101
|
Mucosal IgA and IFN-γ + CD8 T cell immunity are important in the efficacy of live Salmonella enteria serovar Choleraesuis vaccines. Sci Rep 2017; 7:46408. [PMID: 28406162 PMCID: PMC5390296 DOI: 10.1038/srep46408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/17/2017] [Indexed: 01/13/2023] Open
Abstract
Salmonellosis, a disease caused by non-typhoidal Salmonella strains which can be transmitted from swine to humans, is one of the leading public health problems around the world. Paratyphoid of swine is controlled by vaccinating swine with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) live vaccine strain C500 in China. Although the vaccine has good prophylactic efficacy, the mechanism of immunogenicity is unclear. Using a C500-derived paratyphoid thermo-stable live vaccine (PTSL vaccine), we demonstrated that the PTSL vaccine induces strong primary and memory immune responses in piglets. Mucosal IgA and IFN-γ+/CD8+ T cells induced by the PTSL vaccine play key roles in the protection of the host from Salmonella infection. Our findings have important implications on the development of new and improved vaccines against salmonellosis and using live-attenuated Salmonella as vaccine carriers.
Collapse
|
102
|
Singh AP, Prabha V, Rishi P. Synergism in dual functionality of cryptdin-2 in conjunction with antibiotics against Salmonella. Indian J Med Res 2017; 144:761-770. [PMID: 28361830 PMCID: PMC5393088 DOI: 10.4103/ijmr.ijmr_850_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES The emergence of multidrug-resistant Salmonella over the last two decades poses a major health risk. In this context, antimicrobial peptides have found a strategic place in the therapeutic armamentarium. Previously, we found that cryptdin-2 has the potential to augment the activity of conventional second- and third-generation anti-Salmonella antibiotics as evident by in vitro assays. In continuation to this, the present study was designed to evaluate the in vivo synergistic effects, if any, of cryptdin-2 in combination with ciprofloxacin and ceftriaxone against murine salmonellosis. METHODS Scanning electron microscopy (SEM) studies along with in vivo synergistic studies were performed using cryptdin- 2 and antibiotic combinations. In addition, peroxidative liver damage, levels of nitric oxide (NO) and antioxidant enzymes along with tumour necrosis factor-alpha (TNF-α) levels were also measured. RESULTS The SEM results revealed marked changes on the outer membrane of the bacterial cells treated with various combinations. Both the tested combinations demonstrated synergistic in vivo potency against S. Typhimurium as evident by reduction in the number of Salmonellae in the liver, spleen and intestine. Analysis of peroxidative liver damage, levels of NO and antioxidant enzymes along with TNF-α and nuclear factor-kappa B levels revealed that the tested combinations restored their levels to near normal. The most potent combination was found to be that of cryptdin-2 and ciprofloxacin in terms of direct killing and immunomodulatory potential. INTERPRETATION & CONCLUSIONS These findings suggest that cryptdin-2 may act in conjunction with conventional antibiotics indicating the possibility of developing these combinations as additional therapeutic agents to combat Salmonella infections.
Collapse
Affiliation(s)
- Aman Preet Singh
- Department of Microbiology, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| | - Vijay Prabha
- Department of Microbiology, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| |
Collapse
|
103
|
Schultz BM, Paduro CA, Salazar GA, Salazar-Echegarai FJ, Sebastián VP, Riedel CA, Kalergis AM, Alvarez-Lobos M, Bueno SM. A Potential Role of Salmonella Infection in the Onset of Inflammatory Bowel Diseases. Front Immunol 2017; 8:191. [PMID: 28293241 PMCID: PMC5329042 DOI: 10.3389/fimmu.2017.00191] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes a set of pathologies that result from a deregulated immune response that may affect any portion of the gastrointestinal tract. The most prevalent and defined forms of IBD are Crohn’s disease and ulcerative colitis. Although the etiology of IBD is not well defined, it has been suggested that environmental and genetic factors contribute to disease development and that the interaction between these two factors can trigger the pathology. Diet, medication use, vitamin D status, smoking, and bacterial infections have been proposed to influence or contribute to the onset or development of the disease in susceptible individuals. The infection with pathogenic bacteria is a key factor that can influence the development and severity of this disease. Here, we present a comprehensive review of studies performed in human and mice susceptible to IBD, which supports the notion that infection with bacterial pathogens, such as Salmonella, could promote the onset of IBD due to permanent changes in the intestinal microbiota, disruption of the epithelial barrier and alterations of the intestinal immune response after infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Carolina A Paduro
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Geraldyne A Salazar
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Francisco J Salazar-Echegarai
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Valentina P Sebastián
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- Facultad de Ciencias Biológicas y Facultad de Medicina, Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello , Santiago , Chile
| | - Alexis M Kalergis
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile; Facultad de Medicina, Departamento de Endocrinología, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| | - Manuel Alvarez-Lobos
- Facultad de Medicina, Departamento de Gastroenterología, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| |
Collapse
|
104
|
Oh SY, Yun W, Lee JH, Lee CH, Kwak WK, Cho JH. Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:4. [PMID: 28239484 PMCID: PMC5316425 DOI: 10.1186/s40781-017-0127-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/31/2017] [Indexed: 11/21/2022]
Abstract
Background Biofilms were the third-dimensional structure in the solid surface of bacteria. Bacterial biofilms were difficult to control by host defenses and antibiotic therapies. Escherichia coli (E. coli) and Salmonella were popular pathogenic bacteria that live in human and animal intestines. Essential oils are aromatic oily liquids from plant materials and well known for their antibacterial activities. Method This study was conducted to determine effect of essential oil on anti-biological biofilm formation of E. coli and Salmonella strains in in vitro experiment. Two kinds of bacterial strains were separated from 0.2 g pig feces. Bacterial strains were distributed in 24 plates per treatment and each plates as a replication. The sample was coated with a Bacterial biofilm formation was. Result Photographic result, Escherichia coli (E. coli) and Salmonella bacteria colony surface were thick smooth surface in control. However, colony surface in blended and single essential oil treatment has shown crack surface layer compared with colony surfaces in control. Conclusion In conclusion, this study could confirm that essential oils have some interesting effect on anti-biofilm formation of E. coli and Salmonella strains from pig feces.
Collapse
Affiliation(s)
- S Y Oh
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763 South Korea
| | - W Yun
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763 South Korea
| | - J H Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763 South Korea
| | - C H Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763 South Korea
| | - W K Kwak
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763 South Korea
| | - J H Cho
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763 South Korea
| |
Collapse
|
105
|
Risso GS, Carabajal MV, Bruno LA, Ibañez AE, Coria LM, Pasquevich KA, Lee SJ, McSorley SJ, Briones G, Cassataro J. U-Omp19 from Brucella abortus Is a Useful Adjuvant for Vaccine Formulations against Salmonella Infection in Mice. Front Immunol 2017; 8:171. [PMID: 28261222 PMCID: PMC5313482 DOI: 10.3389/fimmu.2017.00171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/18/2023] Open
Abstract
Most pathogens infect through mucosal surfaces, and parenteral immunization typically fails to induce effective immune responses at these sites. Development of oral-administered vaccines capable of inducing mucosal as well as systemic immunity while bypassing the issues of antigen degradation and immune tolerance could be crucial for the control of enteropathogens. This study demonstrates that U-Omp19, a bacterial protease inhibitor with immunostimulatory features, coadministered with Salmonella antigens by the oral route, enhances mucosal and systemic immune responses in mice. U-Omp19 was able to increase antigen-specific production of IFN-γ and IL-17 and mucosal (IgA) antibody response. Finally, oral vaccination with U-Omp19 plus Salmonella antigens conferred protection against virulent challenge with Salmonella Typhimurium, with a significant reduction in bacterial loads. These findings prove the efficacy of this novel adjuvant in the Salmonella infection model and support the potential of U-Omp19 as a suitable adjuvant in oral vaccine formulations against mucosal pathogens requiring T helper (Th)1-Th17 protective immune responses.
Collapse
Affiliation(s)
- Gabriela S Risso
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Marianela V Carabajal
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Laura A Bruno
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Andrés E Ibañez
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Lorena M Coria
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Seung-Joo Lee
- Center for Comparative Medicine (CCM), Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| | - Stephen J McSorley
- Center for Comparative Medicine (CCM), Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| | - Gabriel Briones
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
106
|
The Type III Secretion System Effector SptP of Salmonella enterica Serovar Typhi. J Bacteriol 2017; 199:JB.00647-16. [PMID: 27920299 PMCID: PMC5287405 DOI: 10.1128/jb.00647-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/19/2016] [Indexed: 01/11/2023] Open
Abstract
Strains of the various Salmonella enterica serovars cause gastroenteritis or typhoid fever in humans, with virulence depending on the action of two type III secretion systems (Salmonella pathogenicity island 1 [SPI-1] and SPI-2). SptP is a Salmonella SPI-1 effector, involved in mediating recovery of the host cytoskeleton postinfection. SptP requires a chaperone, SicP, for stability and secretion. SptP has 94% identity between S. enterica serovar Typhimurium and S Typhi; direct comparison of the protein sequences revealed that S Typhi SptP has numerous amino acid changes within its chaperone-binding domain. Subsequent comparison of ΔsptP S Typhi and S. Typhimurium strains demonstrated that, unlike SptP in S. Typhimurium, SptP in S Typhi was not involved in invasion or cytoskeletal recovery postinfection. Investigation of whether the observed amino acid changes within SptP of S Typhi affected its function revealed that S Typhi SptP was unable to complement S. Typhimurium ΔsptP due to an absence of secretion. We further demonstrated that while S. Typhimurium SptP is stable intracellularly within S Typhi, S Typhi SptP is unstable, although stability could be recovered following replacement of the chaperone-binding domain with that of S. Typhimurium. Direct assessment of the strength of the interaction between SptP and SicP of both serovars via bacterial two-hybrid analysis demonstrated that S Typhi SptP has a significantly weaker interaction with SicP than the equivalent proteins in S. Typhimurium. Taken together, our results suggest that changes within the chaperone-binding domain of SptP in S Typhi hinder binding to its chaperone, resulting in instability, preventing translocation, and therefore restricting the intracellular activity of this effector. IMPORTANCE Studies investigating Salmonella pathogenesis typically rely on Salmonella Typhimurium, even though Salmonella Typhi causes the more severe disease in humans. As such, an understanding of S. Typhi pathogenesis is lacking. Differences within the type III secretion system effector SptP between typhoidal and nontyphoidal serovars led us to characterize this effector within S Typhi. Our results suggest that SptP is not translocated from typhoidal serovars, even though the loss of sptP results in virulence defects in S. Typhimurium. Although SptP is just one effector, our results exemplify that the behavior of these serovars is significantly different and genes identified to be important for S. Typhimurium virulence may not translate to S Typhi.
Collapse
|
107
|
Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory. mBio 2016; 7:mBio.01520-16. [PMID: 27999159 PMCID: PMC5181774 DOI: 10.1128/mbio.01520-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic intervention is an effective treatment strategy for many bacterial infections and liberates bacterial antigens and stimulatory products that can induce an inflammatory response. Despite the opportunity for bacterial killing to enhance the development of adaptive immunity, patients treated successfully with antibiotics can suffer from reinfection. Studies in mouse models of Salmonella and Chlamydia infection also demonstrate that early antibiotic intervention reduces host protective immunity to subsequent infection. This heightened susceptibility to reinfection correlates with poor development of Th1 and antibody responses in antibiotic-treated mice but can be overcome by delayed antibiotic intervention, thus suggesting a requirement for sustained T cell stimulation for protection. Although the contribution of memory T cell subsets is imperfectly understood in both of these infection models, a protective role for noncirculating memory cells is suggested by recent studies. Together, these data propose a model where antibiotic treatment specifically interrupts tissue-resident memory T cell formation. Greater understanding of the mechanistic basis of this phenomenon might suggest therapeutic interventions to restore a protective memory response in antibiotic-treated patients, thus reducing the incidence of reinfection.
Collapse
|
108
|
Salmonella Infection Enhances Erythropoietin Production by the Kidney and Liver, Which Correlates with Elevated Bacterial Burdens. Infect Immun 2016; 84:2833-41. [PMID: 27456828 PMCID: PMC5038055 DOI: 10.1128/iai.00337-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Salmonella infection profoundly affects host erythroid development, but the mechanisms responsible for this effect remain poorly understood. We monitored the impact of Salmonella infection on erythroid development and found that systemic infection induced anemia, splenomegaly, elevated erythropoietin (EPO) levels, and extramedullary erythropoiesis in a process independent of Salmonella pathogenicity island 2 (SPI2) or flagellin. The circulating EPO level was also constitutively higher in mice lacking the expression of signal-regulatory protein α (SIRPα). The expression level of EPO mRNA was elevated in the kidney and liver but not increased in the spleens of infected mice despite the presence of extramedullary erythropoiesis in this tissue. In contrast to data from a previous report, mice lacking EPO receptor (EPOR) expression on nonerythroid cells (EPOR rescued) had bacterial loads similar to those of wild-type mice following Salmonella infection. Indeed, treatment to reduce splenic erythroblasts and mature red blood cells correlated with elevated bacterial burdens, implying that extramedullary erythropoiesis benefits the host. Together, these findings emphasize the profound effect of Salmonella infection on erythroid development and suggest that the modulation of erythroid development has both positive and negative consequences for host immunity.
Collapse
|
109
|
Animal Models for Salmonellosis: Applications in Vaccine Research. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:746-56. [PMID: 27413068 DOI: 10.1128/cvi.00258-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development.
Collapse
|
110
|
Kogermann K, Putrinš M, Tenson T. Single-cell level methods for studying the effect of antibiotics on bacteria during infection. Eur J Pharm Sci 2016; 95:2-16. [PMID: 27577009 DOI: 10.1016/j.ejps.2016.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
Considerable evidence about phenotypic heterogeneity among bacteria during infection has accumulated during recent years. This heterogeneity has to be considered if the mechanisms of infection and antibiotic action are to be understood, so we need to implement existing and find novel methods to monitor the effects of antibiotics on bacteria at the single-cell level. This review provides an overview of methods by which this aim can be achieved. Fluorescence label-based methods and Raman scattering as a label-free approach are discussed in particular detail. Other label-free methods that can provide single-cell level information, such as impedance spectroscopy and surface plasmon resonance, are briefly summarized. The advantages and disadvantages of these different methods are discussed in light of a challenging in vivo environment.
Collapse
Affiliation(s)
- Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
111
|
Fernández-Santoscoy M, Wenzel UA, Persson E, Yrlid U, Agace W, Wick MJ. A reduced population of CD103+CD11b+ dendritic cells has a limited impact on oral Salmonella infection. Immunol Lett 2016; 176:72-80. [DOI: 10.1016/j.imlet.2016.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/21/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022]
|
112
|
Nutrient Deprivation Affects Salmonella Invasion and Its Interaction with the Gastrointestinal Microbiota. PLoS One 2016; 11:e0159676. [PMID: 27437699 PMCID: PMC4954642 DOI: 10.1371/journal.pone.0159676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 01/30/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a foodborne enteric pathogen and a major cause of gastroenteritis in humans. It is known that molecules derived from the human fecal microbiota downregulate S. Typhimurium virulence gene expression and induce a starvation-like response. In this study, S. Typhimurium was cultured in minimal media to mimic starvation conditions such as that experienced by S. Typhimurium in the human intestinal tract, and the pathogen’s virulence in vitro and in vivo was measured. S. Typhimurium cultured in minimal media displayed a reduced ability to invade human epithelial cells in a manner that was at least partially independent of the Salmonella Pathogenicity Island 1 (SPI-1) type III secretion system. Nutrient deprivation did not, however, alter the ability of S. Typhimurium to replicate and survive inside epithelial cells. In a murine model of S. Typhimurium-induced gastroenteritis, prior cultivation in minimal media did not alter the pathogen’s ability to colonize mice, nor did it affect levels of gastrointestinal inflammation. Upon examining the post-infection fecal gastrointestinal microbiota, we found that specifically in the 129Sv/ImJ murine strain S. Typhimurium cultured in minimal media induced differential microbiota compositional shifts compared to that of S. Typhimurium cultured in rich media. Together these findings demonstrate that S. Typhimurium remains a potent pathogen even in the face of nutritional deprivation, but nevertheless that nutrient deprivation encountered in this environment elicits significant changes in the bacterium genetic programme, as well as its capacity to alter host microbiota composition.
Collapse
|
113
|
Yeom JH, Lee B, Kim D, Lee JK, Kim S, Bae J, Park Y, Lee K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials 2016; 104:43-51. [PMID: 27424215 DOI: 10.1016/j.biomaterials.2016.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 11/24/2022]
Abstract
Antimicrobial peptides (AMPs) are a promising new class of antibacterial compounds. However, their applications in the treatment of intracellular pathogenic bacteria have been limited by their in vivo instability and low penetrating ability into mammalian cells. Here, we report that gold nanoparticles conjugated with DNA aptamer (AuNP-Apt) efficiently delivered AMPs into mammalian living systems with enhanced stability of the AMPs. C-terminally hexahistidine-tagged A3-APO (A3-APO(His)) AMPs were loaded onto AuNPs conjugated with His-tag DNA aptamer (AuNP-Apt(His)) by simple mixing and were delivered into Salmonella enterica serovar Typhimurium (S. Typhimurium)-infected HeLa cells, resulting in the increased viability of host cells due to the elimination of intracellular S. Typhimurium cells. Furthermore, the intravenous injection of AuNP-Apt(His) loaded with A3-APO(His) into S. Typhimurium-infected mice resulted in a complete inhibition of S. Typhimurium colonization in the mice organs, leading to 100% survival of the mice. Therefore, AuNP-Apt(His) can serve as an innovative platform for AMP therapeutics to treat intracellular bacterial infections in mammals.
Collapse
Affiliation(s)
- Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Boeun Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong-Kook Lee
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
114
|
Schulte M, Hensel M. Models of intestinal infection by Salmonella enterica: introduction of a new neonate mouse model. F1000Res 2016; 5. [PMID: 27408697 PMCID: PMC4926732 DOI: 10.12688/f1000research.8468.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a foodborne pathogen causing inflammatory disease in the intestine following diarrhea and is responsible for thousands of deaths worldwide. Many
in vitro investigations using cell culture models are available, but these do not represent the real natural environment present in the intestine of infected hosts. Several
in vivo animal models have been used to study the host-pathogen interaction and to unravel the immune responses and cellular processes occurring during infection. An animal model for
Salmonella-induced intestinal inflammation relies on the pretreatment of mice with streptomycin. This model is of great importance but still shows limitations to investigate the host-pathogen interaction in the small intestine
in vivo. Here, we review the use of mouse models for
Salmonella infections and focus on a new small animal model using 1-day-old neonate mice. The neonate model enables researchers to observe infection of both the small and large intestine, thereby offering perspectives for new experimental approaches, as well as to analyze the
Salmonella-enterocyte interaction in the small intestine
in vivo.
Collapse
Affiliation(s)
- Marc Schulte
- Department of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Department of Microbiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
115
|
Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis. Infect Immun 2016; 84:2149-2158. [PMID: 27185791 PMCID: PMC4936369 DOI: 10.1128/iai.00062-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 12/27/2022] Open
Abstract
Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S. Typhimurium delays epithelial cell turnover in the intestine.
Collapse
|
116
|
Evaluation of protective immune response against fowl typhoid in chickens vaccinated with the attenuated strain Salmonella Gallinarum ΔcobSΔcbiA. Res Vet Sci 2016; 107:220-227. [PMID: 27473999 DOI: 10.1016/j.rvsc.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 12/17/2022]
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid in chickens, a septicemic infection which results in high mortality rates. This disease causes high economic impact to the poultry industry worldwide because of the mortality or elimination of positive flocks to control bacterial dissemination. Live vaccines are used in the fields, however the characterization of immune mechanisms important for protection are being studied to improve the efficacy of vaccination schemes. In this study, we evaluated the immune response in brown layer-hens, vaccinated or not, during the most critical period of infection. Cellular and humoral immunity were extensively evaluated until 7 days post-infection (DPI), by flow cytometry and ELISA, respectively. Furthermore, we evaluated the expression of important pro-inflammatory cytokines after infection of bone marrow derived macrophages (BMDMs) with the live attenuated SG vaccine and with the wild SG strain. The results showed an increasing production of IgG and IgM during the first week post-infection, in vaccinated layer-hens, which was absent in unvaccinated birds. The population of CD8(+)CD44(+) and CD4(+)CD44(+) T cells in spleen and cecal tonsils constantly decreased in unvaccinated birds in comparison with vaccinated layers. The expression of IFN-γ and TNF-α in BMDMs was induced by both SG strains (attenuated and wild) at similar levels (p>0.05). Vaccination with live SG vaccine reduced systemic infection by challenge strain of SG and prevented the mortality rate of 85% that occurred in unvaccinated layer-hens during 30 dpi. Furthermore, the immunization enhanced the proliferation of effector CD4(+) and CD8(+) T cells after challenge.
Collapse
|
117
|
Barrett KE. Endogenous and exogenous control of gastrointestinal epithelial function: building on the legacy of Bayliss and Starling. J Physiol 2016; 595:423-432. [PMID: 27284010 DOI: 10.1113/jp272227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
Transport of fluid and electrolytes in the intestine allows for appropriate adjustments in luminal fluidity while reclaiming water used in digesting and absorbing a meal, and is closely regulated. This article discusses various endogenous and exogenous mechanisms whereby transport is controlled in the gut, placing these in the context of the ideas about the neurohumoral control of alimentary physiology that were promulgated by William Bayliss and Ernest Starling. The article considers three themes. First, mechanisms that intrinsically regulate chloride secretion, centred on the epidermal growth factor receptor (EGFr), are discussed. These may be important in ensuring that excessive chloride secretion, with the accompanying loss of fluid, is not normally stimulated by intestinal distension as the meal passes through the gastrointestinal tract. Second, mechanisms whereby probiotic microorganisms can impart beneficial effects on the gut are described, with a focus on targets at the level of the epithelium. These findings imply that the commensal microbiota exert important influences on the epithelium in health and disease. Finally, mechanisms that lead to diarrhoea in patients infected with an invasive pathogen, Salmonella, are considered, based on recent studies in a novel mouse model. Diarrhoea is most likely attributable to reduced expression of absorptive transporters and may not require the influx of neutrophils that accompanies infection. Overall, the goal of the article is to highlight the many ways in which critical functions of the intestinal epithelium are regulated under physiological and pathophysiological conditions, and to suggest possible targets for new therapies for digestive disease states.
Collapse
Affiliation(s)
- Kim E Barrett
- Department of Medicine and Biomedical Sciences Ph.D. Program, School of Medicine, University of California, La Jolla, San Diego, CA, USA
| |
Collapse
|
118
|
Pigny F, Lassus A, Terrettaz J, Tranquart F, Corthésy B, Bioley G. Intranasal Vaccination WithSalmonella-Derived Serodominant Secreted Effector Protein B Associated With Gas-Filled Microbubbles Partially Protects Against Gut Infection in Mice. J Infect Dis 2016; 214:438-46. [DOI: 10.1093/infdis/jiw162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
|
119
|
Liu Q, Liu Q, Zhao X, Liu T, Yi J, Liang K, Kong Q. Immunogenicity and Cross-Protective Efficacy Induced by Outer Membrane Proteins from Salmonella Typhimurium Mutants with Truncated LPS in Mice. Int J Mol Sci 2016; 17:416. [PMID: 27011167 PMCID: PMC4813267 DOI: 10.3390/ijms17030416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence factor present in the outer membrane of Salmonella enterica serovar Typhimurium (S. Typhimurium). Outer membrane proteins (OMPs) from Salmonella show high immunogenicity and provide protection against Salmonella infection, and truncated LPS alters the outer membrane composition of the cell wall. In our previous study, we demonstrated that Salmonella mutants carrying truncated LPS failed to induce strong immune responses and cross-reaction to other enteric bacteria, due to their high attenuation and low colonization in the host. Therefore, we plan to investigate whether outer membrane proteins from Salmonella mutants with truncated LPS resulting from a series of nonpolar mutations, including ∆waaC12, ∆waaF15, ∆waaG42, ∆rfaH49, ∆waaI43, ∆waaJ44, ∆waaL46, ∆wbaP45 and ∆wzy-48, affect immunogenicity and provide protection against diverse Salmonella challenge. In this study, the immunogenicity and cross-protection efficiency of purified OMPs from all mutants were investigated to explore a potential OMP vaccine to protect against homologous or heterologous serotype Salmonella challenge. The results demonstrated that OMPs from three Salmonella mutants (∆waaC12, ∆waaJ44 and ∆waaL46) induced higher immune responses and provided good protection against homologous S. Typhimurium. The OMPs from these three mutants were also selected to determine the cross-protective efficacy against homologous and heterologous serotype Salmonella. Our results indicated that the mutant ∆waaC12 can elicit higher cross-reactivity and can provide good protection against S. Choleraesuis and S. Enteritidis infection and that the cross-reactivity may be ascribed to an antigen of approximately 18.4–30 kDa.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Tian Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
120
|
Gautam R, Deobagkar-Lele M, Majumdar S, Chandrasekar B, Victor E, Ahmed SM, Wadhwa N, Verma T, Kumar S, Sundaresan NR, Umapathy S, Nandi D. Molecular profiling of sepsis in mice using Fourier Transform Infrared Microspectroscopy. JOURNAL OF BIOPHOTONICS 2016; 9:67-82. [PMID: 25808727 DOI: 10.1002/jbio.201400089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/20/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis.
Collapse
Affiliation(s)
- Rekha Gautam
- Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Mukta Deobagkar-Lele
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Shamik Majumdar
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Bhagawat Chandrasekar
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Emmanuel Victor
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Syed Moiz Ahmed
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Nitin Wadhwa
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Taru Verma
- Bioengineering program, Indian Institute of Science, Bangalore, 560012, India
| | - Srividya Kumar
- Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | | | - Siva Umapathy
- Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Dipankar Nandi
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
121
|
Rodriguez JM, Rondón IS, Verjan N. Serotypes of Salmonella in Broiler Carcasses Marketed at Ibague, Colombia. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2015. [DOI: 10.1590/1516-635x1704545-552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- JM Rodriguez
- University of Tolima, Colombia; University of Tolima, Colombia
| | - IS Rondón
- University of Tolima, Colombia; University of Tolima, Colombia
| | | |
Collapse
|
122
|
Barquist L, Vogel J. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annu Rev Genet 2015; 49:367-94. [PMID: 26473381 DOI: 10.1146/annurev-genet-112414-054804] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| |
Collapse
|
123
|
Abstract
The best-characterized mucosa-associated lymphoid tissue (MALT), and also the most relevant for this review, is the gastrointestinal-associated lymphoid tissue (GALT). The review reviews our understanding of the importance of mucosal immune responses in resisting infections caused by E. coli and Salmonella spp. It focuses on the major human E. coli infections and discusses whether antigen-specific mucosal immune responses are important for resistance against primary infection or reinfection by pathogenic E. coli. It analyzes human data on mucosal immunity against E. coli, a growing body of data of mucosal responses in food production animals and other natural hosts of E. coli, and more recent experimental studies in mice carrying defined deletions in genes encoding specific immunological effectors, to show that there may be considerable conservation of the effective host mucosal immune response against this pathogen. The species Salmonella enterica contains a number of serovars that include pathogens of both humans and animals; these bacteria are frequently host specific and may cause different diseases in different hosts. Ingestion of various Salmonella serovars, such as Typhimurium, results in localized infections of the small intestine leading to gastroenteritis in humans, whereas ingestion of serovar Typhi results in systemic infection and enteric fever. Serovar Typhi infects only humans, and the review discusses the mucosal immune responses against serovar Typhi, focusing on the responses in humans and in the mouse typhoid fever model.
Collapse
|
124
|
Iyer BR, Mahalakshmi R. Residue-Dependent Thermodynamic Cost and Barrel Plasticity Balances Activity in the PhoPQ-Activated Enzyme PagP of Salmonella typhimurium. Biochemistry 2015; 54:5712-22. [PMID: 26334694 DOI: 10.1021/acs.biochem.5b00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PagP is an eight-stranded transmembrane β-barrel enzyme indispensable for lipid A palmitoylation in Gram-negative bacteria. The severity of infection by pathogens, including Salmonella, Legionella, and Bordetella, and resistance to antimicrobial peptides, relies on lipid A remodeling by PagP, rendering PagP a sought-after drug target. Despite a conserved sequence, more robust palmitoylation of lipid A is observed in Salmonella typhimurium compared to Escherichia coli, a possible consequence of the differential regulation of PagP expression and/or specific activity. Work here identifies molecular signatures that demarcate thermodynamic stability and variances in catalytic efficiency between S. typhimurium (PagP-St) and E. coli (PagP-Ec) transmembrane PagP barrel variants. We demonstrate that Salmonella PagP displays a 2-fold destabilization of the barrel, while achieving 15-20 magnitude higher lipase efficiency, through subtle alterations of lipid-facing residues distal from the active site. We find that catalytic properties of these homologues are retained across different lipid environments such as micelles, vesicles, and natural extracts. By comparing thermodynamic stability with activity of selectively designed mutants, we conclude that activity-stability trade-offs can be influenced by factors secluded from the catalytic region. Our results provide a compelling correlation of the primary protein structure with enzymatic activity, barrel thermodynamic stability, and scaffold plasticity. Our analysis can open avenues for the development of potent pharmaceuticals against salmonellosis.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| |
Collapse
|
125
|
Gilchrist JJ, MacLennan CA, Hill AVS. Genetic susceptibility to invasive Salmonella disease. Nat Rev Immunol 2015; 15:452-63. [PMID: 26109132 DOI: 10.1038/nri3858] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invasive Salmonella disease, in the form of enteric fever and invasive non-typhoidal Salmonella (iNTS) disease, causes substantial morbidity and mortality in children and adults in the developing world. The study of genetic variations in humans and mice that influence susceptibility of the host to Salmonella infection provides important insights into immunity to Salmonella. In this Review, we discuss data that have helped to elucidate the host genetic determinants of human enteric fever and iNTS disease, alongside data from the mouse model of Salmonella infection. Considered together, these studies provide a detailed picture of the immunobiology of human invasive Salmonella disease.
Collapse
Affiliation(s)
- James J Gilchrist
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Calman A MacLennan
- 1] Jenner Institute, Nuffield Department of Medicine, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, OX3 7DQ, UK. [2] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Adrian V S Hill
- 1] Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK. [2] Jenner Institute, Nuffield Department of Medicine, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
126
|
Leonard SR, Lacher DW, Lampel KA. Acquisition of the lac operon by Salmonella enterica. BMC Microbiol 2015; 15:173. [PMID: 26303940 PMCID: PMC4549013 DOI: 10.1186/s12866-015-0511-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/17/2015] [Indexed: 12/05/2022] Open
Abstract
Background Classical bacteriological characteristics of Salmonella enterica indicate that the members of this species are unable to utilize lactose as a carbon source. However, lactose-fermenting (Lac+) strains of several Salmonella serovars have been isolated from different foodborne outbreaks as well as different geographical regions worldwide. In the present study, we sequenced the genomes of 13 Lac + S. enterica isolates and characterized the lac region, comparing it to the lac region in other enteric bacterial species. Results Genetic analysis of the lac operons in the S. enterica genomes revealed that they all contain intact lacI, lacZ, and lacY genes. However, lacA was truncated in all of the S. enterica subsp. enterica isolates, encoding a 56 amino acid peptide rather than the full length 220 amino acid LacA protein. Molecular analyses of the 13 isolates revealed that the lac operon resided on a plasmid in some strains and in others was integrated into the bacterial chromosome. In most cases, an insertion sequence flanked at least one end of the operon. Interestingly, the S. enterica Montevideo and S. enterica Senftenberg isolates were found to harbor a plasmid with a high degree of sequence similarity to a plasmid from Klebsiella pneumoniae strain NK29 that also harbors the lac operon. In addition, two S. enterica Tennessee isolates carried two copies of the lac operon. Phylogenetic analysis based on lacIZY gene sequences determines distinct clusters, and reveals a greater correlation between lacIZY sequence and flanking organization than with either bacterial species or genomic location. Conclusions Our results indicate that the lac region is highly mobile among Enterobacteriaceae and demonstrate that the Lac + S. enterica subsp. enterica serovars acquired the lac region through parallel events. The acquisition of the lac operon by several S. enterica serovars may be indicative of environmental adaptation by these bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0511-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susan R Leonard
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA.
| | - David W Lacher
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA.
| | - Keith A Lampel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA.
| |
Collapse
|
127
|
Mazaya B, Hamzawy MA, Khalil MAF, Tawkol WM, Sabit H. Immunomodulatory and antimicrobial efficacy of Lactobacilli against enteropathogenic infection of Salmonella typhi: In-vitro and in-vivo study. Int J Immunopathol Pharmacol 2015; 28:469-78. [PMID: 26303120 DOI: 10.1177/0394632015592099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/20/2015] [Indexed: 12/23/2022] Open
Abstract
Salmonellosis-induced diarrhea, is one of the commonest cause of childhood mortality in developing countries. Using of probiotics is viewed as a promising means for reducing the pathogenic loads of bacterial infection. The current study aimed to evaluate the potential antimicrobial and immunomodulatory efficacy of isolated lactobacillus strains against the enteropathogenic effect of S. Typhi. Different Lactobacillus strains were isolated from 13 dairy products. Their antimicrobial activities were tested against different bacterial strains. Six groups of CD1 mice were treated for 8 days as follows: group (1) untreated control; group (2) was challenged with single inoculation S. typhi, and groups (3) and (4) were treated with Lactobacillus plantarum (LA5) or Lactobacillus paracsi (LA7) for 7 days, respectively. Groups (5) and (6) were challenged with S. typhi, and then treated with either LA5 or LA 7 for 7 days, respectively. Isolated Lactobacillus showed antimicrobial activity against wide range of bacterial strains. Salmonellosis showed high widal titer, induced significant disturbance of TNF and IL-1β, while sever changes of the histological patterns of the intestinal villi and hepatocytes have been illustrated. LA5 or LA7 succeeded to eradicate typhoid infection, restore the values of inflammatory cytokines to typical levels of control group, and improve histological pictures of intestinal and hepatic tissues. It can be concluded that lactobacilli are promising candidate in protection and eradication against bacterial infection induced by S. Typhi due to its antimicrobial, anti-inflammatory, and immunomodulatory activities.
Collapse
Affiliation(s)
- Basem Mazaya
- Microbiology Department, College of Pharmacy, Misr University for Science & Technology, 6th October City, Egypt
| | - Mohamed A Hamzawy
- Pharmacology & Toxicology Department, College of Pharmacy, Misr University for Science & Technology, 6th October City, Egypt
| | - Mahmoud A F Khalil
- Microbiology Department, College of Pharmacy, Misr University for Science & Technology, 6th October City, Egypt
| | - Wael M Tawkol
- Microbiology Department, College of Pharmacy, Misr University for Science & Technology, 6th October City, Egypt
| | - Hussein Sabit
- College of Biotechnology, Misr University for Science & Technology, 6th October City, Egypt
| |
Collapse
|
128
|
Pham OH, McSorley SJ. Protective host immune responses to Salmonella infection. Future Microbiol 2015; 10:101-10. [PMID: 25598340 DOI: 10.2217/fmb.14.98] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host-pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections.
Collapse
Affiliation(s)
- Oanh H Pham
- Center for Comparative Medicine, Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
129
|
Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Appl Microbiol Biotechnol 2015; 99:7953-61. [PMID: 26088173 DOI: 10.1007/s00253-015-6696-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/31/2022]
Abstract
Probiotics are live microorganisms which are beneficial for the host when ingested at high enough concentrations. The methylotrophic yeast Pichia pastoris is widely used as heterologous protein production platform. However, its use as probiotic is poorly studied. The objective of this study was to evaluate some probiotic properties of the P. pastoris strain X-33 wild type. The resistance to in vitro and in vivo gastrointestinal conditions, stability in feed, safety, and antibacterial activity against Salmonella Typhimurium were evaluated. The yeast remained viable and persisted at appropriate concentration in the diet for at least 2 months, survived the stresses of the gastrointestinal tract in vitro and in vivo, caused no behavioral changes or lesions when administered to mice, inhibited the growth of S. Typhimurium in culture media, and reduced adhesion of the bacteria to the intestinal cells HCT-116. In the challenge experiment with a LD50 of virulent S. Typhimurium strain, mice supplemented with the yeast had a higher survival rate (50 % when administered by gavage and 80 % via the diet, compared with 20 and 50 %, respectively, in the control group). In addition, the S. Typhimurium concentration in the intestine of the surviving mice was lower; the score of intestinal lesions, lower; and the pathogen, not detected in the liver, spleen, and feces when compared to the control group (p < 0.05). It was concluded that the yeast Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against S. Typhimurium.
Collapse
|
130
|
Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease. PLoS Negl Trop Dis 2015; 9:e0003837. [PMID: 26065687 PMCID: PMC4465829 DOI: 10.1371/journal.pntd.0003837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5–10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12h) and/or microbiological (S. Typhi bacteremia) endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-). Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD-) were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h). Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48h and 96h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi. Typhoid fever continues to be a public health problem and novel more effective vaccines are needed. One of the limitations in the development of new vaccines is an incomplete understanding of the host-pathogen interactions. To gain new insights into these interactions a new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, 65% of the challenged subjects developed typhoid fever (referred here as typhoid diagnosis-TD-). Monocytes and dendritic cells (DCs) are part of the innate immune system and one of the first lines of defense against pathogens. The changes induced in these cells by S. Typhi infection were studied in a subset of volunteers (5 TD and 3 who did not develop TD despite the same oral challenge-NoTD-). Monocytes and DCs showed upregulation of different activation molecules between TD and NoTD volunteers. Furthermore, monocytes from NoTD volunteers showed enhanced S. Typhi binding and activation of signaling pathways associated with the pattern recognition receptor (PRR) TLR4, one day after challenge. In contrast, monocytes from TD volunteers had a moderate increase in S. Typhi binding and different signaling profiles. Therefore, multiple differences in monocytes and DCs from TD and NoTD volunteers following wild type S. Typhi challenge were identified.
Collapse
|
131
|
Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shukla VK, Kumar M, Janssen H, Song JY, Neefjes-Borst EA, te Riele H, Holden DW, Nath G, Neefjes J. Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma. Cell Host Microbe 2015; 17:763-74. [PMID: 26028364 DOI: 10.1016/j.chom.2015.05.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/10/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
Cancer is fueled by deregulation of signaling pathways in control of cellular growth and proliferation. These pathways are also targeted by infectious pathogens en route to establishing infection. Gallbladder carcinoma (GBC) is frequent in the Indian subcontinent, with chronic Salmonella enterica serovar Typhi infection reported as a significant risk factor. However, direct association and causal mechanisms between Salmonella Typhi infection and GBC have not been established. Deconstructing the epidemiological association between GBC and Salmonella Typhi infection, we show that Salmonella enterica induces malignant transformation in predisposed mice, murine gallbladder organoids, and fibroblasts, with TP53 mutations and c-MYC amplification. Mechanistically, activation of MAPK and AKT pathways, mediated by Salmonella enterica effectors secreted during infection, is critical to both ignite and sustain transformation, consistent with observations in GBC patients from India. Collectively, our findings indicate that Salmonella enterica can promote transformation of genetically predisposed cells and is a causative agent of GBC.
Collapse
Affiliation(s)
- Tiziana Scanu
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| | - Robbert M Spaapen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Jeroen M Bakker
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Chandra Bhan Pratap
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Lin-en Wu
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology and Biobanking, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology and Biobanking, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Mohan Kumar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Hans Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - E Andra Neefjes-Borst
- Department of Pathology, Free University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Hein te Riele
- Division of Biological Stress Response, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - David W Holden
- Center for Molecular Bacteriology and Infection, Imperial College London, London SW72AZ, UK
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
132
|
Laughlin RC, Mickum M, Rowin K, Adams LG, Alaniz RC. Altered host immune responses to membrane vesicles from Salmonella and Gram-negative pathogens. Vaccine 2015; 33:5012-9. [PMID: 26001432 DOI: 10.1016/j.vaccine.2015.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 02/08/2023]
Abstract
Membrane vesicles (MVs), discrete nano-structures produced from the outer membrane of Gram-negative bacteria such as Salmonella enterica Typhimurium (S. Typhimurium), strongly activate dendritic cells (DCs), contain major antigens (Ags) recognized by Salmonella-specific B-cells and CD4+ T-cells, and provide protection against S. Typhimurium challenge in a mouse model. With this in mind, we hypothesized that alterations to the gene expression profile of bacteria will be reflected in the immunologic response to MVs. To test this, we assessed the ability of MVs from wild-type (WT) S. Typhimurium or a strain with a phenotype mimicking the intracellular-phase of S. Typhimurium (PhoP(c)) to activate dendritic cells and initiate a strong inflammatory response. MVs, isolated from wild-type and PhoP(c)S. Typhimurium (WTMVs and PhoPcMVs, respectively) had pro-inflammatory properties consistent with the parental bacterial strains: PhoPcMVs were less stimulatory for DC activation in vitro and were impaired for subsequent inflammatory responses compared to WTMVs. Interestingly, the reduced pro-inflammatory properties of PhoPcMVs did not completely rely on signals through TLR4, the receptor for LPS. Nonetheless, both WTMVs and PhoPcMVs contained abundant immunogenic antigens capable of being recognized by memory-immune CD4+ T-cells from mice previously infected with S. Typhimurium. Furthermore, we analyzed a suite of pathogenic Gram-negative bacteria and their purified MVs for their ability to activate DCs and stimulate inflammation in a manner consistent with the known inflammatory properties of the parental strains, as shown for S. Typhimurium. Finally, analysis of the potential vaccine utility of S. Typhimurium MVs revealed their capacity to encapsulate an exogenous model antigen and stimulate antigen-specific CD4+ and CD8+ T-cell responses. Taken together, our results demonstrate the dependence of bacterial cell gene expression for MV immunogenicity and subsequent in vitro immunologic response, as well as their potential utility as a vaccine platform.
Collapse
Affiliation(s)
- Richard C Laughlin
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Megan Mickum
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Kristina Rowin
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
133
|
Lin Y, Hamme AT. Gold Nanoparticle Labeling Based ICP-MS Detection/Measurement of Bacteria, and Their Quantitative Photothermal Destruction. J Mater Chem B 2015; 3:3573-3582. [PMID: 26417447 PMCID: PMC4582679 DOI: 10.1039/c5tb00223k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteria such as Salmonella and E. coli present a great challenge in public health care in today's society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay's photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA
| | - Ashton T. Hamme
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA
| |
Collapse
|
134
|
Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M, Ma C, Ernst RK, Steele-Mortimer O, Celli J, Vallance BA. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 2015; 16:249-256. [PMID: 25121752 DOI: 10.1016/j.chom.2014.07.002] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/04/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022]
Abstract
Inflammasome-mediated host defenses have been extensively studied in innate immune cells. Whether inflammasomes function for innate defense in intestinal epithelial cells, which represent the first line of defense against enteric pathogens, remains unknown. We observed enhanced Salmonella enterica serovar Typhimurium colonization in the intestinal epithelium of caspase-11-deficient mice, but not at systemic sites. In polarized epithelial monolayers, siRNA-mediated depletion of caspase-4, a human ortholog of caspase-11, also led to increased bacterial colonization. Decreased rates of pyroptotic cell death, a host defense mechanism that extrudes S. Typhimurium-infected cells from the polarized epithelium, accounted for increased pathogen burdens. The caspase-4 inflammasome also governs activation of the proinflammatory cytokine, interleukin (IL)-18, in response to intracellular (S. Typhimurium) and extracellular (enteropathogenic Escherichia coli) enteric pathogens, via intracellular LPS sensing. Therefore, an epithelial cell-intrinsic noncanonical inflammasome plays a critical role in antimicrobial defense at the intestinal mucosal surface.
Collapse
Affiliation(s)
- Leigh A Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7090, USA; Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Shauna M Crowley
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver BC V6H 3V4, Canada
| | - Ho Pan Sham
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver BC V6H 3V4, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver BC V6H 3V4, Canada
| | - Marie Wrande
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7090, USA
| | - Caixia Ma
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver BC V6H 3V4, Canada
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7090, USA; Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver BC V6H 3V4, Canada.
| |
Collapse
|
135
|
Increased ferroportin-1 expression and rapid splenic iron loss occur with anemia caused by Salmonella enterica Serovar Typhimurium infection in mice. Infect Immun 2015; 83:2290-9. [PMID: 25824831 DOI: 10.1128/iai.02863-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/06/2015] [Indexed: 01/24/2023] Open
Abstract
The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persistent systemic inflammatory disease in immunocompetent mice. Following oral inoculation with S. Typhimurium, mice develop a hematopathological syndrome akin to typhoid fever with splenomegaly, microcytic anemia, extramedullary erythropoiesis, and increased hemophagocytic macrophages in the bone marrow, liver, and spleen. Additionally, there is marked loss of iron from the spleen, an unanticipated result, given the iron sequestration reported in anemia of inflammatory disease. To establish why tissue iron does not accumulate, we evaluated multiple measures of pathology for 4 weeks following oral infection in mice. We demonstrate a quantitative decrease in splenic iron following infection despite increased numbers of splenic phagocytes. Infected mice have increased duodenal expression of the iron exporter ferroportin-1, consistent with increased uptake of dietary iron. Liver and splenic macrophages also express high levels of ferroportin-1. These observations indicate that splenic and hepatic macrophages export iron during S. Typhimurium infection, in contrast to macrophage iron sequestration observed in anemia of inflammatory disease. Tissue macrophage export of iron occurs concurrent with high serum concentrations of interferon gamma (IFN-γ) and interleukin 12 (IL-12). In individual mice, high concentrations of both proinflammatory (tumor necrosis factor alpha [TNF-α]) and anti-inflammatory (IL-10) cytokines in serum correlate with increased tissue bacterial loads throughout 4 weeks of infection. These in vivo observations are consistent with previous cell culture studies and suggest that the relocation of iron from tissue macrophages during infection may contribute to anemia and also to host survival of acute S. Typhimurium infection.
Collapse
|
136
|
Li J, Nakayasu ES, Overall CC, Johnson RC, Kidwai AS, McDermott JE, Ansong C, Heffron F, Cambronne ED, Adkins JN. Global analysis of Salmonella alternative sigma factor E on protein translation. J Proteome Res 2015; 14:1716-26. [PMID: 25686268 DOI: 10.1021/pr5010423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The alternative sigma factor E (σ(E)) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ(E)-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ(E) may indirectly participate in post-transcriptional regulation. In this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ(E) in Salmonella. Samples were analyzed from wild-type and isogenic rpoE mutant Salmonella cultivated in three different conditions: nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of the observed proteome was regulated by σ(E) combining all three conditions. In different growth conditions, σ(E) affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ(E) and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ(E)-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ(E)-mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.
Collapse
|
137
|
Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection. Infect Immun 2015; 83:1641-9. [PMID: 25667264 DOI: 10.1128/iai.02870-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved host proteins that are essential for effective host defense against pathogens. However, recent studies suggest that some TLRs can negatively regulate immune responses. We observed here that TLR2 and TLR9 played opposite roles in regulating innate immunity against oral infection of Salmonella enterica serovar Typhimurium in mice. While TLR9-/- mice exhibited shortened survival, an increased cytokine storm, and more severe Salmonella hepatitis than wild-type (WT) mice, TLR2-/- mice exhibited the opposite phenomenon. Further studies demonstrated that TLR2 deficiency and TLR9 deficiency in macrophages both disrupted NK cell cytotoxicity against S. Typhimurium-infected macrophages by downregulating NK cell degranulation and gamma interferon (IFN-γ) production through decreased macrophage expression of the RAE-1 NKG2D ligand. But more importantly, we found that S. Typhimurium-infected TLR2-/- macrophages upregulated inducible nitric oxide synthase (iNOS) expression, resulting in a lower bacterial load than that in WT macrophages in vitro and livers in vivo as well as low proinflammatory cytokine levels. In contrast, TLR9-/- macrophages showed decreased reactive oxygen species (ROS) expression concomitant with a high bacterial load in the macrophages and in livers of TLR9-/- mice. TLR9-/- macrophages were also more susceptible than WT macrophages to S. Typhimurium-induced necroptosis in vitro, likely contributing to bacterial spread and transmission in vivo. Collectively, these findings indicate that TLR2 negatively regulates anti-S. Typhimurium immunity, whereas TLR9 is vital to host defense and survival against S. Typhimurium invasion. TLR2 antagonists or TLR9 agonists may thus serve as potential anti-S. Typhimurium therapeutic agents.
Collapse
|
138
|
Abstract
Salmonella are a common source of food- or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of host immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T- and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection, but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens.
Collapse
Affiliation(s)
- Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
139
|
Maier L, Barthel M, Stecher B, Maier RJ, Gunn JS, Hardt WD. Salmonella Typhimurium strain ATCC14028 requires H2-hydrogenases for growth in the gut, but not at systemic sites. PLoS One 2014; 9:e110187. [PMID: 25303479 PMCID: PMC4193879 DOI: 10.1371/journal.pone.0110187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/11/2014] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization.
Collapse
Affiliation(s)
- Lisa Maier
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Bärbel Stecher
- Max von Pettenkofer-Institut, München, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - John S. Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Biomedical Research Tower, The Ohio State University, Columbus, Ohio, United States of America
| | | |
Collapse
|
140
|
Hurley D, McCusker MP, Fanning S, Martins M. Salmonella-host interactions - modulation of the host innate immune system. Front Immunol 2014; 5:481. [PMID: 25339955 PMCID: PMC4188169 DOI: 10.3389/fimmu.2014.00481] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/20/2014] [Indexed: 12/27/2022] Open
Abstract
Salmonella enterica (S. enterica) are Gram-negative bacteria that can invade a broad range of hosts causing both acute and chronic infections. This phenotype is related to its ability to replicate and persist within non-phagocytic host epithelial cells as well as phagocytic dendritic cells and macrophages of the innate immune system. Infection with S. enterica manifests itself through a broad range of clinical symptoms and can result in asymptomatic carriage, gastroenteritis, systemic disease such as typhoid fever and in severe cases, death (1). Exposure to S. enterica serovars Typhi and Paratyphi exhibits clinical symptoms including diarrhea, fatigue, fever, and temperature fluctuations. Other serovars such as the non-typhoidal Salmonella (NTS), of which there are over 2,500, are commonly contracted as, but not limited to, food-borne sources causing gastrointestinal symptoms, which include diarrhea and vomiting. The availability of complete genome sequences for many S. enterica serovars has facilitated research into the genetic determinants of virulence for this pathogen. This work has led to the identification of important bacterial components, including flagella, type III secretion systems, lipopolysaccharides, and Salmonella pathogenicity islands, all of which support the intracellular life cycle of S. enterica. Studies focusing on the host-pathogen interaction have provided insights into receptor activation of the innate immune system. Therefore, characterizing the host-S. enterica interaction is critical to understand the pathogenicity of the bacteria in a clinically relevant context. This review outlines salmonellosis and the clinical manifestations between typhoidal and NTS infections as well as discussing the host immune response to infection and the models that are being used to elucidate the mechanisms involved in Salmonella pathogenicity.
Collapse
Affiliation(s)
- Daniel Hurley
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin , Dublin , Ireland
| | - Matthew P McCusker
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin , Dublin , Ireland
| | - Séamus Fanning
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin , Dublin , Ireland
| | - Marta Martins
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin , Dublin , Ireland
| |
Collapse
|
141
|
Wu D, Teng D, Wang X, Dai C, Wang J. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection. Can J Microbiol 2014; 60:681-6. [DOI: 10.1139/cjm-2014-0259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.
Collapse
Affiliation(s)
- Daichao Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People’s Republic of China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People’s Republic of China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People’s Republic of China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Changsong Dai
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People’s Republic of China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie Street, Haidian District, Beijing 100081, People’s Republic of China
| |
Collapse
|
142
|
Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives. Genes (Basel) 2014; 5:887-925. [PMID: 25268389 PMCID: PMC4276919 DOI: 10.3390/genes5040887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.
Collapse
|
143
|
De Jong HK, Koh GCKW, van Lieshout MHP, Roelofs JJTH, van Dissel JT, van der Poll T, Wiersinga WJ. Limited role for ASC and NLRP3 during in vivo Salmonella Typhimurium infection. BMC Immunol 2014; 15:30. [PMID: 25115174 PMCID: PMC4243774 DOI: 10.1186/s12865-014-0030-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022] Open
Abstract
Background The inflammasome is an intracellular protein complex triggered by exposure to intracellular pathogens, its components or other endogenous proteins. It leads to the activation of and subsequent release of proinflammatory cytokines such as IL-1β and IL-18. S. Typhimurium is a Gram-negative intracellular bacterium, which is known to trigger inflammasome assembly via recognition by the cytosolic receptors, NLRP3 and NLRC4 (which act via the adaptor protein, ASC) to induce cell death and cytokine release. We sought to characterize the role of ASC and NLRP3 in two different murine models (typhoid and colitis) of systemic Salmonella infection. Results Release of the inflammasome cytokine IL-18 was hampered in Asc−/− but not Nlrp3−/− mice (background C57BL/6) during S. Typhimurium infection. Unexpectedly, neither ASC nor NLRP3 played a significant role in host defense against S. Typhimurium infection, as reflected by equal bacterial counts in WT, Asc−/− and Nlrp3−/− mice at all time points, in both the typhoid and colitis models. Proinflammatory cytokine levels (TNF-α, IL-6) and the extent of hepatic and splenic pathology did not differ between groups in the typhoid model. In the colitis model small differences were seen with regard to splenic and hepatic inflammation, although this was IL-18 independent. Conclusions IL-18 release was reduced in Asc−/− but not Nlrp3−/− mice during S. Typhimurium infection. Despite this reduction, bacterial counts, cytokine levels and histological inflammation did not differ between wild-type and knockout mice in either model. Our results reveal a limited role for ASC and NLRP3 during in vivo S. Typhimurium infection despite its role in cytokine maturation. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0030-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanna K De Jong
- Department of Internal Medicine, Division of Infectious Diseases and Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Meibergdreef 9, Room G2-132, Amsterdam, 1105, AZ, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
144
|
Gal-Mor O, Boyle EC, Grassl GA. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol 2014; 5:391. [PMID: 25136336 PMCID: PMC4120697 DOI: 10.3389/fmicb.2014.00391] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/12/2014] [Indexed: 12/22/2022] Open
Abstract
Human infections by the bacterial pathogen Salmonella enterica represent major disease burdens worldwide. This highly ubiquitous species consists of more than 2600 different serovars that can be divided into typhoidal and non-typhoidal Salmonella (NTS) serovars. Despite their genetic similarity, these two groups elicit very different diseases and distinct immune responses in humans. Comparative analyses of the genomes of multiple Salmonella serovars have begun to explain the basis of the variation in disease manifestations. Recent advances in modeling both enteric fever and intestinal gastroenteritis in mice will facilitate investigation into both the bacterial- and host-mediated mechanisms involved in salmonelloses. Understanding the genetic and molecular mechanisms responsible for differences in disease outcome will augment our understanding of Salmonella pathogenesis, host immunity, and the molecular basis of host specificity. This review outlines the differences in epidemiology, clinical manifestations, and the human immune response to typhoidal and NTS infections and summarizes the current thinking on why these differences might exist.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center Tel-Hashomer, Israel
| | - Erin C Boyle
- Bernhard Nocht Institute for Tropical Medicine Hamburg, Germany
| | - Guntram A Grassl
- Institute for Experimental Medicine, Christian Albrechts University Kiel Kiel, Germany ; Research Center Borstel Borstel, Germany
| |
Collapse
|
145
|
Santos RL. Pathobiology of salmonella, intestinal microbiota, and the host innate immune response. Front Immunol 2014; 5:252. [PMID: 24904595 PMCID: PMC4033611 DOI: 10.3389/fimmu.2014.00252] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/13/2014] [Indexed: 12/19/2022] Open
Abstract
Salmonella is a relevant pathogen under a clinical and public health perspective. Therefore, there has been a significant scientific effort to learn about pathogenic determinants of this pathogen. The clinical relevance of the disease, associated with the molecular tools available to study Salmonella as well as suitable animal models for salmonellosis, have provided optimal conditions to drive the scientific community to generate a large expansion of our knowledge about the pathogenesis of Salmonella-induced enterocolitis that took place during the past two decades. This research effort has also generated a wealth of information on the host immune mechanisms that complements gaps in the fundamental research in this area. This review focus on how the interaction between Salmonella, the microbiota and intestinal innate immunity leads to disease manifestation. As a highly successful enteropathogen, Salmonella actively elicits a robust acute intestinal inflammatory response from the host, which could theoretically lead to the pathogen demise. However, Salmonella has evolved redundant molecular machineries that renders this pathogen highly adapted to the inflamed intestinal environment, in which Salmonella is capable of outcompete resident commensal organisms. The adaptation of Salmonella to the inflamed intestinal lumen associated with the massive inflammatory response that leads to diarrhea, generate perfect conditions for transmission of the pathogen. These conditions illustrate the complexity of the co-evolution and ecology of the pathogen, commensals, and the host.
Collapse
Affiliation(s)
- Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
146
|
Mazé A, Glatter T, Bumann D. The central metabolism regulator EIIAGlc switches Salmonella from growth arrest to acute virulence through activation of virulence factor secretion. Cell Rep 2014; 7:1426-1433. [PMID: 24835993 DOI: 10.1016/j.celrep.2014.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/07/2014] [Accepted: 04/14/2014] [Indexed: 11/29/2022] Open
Abstract
The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2) involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism.
Collapse
Affiliation(s)
- Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland; Synthetic Biology, UMR7242, ESBS, University of Strasbourg, 67412 Illkirch, France
| | - Timo Glatter
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
147
|
Snider TA, Gull T, Jackson TA, Martinez-Becerra FJ, Picking DR, Picking WD, Picking WL. Experimental salmonellosis challenge model in older calves. Vet Microbiol 2014; 170:65-72. [DOI: 10.1016/j.vetmic.2013.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 12/01/2022]
|
148
|
Ecto-5'-nucleotidase (CD73) regulates host inflammatory responses and exacerbates murine salmonellosis. Sci Rep 2014; 4:4486. [PMID: 24670982 PMCID: PMC3967249 DOI: 10.1038/srep04486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/10/2014] [Indexed: 01/13/2023] Open
Abstract
Food-borne Salmonella spp., are a major cause of hospitalization and death. Adenosine, an important immune regulator of inflammation, limits tissue damage during infection. CD39 (nucleoside triphosphate dephosphorylase) combined with ecto-5′-nucleotidase (CD73) metabolizes ATP to adenosine. We studied the expressions of CD39 and CD73 in tissues, and T helper cells in mice after Salmonella infection and evaluated the role of CD73 in regulating immune responses and bacterial clearance in wild-type and CD73-deficient (CD73−/−) mice. Both CD39 and CD73 transcript levels declined in the infected wild-type mice. Compared to wild-type mice, tissues from infected CD73−/− mice had significantly higher expression of pro-inflammatory cytokines and reduced anti-inflammatory responses. CD73−/− mice were more resistant to infection and had a greater inflammatory responses and a significantly lower bacterial load in the liver compared to wild-type mice. Thus, CD73 expression attenuates inflammation during murine Salmonellosis and impairs immunity, leading to increased bacterial colonization and prolonged infection.
Collapse
|
149
|
Salmonella enterica serovar Typhi impairs CD4 T cell responses by reducing antigen availability. Infect Immun 2014; 82:2247-54. [PMID: 24643532 DOI: 10.1128/iai.00020-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi is associated with a disseminated febrile illness in humans, termed typhoid fever, while Salmonella enterica serovar Typhimurium causes localized gastroenteritis in immunocompetent individuals. One of the genetic differences between both pathogens is the presence in S. Typhi of TviA, a regulatory protein that shuts down flagellin (FliC) expression when bacteria transit from the intestinal lumen into the intestinal mucosa. Here we investigated the consequences of TviA-mediated flagellum gene regulation on flagellin-specific CD4 T cell responses in a mouse model of S. Typhimurium infection. Introduction of the S. Typhi tviA gene into S. Typhimurium suppressed antigen presentation of dendritic cells to flagellin-specific CD4 T cells in vitro. Furthermore, TviA-mediated repression of flagellin expression impaired the activation and proliferation of naive flagellin-specific CD4 T cells in Peyer's patches and mesenteric lymph nodes, which was accompanied by increased bacterial dissemination to the spleen. We conclude that TviA-mediated repression of flagellin expression reduces antigen availability, thereby weakening flagellin-specific CD4 T cell responses.
Collapse
|
150
|
A low gastric pH mouse model to evaluate live attenuated bacterial vaccines. PLoS One 2014; 9:e87411. [PMID: 24489912 PMCID: PMC3906194 DOI: 10.1371/journal.pone.0087411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022] Open
Abstract
The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials.
Collapse
|