilage and joint tissue development; others have shown that tenascin-C may exert its biological activities via interactions with cell surface receptors, such as syndecans. To further analyze the roles of tenascin-C and its putative receptors in skeletal development, we carried out a detailed in situ hybridization analysis of tenascin-C and syndecan-3 gene expression during development of chick limb skeletal elements and joints. We found that as the early mesenchymal condensations chondrify around day 5 (E5) of development, they become surrounded by a thick syndecan-3 rich perichondrium while tenascin-C transcripts are much fewer and restricted to diaphyseal perichondrium and developing interzones. Similar patterns were observed as distal carpal and digit condensations formed in older embryos. As the cartilaginous long bone models elongated proximo-distally and joint formation proceeded with age, we observed that syndecan-3 transcripts decrease significantly along the diaphysis and remain very abundant along the metaphysis and in the epiphyseal articular cap and interzone. Conversely, tenascin-C RNAs remain abundant along the diaphysis and begin to increase at the epiphysis and in interzone-derived tissues, such as menisci and joint capsule. By E10, the skeletal elements have well-defined morphologies, endochondral ossification has initiated in their diaphysis, and diaphyseal perichondrium has become periosteum. These developmental changes were accompanied by equally marked changes in gene expression; these included a marked increase in tenascin-C gene expression in articular cap, fragmentation of tenascin-C gene expression along the periosteum, reinitiation of syndecan-3 gene expression in periosteum, and differential gene expression in osteoprogenitor cells. The sheer complexity of the gene expression patterns documented in this study attests to the complexity of processes that bring about normal skelatogenesis. Clearly, tenascin-C and syndecan-3 appear to be closely associated with several of these processes, particularly in establishing tissue boundaries (perichondrium and periosteum) between condensations and surrounding mesenchymal cells, in regulating perichondral cell differentiation and incorporation into the growing skeletal elements, and in the genesis of epiphyseal chondrocytes and associated joint tissues.
Collapse
Affiliation(s)
- E Koyama
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003, USA
| | | | | | | | | |
Collapse
|
140
|
Siri A, Knäuper V, Veirana N, Caocci F, Murphy G, Zardi L. Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases. J Biol Chem 1995; 270:8650-4. [PMID: 7536739 DOI: 10.1074/jbc.270.15.8650] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two major tenascin-C (TN-C) isoforms are generated by the alternative splicing of the pre-mRNA. The large isoform contains seven extra type three repeats that, by contrast, are omitted in the small TN-C isoform. The large TN-C isoform is mainly expressed at the onset of cellular processes that entail active cell migration, proliferation, or tissue remodeling such as occur in neoplasia, wound healing, and during development. Thus, the large TN-C isoform seems to be a specific component of the provisional extracellular matrix. Here we have studied the degradation of the large and small TN-C isoforms by matrix metalloproteinases (MMPs) 2, 3, 7, and 9. Among these proteolytic enzymes only MMP-7 can degrade the small TN-C isoform removing the NH2-terminal knob. The large TN-C isoform shows the same MMP-7-sensitive site adjacent to the NH2-terminal sequence, but is further degraded in the splicing area where three fibronectin-like type III repeats are completely digested. Moreover, the large TN-C isoform is degraded by MMP-2 and MMP-3 which completely digest a single type III repeat inside the splicing area. By contrast, the large TN-C isoform is resistant to MMP-9 digestion. The results show that the presence of the spliced sequence introduces new protease-sensitive sites in the large TN-C isoform.
Collapse
Affiliation(s)
- A Siri
- Laboratory of Cell Biology, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
141
|
Kelley KC, Huestis KJ, Austen DA, Sanderson CT, Donoghue MA, Stickel SK, Kawasaki ES, Osburne MS. Regulation of sCD4-183 gene expression from phage-T7-based vectors in Escherichia coli. Gene X 1995; 156:33-6. [PMID: 7737513 DOI: 10.1016/0378-1119(95)00008-t] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this paper, we describe various parameters affecting the regulation of expression of the sCD4-183 gene, encoding the 183-amino-acid soluble human two-domain CD4 protein, from phage-T7-based pET vectors. We demonstrated that for the sCD4-183 protein, the highest protein yield was obtained using vector pET-9a, in which neither expression of the T7 RNA polymerase-encoding gene nor the target gene was tightly regulated. The highest overall protein yield was obtained from cells grown for 24 h in the absence of inducer, a strategy that may be generally useful for production of less toxic proteins. We also describe two modifications of the pET vector system that effectively minimized leaky (uninduced) expression and enhanced plasmid stability. These have potential use in the production of toxic proteins, or of non-toxic proteins produced in high-density cultures.
Collapse
|
142
|
Abstract
Numerous studies of the past decade have illuminated the importance of intercellular adhesion events for neural pattern formation. It has been documented that members of the Ig and cadherin gene superfamilies, that glycoproteins and, probably to some extent, proteoglycans of the extracellular matrix play a role in this context. Recent observations suggest that, in addition to adhesive interactions, repulsive and/or inhibitory phenoma are also of importance in regulating neural pattern formation. Several molecules are under study which are considered possible mediators of inhibitory interactions in the nervous system. The hypothesis has been advanced that some of these might be partially responsible for restrictive, boundary-like properties ascribed to glial cells in developing and regenerating tissues. The current review summarizes these studies and focusses on molecular aspects of boundary and compartmentation phenomena.
Collapse
Affiliation(s)
- A Faissner
- Department of Neurobiology, University of Heidelberg, Germany
| | | |
Collapse
|
143
|
Faissner A, Götz B, Joester A, Scholze A. The tenascin gene family—versatile glycoproteins implicated in neural pattern formation and regeneration. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1044-5781(06)80023-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
144
|
Weber P, Zimmermann DR, Winterhalter KH, Vaughan L. Tenascin-C binds heparin by its fibronectin type III domain five. J Biol Chem 1995; 270:4619-23. [PMID: 7533163 DOI: 10.1074/jbc.270.9.4619] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two sites on tenascin mediate interactions with glycosaminoglycan chains of proteoglycans. One is situated on the fibrinogen-like domain, whereas the other lies within the fibronectin type III homology region (Aukhil, I., Joshi, P., Yan, Y.Z., and Erickson, H.P. (1993) J. Biol. Chem. 268, 2542-2553.). We now characterize the latter binding site more closely by means of recombinant protein fragments derived from the type III homology region of tenascin. Using a heparin-Sepharose column, we localize the second heparin binding site to the fifth fibronectin type III domain. This is confirmed in solid phase assays by incubation of fusion proteins with biotin-labeled heparin. In addition, we demonstrate the binding of heparan sulfate and dermatan sulfate to domain five. Molecular modelling of this domain reveals a conserved heparin-binding motif that we propose as the putative binding site. The fact, that different glycosaminoglycans may bind to this domain, implies that different classes of proteoglycans may in vivo compete for the same site.
Collapse
Affiliation(s)
- P Weber
- Department für Pathologie, Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
145
|
Fischer D, Chiquet-Ehrismann R, Bernasconi C, Chiquet M. A single heparin binding region within the fibrinogen-like domain is functional in chick tenascin-C. J Biol Chem 1995; 270:3378-84. [PMID: 7531705 DOI: 10.1074/jbc.270.7.3378] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tenascin-C binds to cell surface and matrix proteoglycans and to heparin. Two heparin binding regions have recently been localized per tenascin-C monomer, one in the C-terminal fibrinogen-like domain and the other in fibronectin type III repeats 3-5. Here we show that a single region in each subunit is necessary and sufficient for heparin binding by whole tenascin-C at physiological ionic strength. First, native tenascin-C was bound to heparin-agarose and digested with Pronase. A 29-kDa fragment retained on the heparin column was recognized by a monoclonal antibody against the fibrinogen-like domain. In contrast, small fragments labeled by an antibody against fibronectin type III repeats 2-5 were released. Second, mild tryptic digestion of tenascin-C yielded two related fragments of 180 and 170 kDa. The latter missed part of the fibrinogen domain and had lost affinity for heparin, in contrast to the former. Finally, chick tenascin-C constructs were recombinantly expressed in human cells. Whereas the complete protein and a mutant lacking fibronectin type III repeats 1-5 bound to heparin-agarose, recombinant tenascin-C missing the C-terminal fibrinogen-like globe did not. Thus, whole chick tenascin-C contains one essential heparin binding region per subunit, located in the fibrinogen-like domain within 10 kDa from the C terminus.
Collapse
Affiliation(s)
- D Fischer
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
146
|
Jones PL, Boudreau N, Myers CA, Erickson HP, Bissell MJ. Tenascin-C inhibits extracellular matrix-dependent gene expression in mammary epithelial cells. Localization of active regions using recombinant tenascin fragments. J Cell Sci 1995; 108 ( Pt 2):519-27. [PMID: 7539436 DOI: 10.1242/jcs.108.2.519] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological role of tenascin in vivo has remained obscure. Although tenascin is regulated in a stage and tissue-dependent manner, knock-out mice appear normal. When tenascin expression was examined in the normal adult mouse mammary gland, little or none was present during lactation, when epithelial cells actively synthesize and secrete milk proteins in an extracellular matrix/lactogenic hormone-dependent manner. In contrast, tenascin was prominently expressed during involution, a stage characterized by the degradation of the extracellular matrix and the subsequent loss of milk production. Studies with mammary cell lines indicated that tenascin expression was high on plastic, but was suppressed in the presence of the laminin-rich, Engelbreth-Holm-Swarm (EHS) tumour biomatrix. When exogenous tenascin was added together with EHS to mammary epithelial cells, beta-casein protein synthesis and steady-state mRNA levels were inhibited in a concentration-dependent manner. Moreover, this inhibition by tenascin could be segregated from its effects on cell morphology. Using two beta-casein promoter constructs attached to the chloramphenicol acetyltransferase reporter gene we showed that tenascin selectively suppressed extracellular matrix/prolactin-dependent transcription of the beta-casein gene in three-dimensional cultures. Finally, we mapped the active regions within the fibronectin type III repeat region of the tenascin molecule that are capable of inhibiting beta-casein protein synthesis. Our data are consistent with a model where both the loss of a laminin-rich basement membrane by extracellular matrix-degrading enzymes and the induction of tenascin contribute to the loss of tissue-specific gene expression and thus the involuting process.
Collapse
Affiliation(s)
- P L Jones
- Life Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
147
|
Krushel LA, Prieto AL, Edelman GM, Crossin KL. Differential effects of cytotactin/tenascin fusion proteins on intracellular pH and cell morphology. J Cell Physiol 1994; 161:508-18. [PMID: 7525616 DOI: 10.1002/jcp.1041610314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytotactin/tenascin is a multidomain extracellular matrix protein that inhibits both cell spreading and intracellular alkalinization. The protein has multiple different domains which are homologous to regions in epidermal growth factor, fibronectin, and fibrinogen. In previous studies, we produced nonoverlapping fusion proteins corresponding to these domains and examined their effects on cell attachment and spreading. Based on their ability either to promote or to inhibit cell attachment, two of these fusion proteins were shown to be adhesive and two were shown to be counteradhesive. To determine how the adhesive and counteradhesive activities of different cytotactin/tenascin domains alter intracellular pH (designated pHi), we have measured pHi, in NIH3T3 and U251MG cells in the presence of the cytotactin/tenascin fusion proteins and intact cytotactin/tenascin, as well as fibronectin. Cells incubated in the presence of intact cytotactin/tenascin or of the counteradhesive fusion proteins had a pHi lower than control cells. In contrast, the presence of the adhesive fusion proteins or of fibronectin caused cells to have higher pHi values than control cells. When two fragments were simultaneously presented, one of which alone increased pHi and the other of which alone decreased pHi, the predominant effect was that of lowered pHi. Incubation with an RGD-containing peptide derived from the cytotactin/tenascin sequence inhibited alkalinization promoted by the adhesive fragment containing the second through sixth fibronectin type III repeats that was known to bind to integrins. Incubation of the cells with heparinase I or III inhibited the intracellular alkalinization of cells plated in the presence of the other adhesive fusion protein containing the fibrinogen domain, suggesting that heparan sulfate proteoglycans were involved in these pHi changes. The activity of protein kinase C appeared to be important for the changes in pHi mediated by all of the proteins. The protein kinase C inhibitor Calphostin C blocked the rise in pHi elicited by the adhesive fusion proteins and by fibronectin. Moreover, activation of protein kinase C by the addition of phorbol esters increased the pHi in cells plated on cytotactin/tenascin or counteradhesive fusion proteins and reversed their effects. The results of this study support the hypothesis that cytotactin/tenascin can bind to multiple cell surface receptors and thereby elicit different physiological responses. Decreases in pHi are correlated with the phenomenon of counteradhesion whereas the ability to increase pHi is associated with cell attachment via at least two different types of cell surface receptors. The data raise the possibility that binding of cytotactin/tenascin may influence primary cellular processes such as migration and proliferation through the differential regulation of pHi.
Collapse
Affiliation(s)
- L A Krushel
- Department of Neurobiology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
148
|
Pesheva P, Probstmeier R, Skubitz AP, McCarthy JB, Furcht LT, Schachner M. Tenascin-R (J1 160/180 inhibits fibronectin-mediated cell adhesion--functional relatedness to tenascin-C. J Cell Sci 1994; 107 ( Pt 8):2323-33. [PMID: 7527058 DOI: 10.1242/jcs.107.8.2323] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell adhesion and neurite outgrowth on fibronectin is a multistep process modulated by different extra- and intracellular signals. Fibronectin-mediated cell attachment and spreading can be affected in a negative way by tenascin-C, an extracellular matrix glycoprotein expressed in a temporally and spacially restricted manner during early morphogenesis. Tenascin-R (J1-160/180), consisting of two major isoforms of 160 kDa (tenascin-R 160) and 180 kDa (tenascin-R 180) in mammals, is an extracellular matrix glycoprotein of the central nervous system that shares high structural homologies with tenascin-C. Here we show that in relation to fibronectin-mediated adhesion, the two extracellular matrix molecules are also functionally closely related. When offered as mixed substrata with other extracellular matrix molecules, the two tenascin-R isoforms and tenascin-C derived from mouse brain selectively inhibit fibronectin-dependent cell adhesion and neurite outgrowth, and affect cell morphology of different mesenchymal and neural cells. This effect is partially due to interactions at the substrate level that result in a steric hindrance and/or conformational change of the cell binding sites of the fibronectin molecule. In addition, tenascin-R 180 and tenascin-C interact with cells by an RGD- and beta 1 integrin-independent mechanism, leading to cell rounding and detachment from such substrata. The expression of tenascin-R and tenascin-C in the nervous system at times and locations where fibronectin-mediated cellular processes take place may be related to the role of inhibitory signals in the extracellular matrix in the regulation of cell migration and differentiation in general.
Collapse
Affiliation(s)
- P Pesheva
- Department of Neurobiology, Swiss Federal Institute of Technology, Zürich
| | | | | | | | | | | |
Collapse
|
149
|
Affiliation(s)
- U Lindahl
- Department of Medical and Physiological Chemistry, University of Uppsala, Sweden
| | | | | | | |
Collapse
|
150
|
Leahy DJ, Erickson HP, Aukhil I, Joshi P, Hendrickson WA. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins 1994; 19:48-54. [PMID: 8066086 DOI: 10.1002/prot.340190107] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Crystals of a fragment of human fibronectin encompassing the 7th through the RGD-containing 10th type III repeats (FN7-10) have been produced with protein expressed in E. coli. The crystals are monoclinic with one molecule in the asymmetric unit and diffract to beyond 2.0 A Bragg spacings. A mutant FN7-10 was produced in which three methionines, in addition to the single native methionine already present, have been introduced by site-directed mutagenesis. Diffraction-quality crystals of this mutant protein have been grown in which methionine was replaced with selenomethionine. The introduction of methionine by site-directed mutagenesis to allow phasing from selenomethionyl-substituted crystals is shown to be feasible by this example and is proposed as a general approach to solving the crystallographic phase problem. Strategies for selecting propitious sites for methionine mutations are discussed.
Collapse
Affiliation(s)
- D J Leahy
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|