101
|
Sudhindar PD, Wainwright D, Saha S, Howarth R, McCain M, Bury Y, Saha SS, McPherson S, Reeves H, Patel AH, Faulkner GJ, Lunec J, Shukla R. HCV Activates Somatic L1 Retrotransposition-A Potential Hepatocarcinogenesis Pathway. Cancers (Basel) 2021; 13:5079. [PMID: 34680227 PMCID: PMC8533982 DOI: 10.3390/cancers13205079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a common cause of hepatocellular carcinoma (HCC). The activation and mutagenic consequences of L1 retrotransposons in virus-associated-HCC have been documented. However, the direct influence of HCV upon L1 elements is unclear, and is the focus of the present study. L1 transcript expression was evaluated in a publicly available liver tissue RNA-seq dataset from patients with chronic HCV hepatitis (CHC), as well as healthy controls. L1 transcript expression was significantly higher in CHC than in controls. L1orf1p (a L1 encoded protein) expression was observed in six out of 11 CHC livers by immunohistochemistry. To evaluate the influence of HCV on retrotransposition efficiency, in vitro engineered-L1 retrotransposition assays were employed in Huh7 cells in the presence and absence of an HCV replicon. An increased retrotransposition rate was observed in the presence of replicating HCV RNA, and persisted in cells after viral clearance due to sofosbuvir (PSI7977) treatment. Increased retrotransposition could be due to dysregulation of the DNA-damage repair response, including homologous recombination, due to HCV infection. Altogether these data suggest that L1 expression can be activated before oncogenic transformation in CHC patients, with HCV-upregulated retrotransposition potentially contributing to HCC genomic instability and a risk of transformation that persists post-viral clearance.
Collapse
Affiliation(s)
- Praveen D. Sudhindar
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Daniel Wainwright
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Santu Saha
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Rachel Howarth
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Misti McCain
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Yvonne Bury
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK;
| | - Sweta S. Saha
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Stuart McPherson
- The Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Heaton NE7 7DN, UK;
| | - Helen Reeves
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
- The Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Heaton NE7 7DN, UK;
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK;
| | - Geoffrey J. Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - John Lunec
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Ruchi Shukla
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| |
Collapse
|
102
|
Fukuda S, Narendran S, Varshney A, Nagasaka Y, Wang SB, Ambati K, Apicella I, Pereira F, Fowler BJ, Yasuma T, Hirahara S, Yasuma R, Huang P, Yerramothu P, Makin RD, Wang M, Baker KL, Marion KM, Huang X, Baghdasaryan E, Ambati M, Ambati VL, Banerjee D, Bonilha VL, Tolstonog GV, Held U, Ogura Y, Terasaki H, Oshika T, Bhattarai D, Kim KB, Feldman SH, Aguirre JI, Hinton DR, Kerur N, Sadda SR, Schumann GG, Gelfand BD, Ambati J. Alu complementary DNA is enriched in atrophic macular degeneration and triggers retinal pigmented epithelium toxicity via cytosolic innate immunity. SCIENCE ADVANCES 2021; 7:eabj3658. [PMID: 34586848 PMCID: PMC8480932 DOI: 10.1126/sciadv.abj3658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 05/08/2023]
Abstract
Long interspersed nuclear element-1 (L1)–mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA–induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA–induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.
Collapse
Affiliation(s)
- Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Aravind Eye Hospital System, Madurai, India
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shao-bin Wang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kameshwari Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Benjamin J. Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Reo Yasuma
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ryan D. Makin
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mo Wang
- Doheny Eye Institute, Los Angeles, CA, USA
| | | | | | | | - Elmira Baghdasaryan
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Meenakshi Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Digital Image Evaluation, Charlottesville, VA, USA
| | - Vidya L. Ambati
- Center for Digital Image Evaluation, Charlottesville, VA, USA
| | - Daipayan Banerjee
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Genrich V. Tolstonog
- Department of Otolaryngology–Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ulrike Held
- Department of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Yuichiro Ogura
- Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Sanford H. Feldman
- Center for Comparative Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - J. Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - David R. Hinton
- Departments of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Gerald G. Schumann
- Department of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
103
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
104
|
Analysis of SINE Families B2, Dip, and Ves with Special Reference to Polyadenylation Signals and Transcription Terminators. Int J Mol Sci 2021; 22:ijms22189897. [PMID: 34576060 PMCID: PMC8466645 DOI: 10.3390/ijms22189897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023] Open
Abstract
Short Interspersed Elements (SINEs) are eukaryotic non-autonomous retrotransposons transcribed by RNA polymerase III (pol III). The 3′-terminus of many mammalian SINEs has a polyadenylation signal (AATAAA), pol III transcription terminator, and A-rich tail. The RNAs of such SINEs can be polyadenylated, which is unique for pol III transcripts. Here, B2 (mice and related rodents), Dip (jerboas), and Ves (vespertilionid bats) SINE families were thoroughly studied. They were divided into subfamilies reliably distinguished by relatively long indels. The age of SINE subfamilies can be estimated, which allows us to reconstruct their evolution. The youngest and most active variants of SINE subfamilies were given special attention. The shortest pol III transcription terminators are TCTTT (B2), TATTT (Ves and Dip), and the rarer TTTT. The last nucleotide of the terminator is often not transcribed; accordingly, the truncated terminator of its descendant becomes nonfunctional. The incidence of complete transcription of the TCTTT terminator is twice higher compared to TTTT and thus functional terminators are more likely preserved in daughter SINE copies. Young copies have long poly(A) tails; however, they gradually shorten in host generations. Unexpectedly, the tail shortening below A10 increases the incidence of terminator elongation by Ts thus restoring its efficiency. This process can be critical for the maintenance of SINE activity in the genome.
Collapse
|
105
|
Briggs EM, Mita P, Sun X, Ha S, Vasilyev N, Leopold ZR, Nudler E, Boeke JD, Logan SK. Unbiased proteomic mapping of the LINE-1 promoter using CRISPR Cas9. Mob DNA 2021; 12:21. [PMID: 34425899 PMCID: PMC8381588 DOI: 10.1186/s13100-021-00249-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The autonomous retroelement Long Interspersed Element-1 (LINE-1) mobilizes though a copy and paste mechanism using an RNA intermediate (retrotransposition). Throughout human evolution, around 500,000 LINE-1 sequences have accumulated in the genome. Most of these sequences belong to ancestral LINE-1 subfamilies, including L1PA2-L1PA7, and can no longer mobilize. Only a small fraction of LINE-1 sequences, approximately 80 to 100 copies belonging to the L1Hs subfamily, are complete and still capable of retrotransposition. While silenced in most cells, many questions remain regarding LINE-1 dysregulation in cancer cells. RESULTS Here, we optimized CRISPR Cas9 gRNAs to specifically target the regulatory sequence of the L1Hs 5'UTR promoter. We identified three gRNAs that were more specific to L1Hs, with limited binding to older LINE-1 sequences (L1PA2-L1PA7). We also adapted the C-BERST method (dCas9-APEX2 Biotinylation at genomic Elements by Restricted Spatial Tagging) to identify LINE-1 transcriptional regulators in cancer cells. Our LINE-1 C-BERST screen revealed both known and novel LINE-1 transcriptional regulators, including CTCF, YY1 and DUSP1. CONCLUSION Our optimization and evaluation of gRNA specificity and application of the C-BERST method creates a tool for studying the regulatory mechanisms of LINE-1 in cancer. Further, we identified the dual specificity protein phosphatase, DUSP1, as a novel regulator of LINE-1 transcription.
Collapse
Affiliation(s)
- Erica M Briggs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Present Address: Opentrons Labworks, Queens, NY, USA
| | - Paolo Mita
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Present Address: Opentrons Labworks, Queens, NY, USA
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiaoji Sun
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Cellarity, Cambridge, MA, USA
| | - Susan Ha
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Zev R Leopold
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Susan K Logan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
| |
Collapse
|
106
|
Smits N, Rasmussen J, Bodea GO, Amarilla AA, Gerdes P, Sanchez-Luque FJ, Ajjikuttira P, Modhiran N, Liang B, Faivre J, Deveson IW, Khromykh AA, Watterson D, Ewing AD, Faulkner GJ. No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing. Cell Rep 2021; 36:109530. [PMID: 34380018 PMCID: PMC8316065 DOI: 10.1016/j.celrep.2021.109530] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/28/2023] Open
Abstract
A recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome. By examining ONT data from separate HEK293T cultivars, we completely resolve 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV)-positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions by ONT sequencing. That we find no evidence of SARS-CoV-2 integration suggests that such events are, at most, extremely rare in vivo and therefore are unlikely to drive oncogenesis or explain post-recovery detection of the virus.
Collapse
Affiliation(s)
- Nathan Smits
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gabriela O Bodea
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
107
|
Hermant C, Torres-Padilla ME. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes Dev 2021; 35:22-39. [PMID: 33397727 PMCID: PMC7778262 DOI: 10.1101/gad.344473.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Hermant and Torres-Padilla summarize and discuss the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific transposable element families or subfamilies. Transposable elements (TEs) are genetic elements capable of changing position within the genome. Although their mobilization can constitute a threat to genome integrity, nearly half of modern mammalian genomes are composed of remnants of TE insertions. The first critical step for a successful transposition cycle is the generation of a full-length transcript. TEs have evolved cis-regulatory elements enabling them to recruit host-encoded factors driving their own, selfish transcription. TEs are generally transcriptionally silenced in somatic cells, and the mechanisms underlying their repression have been extensively studied. However, during germline formation, preimplantation development, and tumorigenesis, specific TE families are highly expressed. Understanding the molecular players at stake in these contexts is of utmost importance to establish the mechanisms regulating TEs, as well as the importance of their transcription to the biology of the host. Here, we review the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific TE families or subfamilies. We discuss the diversity of TE regulatory elements within mammalian genomes and highlight the importance of TE mobilization in the dispersal of transcription factor-binding sites over the course of evolution.
Collapse
Affiliation(s)
- Clara Hermant
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany.,Faculty of Biology, Ludwig-Maximilians Universität München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
108
|
Xiong F, Wang R, Lee JH, Li S, Chen SF, Liao Z, Hasani LA, Nguyen PT, Zhu X, Krakowiak J, Lee DF, Han L, Tsai KL, Liu Y, Li W. RNA m 6A modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Res 2021; 31:861-885. [PMID: 34108665 PMCID: PMC8324889 DOI: 10.1038/s41422-021-00515-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The molecular basis underlying the interaction between retrotransposable elements (RTEs) and the human genome remains poorly understood. Here, we profiled N6-methyladenosine (m6A) deposition on nascent RNAs in human cells by developing a new method MINT-Seq, which revealed that many classes of RTE RNAs, particularly intronic LINE-1s (L1s), are strongly methylated. These m6A-marked intronic L1s (MILs) are evolutionarily young, sense-oriented to hosting genes, and are bound by a dozen RNA binding proteins (RBPs) that are putative novel readers of m6A-modified RNAs, including a nuclear matrix protein SAFB. Notably, m6A positively controls the expression of both autonomous L1s and co-transcribed L1 relics, promoting L1 retrotransposition. We showed that MILs preferentially reside in long genes with critical roles in DNA damage repair and sometimes in L1 suppression per se, where they act as transcriptional "roadblocks" to impede the hosting gene expression, revealing a novel host-weakening strategy by the L1s. In counteraction, the host uses the SAFB reader complex to bind m6A-L1s to reduce their levels, and to safeguard hosting gene transcription. Remarkably, our analysis identified thousands of MILs in multiple human fetal tissues, enlisting them as a novel category of cell-type-specific regulatory elements that often compromise transcription of long genes and confer their vulnerability in neurodevelopmental disorders. We propose that this m6A-orchestrated L1-host interaction plays widespread roles in gene regulation, genome integrity, human development and diseases.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Joo-Hyung Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Shenglan Li
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Zian Liao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Lana Al Hasani
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Phuoc T Nguyen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Joanna Krakowiak
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Dung-Fang Lee
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Leng Han
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Ying Liu
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
109
|
Watkins WS, Feusier JE, Thomas J, Goubert C, Mallick S, Jorde LB. The Simons Genome Diversity Project: A Global Analysis of Mobile Element Diversity. Genome Biol Evol 2021; 12:779-794. [PMID: 32359137 PMCID: PMC7290288 DOI: 10.1093/gbe/evaa086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ongoing retrotransposition of Alu, LINE-1, and SINE–VNTR–Alu elements generates diversity and variation among human populations. Previous analyses investigating the population genetics of mobile element insertions (MEIs) have been limited by population ascertainment bias or by relatively small numbers of populations and low sequencing coverage. Here, we use 296 individuals representing 142 global populations from the Simons Genome Diversity Project (SGDP) to discover and characterize MEI diversity from deeply sequenced whole-genome data. We report 5,742 MEIs not originally reported by the 1000 Genomes Project and show that high sampling diversity leads to a 4- to 7-fold increase in MEI discovery rates over the original 1000 Genomes Project data. As a result of negative selection, nonreference polymorphic MEIs are underrepresented within genes, and MEIs within genes are often found in the transcriptional orientation opposite that of the gene. Globally, 80% of Alu subfamilies predate the expansion of modern humans from Africa. Polymorphic MEIs show heterozygosity gradients that decrease from Africa to Eurasia to the Americas, and the number of MEIs found uniquely in a single individual are also distributed in this general pattern. The maximum fraction of MEI diversity partitioned among the seven major SGDP population groups (FST) is 7.4%, similar to, but slightly lower than, previous estimates and likely attributable to the diverse sampling strategy of the SGDP. Finally, we utilize these MEIs to extrapolate the primary Native American shared ancestry component to back to Asia and provide new evidence from genome-wide identical-by-descent genetic markers that add additional support for a southeastern Siberian origin for most Native Americans.
Collapse
Affiliation(s)
| | | | - Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Clement Goubert
- Department of Molecular Biology and Genetics, Cornell University
| | - Swapon Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah
| |
Collapse
|
110
|
Mastora E, Christodoulaki A, Papageorgiou K, Zikopoulos A, Georgiou I. Expression of Retroelements in Mammalian Gametes and Embryos. In Vivo 2021; 35:1921-1927. [PMID: 34182464 DOI: 10.21873/invivo.12458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022]
Abstract
Retroelements are genetic mobile elements, expressed during male and female gamete differentiation. Retrotransposons are normally regulated by the methylation machinery, chromatin modifications, non-coding RNAs, and transcription factors, while retrotransposition control is of vital importance in cellular proliferation and differentiation process. Retrotransposition requires a transcription step, by a cellular RNA polymerase, followed by reverse transcription of an RNA intermediate to cDNA and its integration into a new genomic locus. Long interspersed elements (LINEs), human endogenous retroviruses (HERVs), short interspersed elements (SINEs) and SINE-VNTR-Alu elements (SVAs) constitute about half of the human genome, play a crucial role in genome organization, structure and function and interfere with several biological procedures. In this mini review, we discuss recent data regarding retroelement expression (LINE-1, HERVK-10, SVA and VL30) and retrotransposition events in mammalian oocytes and spermatozoa, as well as the importance of their impact on human and mouse preimplantation embryo development.
Collapse
Affiliation(s)
- Eirini Mastora
- Laboratory of Medical Genetics, School of Medicine, University of Ioannina and Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Antonia Christodoulaki
- Laboratory of Medical Genetics, School of Medicine, University of Ioannina and Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Kyriaki Papageorgiou
- Department of Biological Applications & Technologies, University of Ioannina and Institute of Molecular Biology and Biotechnology, Division of Biomedical Research, Foundation for Research and Technology, Ioannina, Greece
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, School of Medicine, University of Ioannina and Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, School of Medicine, University of Ioannina and Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece;
| |
Collapse
|
111
|
Stow EC, Kaul T, deHaro DL, Dem MR, Beletsky AG, Morales ME, Du Q, LaRosa AJ, Yang H, Smither E, Baddoo M, Ungerleider N, Deininger P, Belancio VP. Organ-, sex- and age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution. Nucleic Acids Res 2021; 49:5813-5831. [PMID: 34023901 PMCID: PMC8191783 DOI: 10.1093/nar/gkab369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Expression of L1 mRNA, the first step in the L1 copy-and-paste amplification cycle, is a prerequisite for L1-associated genomic instability. We used a reported stringent bioinformatics method to parse L1 mRNA transcripts and measure the level of L1 mRNA expressed in mouse and rat organs at a locus-specific resolution. This analysis determined that mRNA expression of L1 loci in rodents exhibits striking organ specificity with less than 0.8% of loci shared between organs of the same organism. This organ specificity in L1 mRNA expression is preserved in male and female mice and across age groups. We discovered notable differences in L1 mRNA expression between sexes with only 5% of expressed L1 loci shared between male and female mice. Moreover, we report that the levels of total L1 mRNA expression and the number and spectrum of expressed L1 loci fluctuate with age as independent variables, demonstrating different patterns in different organs and sexes. Overall, our comparisons between organs and sexes and across ages ranging from 2 to 22 months establish previously unforeseen dynamic changes in L1 mRNA expression in vivo. These findings establish the beginning of an atlas of endogenous L1 mRNA expression across a broad range of biological variables that will guide future studies.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Madeleine R Dem
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Anna G Beletsky
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Maria E Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Qianhui Du
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Alexis J LaRosa
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| |
Collapse
|
112
|
McDonald TL, Zhou W, Castro CP, Mumm C, Switzenberg JA, Mills RE, Boyle AP. Cas9 targeted enrichment of mobile elements using nanopore sequencing. Nat Commun 2021; 12:3586. [PMID: 34117247 PMCID: PMC8196195 DOI: 10.1038/s41467-021-23918-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Mobile element insertions (MEIs) are repetitive genomic sequences that contribute to genetic variation and can lead to genetic disorders. Targeted and whole-genome approaches using short-read sequencing have been developed to identify reference and non-reference MEIs; however, the read length hampers detection of these elements in complex genomic regions. Here, we pair Cas9-targeted nanopore sequencing with computational methodologies to capture active MEIs in human genomes. We demonstrate parallel enrichment for distinct classes of MEIs, averaging 44% of reads on-targeted signals and exhibiting a 13.4-54x enrichment over whole-genome approaches. We show an individual flow cell can recover most MEIs (97% L1Hs, 93% AluYb, 51% AluYa, 99% SVA_F, and 65% SVA_E). We identify seventeen non-reference MEIs in GM12878 overlooked by modern, long-read analysis pipelines, primarily in repetitive genomic regions. This work introduces the utility of nanopore sequencing for MEI enrichment and lays the foundation for rapid discovery of elusive, repetitive genetic elements.
Collapse
Affiliation(s)
- Torrin L McDonald
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher P Castro
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Camille Mumm
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
113
|
Mukherjee K, Sur D, Singh A, Rai S, Das N, Sekar R, Narindi S, Dhingra VK, Jat B, Balraam KVV, Agarwal SP, Mandal PK. Robust expression of LINE-1 retrotransposon encoded proteins in oral squamous cell carcinoma. BMC Cancer 2021; 21:628. [PMID: 34044801 PMCID: PMC8161598 DOI: 10.1186/s12885-021-08174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Oral Squamous Cell Carcinoma (OSCC) results from a series of genetic alteration in squamous cells. This particular type of cancer considers one of the most aggressive malignancies to control because of its frequent local invasions to the regional lymph node. Although several biomarkers have been reported, the key marker used to predict the behavior of the disease is largely unknown. Here we report Long INterpersed Element-1 (LINE1 or L1) retrotransposon activity in post-operative oral cancer samples. L1 is the only active retrotransposon occupying around 17% of the human genome with an estimated 500,000 copies. An active L1 encodes two proteins (L1ORF1p and L1ORF2p); both of which are critical in the process of retrotransposition. Several studies report that the L1 retrotransposon is highly active in many cancers. L1 activity is generally determined by assaying L1ORF1p because of its high expression and availability of the antibody. However, due to its lower expression and unavailability of a robust antibody, detection of L1ORF2p has been limited. L1ORF2p is the crucial protein in the process of retrotransposition as it provides endonuclease and reverse transcriptase (RT) activity. METHODS Immunohistochemistry and Western blotting were performed on the post-operative oral cancer samples and murine tissues. RESULTS Using in house novel antibodies against both the L1 proteins (L1ORF1p and L1ORF2p), we found L1 retrotransposon is extremely active in post-operative oral cancer tissues. Here, we report a novel human L1ORF2p antibody generated using an 80-amino-acid stretch from the RT domain, which is highly conserved among different species. The antibody detects significant L1ORF2p expression in human oral squamous cell carcinoma (OSCC) samples and murine germ tissues. CONCLUSIONS We report exceptionally high L1ORF1p and L1ORF2p expression in post-operative oral cancer samples. The novel L1ORF2p antibody reported in this study will serve as a useful tool to understand why L1 activity is deregulated in OSCC and how it contributes to the progression of this particular cancer. Cross-species reactivity of L1ORF2p antibody due to the conserved epitope will be useful to study the retrotransposon biology in mice and rat germ tissues.
Collapse
Affiliation(s)
- Koel Mukherjee
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | - Debpali Sur
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | - Abhijeet Singh
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | - Sandhya Rai
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | | | - Rakshanya Sekar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Vandana Kumar Dhingra
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | - Bhinyaram Jat
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | | | - Satya Prakash Agarwal
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | | |
Collapse
|
114
|
Chen D, Cremona MA, Qi Z, Mitra RD, Chiaromonte F, Makova KD. Human L1 Transposition Dynamics Unraveled with Functional Data Analysis. Mol Biol Evol 2021; 37:3576-3600. [PMID: 32722770 DOI: 10.1093/molbev/msaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.
Collapse
Affiliation(s)
- Di Chen
- Intercollege Graduate Degree Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA.,Department of Operations and Decision Systems, Université Laval, Québec, Canada
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA.,EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.,The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA
| | - Kateryna D Makova
- The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
115
|
Migeon BR, Kazazian HH. Reflections on the history of genetic medicine at Johns Hopkins University. Am J Med Genet A 2021; 185:3224-3229. [PMID: 33955173 DOI: 10.1002/ajmg.a.62246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022]
Abstract
Two members of the faculty-who witnessed the birth of Genetic Medicine and remained to see it evolve-present their reflections about the history of genetic medicine at the Johns Hopkins Medical Institutions. They tell how the genetic units in Pediatrics and Medicine that were initiated by Barton Childs and Victor McKusick, respectively, became the McKusick Nathans Department of Genetic Medicine in 2020.
Collapse
Affiliation(s)
- Barbara R Migeon
- The McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haig H Kazazian
- The McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
116
|
Abstract
I have been fortunate and privileged to have participated in amazing breakthroughs in human genetics since the 1960s. I was lucky to have trained in medical school at Dartmouth and Johns Hopkins, in pediatrics at the University of Minnesota and Johns Hopkins, and in genetics and molecular biology with Dr. Barton Childs at Johns Hopkins and Dr. Harvey Itano at the National Institutes of Health. Later, the collaborative spirit at Johns Hopkins and the University of Pennsylvania were important to my career. Here, I describe the thrill of scientific discovery in two diverse areas of human genetics: DNA haplotypes and their role in solving the molecular basis of beta thalassemia and the role of retrotransposons (jumping genes) in human biology. I hope that this article may inspire others who love human genetics as much as I do.
Collapse
Affiliation(s)
- Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
117
|
Gu Z, Liu Y, Zhang Y, Cao H, Lyu J, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An W, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat Genet 2021; 53:672-682. [PMID: 33833453 PMCID: PMC8270111 DOI: 10.1038/s41588-021-00829-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.
Collapse
Affiliation(s)
- Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Liu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junhua Lyu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Lee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giovanni A Botten
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
118
|
Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA (NEW YORK, N.Y.) 2021; 27:rna.078721.121. [PMID: 33888553 PMCID: PMC8208052 DOI: 10.1261/rna.078721.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 05/15/2023]
Abstract
Around half of the genome in mammals is composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterised by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defence. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterised by aberrant TE expression and/or type I IFN activation.
Collapse
Affiliation(s)
| | - Jeroen Witteveldt
- University of Edinburgh - Institute of Immunology and Infection Research
| | - Sara R Heras
- GENYO. Centre for Genomics and Oncological Research, Pfizer University of Granada
| | - Sara Macias
- Institute of Immunology and Infection Research
| |
Collapse
|
119
|
Hepatitis C virus infection restricts human LINE-1 retrotransposition in hepatoma cells. PLoS Pathog 2021; 17:e1009496. [PMID: 33872335 PMCID: PMC8084336 DOI: 10.1371/journal.ppat.1009496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/29/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules. Members of the Long Interspersed Nuclear Element 1 (LINE-1, L1) class of retrotransposons account for ~17% of the human genome and include ~100–150 intact L1 loci that are still functional. L1 mobilization is known to affect genomic integrity, thereby leading to disease-causing mutations, but little is known about the impact of exogenous viral infections on L1 and vice versa. While L1 retrotransposition is controlled by various mechanisms including CpG methylation, hypomethylation of L1 has been observed in hepatocellular carcinoma tissues of hepatitis C virus (HCV)-infected patients. Here, we demonstrate molecular interactions between HCV and L1 elements. HCV infection stably increases cellular levels of the L1-encoded ORF1 protein (L1ORF1p). HCV core and L1ORF1p interact in ribonucleoprotein complexes that traffic to lipid droplets. Despite its redistribution to HCV assembly sites, L1ORF1p is dispensable for HCV infection. In contrast, retrotransposition of engineered L1 reporter elements is restricted by HCV, correlating with an increased formation of L1ORF1p-containing cytoplasmic stress granules. Thus, our data provide first insights into the molecular interplay of endogenous transposable elements and exogenous viruses that might contribute to disease progression in vivo.
Collapse
|
120
|
Newton JC, Naik MT, Li GY, Murphy EL, Fawzi NL, Sedivy JM, Jogl G. Phase separation of the LINE-1 ORF1 protein is mediated by the N-terminus and coiled-coil domain. Biophys J 2021; 120:2181-2191. [PMID: 33798566 DOI: 10.1016/j.bpj.2021.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022] Open
Abstract
Long interspersed nuclear element-1 (L1) is a retrotransposable element that autonomously replicates in the human genome, resulting in DNA damage and genomic instability. Activation of L1 in senescent cells triggers a type I interferon response and age-associated inflammation. Two open reading frames encode an ORF1 protein functioning as messenger RNA chaperone and an ORF2 protein providing catalytic activities necessary for retrotransposition. No function has been identified for the conserved, disordered N-terminal region of ORF1. Using microscopy and NMR spectroscopy, we demonstrate that ORF1 forms liquid droplets in vitro in a salt-dependent manner and that interactions between its N-terminal region and coiled-coil domain are necessary for phase separation. Mutations disrupting blocks of charged residues within the N-terminus impair phase separation, whereas some mutations within the coiled-coil domain enhance phase separation. Demixing of the L1 particle from the cytosol may provide a mechanism to protect the L1 transcript from degradation.
Collapse
Affiliation(s)
- Jocelyn C Newton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
| | - Grace Y Li
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Eileen L Murphy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| |
Collapse
|
121
|
Halo JV, Pendleton AL, Shen F, Doucet AJ, Derrien T, Hitte C, Kirby LE, Myers B, Sliwerska E, Emery S, Moran JV, Boyko AR, Kidd JM. Long-read assembly of a Great Dane genome highlights the contribution of GC-rich sequence and mobile elements to canine genomes. Proc Natl Acad Sci U S A 2021; 118:e2016274118. [PMID: 33836575 PMCID: PMC7980453 DOI: 10.1073/pnas.2016274118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Technological advances have allowed improvements in genome reference sequence assemblies. Here, we combined long- and short-read sequence resources to assemble the genome of a female Great Dane dog. This assembly has improved continuity compared to the existing Boxer-derived (CanFam3.1) reference genome. Annotation of the Great Dane assembly identified 22,182 protein-coding gene models and 7,049 long noncoding RNAs, including 49 protein-coding genes not present in the CanFam3.1 reference. The Great Dane assembly spans the majority of sequence gaps in the CanFam3.1 reference and illustrates that 2,151 gaps overlap the transcription start site of a predicted protein-coding gene. Moreover, a subset of the resolved gaps, which have an 80.95% median GC content, localize to transcription start sites and recombination hotspots more often than expected by chance, suggesting the stable canine recombinational landscape has shaped genome architecture. Alignment of the Great Dane and CanFam3.1 assemblies identified 16,834 deletions and 15,621 insertions, as well as 2,665 deletions and 3,493 insertions located on secondary contigs. These structural variants are dominated by retrotransposon insertion/deletion polymorphisms and include 16,221 dimorphic canine short interspersed elements (SINECs) and 1,121 dimorphic long interspersed element-1 sequences (LINE-1_Cfs). Analysis of sequences flanking the 3' end of LINE-1_Cfs (i.e., LINE-1_Cf 3'-transductions) suggests multiple retrotransposition-competent LINE-1_Cfs segregate among dog populations. Consistent with this conclusion, we demonstrate that a canine LINE-1_Cf element with intact open reading frames can retrotranspose its own RNA and that of a SINEC_Cf consensus sequence in cultured human cells, implicating ongoing retrotransposon activity as a driver of canine genetic variation.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Feichen Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aurélien J Doucet
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Université Côte d'Azur, CNRS, INSERM, Institut de Recherche sur le Cancer et le Vieillissement de Nice, F-06100 Nice, France
| | - Thomas Derrien
- Université de Rennes 1, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, F-35000 Rennes, France
| | - Christophe Hitte
- Université de Rennes 1, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, F-35000 Rennes, France
| | - Laura E Kirby
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Bridget Myers
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Elzbieta Sliwerska
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Sarah Emery
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109;
- Department Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
122
|
Liang D, Zhao P, Si J, Fang L, Pairo-Castineira E, Hu X, Xu Q, Hou Y, Gong Y, Liang Z, Tian B, Mao H, Yindee M, Faruque MO, Kongvongxay S, Khamphoumee S, Liu GE, Wu DD, Barker JSF, Han J, Zhang Y. Genomic Analysis Revealed a Convergent Evolution of LINE-1 in Coat Color: A Case Study in Water Buffaloes (Bubalus bubalis). Mol Biol Evol 2021; 38:1122-1136. [PMID: 33212507 PMCID: PMC7947781 DOI: 10.1093/molbev/msaa279] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Visible pigmentation phenotypes can be used to explore the regulation of gene expression and the evolution of coat color patterns in animals. Here, we performed whole-genome and RNA sequencing and applied genome-wide association study, comparative population genomics and biological experiments to show that the 2,809-bp-long LINE-1 insertion in the ASIP (agouti signaling protein) gene is the causative mutation for the white coat phenotype in swamp buffalo (Bubalus bubalis). This LINE-1 insertion (3' truncated and containing only 5' UTR) functions as a strong proximal promoter that leads to a 10-fold increase in the transcription of ASIP in white buffalo skin. The 165 bp of 5' UTR transcribed from the LINE-1 is spliced into the first coding exon of ASIP, resulting in a chimeric transcript. The increased expression of ASIP prevents melanocyte maturation, leading to the absence of pigment in white buffalo skin and hairs. Phylogenetic analyses indicate that the white buffalo-specific ASIP allele originated from a recent genetic transposition event in swamp buffalo. Interestingly, as a similar LINE-1 insertion has been identified in the cattle ASIP gene, we discuss the convergent mechanism of coat color evolution in the Bovini tribe.
Collapse
Affiliation(s)
- Dong Liang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOAR, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOAR, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingfang Si
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOAR, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingzhao Fang
- Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Erola Pairo-Castineira
- Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaoxiang Hu
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yali Hou
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yu Gong
- Guizhou Domestic Animal Genetic Resources Management Station, Guiyang, China
| | - Zhengwen Liang
- Agriculture and Rural Affairs Bureau of Fenggang County, Zunyi, China
| | - Bing Tian
- Animal Disease Prevention and Control Station of Zunyi City, Zunyi, China
| | - Huaming Mao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Marnoch Yindee
- Akkhararatchakumari Veterinary College (AVC), Walailak University, Nakorn Si Thammarat, Thailand
| | - Md Omar Faruque
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Siton Kongvongxay
- Livestock Research Center, National Agriculture and Forestry Research Institute, Ministry of Agriculture and Forestry, Vientiane, Lao PDR
| | - Souksamlane Khamphoumee
- Livestock Research Center, National Agriculture and Forestry Research Institute, Ministry of Agriculture and Forestry, Vientiane, Lao PDR
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Dong-Dong Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - James Stuart F Barker
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Jianlin Han
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yi Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOAR, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
123
|
Abstract
Exogenous retroviruses are RNA viruses that require reverse transcription for their replication. Among these viruses, human immunodeficiency virus (HIV) is infectious to humans and causes the development of acquired immune deficiency syndrome (AIDS). There are also endogenous retroelements that require reverse transcription for their retrotransposition, among which the type 1 long interspersed element (LINE-1) is the only type of retroelement that can replicate autonomously. It was once believed that retroviruses like HIV and retroelements like LINE-1 share similarities in processes such as reverse transcription and integration. Accordingly, many HIV suppressors are also potent LINE-1 inhibitors. However, in many cases, one suppressor uses two or more distinct mechanisms to repress HIV and LINE-1. In this review, we discuss some of these suppressors, focusing on their alternative mechanisms opposing the replication of HIV and LINE-1. Based on the differences in HIV and LINE-1 activity, the subcellular localization of these suppressors, and the impact of LINE-1 retrotransposition on human cells, we propose possible reasons for the inhibition of HIV and LINE-1 through different pathways by these suppressors, with the hope of accelerating future studies in associated research fields.
Collapse
Affiliation(s)
- Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
124
|
Alkailani M, Palidwor G, Poulin A, Mohan R, Pepin D, Vanderhyden B, Gibbings D. A genome-wide strategy to identify causes and consequences of retrotransposon expression finds activation by BRCA1 in ovarian cancer. NAR Cancer 2021; 3:zcaa040. [PMID: 33447827 PMCID: PMC7787265 DOI: 10.1093/narcan/zcaa040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/03/2022] Open
Abstract
It is challenging to identify the causes and consequences of retrotransposon expression in human disease due to the hundreds of active genomic copies and their poor conservation across species. We profiled genomic insertions of retrotransposons in ovarian cancer. In addition, in ovarian and breast cancer we analyzed RNAs exhibiting Bayesian correlation with retrotransposon RNA to identify causes and consequences of retrotransposon expression. This strategy finds divergent inflammatory responses associated with retrotransposon expression in ovarian and breast cancer and identifies new factors inducing expression of endogenous retrotransposons including anti-viral responses and the common tumor suppressor BRCA1. In cell lines, mouse ovarian epithelial cells and patient-derived tumor spheroids, BRCA1 promotes accumulation of retrotransposon RNA. BRCA1 promotes transcription of active families of retrotransposons and their insertion into the genome. Intriguingly, elevated retrotransposon expression predicts survival in ovarian cancer patients. Retrotransposons are part of a complex regulatory network in ovarian cancer including BRCA1 that contributes to patient survival. The described strategy can be used to identify the regulators and impacts of retrotransposons in various contexts of biology and disease in humans.
Collapse
Affiliation(s)
- Maisa Alkailani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Gareth Palidwor
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
- Bioinformatics, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Ariane Poulin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Raghav Mohan
- Pediatrics Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 021145, USA
| | - David Pepin
- Pediatrics Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 021145, USA
- Department of Surgery, Harvard Medical School, Boston, MA 021156, USA
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
125
|
Hwang SY, Jung H, Mun S, Lee S, Park K, Baek SC, Moon HC, Kim H, Kim B, Choi Y, Go YH, Tang W, Choi J, Choi JK, Cha HJ, Park HY, Liang P, Kim VN, Han K, Ahn K. L1 retrotransposons exploit RNA m 6A modification as an evolutionary driving force. Nat Commun 2021; 12:880. [PMID: 33563981 PMCID: PMC7873242 DOI: 10.1038/s41467-021-21197-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/16/2021] [Indexed: 12/30/2022] Open
Abstract
L1 retrotransposons can pose a threat to genome integrity. The host has evolved to restrict L1 replication. However, mechanisms underlying L1 propagation out of the host surveillance remains unclear. Here, we propose an evolutionary survival strategy of L1, which exploits RNA m6A modification. We discover that m6A 'writer' METTL3 facilitates L1 retrotransposition, whereas m6A 'eraser' ALKBH5 suppresses it. The essential m6A cluster that is located on L1 5' UTR serves as a docking site for eukaryotic initiation factor 3 (eIF3), enhances translational efficiency and promotes the formation of L1 ribonucleoprotein. Furthermore, through the comparative analysis of human- and primate-specific L1 lineages, we find that the most functional m6A motif-containing L1s have been positively selected and became a distinctive feature of evolutionarily young L1s. Thus, our findings demonstrate that L1 retrotransposons hijack the RNA m6A modification system for their successful replication.
Collapse
Affiliation(s)
- Sung-Yeon Hwang
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyunchul Jung
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea.,Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Sungwon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiwon Park
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - S Chan Baek
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Hyewon Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Baekgyu Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yongkuk Choi
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Hyun Go
- Department of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Wanxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Jongsu Choi
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Hyuk-Jin Cha
- Department of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyudong Han
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea. .,Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea. .,Department of Microbiology, Dankook University, Cheonan, Republic of Korea.
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea. .,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
126
|
Briggs EM, McKerrow W, Mita P, Boeke JD, Logan SK, Fenyö D. RIP-seq reveals LINE-1 ORF1p association with p-body enriched mRNAs. Mob DNA 2021; 12:5. [PMID: 33563338 PMCID: PMC7874467 DOI: 10.1186/s13100-021-00233-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long INterspersed Element-1 (LINE-1) is an autonomous retroelement able to "copy-and-paste" itself into new loci of the host genome through a process called retrotransposition. The LINE-1 bicistronic mRNA codes for two proteins, ORF1p, a nucleic acid chaperone, and ORF2p, a protein with endonuclease and reverse transcriptase activity. Both proteins bind LINE-1 mRNA in cis and are necessary for retrotransposition. While LINE-1 transcription is usually repressed in most healthy somatic cells through a plethora of mechanisms, ORF1p expression has been observed in nearly 50% of tumors, and new LINE-1 insertions have been documented in a similar fraction of tumors, including prostate cancer. RESULTS Here, we utilized RNA ImmunoPrecipitation (RIP) and the L1EM analysis software to identify ORF1p bound RNA in prostate cancer cells. We identified LINE-1 loci that were expressed in parental androgen sensitive and androgen independent clonal derivatives. In all androgen independent cells, we found higher levels of LINE-1 RNA, as well as unique expression patterns of LINE-1 loci. Interestingly, we observed that ORF1p bound many non-LINE-1 mRNA in all prostate cancer cell lines evaluated, and polyA RNA, and RNA localized in p-bodies were especially enriched. Furthermore, the expression levels of RNAs identified in our ORF1p RIP correlated with RNAs expressed in LINE-1 positive tumors from The Cancer Genome Atlas (TCGA). CONCLUSION Our results show a significant remodeling of LINE-1 loci expression in androgen independent cell lines when compared to parental androgen dependent cells. Additionally, we found that ORF1p bound a significant amount of non-LINE-1 mRNA, and that the enriched ORF1p bound mRNAs are also amplified in LINE-1 expressing TCGA prostate tumors, indicating the biological relevance of our findings to prostate cancer.
Collapse
Affiliation(s)
- Erica M Briggs
- Departments of Biochemistry and Molecular Pharmacology, New York University, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Wilson McKerrow
- Departments of Biochemistry and Molecular Pharmacology, New York University, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, 435 East 30th St, 9th Floor, NY, 10016, New York, USA
| | - Paolo Mita
- Departments of Biochemistry and Molecular Pharmacology, New York University, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, 435 East 30th St, 9th Floor, NY, 10016, New York, USA
| | - Jef D Boeke
- Departments of Biochemistry and Molecular Pharmacology, New York University, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, 435 East 30th St, 9th Floor, NY, 10016, New York, USA
| | - Susan K Logan
- Departments of Biochemistry and Molecular Pharmacology, New York University, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
- Urology, New York University Grossman School of Medicine, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
| | - David Fenyö
- Departments of Biochemistry and Molecular Pharmacology, New York University, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
- Institute for Systems Genetics, New York University Grossman School of Medicine, 435 East 30th St, 9th Floor, NY, 10016, New York, USA.
| |
Collapse
|
127
|
Kohlrausch FB, Berteli TS, Wang F, Navarro PA, Keefe DL. Control of LINE-1 Expression Maintains Genome Integrity in Germline and Early Embryo Development. Reprod Sci 2021; 29:328-340. [PMID: 33481218 DOI: 10.1007/s43032-021-00461-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
Maintenance of genome integrity in the germline and in preimplantation embryos is crucial for mammalian development. Epigenetic remodeling during primordial germ cell (PGC) and preimplantation embryo development may contribute to genomic instability in these cells, since DNA methylation is an important mechanism to silence retrotransposons. Long interspersed elements 1 (LINE-1 or L1) are the most common autonomous retrotransposons in mammals, corresponding to approximately 17% of the human genome. Retrotransposition events are more frequent in germ cells and in early stages of embryo development compared with somatic cells. It has been shown that L1 activation and expression occurs in germline and is essential for preimplantation development. In this review, we focus on the role of L1 retrotransposon in mouse and human germline and early embryo development and discuss the possible relationship between L1 expression and genomic instability during these stages. Although several studies have addressed L1 expression at different stages of development, the developmental consequences of this expression remain poorly understood. Future research is still needed to highlight the relationship between L1 retrotransposition events and genomic instability during germline and early embryo development.
Collapse
Affiliation(s)
- Fabiana B Kohlrausch
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, 462 1st Avenue, New York, NY, 10016, USA.,Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thalita S Berteli
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, 462 1st Avenue, New York, NY, 10016, USA.,Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, 462 1st Avenue, New York, NY, 10016, USA
| | - Paula A Navarro
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, 462 1st Avenue, New York, NY, 10016, USA.
| |
Collapse
|
128
|
Profile of Haig H. Kazazian Jr. Proc Natl Acad Sci U S A 2020; 117:32185-32188. [DOI: 10.1073/pnas.2023398117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
129
|
Striking heterogeneity of somatic L1 retrotransposition in single normal and cancerous gastrointestinal cells. Proc Natl Acad Sci U S A 2020; 117:32215-32222. [PMID: 33277430 DOI: 10.1073/pnas.2019450117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Somatic LINE-1 (L1) retrotransposition has been detected in early embryos, adult brains, and the gastrointestinal (GI) tract, and many cancers, including epithelial GI tumors. We previously found numerous somatic L1 insertions in paired normal and GI cancerous tissues. Here, using a modified method of single-cell analysis for somatic L1 insertions, we studied adenocarcinomas of colon, pancreas, and stomach, and found a variable number of somatic L1 insertions in tumors of the same type from patient to patient. We detected no somatic L1 insertions in single cells of 5 of 10 tumors studied. In three tumors, aneuploid cells were detected by FACS. In one pancreatic tumor, there were many more L1 insertions in aneuploid than in euploid tumor cells. In one gastric cancer, both aneuploid and euploid cells contained large numbers of likely clonal insertions. However, in a second gastric cancer with aneuploid cells, no somatic L1 insertions were found. We suggest that when the cellular environment is favorable to retrotransposition, aneuploidy predisposes tumor cells to L1 insertions, and retrotransposition may occur at the transition from euploidy to aneuploidy. Seventeen percent of insertions were also present in normal cells, similar to findings in genomic DNA from normal tissues of GI tumor patients. We provide evidence that: 1) The number of L1 insertions in tumors of the same type is highly variable, 2) most somatic L1 insertions in GI cancer tissues are absent from normal tissues, and 3) under certain conditions, somatic L1 retrotransposition exhibits a propensity for occurring in aneuploid cells.
Collapse
|
130
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
131
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
132
|
Evans TA, Erwin JA. Retroelement-derived RNA and its role in the brain. Semin Cell Dev Biol 2020; 114:68-80. [PMID: 33229216 DOI: 10.1016/j.semcdb.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression. Here, we review the emerging evidence that the functional importance of RNA derived from retroelements is multifaceted. Retroelements can influence organismal states through the seeding of epigenetic states in chromatin, the production of structured RNA and even catalytically active ribozymes, the generation of cytoplasmic ssDNA and RNA/DNA hybrids, the production of viral-like proteins, and the generation of somatic mutations. Comparative sequencing suggests that retroelements can contribute to intraspecies variation through these mechanisms to alter transcript identity and abundance. In humans, an increasing number of neurodevelopmental and neurodegenerative conditions are associated with dysregulated retroelements, including Aicardi-Goutieres syndrome (AGS), Rett syndrome (RTT), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), schizophrenia (SZ), and aging. Taken together, these concepts suggest a larger functional role for RNA derived from retroelements. This review aims to define retroelement-derived RNA, discuss how it impacts the mammalian genome, as well as summarize data supporting phenotypic consequences of this unique RNA subset in the brain.
Collapse
Affiliation(s)
- Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Ann Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
133
|
Savage AL, Lopez AI, Iacoangeli A, Bubb VJ, Smith B, Troakes C, Alahmady N, Koks S, Schumann GG, Al-Chalabi A, Quinn JP. Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Mol Brain 2020; 13:154. [PMID: 33187550 PMCID: PMC7666467 DOI: 10.1186/s13041-020-00694-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Long interspersed element-1 (LINE-1/L1) is the only autonomous transposable element in the human genome that currently mobilises in both germline and somatic tissues. Recent studies have identified correlations between altered retrotransposon expression and the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) in a subset of patients. The risk of an individual developing ALS is dependent on an interaction of genetic variants and subsequent modifiers during life. These modifiers could include environmental factors, which can lead to epigenetic and genomic changes, such as somatic mutations, occurring in the neuronal cells that degenerate as the disease develops. There are more than 1 million L1 copies in the human genome today, but only 80-100 L1 loci in the reference genome are considered to be retrotransposition-competent (RC) and an even smaller number of these RC-L1s loci are highly active. We hypothesise that RC-L1s could affect normal cellular function through their mutagenic potential conferred by their ability to retrotranspose in neuronal cells and through DNA damage caused by the endonuclease activity of the L1-encoded ORF2 protein. To investigate whether either an increase in the genomic burden of RC-L1s or epigenetic changes to RC-L1s altering their expression, could play a role in disease development, we chose a set of seven well characterised genomic RC-L1 loci that were reported earlier to be highly active in a cellular L1 retrotransposition reporter assay or serve as major source elements for germline and/or somatic retrotransposition events. Analysis of the insertion allele frequency of five polymorphic RC-L1s, out of the set of seven, for their presence or absence, did not identify an increased number individually or when combined in individuals with the disease. However, we did identify reduced levels of methylation of RC-L1s in the motor cortex of those individuals with both familial and sporadic ALS compared to control brains. The changes to the regulation of the loci encompassing these RC-L1s demonstrated tissue specificity and could be related to the disease process.
Collapse
Affiliation(s)
- Abigail L Savage
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ana Illera Lopez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bradley Smith
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nada Alahmady
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Biology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
134
|
Ewing AD, Smits N, Sanchez-Luque FJ, Faivre J, Brennan PM, Richardson SR, Cheetham SW, Faulkner GJ. Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Mol Cell 2020; 80:915-928.e5. [PMID: 33186547 DOI: 10.1016/j.molcel.2020.10.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.
Collapse
Affiliation(s)
- Adam D Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, Edinburgh EH16 4SB, UK
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
135
|
The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition. Nat Commun 2020; 11:5712. [PMID: 33177501 PMCID: PMC7658363 DOI: 10.1038/s41467-020-19430-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Nearly half of the human genome is made of transposable elements (TEs) whose activity continues to impact its structure and function. Among them, Long INterspersed Element class 1 (LINE-1 or L1) elements are the only autonomously active TEs in humans. L1s are expressed and mobilized in different cancers, generating mutagenic insertions that could affect tumor malignancy. Tumor suppressor microRNAs are ∼22nt RNAs that post-transcriptionally regulate oncogene expression and are frequently downregulated in cancer. Here we explore whether they also influence L1 mobilization. We show that downregulation of let-7 correlates with accumulation of L1 insertions in human lung cancer. Furthermore, we demonstrate that let-7 binds to the L1 mRNA and impairs the translation of the second L1-encoded protein, ORF2p, reducing its mobilization. Overall, our data reveals that let-7, one of the most relevant microRNAs, maintains somatic genome integrity by restricting L1 retrotransposition. Human Long INterspersed Element class 1 (LINE-1) elements are expressed and mobilized in many types of cancer, contributing to malignancy. Here the authors show that the tumor suppressor microRNA let-7 targets the LINE-1 mRNA and reduces LINE-1 mobilization.
Collapse
|
136
|
Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. p53 directly represses human LINE1 transposons. Genes Dev 2020; 34:1439-1451. [PMID: 33060137 PMCID: PMC7608743 DOI: 10.1101/gad.343186.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Collapse
Affiliation(s)
- Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Candace J Caillet
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephanie K Royer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
137
|
Pfaff AL, Bubb VJ, Quinn JP, Koks S. An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson's Disease Risk and Progression in the PPMI Cohort. Int J Mol Sci 2020; 21:E6562. [PMID: 32911699 PMCID: PMC7554759 DOI: 10.3390/ijms21186562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Long interspersed element-1 (LINE-1/L1s) contributes 17% of the human genome with more than 1 million elements present; however, fewer than 100 of these have evidence for being retrotransposition competent (RC). In addition to those RC-L1s present in the reference genome, there are a small number of known non-reference L1 insertions that are also retrotransposition competent. L1 activity, whether through the potentially detrimental effects of their mRNA or protein expression or somatic retrotransposition events, has been linked to several neurological conditions. The polymorphic nature of both reference and non-reference RC-L1s in terms of their presence or absence will result in individuals harboring a different combination of these elements and it is currently unknown if this type of germline variation contributes to the risk of neurological disease. Here, we utilized whole-genome sequencing data from 178 healthy controls and 372 Parkinson's disease (PD) subjects from the Parkinson's Progression Markers Initiative (PPMI) to investigate the role of RC-L1s in PD. In the PPMI cohort, we identified 22 reference and 50 non-reference polymorphic RC-L1 loci. Focusing on 16 highly active RC-L1 loci, an increased burden of these elements (≥9) was associated with PD (OR 1.25, 95% CI 1.03-1.51, p = 0.02). In addition, we identified significant associations of progression markers of PD and the burden of highly active RC-L1s. This study has identified a novel type of genetic element associated with PD risk and disease progression.
Collapse
Affiliation(s)
- Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (V.J.B.); (J.P.Q.)
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (V.J.B.); (J.P.Q.)
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
138
|
Pradhan M, Govindaraju A, Jagdish A, Christensen SM. The linker region of LINEs modulates DNA cleavage and DNA polymerization. Anal Biochem 2020; 603:113809. [PMID: 32511965 DOI: 10.1016/j.ab.2020.113809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
Long interspersed elements (LINEs) replicate by target primed reverse transcription (TPRT). Insertion involves two half reactions. Each half reaction involves DNA cleavage followed by DNA synthesis. The linker region, located just beyond the reverse transcriptase in the LINE open reading frame, contains a set of predicted helices that may form an α-finger, followed by a gag-like zinc-knuckle. Point mutations of moderately conserved amino-acid residues in the presumptive α-finger severely impair the DNA endonuclease and reverse transcriptase activities of the integration reaction during both half reactions. Mutations in the gag-like zinc-knuckle also impair DNA cleavage and DNA synthesis in some instances. Mutations in core residues that presumably disrupt the protein structure of the presumptive α-finger and the gag-like zinc-knuckle lead to a promiscuous DNA endonuclease and protein-nucleic acid complexes that get stuck in the well during analysis. The linker region appears to function as a protein, DNA, and RNA conformational switching area. The linker is used to properly position nucleic acid substrates into the active sites of the reverse transcriptase and of the DNA endonuclease.
Collapse
Affiliation(s)
- Monika Pradhan
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Aruna Govindaraju
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Athena Jagdish
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
139
|
Furano AV, Jones CE, Periwal V, Callahan KE, Walser JC, Cook PR. Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p. PLoS Genet 2020; 16:e1008991. [PMID: 32797042 PMCID: PMC7449397 DOI: 10.1371/journal.pgen.1008991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/26/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
Accounting for continual evolution of deleterious L1 retrotransposon families, which can contain hundreds to thousands of members remains a major issue in mammalian biology. L1 activity generated upwards of 40% of some mammalian genomes, including humans where they remain active, causing genetic defects and rearrangements. L1 encodes a coiled coil-containing protein that is essential for retrotransposition, and the emergence of novel primate L1 families has been correlated with episodes of extensive amino acid substitutions in the coiled coil. These results were interpreted as an adaptive response to maintain L1 activity, however its mechanism remained unknown. Although an adventitious mutation can inactivate coiled coil function, its effect could be buffered by epistatic interactions within the coiled coil, made more likely if the family contains a diverse set of coiled coil sequences-collectively referred to as the coiled coil sequence space. Amino acid substitutions that do not affect coiled coil function (i.e., its phenotype) could be "hidden" from (not subject to) purifying selection. The accumulation of such substitutions, often referred to as cryptic genetic variation, has been documented in various proteins. Here we report that this phenomenon was in effect during the latest episode of primate coiled coil evolution, which occurred 30-10 MYA during the emergence of primate L1Pa7-L1Pa3 families. First, we experimentally demonstrated that while coiled coil function (measured by retrotransposition) can be eliminated by single epistatic mutations, it nonetheless can also withstand extensive amino acid substitutions. Second, principal component and cluster analysis showed that the coiled coil sequence space of each of the L1Pa7-3 families was notably increased by the presence of distinct, coexisting coiled coil sequences. Thus, sampling related networks of functional sequences rather than traversing discrete adaptive states characterized the persistence L1 activity during this evolutionary event.
Collapse
Affiliation(s)
- Anthony V. Furano
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Charlie E. Jones
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vipul Periwal
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathryn E. Callahan
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jean-Claude Walser
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pamela R. Cook
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
140
|
Damert A. LINE-1 ORF1p does not determine substrate preference for human/orangutan SVA and gibbon LAVA. Mob DNA 2020; 11:27. [PMID: 32676128 PMCID: PMC7353768 DOI: 10.1186/s13100-020-00222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Non-autonomous VNTR (Variable Number of Tandem Repeats) composite retrotransposons – SVA (SINE-R-VNTR-Alu) and LAVA (L1-Alu-VNTR-Alu) – are specific to hominoid primates. SVA expanded in great apes, LAVA in gibbon. Both SVA and LAVA have been shown to be mobilized by the autonomous LINE-1 (L1)-encoded protein machinery in a cell-based assay in trans. The efficiency of human SVA retrotransposition in vitro has, however, been considerably lower than would be expected based on recent pedigree-based in vivo estimates. The VNTR composite elements across hominoids – gibbon LAVA, orangutan SVA_A descendants and hominine SVA_D descendants – display characteristic structures of the 5′ Alu-like domain and the VNTR. Different partner L1 subfamilies are currently active in each of the lineages. The possibility that the lineage-specific types of VNTR composites evolved in response to evolutionary changes in their autonomous partners, particularly in the nucleic acid binding L1 ORF1-encoded protein, has not been addressed. Results Here I report the identification and functional characterization of a highly active human SVA element using an improved mneo retrotransposition reporter cassette. The modified cassette (mneoM) minimizes splicing between the VNTR of human SVAs and the neomycin phosphotransferase stop codon. SVA deletion analysis provides evidence that key elements determining its mobilization efficiency reside in the VNTR and 5′ hexameric repeats. Simultaneous removal of the 5′ hexameric repeats and part of the VNTR has an additive negative effect on mobilization rates. Taking advantage of the modified reporter cassette that facilitates robust cross-species comparison of SVA/LAVA retrotransposition, I show that the ORF1-encoded proteins of the L1 subfamilies currently active in gibbon, orangutan and human do not display substrate preference for gibbon LAVA versus orangutan SVA versus human SVA. Finally, I demonstrate that an orangutan-derived ORF1p supports only limited retrotransposition of SVA/LAVA in trans, despite being fully functional in L1 mobilization in cis. Conclusions Overall, the analysis confirms SVA as a highly active human retrotransposon and preferred substrate of the L1-encoded protein machinery. Based on the results obtained in human cells coevolution of L1 ORF1p and VNTR composites does not appear very likely. The changes in orangutan L1 ORF1p that markedly reduce its mobilization capacity in trans might explain the different SVA insertion rates in the orangutan and hominine lineages, respectively.
Collapse
Affiliation(s)
- Annette Damert
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
141
|
Wang J, Huang J, Shi G. Retrotransposons in pluripotent stem cells. CELL REGENERATION 2020; 9:4. [PMID: 32588192 PMCID: PMC7306833 DOI: 10.1186/s13619-020-00046-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Transposable elements constitute about half of the mammalian genome, and can be divided into two classes: the class I (retrotransposons) and the class II (DNA transposons). A few hundred types of retrotransposons, which are dynamic and stage specific, have been annotated. The copy numbers and genomic locations are significantly varied in species. Retrotransposons are active in germ cells, early embryos and pluripotent stem cells (PSCs) correlated with low levels of DNA methylation in epigenetic regulation. Some key pluripotency transcriptional factors (such as OCT4, SOX2, and NANOG) bind retrotransposons and regulate their activities in PSCs, suggesting a vital role of retrotransposons in pluripotency maintenance and self-renewal. In response to retrotransposons transposition, cells employ a number of silencing mechanisms, such as DNA methylation and histone modification. This review summarizes expression patterns, functions, and regulation of retrotransposons in PSCs and early embryonic development.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China
| | - Junjiu Huang
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Guang Shi
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
142
|
Yang L, Emerman M, Malik HS, McLaughlin RN. Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates. eLife 2020; 9:e58436. [PMID: 32479260 PMCID: PMC7263822 DOI: 10.7554/elife.58436] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Host-virus arms races are inherently asymmetric; viruses evolve much more rapidly than host genomes. Thus, there is high interest in discovering mechanisms by which host genomes keep pace with rapidly evolving viruses. One family of restriction factors, the APOBEC3 (A3) cytidine deaminases, has undergone positive selection and expansion via segmental gene duplication and recombination. Here, we show that new copies of A3 genes have also been created in primates by reverse transcriptase-encoding elements like LINE-1 or endogenous retroviruses via a process termed retrocopying. First, we discovered that all simian primate genomes retain the remnants of an ancient A3 retrocopy: A3I. Furthermore, we found that some New World monkeys encode up to ten additional APOBEC3G (A3G) retrocopies. Some of these A3G retrocopies are transcribed in a variety of tissues and able to restrict retroviruses. Our findings suggest that host genomes co-opt retroelement activity in the germline to create new host restriction factors as another means to keep pace with the rapid evolution of viruses. (163).
Collapse
Affiliation(s)
- Lei Yang
- Pacific Northwest Research InstituteSeattleUnited States
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Richard N McLaughlin
- Pacific Northwest Research InstituteSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
143
|
Transposon Reactivation in the Germline May Be Useful for Both Transposons and Their Host Genomes. Cells 2020; 9:cells9051172. [PMID: 32397241 PMCID: PMC7290860 DOI: 10.3390/cells9051172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
Transposable elements (TEs) are long-term residents of eukaryotic genomes that make up a large portion of these genomes. They can be considered as perfectly fine members of genomes replicating with resident genes and being transmitted vertically to the next generation. However, unlike regular genes, TEs have the ability to send new copies to new sites. As such, they have been considered as parasitic members ensuring their own replication. In another view, TEs may also be considered as symbiotic sequences providing shared benefits after mutualistic interactions with their host genome. In this review, we recall the relationship between TEs and their host genome and discuss why transient relaxation of TE silencing within specific developmental windows may be useful for both.
Collapse
|
144
|
Ueberham U, Arendt T. Genomic Indexing by Somatic Gene Recombination of mRNA/ncRNA - Does It Play a Role in Genomic Mosaicism, Memory Formation, and Alzheimer's Disease? Front Genet 2020; 11:370. [PMID: 32411177 PMCID: PMC7200996 DOI: 10.3389/fgene.2020.00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence indicates that genomic individuality of neurons, characterized by DNA-content variation, is a common if not universal phenomenon in the human brain that occurs naturally but can also show aberrancies that have been linked to the pathomechanism of Alzheimer’s disease and related neurodegenerative disorders. Etiologically, this genomic mosaic has been suggested to arise from defects of cell cycle regulation that may occur either during brain development or in the mature brain after terminal differentiation of neurons. Here, we aim to draw attention towards another mechanism that can give rise to genomic individuality of neurons, with far-reaching consequences. This mechanism has its origin in the transcriptome rather than in replication defects of the genome, i.e., somatic gene recombination of RNA. We continue to develop the concept that somatic gene recombination of RNA provides a physiological process that, through integration of intronless mRNA/ncRNA into the genome, allows a particular functional state at the level of the individual neuron to be indexed. By insertion of defined RNAs in a somatic recombination process, the presence of specific mRNA transcripts within a definite temporal context can be “frozen” and can serve as an index that can be recalled at any later point in time. This allows information related to a specific neuronal state of differentiation and/or activity relevant to a memory trace to be fixed. We suggest that this process is used throughout the lifetime of each neuron and might have both advantageous and deleterious consequences.
Collapse
Affiliation(s)
- Uwe Ueberham
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
145
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
146
|
Zhou W, Emery SB, Flasch DA, Wang Y, Kwan KY, Kidd JM, Moran JV, Mills RE. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res 2020; 48:1146-1163. [PMID: 31853540 PMCID: PMC7026601 DOI: 10.1093/nar/gkz1173] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
Long Interspersed Element-1 (LINE-1) retrotransposition contributes to inter- and intra-individual genetic variation and occasionally can lead to human genetic disorders. Various strategies have been developed to identify human-specific LINE-1 (L1Hs) insertions from short-read whole genome sequencing (WGS) data; however, they have limitations in detecting insertions in complex repetitive genomic regions. Here, we developed a computational tool (PALMER) and used it to identify 203 non-reference L1Hs insertions in the NA12878 benchmark genome. Using PacBio long-read sequencing data, we identified L1Hs insertions that were absent in previous short-read studies (90/203). Approximately 81% (73/90) of the L1Hs insertions reside within endogenous LINE-1 sequences in the reference assembly and the analysis of unique breakpoint junction sequences revealed 63% (57/90) of these L1Hs insertions could be genotyped in 1000 Genomes Project sequences. Moreover, we observed that amplification biases encountered in single-cell WGS experiments led to a wide variation in L1Hs insertion detection rates between four individual NA12878 cells; under-amplification limited detection to 32% (65/203) of insertions, whereas over-amplification increased false positive calls. In sum, these data indicate that L1Hs insertions are often missed using standard short-read sequencing approaches and long-read sequencing approaches can significantly improve the detection of L1Hs insertions present in individual genomes.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Yifan Wang
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Kenneth Y Kwan
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
147
|
Balachandran P, Beck CR. Structural variant identification and characterization. Chromosome Res 2020; 28:31-47. [PMID: 31907725 PMCID: PMC7131885 DOI: 10.1007/s10577-019-09623-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023]
Abstract
Structural variant (SV) differences between human genomes can cause germline and mosaic disease as well as inter-individual variation. De-regulation of accurate DNA repair and genomic surveillance mechanisms results in a large number of SVs in cancer. Analysis of the DNA sequences at SV breakpoints can help identify pathways of mutagenesis and regions of the genome that are more susceptible to rearrangement. Large-scale SV analyses have been enabled by high-throughput genome-level sequencing on humans in the past decade. These studies have shed light on the mechanisms and prevalence of complex genomic rearrangements. Recent advancements in both sequencing and other mapping technologies as well as calling algorithms for detection of genomic rearrangements have helped propel SV detection into population-scale studies, and have begun to elucidate previously inaccessible regions of the genome. Here, we discuss the genomic organization of simple and complex SVs, the molecular mechanisms of their formation, and various ways to detect them. We also introduce methods for characterizing SVs and their consequences on human genomes.
Collapse
Affiliation(s)
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
148
|
LINE-1 retrotransposon encoded ORF1p expression and promoter methylation in oral squamous cell carcinoma: a pilot study. Cancer Genet 2020; 244:21-29. [PMID: 32088612 DOI: 10.1016/j.cancergen.2020.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is highly predominant in India due to excessive use of tobacco. Here we investigated Long INterpersed Element 1 (LINE or L1) retrotransposon activity in OSCC samples in the same population. There are almost 500,000 copies of L1 occupied around 30% of the human genome. Although most of them are inactive, around 150-200 copies are actively jumping in a human genome. L1 encodes two proteins designated as ORF1p and ORF2p and expression of both proteins are critical for the process of retrotransposition. Here we have analyzed L1 ORF1p expression in a small cohort (n = 15) of paired cancer-normal tissues obtained from operated oral cancer patients. Immunohistochemistry (IHC) with the human ORF1 antibody showed the presence of ORF1p in almost 60% cancer samples, and few of them also showed aberrant p53 expression. Investigating L1 promoter methylation status, showed certain trends towards hypomethylation of the L1 promoter in cancer tissues compared to its normal counterpart. Our data raise the possibility that L1ORF1p expression might have some role in the onset and progression of this particular type of cancer.
Collapse
|
149
|
Mita P, Sun X, Fenyö D, Kahler DJ, Li D, Agmon N, Wudzinska A, Keegan S, Bader JS, Yun C, Boeke JD. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat Struct Mol Biol 2020; 27:179-191. [PMID: 32042152 PMCID: PMC7082080 DOI: 10.1038/s41594-020-0374-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is the only autonomous retrotransposon active in human cells. Different host factors have been shown to influence L1 mobility however, systematic analyses of these factors are limited. Here, we developed a high-throughput microscopy-based retrotransposition assay that identified the Double-Stranded Break (DSB) repair and Fanconi Anemia factors active in the S/G2 phase as potent inhibitors and regulators of L1 activity. In particular BRCA1, an E3 ubiquitin ligase with a key role in several DNA repair pathways, directly affects L1 retrotransposition frequency and structure and also plays a distinct role in controlling L1 ORF2 protein translation through L1 mRNA binding. These results suggest the existence of a “battleground” at the DNA replication fork between HR factors and L1 retrotransposons, and revealing a potential role for L1 in the genotypic evolution of tumors characterized by BRCA1 and HR repair deficiencies.
Collapse
Affiliation(s)
- Paolo Mita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Xiaoji Sun
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.,Cellarity Inc., Cambridge, MA, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David J Kahler
- High Throughput Biology Core, NYU Langone Health, New York, NY, USA.,Planet Pharma, Boston, MA, USA
| | - Donghui Li
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.,Flagship VL58, Inc., Cambridge, MA, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chi Yun
- High Throughput Biology Core, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
150
|
Tristan-Ramos P, Morell S, Sanchez L, Toledo B, Garcia-Perez JL, Heras SR. sRNA/L1 retrotransposition: using siRNAs and miRNAs to expand the applications of the cell culture-based LINE-1 retrotransposition assay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190346. [PMID: 32075559 DOI: 10.1098/rstb.2019.0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cell culture-based retrotransposition reporter assay has been (and is) an essential tool for the study of vertebrate Long INterspersed Elements (LINEs). Developed more than 20 years ago, this assay has been instrumental in characterizing the role of LINE-encoded proteins in retrotransposition, understanding how ribonucleoprotein particles are formed, how host factors regulate LINE mobilization, etc. Moreover, variations of the conventional assay have been developed to investigate the biology of other currently active human retrotransposons, such as Alu and SVA. Here, we describe a protocol that allows combination of the conventional cell culture-based LINE-1 retrotransposition reporter assay with short interfering RNAs (siRNAs) and microRNA (miRNAs) mimics or inhibitors, which has allowed us to uncover specific miRNAs and host factors that regulate retrotransposition. The protocol described here is highly reproducible, quantitative, robust and flexible, and allows the study of several small RNA classes and various retrotransposons. To illustrate its utility, here we show that siRNAs to Fanconi anaemia proteins (FANC-A and FANC-C) and an inhibitor of miRNA-20 upregulate and downregulate human L1 retrotransposition, respectively. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Pablo Tristan-Ramos
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Santiago Morell
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain
| | - Laura Sanchez
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain
| | - Belen Toledo
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose L Garcia-Perez
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sara R Heras
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|