101
|
Iravani O, Bay BH, Yip GWC. Silencing HS6ST3 inhibits growth and progression of breast cancer cells through suppressing IGF1R and inducing XAF1. Exp Cell Res 2016; 350:380-389. [PMID: 28017727 DOI: 10.1016/j.yexcr.2016.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023]
Abstract
Heparan sulfate 6-O-sulfation is biologically edited by 6-O-sulfotransferases (HS6STs) within heparan sulfate chains. Three isoforms of HS6ST have been identified. These enzymes are found to be differentially expressed in a variety of tissues. Recently, several studies have shown that dysregulation of 6-O-sulfotransferases could be involved in tumorigenesis of several cancers. This study aimed to analyze the expression and function of HS6ST3 in breast cancer. HS6ST3 was found up-regulated in T47D, MCF7 and MDA-MB231 breast cancer cell lines. HS6ST3 was then silenced in T47D and MCF7 using siRNA. Silencing HS6ST3 diminished tumor cell growth, migration and invasion, but enhanced cell adhesion and apoptosis in breast cancer. Gene microarray analysis revealed that silencing HS6ST3 significantly changed the expression of IGF1R and XAF1 in breast cancer cells. Further functional studies showed that the cellular processes were mediated by IGF1R and XAF1 after silencing HS6ST3 in breast cancer cells. Together these results indicate that HS6ST3 might be involved in the tumorigenesis of breast cancer and it could be a promising target in breast cancer therapy.
Collapse
Affiliation(s)
- Omid Iravani
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - George Wai-Cheong Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
102
|
Impact of inhibitor of apoptosis proteins on immune modulation and inflammation. Immunol Cell Biol 2016; 95:236-243. [DOI: 10.1038/icb.2016.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
103
|
Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Proc Natl Acad Sci U S A 2016; 113:E6080-E6088. [PMID: 27681633 DOI: 10.1073/pnas.1603549113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection.
Collapse
|
104
|
Ashley SL, Sisson TH, Wheaton AK, Kim KK, Wilke CA, Ajayi IO, Subbotina N, Wang S, Duckett CS, Moore BB, Horowitz JC. Targeting Inhibitor of Apoptosis Proteins Protects from Bleomycin-Induced Lung Fibrosis. Am J Respir Cell Mol Biol 2016; 54:482-92. [PMID: 26378893 DOI: 10.1165/rcmb.2015-0148oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Accumulation of apoptosis-resistant fibroblasts is a hallmark of pulmonary fibrosis. We hypothesized that disruption of inhibitor of apoptosis protein (IAP) family proteins would limit lung fibrosis. We first show that transforming growth factor-β1 and bleomycin increase X-linked IAP (XIAP) and cellular IAP (cIAP)-1 and -2 in murine lungs and mesenchymal cells. Functional blockade of XIAP and the cIAPs with AT-406, an orally bioavailable second mitochondria-derived activator of caspases (Smac) mimetic, abrogated bleomycin-induced lung fibrosis when given both prophylactically and therapeutically. To determine whether the reduction in fibrosis was predominantly due to AT-406-mediated inhibition of XIAP, we compared the fibrotic response of XIAP-deficient mice (XIAP(-/y)) with littermate controls and found no difference. We found no alterations in total inflammatory cells of either wild-type mice treated with AT-406 or XIAP(-/y) mice. AT-406 treatment limited CCL12 and IFN-γ production, whereas XIAP(-/y) mice exhibited increased IL-1β expression. Surprisingly, XIAP(-/y) mesenchymal cells had increased resistance to Fas-mediated apoptosis. Functional blockade of cIAPs with AT-406 restored sensitivity to Fas-mediated apoptosis in XIAP(-/y) mesenchymal cells in vitro and increased apoptosis of mesenchymal cells in vivo, indicating that the increased apoptosis resistance in XIAP(-/y) mesenchymal cells was the result of increased cIAP expression. Collectively, these results indicate that: (1) IAPs have a role in the pathogenesis of lung fibrosis; (2) a congenital deficiency of XIAP may be overcome by compensatory mechanisms of other IAPs; and (3) broad functional inhibition of IAPs may be an effective strategy for the treatment of lung fibrosis by promoting mesenchymal cell apoptosis.
Collapse
Affiliation(s)
- Shanna L Ashley
- 1 Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Thomas H Sisson
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Amanda K Wheaton
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Kevin K Kim
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Carol A Wilke
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Iyabode O Ajayi
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Natalya Subbotina
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Shaomeng Wang
- 3 Internal Medicine, Division of Hematology-Oncology
| | | | - Bethany B Moore
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care.,6 Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey C Horowitz
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| |
Collapse
|
105
|
Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, Kurutz J, Rathakrishnan A, Fernández-Sáiz V, Brunner A, Targosz BS, Loewecke F, Gloeckner CJ, Ueffing M, Fulda S, Pfreundschuh M, Trümper L, Klapper W, Keller U, Jost PJ, Rosenwald A, Peschel C, Bassermann F. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med 2016; 8:851-62. [PMID: 27317434 PMCID: PMC4967940 DOI: 10.15252/emmm.201506047] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC‐induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X‐linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B‐cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event‐free survival in patients treated with spindle poison‐containing chemotherapy. Accordingly, aggressive B‐cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ‐Myc lymphoma model. Together, we specify the USP9X–XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B‐cell lymphoma.
Collapse
Affiliation(s)
- Katharina Engel
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Martina Rudelius
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, Universität Würzburg, Würzburg, Germany
| | - Jolanta Slawska
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Laura Jacobs
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Behnaz Ahangarian Abhari
- Institut für Experimentelle Tumorforschung in der Pädiatrie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Bettina Altmann
- Institute for Medical Informatics, Statistics and Epidemiology, Universität Leipzig, Leipzig, Germany
| | - Julia Kurutz
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Abirami Rathakrishnan
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Vanesa Fernández-Sáiz
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrä Brunner
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Bianca-Sabrina Targosz
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Felicia Loewecke
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Christian Johannes Gloeckner
- Eberhard-Karls-Universität Tübingen, Institute for Ophthalmic Research, Medical Proteome Center, Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Marius Ueffing
- Eberhard-Karls-Universität Tübingen, Institute for Ophthalmic Research, Medical Proteome Center, Tübingen, Germany
| | - Simone Fulda
- Institut für Experimentelle Tumorforschung in der Pädiatrie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Pfreundschuh
- Department of Medicine I, Saarland University Medical School, Homburg (Saar), Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Wolfram Klapper
- Institute of Pathology, Haematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Ulrich Keller
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp J Jost
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Andreas Rosenwald
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, Universität Würzburg, Würzburg, Germany
| | - Christian Peschel
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
106
|
Saleeart A, Mongkorntanyatip K, Sangsuriya P, Senapin S, Rattanarojpong T, Khunrae P. The interaction between PmHtrA2 and PmIAP and its effect on the activity of Pm caspase. FISH & SHELLFISH IMMUNOLOGY 2016; 55:393-400. [PMID: 27328308 DOI: 10.1016/j.fsi.2016.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Apoptosis is an essential mechanism in multicellular organisms which results in the induction of cell death. Important apoptotic proteins, including high temperature requirement A2 (PmHtrA2; also known as serine protease), inhibitor of apoptosis protein (PmIAP) and Pm caspase, have been previously identified in black tiger shrimp, Penaeus monodon. However, the relevance among these proteins in apoptosis regulation has not been established yet in shrimp. Here, we showed that PmHtrA2 was able to interact with PmIAP and the binding of the two proteins was mediated by the BIR2 domain of PmIAP. In addition, the BIR2 of PmIAP was shown to be able to inhibit Pm caspase activity. The inhibitory effect of the BIR2 domain on Pm caspase was impaired under the presence of the IBM peptide of PmHtrA2, implying a role for PmHtrA2 in apoptosis activation. Our combined results suggested that P. monodon possesses a conserved mechanism by which the caspase-3 activity is modulated by HtrA2 and IAP, as previously seen in insects and mammals.
Collapse
Affiliation(s)
- Anchulee Saleeart
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Karntichar Mongkorntanyatip
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klongluang, Pathumthani 12120, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechonology, Mahidol University, 272 Rama VI Road, Bangkok, 10400, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
107
|
Abstract
Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.
Collapse
Affiliation(s)
- Zhonghui Lin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| | - Hongtao Yu
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| |
Collapse
|
108
|
Jain A, Jain T, Kumar P, Kumar M, De S, Gohain M, Kumar R, Datta TK. Follicle-stimulating hormone-induced rescue of cumulus cell apoptosis and enhanced development ability of buffalo oocytes. Domest Anim Endocrinol 2016; 55:74-82. [PMID: 26774556 DOI: 10.1016/j.domaniend.2015.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
The effect of follicle-stimulating hormone (FSH) on apoptotic status of cumulus cells, expression of proapoptotic and antiapoptotic genes, and development rate of in vitro fertilization-produced buffalo embryos were investigated. FSH supplementation in in vitro maturation-medium resulted in a dose-dependent reduction in the expression of proapoptotic genes namely, BCL2-associated X protein (BAX), cytochrome c, and caspase-3 and increase in the expression of antiapoptotic genes such as B-cell lymphoma 2 (BCL2) and X-linked inhibitor of apoptosis protein (XIAP) in cumulus cells of mature oocyte. Cumulus expansion, oocyte maturation, cleavage, and blastocyst development rates were significantly higher (P < 0.05) in 5 and 10-μg/mL FSH-supplemented groups as compared with control. Significant increase in the expression of FSH receptor messenger RNA was also found with 5 and 10-μg/mL FSH (P < 0.05). Terminal deoxynucleotidyl transferase dUTP nick end labeling assay confirmed that the population of apoptotic cumulus cells of matured oocytes was reduced in the FSH-treated groups as compared with control (P < 0.05). In conclusion, our data suggest that FSH may attenuate apoptosis in cumulus cells via mitochondria-dependent apoptotic pathway by increasing XIAP expression, resulting in a more favorable ratio of BCL2/BAX expression and decreasing the cytochrome c and caspase-3 expression, eventually contributing to developmental competence of oocytes. The information generated will help in improving the in vitro embryo production program in buffalo.
Collapse
Affiliation(s)
- A Jain
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - T Jain
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - P Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - M Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - S De
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - M Gohain
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - R Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - T K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
109
|
Huang D, Qiu S, Ge R, He L, Li M, Li Y, Peng Y. miR-340 suppresses glioblastoma multiforme. Oncotarget 2016; 6:9257-70. [PMID: 25831237 PMCID: PMC4496215 DOI: 10.18632/oncotarget.3288] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/07/2015] [Indexed: 11/25/2022] Open
Abstract
Deregulation of microRNAs (miRs) contributes to tumorigenesis. Down-regulation of miR-340 is observed in multiple types of cancers. However, the biological function of miR-340 in glioblastoma multiforme (GBM) remains largely unknown. In the present study, we demonstrated that expression of miR-340 was downregulated in both glioma cell lines and tissues. Survival of GBM patients with high levels of miR-340 was significantly extended in comparison to patients expressing low miR-340 levels. Biological functional experiments showed that the restoration of miR-340 dramatically inhibited glioma cell proliferation, induced cell-cycle arrest and apoptosis, suppressed cell motility and promoted autophagy and terminal differentiation. Mechanistic studies disclosed that, miR-340 over-expression suppressed several oncogenes including p-AKT, EZH2, EGFR, BMI1 and XIAP. Furthermore, ROCK1 was validated as a direct functional target miR-340 and silencing of ROCK1 phenocopied the anti-tumor effect of mR-340. Our findings indicate an important role of miR-340 as a glioma killer, and suggest a potential prognosis biomarker and therapeutic target for GBM.
Collapse
Affiliation(s)
- Daquan Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuwei Qiu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lei He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mei Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
110
|
Unsain N, Barker PA. New Views on the Misconstrued: Executioner Caspases and Their Diverse Non-apoptotic Roles. Neuron 2016; 88:461-74. [PMID: 26539888 DOI: 10.1016/j.neuron.2015.08.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Initially characterized for their roles in apoptosis, executioner caspases have emerged as important regulators of an array of cellular activities. This is especially true in the nervous system, where sublethal caspase activity has been implicated in axonal pathfinding and branching, axonal degeneration, dendrite pruning, regeneration, long-term depression, and metaplasticity. Here we examine the roles of sublethal executioner caspase activity in nervous system development and maintenance, consider the mechanisms that locally activate and restrain these potential killers, and discuss how their activity be subverted in neurodegenerative disease.
Collapse
Affiliation(s)
- Nicolas Unsain
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Instituto Nacional de Investigación Médica Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Friuli 2434, Córdoba (5016), Argentina
| | - Philip A Barker
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
111
|
Cristina de Almagro M, Vucic D. Inhibitor of Apoptosis Proteins, the Sentinels of Cell Death and Signaling. ENCYCLOPEDIA OF CELL BIOLOGY 2016:390-398. [DOI: 10.1016/b978-0-12-394447-4.30052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
112
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
113
|
Shlezinger N, Israeli M, Mochly E, Oren-Young L, Zhu W, Sharon A. Translocation from nuclei to cytoplasm is necessary for anti A-PCD activity and turnover of the Type II IAP BcBir1. Mol Microbiol 2015; 99:393-406. [DOI: 10.1111/mmi.13238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Maayan Israeli
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Elad Mochly
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Liat Oren-Young
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
114
|
Micewicz ED, Ratikan JA, Waring AJ, Whitelegge JP, McBride WH, Ruchala P. Lipid-conjugated Smac analogues. Bioorg Med Chem Lett 2015; 25:4419-27. [PMID: 26384289 PMCID: PMC4592835 DOI: 10.1016/j.bmcl.2015.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
A small library of monovalent and bivalent Smac mimics was synthesized based on 2 types of monomers, with general structure NMeAla-Xaa-Pro-BHA (Xaa=Cys or Lys). Position 2 of the compounds was utilized to dimerize both types of monomers employing various bis-reactive linkers, as well as to modify selected compounds with lipids. The resulting library was screened in vitro against metastatic human breast cancer cell line MDA-MB-231, and the two most active compounds selected for in vivo studies. The most active lipid-conjugated analogue M11, showed in vivo activity while administered both subcutaneously and orally. Collectively, our findings suggest that lipidation may be a viable approach in the development of new Smac-based therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Josephine A Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA; Department of Physiology and Biophysics, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, USA
| | - Julian P Whitelegge
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
115
|
Abstract
Cell death and inflammation are ancient processes of fundamental biological importance in both normal physiology and human disease pathologies. The recent observation that apoptosis regulatory components have dual roles in cell death and inflammation suggests that these proteins function, not primarily to kill, but to coordinate tissue repair and remodeling. This perspective unifies cell death components as positive regulators of tissue repair that replaces malfunctioning or damaged tissues and enhances the resilience of epithelia to insult. It is now recognized that cells that die by apoptosis do not do so silently, but release a variety of paracrine signals to communicate with their cellular environment to ensure tissue regeneration, and wound healing. Moreover, inflammatory signaling pathways, such as those emanating from the TNF receptor or Toll-related receptors, take part in cell competition to eliminate developmentally aberrant clones. Ubiquitylation has emerged as crucial mediator of signal transduction in cell death and inflammation. Here, we focus on recent advances on ubiquitin-mediated regulation of cell death and inflammation, and how this is used to regulate the defense of homeostasis.
Collapse
|
116
|
Chessari G, Buck IM, Day JEH, Day PJ, Iqbal A, Johnson CN, Lewis EJ, Martins V, Miller D, Reader M, Rees DC, Rich SJ, Tamanini E, Vitorino M, Ward GA, Williams PA, Williams G, Wilsher NE, Woolford AJA. Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP. J Med Chem 2015. [PMID: 26218264 DOI: 10.1021/acs.jmedchem.5b00706] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). Structure-based hit optimization together with an analysis of protein-ligand electrostatic potential complementarity allowed us to significantly increase binding affinity of the starting hits. Subsequent optimization gave a potent nonalanine IAP antagonist structurally distinct from all IAP antagonists previously reported. The lead compound had activity in cell-based assays and in a mouse xenograft efficacy model and represents a highly promising start point for further optimization.
Collapse
Affiliation(s)
- Gianni Chessari
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Ildiko M Buck
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - James E H Day
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Philip J Day
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Aman Iqbal
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Christopher N Johnson
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Edward J Lewis
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Vanessa Martins
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Darcey Miller
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Michael Reader
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - David C Rees
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Sharna J Rich
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Emiliano Tamanini
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Marc Vitorino
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - George A Ward
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Pamela A Williams
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Glyn Williams
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Nicola E Wilsher
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Alison J-A Woolford
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| |
Collapse
|
117
|
Chaudhary AK, Yadav N, Bhat TA, O'Malley J, Kumar S, Chandra D. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today 2015; 21:38-47. [PMID: 26232549 DOI: 10.1016/j.drudis.2015.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
X-chromosome-linked inhibitor of apoptosis protein (XIAP) has an important regulatory role in programmed cell death by inhibiting the caspase cascade. Activation of XIAP-dependent signaling culminates into regulation of multiple cellular processes including apoptosis, innate immunity, epithelial-to-mesenchymal transition, cell migration, invasion, metastasis and differentiation. Although XIAP localizes to the cytosolic compartment, XIAP-mediated cellular signaling encompasses mitochondrial and post-mitochondrial levels. Recent findings demonstrate that XIAP also localizes to mitochondria and regulates mitochondria functions. XIAP acts upstream of mitochondrial cytochrome c release and modulates caspase-dependent apoptosis. The new function of XIAP has potential to enhance mitochondrial membrane permeabilization and other cellular functions controlling cytochrome c release. These findings could exploit the overexpression of XIAP in human tumors for therapeutic benefits.
Collapse
Affiliation(s)
- Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
118
|
Dinh CT, Goncalves S, Bas E, Van De Water TR, Zine A. Molecular regulation of auditory hair cell death and approaches to protect sensory receptor cells and/or stimulate repair following acoustic trauma. Front Cell Neurosci 2015; 9:96. [PMID: 25873860 PMCID: PMC4379916 DOI: 10.3389/fncel.2015.00096] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Loss of auditory sensory hair cells (HCs) is the most common cause of hearing loss. This review addresses the signaling pathways that are involved in the programmed and necrotic cell death of auditory HCs that occur in response to ototoxic and traumatic stressor events. The roles of inflammatory processes, oxidative stress, mitochondrial damage, cell death receptors, members of the mitogen-activated protein kinase (MAPK) signal pathway and pro- and anti-cell death members of the Bcl-2 family are explored. The molecular interaction of these signal pathways that initiates the loss of auditory HCs following acoustic trauma is covered and possible therapeutic interventions that may protect these sensory HCs from loss via apoptotic or non-apoptotic cell death are explored.
Collapse
Affiliation(s)
- Christine T Dinh
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Stefania Goncalves
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Esperanza Bas
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Thomas R Van De Water
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Azel Zine
- Integrative and Adaptive Neurosciences, Aix-Marseille Université, CNRS, UMR 7260 Marseille, France ; Faculty of Pharmacy, Biophysics Department, University of Montpellier Montpellier, France
| |
Collapse
|
119
|
McLuskey K, Mottram J. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases. Biochem J 2015; 466:219-32. [PMID: 25697094 PMCID: PMC4357240 DOI: 10.1042/bj20141324] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Abstract
Clan CD forms a structural group of cysteine peptidases, containing seven individual families and two subfamilies of structurally related enzymes. Historically, it is most notable for containing the mammalian caspases, on which the structures of the clan were founded. Interestingly, the caspase family is split into two subfamilies: the caspases, and a second subfamily containing both the paracaspases and the metacaspases. Structural data are now available for both the paracaspases and the metacaspases, allowing a comprehensive structural analysis of the entire caspase family. In addition, a relative plethora of structural data has recently become available for many of the other families in the clan, allowing both the structures and the structure-function relationships of clan CD to be fully explored. The present review compares the enzymes in the caspase subfamilies with each other, together with a comprehensive comparison of all the structural families in clan CD. This reveals a diverse group of structures with highly conserved structural elements that provide the peptidases with a variety of substrate specificities and activation mechanisms. It also reveals conserved structural elements involved in substrate binding, and potential autoinhibitory functions, throughout the clan, and confirms that the metacaspases are structurally diverse from the caspases (and paracaspases), suggesting that they should form a distinct family of clan CD peptidases.
Collapse
Key Words
- caspase
- clan cd
- crystallography
- metacaspase
- peptidase
- protein structure
- ap, activation peptide
- card, caspase recruitment domain
- chf, caspase/haemoglobinase fold
- cpd, cysteine peptidase domain
- csd, c-terminal subdomain
- dd, death domain
- ded, death effector domain
- insp6, myo-inositol hexakisphosphate
- lsam, legumain stabilization and activity modulation
- lsd1, lesion-simulating disease 1
- malt1, mucosa-associated lymphoid tissue translocation protein 1
- martx, multi-functional, autoprocessing repeat in toxin
- rmsd, root-mean-square deviation
- sse, secondary structural element
- xiap, x-linked inhibitor of apoptosis
- z-vrpr-fmk, benzoxycarbonyl-val-arg-pro-arg-fluoromethylketone
Collapse
Affiliation(s)
- Karen McLuskey
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jeremy C. Mottram
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
120
|
Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN. Cell death controlling complexes and their potential therapeutic role. Cell Mol Life Sci 2015; 72:505-517. [PMID: 25323133 PMCID: PMC11113151 DOI: 10.1007/s00018-014-1757-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/26/2022]
Abstract
Programmed cell death plays a central role in the regulation of homeostasis and development of multicellular organisms. Deregulation of programmed cell death is connected to a number of disorders, including cancer and autoimmune diseases. Initiation of cell death occurs in the multiprotein complexes or high molecular weight platforms. Composition, structure, and molecular interactions within these platforms influence the cellular decision toward life or death and, therefore, define the induction of a particular cell death program. Here, we discuss in detail the key cell-death complexes-including DISC, complex II, and TNFRI complex I/II, and the necrosome, RIPoptosome, apoptosome, and PIDDosome-that control apoptosis or necroptosis pathways as well as their regulation. The possibility of their pharmacological targeting leading to the development of new strategies of interference with cell death programs via control of the high molecular weight platforms will be discussed.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
121
|
Kelotra S, Jain M, Kelotra A, Jain I, Bandaru S, Nayarisseri A, Bidwai A. An in silico Appraisal to Identify High Affinity Anti-Apoptotic Synthetic Tetrapeptide Inhibitors Targeting the Mammalian Caspase 3 Enzyme. Asian Pac J Cancer Prev 2015; 15:10137-42. [DOI: 10.7314/apjcp.2014.15.23.10137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
122
|
Li G, Chang H, Zhai YP, Xu W. Targeted silencing of inhibitors of apoptosis proteins with siRNAs: a potential anti-cancer strategy for hepatocellular carcinoma. Asian Pac J Cancer Prev 2014; 14:4943-52. [PMID: 24175757 DOI: 10.7314/apjcp.2013.14.9.4943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies, with a very poor prognosis. Despite significant improvements in diagnosis and treatment in recent years, the long-term therapeutic efficacy is poor, partially due to tumor metastasis, recurrence, and resistance to chemo- or radio-therapy. Recently, it was found that a major feature of tumors is a combination of unrestrained cell proliferation and impaired apoptosis. There are now 8 recognized members of the IAP-family: NAIP, c-IAP1, c-IAP2, XIAP, Survivin, Bruce, Livin and ILP-2. These proteins all contribute to inhibition of apoptosis, and provide new potential avenues of cancer treatment. As a powerful tool to suppress gene expression in mammalian cells, RNAi species for inhibiting IAP genes can be directed against cancers. This review will provide a brief introduction to recent developments of the application IAP-siRNA in tumor studies, with the aim of inspiring future treatment of HCC.
Collapse
Affiliation(s)
- Gang Li
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China E-mail :
| | | | | | | |
Collapse
|
123
|
Budhidarmo R, Day CL. IAPs: Modular regulators of cell signalling. Semin Cell Dev Biol 2014; 39:80-90. [PMID: 25542341 DOI: 10.1016/j.semcdb.2014.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/17/2014] [Indexed: 01/30/2023]
Abstract
Members of the inhibitor of apoptosis (IAP) family are characterised by the presence of at least one baculoviral IAP repeat (BIR) domain. However, during the course of evolution, other globular modules have been adopted to perform distinct functions. Consequently, the IAP family is now recognised as consisting of members that perform critical functions in different aspects of cellular regulation. In this review, the structural diversity present within the IAP protein family is presented. Known structures of individual domains are discussed and their properties are described in light of recent data. In particular the plasticity of BIR domains and their ability to accommodate different binding partners is highlighted, as well as the importance of communication between the domains in regulating the covalent attachment of ubiquitin.
Collapse
Affiliation(s)
- Rhesa Budhidarmo
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
124
|
Gu DN, Huang Q, Tian L. The molecular mechanisms and therapeutic potential of microRNA-7 in cancer. Expert Opin Ther Targets 2014; 19:415-26. [PMID: 25434362 DOI: 10.1517/14728222.2014.988708] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Increasing evidence supports that microRNAs (miRNAs) play crucial roles in cancer through post-transcriptional gene silencing of their target genes, therefore, more and more effort has been devoted to develop miRNA-targeting therapeutics in cancer. MicroRNA-7 (miR-7) has been characterized as a potential tumor suppressor and regulates diverse fundamental biological processes of cancer cells including initiation, proliferation, migration, invasion, survival and death by targeting a number of oncogenic signaling pathways. AREAS COVERED This review examines evidence of the biological responses of miR-7 in cancer, with an emphasis on its regulation of the vital oncogenic signaling pathways. It also discusses the rationale, strategies and challenges of miR-7 as a potential therapeutic target for cancer. EXPERT OPINION With the increasing understanding of molecular mechanisms of miR-7-mediated regulatory networks and the advancement of miRNA-based therapeutics, targeting miR-7 may be a potential and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Dian-Na Gu
- Shanghai Jiao Tong University School of Medicine, Shanghai First People's Hospital, Experimental Research Center , Shanghai 201620 , PR China +86 21 37798755 ; +86 21 37798276 ;
| | | | | |
Collapse
|
125
|
Liang Y, Ewing PM, Laursen WJ, Tripp VT, Singh S, Splan KE. Copper-binding properties of the BIR2 and BIR3 domains of the X-linked inhibitor of apoptosis protein. J Inorg Biochem 2014; 140:104-10. [DOI: 10.1016/j.jinorgbio.2014.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 01/05/2023]
|
126
|
Bai L, Smith DC, Wang S. Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol Ther 2014; 144:82-95. [PMID: 24841289 PMCID: PMC4247261 DOI: 10.1016/j.pharmthera.2014.05.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/19/2022]
Abstract
Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments.
Collapse
Affiliation(s)
- Longchuan Bai
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - David C Smith
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Shaomeng Wang
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
127
|
Piao S, Kang M, Lee YJ, Choi WS, Chun YS, Kwak C, Kim HH. Cytotoxic Effects of Escin on Human Castration-resistant Prostate Cancer Cells Through the Induction of Apoptosis and G2/M Cell Cycle Arrest. Urology 2014; 84:982.e1-7. [DOI: 10.1016/j.urology.2014.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/19/2014] [Accepted: 06/13/2014] [Indexed: 01/11/2023]
|
128
|
Seo TW, Lee JS, Yoo SJ. Cellular inhibitor of apoptosis protein 1 ubiquitinates endonuclease G but does not affect endonuclease G-mediated cell death. Biochem Biophys Res Commun 2014; 451:644-9. [PMID: 25139236 DOI: 10.1016/j.bbrc.2014.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 11/30/2022]
Abstract
Inhibitors of Apoptosis Proteins (IAPs) are evolutionarily well conserved and have been recognized as the key negative regulators of apoptosis. Recently, the role of IAPs as E3 ligases through the Ring domain was revealed. Using proteomic analysis to explore potential target proteins of DIAP1, we identified Drosophila Endonuclease G (dEndoG), which is known as an effector of caspase-independent cell death. In this study, we demonstrate that human EndoG interacts with IAPs, including human cellular Inhibitor of Apoptosis Protein 1 (cIAP1). EndoG was ubiquitinated by IAPs in vitro and in human cell lines. Interestingly, cIAP1 was capable of ubiquitinating EndoG in the presence of wild-type and mutant Ubiquitin, in which all lysines except K63 were mutated to arginine. cIAP1 expression did not change the half-life of EndoG and cIAP1 depletion did not alter its levels. Expression of dEndoG 54310, in which the mitochondrial localization sequence was deleted, led to cell death that could not be suppressed by DIAP1 in S2 cells. Moreover, EndoG-mediated cell death induced by oxidative stress in HeLa cells was not affected by cIAP1. Therefore, these results indicate that IAPs interact and ubiquitinate EndoG via K63-mediated isopeptide linkages without affecting EndoG levels and EndoG-mediated cell death, suggesting that EndoG ubiquitination by IAPs may serve as a regulatory signal independent of proteasomal degradation.
Collapse
Affiliation(s)
- Tae Woong Seo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji Sun Lee
- Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Soon Ji Yoo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
129
|
Xiong S, Mu T, Wang G, Jiang X. Mitochondria-mediated apoptosis in mammals. Protein Cell 2014; 5:737-49. [PMID: 25073422 PMCID: PMC4180462 DOI: 10.1007/s13238-014-0089-1] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/08/2014] [Indexed: 01/06/2023] Open
Abstract
The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, maintenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehensively studied, yet a great deal of new evidence indicates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the targeted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | |
Collapse
|
130
|
Li J, Lin L, Du L, Xu C, Wang Y, Cao J, Wang Q, Fan F, Wang X, Wang Y, Liu Q. Radioprotective effect of a pan-caspase inhibitor in a novel model of radiation injury to the nucleus of the abducens nerve. Mol Med Rep 2014; 10:1433-7. [PMID: 24939579 DOI: 10.3892/mmr.2014.2334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/19/2014] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that neuronal cell death occurs via extrinsic (death receptors) and intrinsic (mitochondria) pathways. Radiation induces caspase activation fundamentally via the mitochondrial pathway. Caspases are the key regulators of apoptosis. Healthy male Sprague‑Dawley rats were used in the present study to examine the radioprotective effect of a type of pan-caspase inhibitor, z-VAD-fmk, following radiation, to investigate the effects of caspase blockade in a model of the nucleus of the abducens nerve. z-VAD-fmk was injected intracerebroventricularly as a bolus injection (0.2 µg/h for 1 h) into rats prior to exposure to radiation. Irradiation was conducted at room temperature at a dose of radiation of 4 Gy. The present study performed immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and western blot analysis and identified no significant changes in the expression of the X-linked inhibitor of apoptosis protein (XIAP) following radiation (P>0.05). As compared with the radiation alone group, the quantification of TUNEL-positive neurons was reduced in z-VAD‑fmk-treated animals following radiation (P<0.01). Inhibition of caspase induced by z-VAD‑fmk reduced the expression and activation of caspase-3, -8 and -9 (P<0.01). z-VAD-fmk effectively prevented radiation-induced apoptosis and this caspase inhibitor may be a potential therapeutic target in the treatment of brain radiation injury. The nucleus of the abducens nerve may be used as a radiation injury model, providing visual information and data on the apoptotic morphology of the abducens nucleus.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Human Anatomy, The Medical School of Inner Mongolia University for the Nationalities, Neimenggu, Tongliao 028041, P.R. China
| | - Li Lin
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, P.R. China
| | - Liqing Du
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Chang Xu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Yan Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jia Cao
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Qin Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Feiyue Fan
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xiaoping Wang
- Department of Human Anatomy, The Medical School of Inner Mongolia University for the Nationalities, Neimenggu, Tongliao 028041, P.R. China
| | - Yafei Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|
131
|
Cancer therapeutics: Targeting the apoptotic pathway. Crit Rev Oncol Hematol 2014; 90:200-19. [DOI: 10.1016/j.critrevonc.2013.12.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 01/20/2023] Open
|
132
|
Yim JH, Kim WG, Jeon MJ, Han JM, Kim TY, Yoon JH, Hong SJ, Song DE, Gong G, Shong YK, Kim WB. Association between expression of X-linked inhibitor of apoptosis protein and the clinical outcome in a BRAF V600E-prevalent papillary thyroid cancer population. Thyroid 2014; 24:689-94. [PMID: 24124924 PMCID: PMC3993013 DOI: 10.1089/thy.2012.0585] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The X-linked inhibitor of apoptosis protein (XIAP) is associated with carcinogenesis, cancer progression, and metastasis through inhibition of the caspase-mediated apoptotic pathway. The BRAF(V600E) mutation is the most common genetic alteration and an established prognostic marker in papillary thyroid cancer (PTC). The prevalence of the BRAF mutation is very high and is up to 80% in Korean PTC patients. In the present study, we evaluated the potential role of XIAP expression as a novel prognostic marker to predict recurrence, in combination with the BRAF(V600E) mutational status. METHODS The study enrolled 164 patients with conventional PTC who underwent bilateral thyroidectomy followed by immediate (131)I ablation. The presence of the BRAF(V600E) mutation was evaluated by direct sequencing. The degree of XIAP expression was evaluated by immunohistochemical (IHC) staining using a monoclonal antibody. RESULTS The BRAF(V600E) mutation was found in 123 of 164 patients (75%) with classical PTC. XIAP expression was positive in 128 of 164 patients (75%), and positive XIAP expression was significantly associated with the presence of lateral cervical lymph node metastases (p=0.01). XIAP expression was more frequent in BRAF(V600E) mutated PTCs than in BRAF wild type PTCs (p=0.048). The BRAF(V600E) mutation was significantly associated with cancer recurrence in study subjects (hazard ratio=2.98, p=0.039). PTCs positive for the BRAF(V600E) mutation but negative for XIAP expression had a significantly higher rate of recurrent PTC (hazard ratio=4.53, p=0.012). CONCLUSION The evaluation of XIAP expression and BRAF mutational analysis was more useful for the prediction of cancer recurrence in patients with PTC than BRAF genotype alone.
Collapse
Affiliation(s)
- Ji Hye Yim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won Gu Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min Ji Jeon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Min Han
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae Yong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jong Ho Yoon
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Suck Joon Hong
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong Eun Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Kee Shong
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won Bae Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
133
|
Aeluri M, Chamakuri S, Dasari B, Guduru SKR, Jimmidi R, Jogula S, Arya P. Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies. Chem Rev 2014; 114:4640-94. [DOI: 10.1021/cr4004049] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Madhu Aeluri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Chamakuri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Bhanudas Dasari
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Shiva Krishna Reddy Guduru
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Ravikumar Jimmidi
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Jogula
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Prabhat Arya
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| |
Collapse
|
134
|
Parker BC, Engels M, Annala M, Zhang W. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J Pathol 2014; 232:4-15. [PMID: 24588013 DOI: 10.1002/path.4297] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The emergence of fibroblast growth factor receptor (FGFR) family fusions across diverse cancers has brought attention to FGFR-derived cancer therapies. The discovery of the first recurrent FGFR fusion in glioblastoma was followed by discoveries of FGFR fusions in bladder, lung, breast, thyroid, oral, and prostate cancers. Drug targeting of FGFR fusions has shown promising results and should soon be translating into clinical trials. FGFR fusions form as a result of various mechanisms – predominantly deletion for FGFR1, translocation for FGFR2, and tandem duplication for FGFR3. The ability to exploit the unique targetability of FGFR fusions proves that FGFR-derived therapies could have a promising future in cancer therapeutics. Drug targeting of fusion genes has proven to be an extremely effective therapeutic approach for cancers such as the recurrent BCR–ABL1 fusion in chronic myeloid leukaemia. The recent discovery of recurrent FGFR family fusions in several cancer types has brought to attention the unique therapeutic potential for FGFR-positive patients. Understanding the diverse mechanisms of FGFR fusion formation and their oncogenic potential will shed light on the impact of FGFR-derived therapy in the future.
Collapse
|
135
|
Gifford CE, Weingartner E, Villanueva J, Johnson J, Zhang K, Filipovich AH, Bleesing JJ, Marsh RA. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations. CYTOMETRY PART B-CLINICAL CYTOMETRY 2014; 86:263-71. [PMID: 24616127 DOI: 10.1002/cyto.b.21166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/11/2013] [Accepted: 02/03/2014] [Indexed: 11/07/2022]
Abstract
INTRODUCTION X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. METHODS We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. RESULTS SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. CONCLUSION Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2.
Collapse
Affiliation(s)
- Carrie E Gifford
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Micewicz ED, Luong HT, Jung CL, Waring AJ, McBride WH, Ruchala P. Novel dimeric Smac analogs as prospective anticancer agents. Bioorg Med Chem Lett 2014; 24:1452-7. [PMID: 24582479 DOI: 10.1016/j.bmcl.2014.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/20/2022]
Abstract
A small library of monovalent Smac mimics with general structure NMeAla-Tle-(4R)-4-Benzyl-Pro-Xaa-cysteamide, was synthesized (Xaa=hydrophobic residue). The library was screened in vitro against human breast cancer cell lines MCF-7 and MDA-MB-231, and two most active compounds oligomerized via S-alkylation giving bivalent and trivalent derivatives. The most active bivalent analogue SMAC17-2X was tested in vivo and in physiological conditions (mouse model) it exerted a potent anticancer effect resulting in ∼23.4days of tumor growth delay at 7.5mg/kg dose. Collectively, our findings suggest that bivalent Smac analogs obtained via S-alkylation protocol may be a suitable platform for the development of new anticancer therapeutics.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Hai T Luong
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Chun-Ling Jung
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA; Department of Physiology and Biophysics, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| |
Collapse
|
137
|
Fadó R, Moubarak RS, Miñano-Molina AJ, Barneda-Zahonero B, Valero J, Saura CA, Moran J, Comella JX, Rodríguez-Álvarez J. X-linked inhibitor of apoptosis protein negatively regulates neuronal differentiation through interaction with cRAF and Trk. Sci Rep 2014; 3:2397. [PMID: 23928917 PMCID: PMC3739015 DOI: 10.1038/srep02397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 12/24/2022] Open
Abstract
X-linked Inhibitor of apoptosis protein (XIAP) has been classically identified as a cell death regulator. Here, we demonstrate a novel function of XIAP as a regulator of neurite outgrowth in neuronal cells. In PC12 cells, XIAP overexpression prevents NGF-induced neuronal differentiation, whereas NGF treatment induces a reduction of endogenous XIAP levels concomitant with the induction of neuronal differentiation. Accordingly, downregulation of endogenous XIAP protein levels strongly increases neurite outgrowth in PC12 cells as well as axonal and dendritic length in primary cortical neurons. The effects of XIAP are mediated by the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERKs) pathway since blocking this pathway completely prevents the neuritogenesis mediated by XIAP downregulation. In addition, we found that XIAP binds to cRaf and Trk receptors. Our results demonstrate that XIAP plays a new role as a negative regulator of neurotrophin-induced neurite outgrowth and neuronal differentiation in developing neurons.
Collapse
Affiliation(s)
- Rut Fadó
- Institut de Neurociències and Dpt. Bioquímica and Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Inhibitor of Apoptosis (IAP) proteins in hematological malignancies: molecular mechanisms and therapeutic opportunities. Leukemia 2014; 28:1414-22. [PMID: 24487414 DOI: 10.1038/leu.2014.56] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
Inhibitor of Apoptosis (IAP) proteins exert essential functions during tumorigenesis as well as treatment resistance by simultaneously blocking cell death pathways and promoting cell survival. As IAP proteins are typically aberrantly expressed in human cancers including hematological malignancies, they represent in principle promising targets for therapeutic interventions. There are currently exciting opportunities to rationally exploit the therapeutic targeting of IAP proteins for the treatment of leukemia and lymphoma. Further insights into the signaling pathways that are under the control of IAP proteins and into the specific IAP protein-dependent vulnerabilities of hematological neoplasms are expected to pave the avenue to novel treatment strategies.
Collapse
|
139
|
Abstract
Cell death by apoptosis plays a critical role in regulating the subtle balance between cell death and proliferation to maintain tissue homeostasis. Accordingly, tipping the balance in either direction may cause human disease. Too little cell death may promote tumor formation and progression. In addition, killing of cancer cells by current therapies is largely due to induction of apoptosis in tumor cells. Since a hallmark of human cancers is their resistance to apoptosis, there is a demand to develop novel strategies that restore the apoptotic machinery in order to overcome cancer resistance. Inhibitor of apoptosis proteins (IAPs) block apoptosis at the core of the apoptotic machinery by inhibiting caspases. Elevated levels of IAPs are found in many human cancers and have been associated with poor prognosis. Recent insights into the role of IAPs have provided the basis for various exciting developments that aim to modulate the expression or function of IAPs in human cancers. Targeting IAPs (e.g., by antisense approaches or small-molecule inhibitors) presents a promising novel approach to either directly trigger apoptosis or to potentiate the efficacy of cytotoxic therapies in cancer cells. Thus, inhibition of IAPs such as X chromosome-linked IAP may prove to be a successful strategy to overcome apoptosis resistance of human cancers that deserves further exploitation.
Collapse
Affiliation(s)
- Simone Fulda
- University Children's Hospital, Eythstr. 24-89075, Ulm, Germany.
| |
Collapse
|
140
|
Hennessy EJ, Adam A, Aquila BM, Castriotta LM, Cook D, Hattersley M, Hird AW, Huntington C, Kamhi VM, Laing NM, Li D, MacIntyre T, Omer CA, Oza V, Patterson T, Repik G, Rooney MT, Saeh JC, Sha L, Vasbinder MM, Wang H, Whitston D. Discovery of a Novel Class of Dimeric Smac Mimetics as Potent IAP Antagonists Resulting in a Clinical Candidate for the Treatment of Cancer (AZD5582). J Med Chem 2013; 56:9897-919. [DOI: 10.1021/jm401075x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Edward J. Hennessy
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ammar Adam
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Brian M. Aquila
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Lillian M. Castriotta
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Donald Cook
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Maureen Hattersley
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alexander W. Hird
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Christopher Huntington
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Victor M. Kamhi
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Naomi M. Laing
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Danyang Li
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Terry MacIntyre
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Charles A. Omer
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Vibha Oza
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Troy Patterson
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Galina Repik
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Michael T. Rooney
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jamal C. Saeh
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Li Sha
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Melissa M. Vasbinder
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Haiyun Wang
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David Whitston
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
141
|
The HECTD3 E3 ubiquitin ligase facilitates cancer cell survival by promoting K63-linked polyubiquitination of caspase-8. Cell Death Dis 2013; 4:e935. [PMID: 24287696 PMCID: PMC3847339 DOI: 10.1038/cddis.2013.464] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/07/2013] [Accepted: 10/23/2013] [Indexed: 02/02/2023]
Abstract
Apoptosis resistance is a hurdle for cancer treatment. HECTD3, a new E3 ubiquitin ligase, interacts with caspase-8 death effector domains and ubiquitinates caspase-8 with K63-linked polyubiquitin chains that do not target caspase-8 for degradation but decrease the caspase-8 activation. HECTD3 depletion can sensitize cancer cells to extrinsic apoptotic stimuli. In addition, HECTD3 inhibits TNF-related apoptosis-inducing ligand (TRAIL)-induced caspase-8 cleavage in an E3 ligase activity-dependent manner. Mutation of the caspase-8 ubiquitination site at K215 abolishes the HECTD3 protection from TRAIL-induced cleavage. Finally, HECTD3 is frequently overexpressed in breast carcinomas. These findings suggest that caspase-8 ubiquitination by HECTD3 confers cancer cell survival.
Collapse
|
142
|
Differential regulation of the apoptotic machinery during megakaryocyte differentiation and platelet production by inhibitor of apoptosis protein Livin. Cell Death Dis 2013; 4:e937. [PMID: 24287698 PMCID: PMC3847330 DOI: 10.1038/cddis.2013.454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 11/17/2022]
Abstract
Livin is a member of the inhibitor of apoptosis proteins (IAP) family of intracellular antiapoptotic proteins that act by binding and inhibiting caspases. Upon strong apoptotic stimuli, it is then specifically cleaved by caspases to produce a truncated protein (tLivin) with a paradoxical proapoptotic activity. Intriguingly, we have detected robust protein levels of Livin in normal mature bone marrow megakaryocyte (MK) and platelets. To evaluate the potential role of Livin in thrombopoiesis, we used the human BCR-ABL+ cell line, LAMA-84, and cord blood CD34+ cells to induce differentiation toward MKs. Upon differentiation, induced by phorbol myristate acetate and concurrent with increase in Livin protein expression, LAMA-84 cells formed functional platelet-like particles. Livin overexpression in CD34+ progenitor cells induced higher endoreplication in the MKs generated. Furthermore, overexpression of Livin increased the ability of both primary MKs and differentiated LAMA-84 cells to produce functional platelets. In the differentiated LAMA-84 cells, we observed accumulation of proapoptotic tLivin concomitant with increased caspase-3 activity. Downregulation of Livin with small interfering RNA in both leukemic and primary MK cells decreased their ability to produce functional platelets. We suggest that Livin has a role in thrombopoiesis by regulating the apoptotic and antiapoptotic balance in MK endoreplication and platelet production.
Collapse
|
143
|
Li J, Wang Y, DU L, Xu C, Cao J, Wang Q, Liu Q, Fan F. Radiation-induced cytochrome c release and the neuroprotective effects of the pan-caspase inhibitor z-VAD-fmk in the hypoglossal nucleus. Exp Ther Med 2013; 7:383-388. [PMID: 24396410 PMCID: PMC3881038 DOI: 10.3892/etm.2013.1419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/04/2013] [Indexed: 02/02/2023] Open
Abstract
Numerous studies have demonstrated that neuronal cell death occurs via extrinsic (death receptors) and intrinsic (mitochondria) pathways. Radiation induces caspase activation fundamentally via the mitochondrial pathway. To investigate the role of caspase, a cell permeable pan-caspase inhibitor, z-VAD-fmk [N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone], was used to investigate the effects of caspase blockade in vivo following irradiation. Adult male Sprague-Dawley rats (weight, 250–300 g) underwent irradiation at room temperature with a 4-Gy dose of radiation. Since z-VAD-fmk does not penetrate the blood-brain barrier, it was applied intracerebroventricularly via a bolus injection (0.2 μg/h for 1 h). Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) demonstrated that z-VAD-fmk reduced the numbers of TUNEL-positive cells within the hypoglossal nucleus, suggesting that intervention in the caspase cascade following radiation may have therapeutic applications. The caspase inhibitor z-VAD-fmk reduced the expression and activation of caspase-3, caspase-8 and caspase-9 in the irradiated rats, indicating that caspase may be a potential therapeutic target in the treatment of brain radiation injury. Treatment with z-VAD-fmk also reduced the appearance of cytochrome c within the cytosolic fraction following radiation. The hypoglossal nucleus may be used as a model of radiation-induced injury in the central nervous system, providing visual information and displaying apoptotic nuclear morphology.
Collapse
Affiliation(s)
- Jianguo Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China ; Department of Human Anatomy, The Medical School of Inner Mongolia University for the Nationalities, Tongliao, Neimenggu 028041, P.R. China
| | - Yan Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Liqing DU
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Chang Xu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Jia Cao
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Qin Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Feiyue Fan
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| |
Collapse
|
144
|
Finlay D, Vamos M, González-López M, Ardecky RJ, Ganji SR, Yuan H, Su Y, Cooley TR, Hauser CT, Welsh K, Reed JC, Cosford NDP, Vuori K. Small-molecule IAP antagonists sensitize cancer cells to TRAIL-induced apoptosis: roles of XIAP and cIAPs. Mol Cancer Ther 2013; 13:5-15. [PMID: 24194568 DOI: 10.1158/1535-7163.mct-13-0153] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it shows apoptosis-inducing activity in transformed, but not in normal, cells. As with most anticancer agents, however, its clinical use is restricted by either inherent or acquired resistance by cancer cells. We demonstrate here that small-molecule SMAC mimetics that antagonize the inhibitor of apoptosis proteins (IAP) potently sensitize previously resistant human cancer cell lines, but not normal cells, to TRAIL-induced apoptosis, and that they do so in a caspase-8-dependent manner. We further show that the compounds have no cytotoxicity as single agents. Also, we demonstrate that several IAP family members likely participate in the modulation of cellular sensitivity to TRAIL. Finally, we note that the compounds that sensitize cancer cells to TRAIL are the most efficacious in binding to X-linked IAP, and in inducing cellular-IAP (cIAP)-1 and cIAP-2 degradation. Our studies thus describe valuable compounds that allow elucidation of the signaling events occurring in TRAIL resistance, and demonstrate that these agents act as potent TRAIL-sensitizing agents in a variety of cancer cell lines.
Collapse
Affiliation(s)
- Darren Finlay
- Corresponding Author: Kristiina Vuori, Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Donnell AF, Michoud C, Rupert KC, Han X, Aguilar D, Frank KB, Fretland AJ, Gao L, Goggin B, Hogg JH, Hong K, Janson CA, Kester RF, Kong N, Le K, Li S, Liang W, Lombardo LJ, Lou Y, Lukacs CM, Mischke S, Moliterni JA, Polonskaia A, Schutt AD, Solis DS, Specian A, Taylor RT, Weisel M, Remiszewski SW. Benzazepinones and Benzoxazepinones as Antagonists of Inhibitor of Apoptosis Proteins (IAPs) Selective for the Second Baculovirus IAP Repeat (BIR2) Domain. J Med Chem 2013; 56:7772-87. [DOI: 10.1021/jm400731m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Andrew F. Donnell
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Christophe Michoud
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Kenneth C. Rupert
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Xiaochun Han
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Douglas Aguilar
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Karl B. Frank
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Adrian J. Fretland
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Lin Gao
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Barry Goggin
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - J. Heather Hogg
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Kyoungja Hong
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Cheryl A. Janson
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Robert F. Kester
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Norman Kong
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Kang Le
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Shirley Li
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Weiling Liang
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Louis J. Lombardo
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Yan Lou
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Christine M. Lukacs
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Steven Mischke
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - John A. Moliterni
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Ann Polonskaia
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Andrew D. Schutt
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Dave S. Solis
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Anthony Specian
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Robert T. Taylor
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Martin Weisel
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Stacy W. Remiszewski
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| |
Collapse
|
146
|
Ying Z, Li A, Lu Z, Wu C, Yin H, Yuan M, Pang Y. The Spodoptera frugiperda effector caspase Sf-caspase-1 becomes unstable following its activation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:195-210. [PMID: 23740663 DOI: 10.1002/arch.21106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sf-caspase-1 is the principal effector caspase in Spodoptera frugiperda cells. Like the caspases in other organisms, Sf-caspase-1 is processed by upstream caspases to form an active heterotetramer composed of the p19 and p12 subunits. The regulation of active caspases is crucial for cellular viability. In mammal cells, the subunits and the active form of caspase-3 were rapidly degraded relative to its proenzyme form. In the present study, the S. frugiperda Sf9 cells were transiently transfected with plasmids encoding different fragments of Sf-caspase-1: the pro-Sf-caspase-1 (p37), a prodomain deleted fragment (p31), a fragment containing the large subunit and the prodomain (p25), the large subunit (p19), and the small subunit (p12). Flow cytometry and Western blot analysis revealed that p12, p19, and p25 were unstable in the transfected cells, in contrast to p37 and p31. Lactacystin, a proteasome inhibitor, increased the accumulation of the p19 and p12 subunits, suggesting that the degradation is performed by the ubiquitin-proteasome system. During the activation, the Sf-caspase-1 produces an intermediate form and then undergoes proteolytic processing to form active Sf-caspase-1. We found that both the active and the intermediate form were unstable, indicating that once activated or during its activation, the Sf-caspase-1 was unstable.
Collapse
Affiliation(s)
- Zhongfu Ying
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
147
|
Unsain N, Higgins JM, Parker KN, Johnstone AD, Barker PA. XIAP Regulates Caspase Activity in Degenerating Axons. Cell Rep 2013; 4:751-63. [PMID: 23954782 DOI: 10.1016/j.celrep.2013.07.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 04/11/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022] Open
Affiliation(s)
- Nicolas Unsain
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
148
|
Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 2013; 5:5/6/a008672. [PMID: 23732469 DOI: 10.1101/cshperspect.a008672] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death.
Collapse
Affiliation(s)
- Amanda B Parrish
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
149
|
Carter BZ, Mak DH, Wang Z, Ma W, Mak PY, Andreeff M, Davis RE. XIAP downregulation promotes caspase-dependent inhibition of proteasome activity in AML cells. Leuk Res 2013; 37:974-9. [PMID: 23669290 DOI: 10.1016/j.leukres.2013.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/09/2013] [Accepted: 04/13/2013] [Indexed: 12/29/2022]
Abstract
To further understand the role of XIAP in acute myeloid leukemia (AML), we suppressed XIAP expression by antisense oligonucleotides and determined the effect on gene expression profiles and biological pathways. XIAP inhibition upregulated expression of proteasome genes in a manner similar to the proteasome inhibitor bortezomib or MG132; decreased 20S proteasome activity, an effect which was diminished in the presence of a pan-caspase inhibitor; and increased IκBα, Mcl-1, and HSP70 in AML cells. In addition to multiple functions already described, XIAP contributes to increased proteasome activity in AML cells, and the antitumor effect of XIAP inhibition may be mediated in part through caspase-dependent proteasome inhibition.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Caspases are a powerful class of cysteine proteases. Introduction of activated caspases in healthy or cancerous cells results in induction of apoptotic cell death. In this study, we have designed and characterized a version of caspase-7 that can be inactivated under oxidizing extracellular conditions and then reactivated under reducing intracellular conditions. This version of caspase-7 is allosterically inactivated when two of the substrate-binding loops are locked together via an engineered disulfide. When this disulfide is reduced, the protein regains its full function. The inactive loop-locked version of caspase-7 can be readily observed by immunoblotting and mass spectrometry. The reduced and reactivated form of the enzyme observed crystallographically is the first caspase-7 structure in which the substrate-binding groove is properly ordered even in the absence of an active-site ligand. In the reactivated structure, the catalytic-dyad cysteine-histidine are positioned 3.5 Å apart in an orientation that is capable of supporting catalysis. This redox-controlled version of caspase-7 is particularly well suited for targeted cell death in concert with redox-triggered delivery vehicles.
Collapse
Affiliation(s)
- Witold A Witkowski
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|