101
|
Zhang H, Liu S, Chang H, Zhan M, Qin QM, Zhang B, Li Z, Liu Y. Mining Magnaporthe oryzae sRNAs With Potential Transboundary Regulation of Rice Genes Associated With Growth and Defense Through Expression Profile Analysis of the Pathogen-Infected Rice. Front Genet 2019; 10:296. [PMID: 30984250 PMCID: PMC6449695 DOI: 10.3389/fgene.2019.00296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/19/2019] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies have shown that phytopathogenic fungi possess the ability of cross-kingdom regulation of host plants through small RNAs (sRNAs). Magnaporthe oryzae, a causative agent of rice blast, introduces disease by penetrating the rice tissues through appressoria. However, little is known about the transboundary regulation of M. oryzae sRNAs during the interaction of the pathogen with its host rice. Therefore, investigation of the regulation of M. oryzae through sRNAs in the infected rice plants has important theoretical and practical significance for disease control and production improvement. Based on the high-throughput data of M. oryzae sRNAs and the mixed sRNAs during infection, the differential expressions of sRNAs in M. oryzae before and during infection were compared, it was found that expression levels of 366 M. oryzae sRNAs were upregulated significantly during infection. We trained a SVM model which can be used to predict differentially expressed sRNAs, which has reference significance for the prediction of differentially expressed sRNAs of M. oryzae homologous species, and can facilitate the research of M. oryzae in the future. Furthermore, fifty core targets were selected from the predicted target genes on rice for functional enrichment analysis, the analysis reveals that there are nine biological processes and one KEGG pathway associated with rice growth and disease defense. These functions correspond to thirteen rice genes. A total of fourteen M. oryzae sRNAs targeting the rice genes were identified by data analysis, and their authenticity was verified in the database of M. oryzae sRNAs. The 14 M. oryzae sRNAs may participate in the transboundary regulation process and act as sRNA effectors to manipulate the rice blast process.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Sifei Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Haowu Chang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Mengping Zhan
- Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Qing-Ming Qin
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Borui Zhang
- Columbia Independent School, Columbia, MO, United States
| | - Zhi Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yuanning Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
102
|
Muhammad T, Zhang J, Ma Y, Li Y, Zhang F, Zhang Y, Liang Y. Overexpression of a Mitogen-Activated Protein Kinase SlMAPK3 Positively Regulates Tomato Tolerance to Cadmium and Drought Stress. Molecules 2019; 24:molecules24030556. [PMID: 30717451 PMCID: PMC6385007 DOI: 10.3390/molecules24030556] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) activation is a common defense response of plants to a range of abiotic stressors. SlMPK3, a serine-threonine protein kinase, has been reported as an important member of protein kinase cascade that also functions on plant stress tolerance. In this study, we cloned SlMPK3 from tomato and studied its role in cadmium (Cd2+) and drought tolerance. The results showed that transcripts of SlMAPK3 differentially accumulated in various plant tissues and were remarkably induced by different abiotic stressors and exogenous hormone treatments. Overexpression of SlMAPK3 increased tolerance to Cd2+ and drought as reflected by an increased germination rate and improved seedling growth. Furthermore, transgenic plants overexpressing SlMAPK3 showed an increased leaf chlorophyll content, root biomass accumulation and root activity under Cd2+ stress. Chlorophyll fluorescence analysis revealed that transgenic plants demonstrated an increased photosynthetic activity as well as contents of chlorophyll, proline, and sugar under drought stress. Notably, cadmium- and drought-induced oxidative stress was substantially attenuated in SlMAPK3 overexpressing plants as evidenced by lower malondialdehyde and hydrogen peroxide accumulation, and increased activity and transcript abundance of enzymatic antioxidants under stress conditions compared to that of wild-type. Our findings provide solid evidence that overexpression of SlMAPK3 gene in tomato positively regulates tolerance to Cd2+ and drought stress, which may have strengthen the molecular understanding of SlMAPK3 gene to improve abiotic stress tolerance.
Collapse
Affiliation(s)
- Tayeb Muhammad
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Jie Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yalin Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
103
|
Wang Z, Bao LL, Zhao FY, Tang MQ, Chen T, Li Y, Wang BX, Fu B, Fang H, Li GY, Cao J, Ding LN, Zhu KM, Liu SY, Tan XL. BnaMPK3 Is a Key Regulator of Defense Responses to the Devastating Plant Pathogen Sclerotinia sclerotiorum in Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2019; 10:91. [PMID: 30800136 PMCID: PMC6376111 DOI: 10.3389/fpls.2019.00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/21/2019] [Indexed: 05/18/2023]
Abstract
The disease caused by Sclerotinia sclerotiorum has traditionally been difficult to control, resulting in tremendous economic losses in oilseed rape (Brassica napus). Identification of important genes in the defense responses is critical for molecular breeding, an important strategy for controlling the disease. Here, we report that a B. napus mitogen-activated protein kinase gene, BnaMPK3, plays an important role in the defense against S. sclerotiorum in oilseed rape. BnaMPK3 is highly expressed in the stems, flowers and leaves, and its product is localized in the nucleus. Furthermore, BnaMPK3 is highly responsive to infection by S. sclerotiorum and treatment with jasmonic acid (JA) or the biosynthesis precursor of ethylene (ET), but not to treatment with salicylic acid (SA) or abscisic acid. Moreover, overexpression (OE) of BnaMPK3 in B. napus and Nicotiana benthamiana results in significantly enhanced resistance to S. sclerotiorum, whereas resistance is diminished in RNAi transgenic plants. After S. sclerotiorum infection, defense responses associated with ET, JA, and SA signaling are intensified in the BnaMPK3-OE plants but weakened in the BnaMPK3-RNAi plants when compared to those in the wild type plants; by contrast the level of both H2O2 accumulation and cell death exhibits a reverse pattern. The candidate gene association analyses show that the BnaMPK3-encoding BnaA06g18440D locus is a cause of variation in the resistance to S. sclerotiorum in natural B. napus population. These results suggest that BnaMPK3 is a key regulator of multiple defense responses to S. sclerotiorum, which may guide the resistance improvement of oilseed rape and related economic crops.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ling-Li Bao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng-Yun Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Min-Qiang Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ting Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yaoming Li
- School of Agricultural Equipment Engineering, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Bing-Xu Wang
- Faculty of Science, Jiangsu University, Zhenjiang, China
| | - Benzhong Fu
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Hedi Fang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guan-Ying Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sheng-Yi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Xiao-Li Tan,
| |
Collapse
|
104
|
Zheng Y, Deng X, Qu A, Zhang M, Tao Y, Yang L, Liu Y, Xu J, Zhang S. Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in Arabidopsis. PLoS Genet 2018; 14:e1007880. [PMID: 30586356 PMCID: PMC6324818 DOI: 10.1371/journal.pgen.1007880] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/08/2019] [Accepted: 12/05/2018] [Indexed: 11/18/2022] Open
Abstract
Signaling pathways that control the activities in non-photosynthetic plastids, important sites of plant metabolism, are largely unknown. Previously, we demonstrated that WRKY2 and WRKY34 transcription factors play an essential role in pollen development downstream of mitogen-activated protein kinase 3 (MPK3) and MPK6 in Arabidopsis. Here, we report that GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 1 (GPT1) is a key target gene of WRKY2/WRKY34. GPT1 transports glucose-6-phosphate (Glc6P) into plastids for starch and/or fatty acid biosynthesis depending on the plant species. Loss of function of WRKY2/WRKY34 results in reduced GPT1 expression, and concomitantly, reduced accumulation of lipid bodies in mature pollen, which leads to compromised pollen viability, germination, pollen tube growth, and male transmission in Arabidopsis. Pollen-specific overexpression of GPT1 rescues the pollen defects of wrky2 wrky34 double mutant. Furthermore, gain-of-function activation of MPK3/MPK6 enhances GPT1 expression; whereas GPT1 expression is reduced in mkk4 mkk5 double mutant. Together, this study revealed a cytoplasmic/nuclear signaling pathway capable of coordinating the metabolic activities in plastids. High-level expression of GPT1 at late stages of pollen development drives Glc6P from cytosol into plastids, where Glc6P is used for fatty acid biosynthesis, an important step of lipid body biogenesis. The accumulation of lipid bodies during pollen maturation is essential to pollen fitness and successful reproduction. Plastids are important sites of plant metabolism including fatty acid and starch biosynthesis. At present, how the activities in the plastids are coordinated with those in the cytoplasm and the signaling pathway(s) involved are largely unknown. Previously, we demonstrated that WRKY2 and WRKY34 transcription factors play an essential role in pollen development downstream of mitogen-activated protein kinase 3 (MPK3) and MPK6 in Arabidopsis. Here, we report that GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 1 (GPT1) is a key target gene of WRKY2/WRKY34. GPT1 is localized on the membrane of plastids and transports glucose-6-phosphate (Glc6P) into plastids for starch and/or fatty acid biosynthesis depending on the plant species. Genetic analyses demonstrated that WRKY2/WRKY34 and their upstream MPK3/MPK6 are involved in regulating GPT1 expression, therefore, the accumulation of lipid bodies in mature pollen, which is critical to pollen viability, pollen germination, pollen tube growth, and male transmission in Arabidopsis. This study revealed a cytoplasmic/nuclear signaling pathway capable of coordinating the metabolic activities in plastids. High-level expression of GPT1 at late stages of pollen development drives Glc6P from cytosol into plastids, where Glc6P is used for fatty acid biosynthesis, an important step of lipid body biogenesis. The accumulation of lipid bodies during pollen maturation is essential to pollen fitness and successful reproduction.
Collapse
Affiliation(s)
- Yueping Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangxiong Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aili Qu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Tao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States of America
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (JX); (SZ)
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States of America
- * E-mail: (JX); (SZ)
| |
Collapse
|
105
|
Genome-wide Identification of Jatropha curcas MAPK, MAPKK, and MAPKKK Gene Families and Their Expression Profile Under Cold Stress. Sci Rep 2018; 8:16163. [PMID: 30385801 PMCID: PMC6212503 DOI: 10.1038/s41598-018-34614-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/16/2018] [Indexed: 11/26/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in all eukaryotic organisms, controlling cell division, growth, development, and hormone signaling. Additionally, they can be activated in response to a variety of biotic and abiotic stressors. Although the evolution and expression patterns of MAPK cascade families have been systematically investigated in several model plants (e.g., Arabidopsis, rice, and poplar), we still know very little about MAPK, MAPKK, and MAPKKK families in Jatropha curcas, an economically important species. Therefore, this study performed genome-wide identification and transcriptional expression analysis of these three families in J. curcas. We identified 12 J. curcas MAPK (JcMAPKs), 5 JcMAPKKs, and 65 JcMAPKKKs. Phylogenetic analysis classified all JcMAPKs and JcMAPKKs into four subgroups, whereas JcMAPKKKs were grouped into three subfamilies (MEKK, RAF, and ZIK). Similarities in exon/intron structures supported the evolutionary relationships within subgroups and subfamilies. Conserved motif analysis indicated that all J. curcas MAPK cascades possessed typical, 200–300 amino-acid protein kinase domains. MAPK cascade genes were presented throughout all 11 chromosomes. Gene duplication analysis suggested that after JcMAPK and JcMAPKKK diverged, 3 and 19 tandem duplicates occurred under strong purifying selection. Furthermore, RNA-seq and qRT-PCR analyses revealed that some MAPK cascade genes are predominantly expressed in specific tissues. Moreover, their expression levels significantly increased under cold treatment. Our results should provide insight into the roles of MAPK cascade genes in regulating J. curcas stress responses and in hormonal signal transduction. Furthermore, these data have important applications in the genetic improvement of J. curcas.
Collapse
|
106
|
Su Y, Yi MM, Sun S, Zhang L, Irfan M, Chen L. Characterization of LiMAPK gene in response to salinity stress in Tiger lily ( Lilium lancifolium Thunb.). BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1512377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Ying Su
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agriculture University, Bioscience and Technology Institute of Liaoning province, Shenyang, PR China
| | - Meng-meng Yi
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agriculture University, Bioscience and Technology Institute of Liaoning province, Shenyang, PR China
| | - Shaokun Sun
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agriculture University, Bioscience and Technology Institute of Liaoning province, Shenyang, PR China
| | - Li Zhang
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agriculture University, Bioscience and Technology Institute of Liaoning province, Shenyang, PR China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agriculture University, Bioscience and Technology Institute of Liaoning province, Shenyang, PR China
| |
Collapse
|
107
|
Singh B, Kukreja S, Goutam U. Milestones achieved in response to drought stress through reverse genetic approaches. F1000Res 2018; 7:1311. [PMID: 30631439 PMCID: PMC6290974 DOI: 10.12688/f1000research.15606.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 01/07/2023] Open
Abstract
Drought stress is the most important abiotic stress that constrains crop production and reduces yield drastically. The germplasm of most of the cultivated crops possesses numerous unknown drought stress tolerant genes. Moreover, there are many reports suggesting that the wild species of most of the modern cultivars have abiotic stress tolerant genes. Due to climate change and population booms, food security has become a global issue. To develop drought tolerant crop varieties knowledge of various genes involved in drought stress is required. Different reverse genetic approaches such as virus-induced gene silencing (VIGS), clustered regularly interspace short palindromic repeat (CRISPR), targeting induced local lesions in genomes (TILLING) and expressed sequence tags (ESTs) have been used extensively to study the functionality of different genes involved in response to drought stress. In this review, we described the contributions of different techniques of functional genomics in the study of drought tolerant genes.
Collapse
Affiliation(s)
- Baljeet Singh
- Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sarvjeet Kukreja
- Department of Botany, Ch. MRM Memorial College, Sriganganagar, Rajasthan, 335804, India
| | - Umesh Goutam
- Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
108
|
Zhang L, Cheng J, Sun X, Zhao T, Li M, Wang Q, Li S, Xin H. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes. PLANT CELL REPORTS 2018; 37:1159-1172. [PMID: 29796948 DOI: 10.1007/s00299-018-2302-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 05/17/2023]
Abstract
Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes, including COR15A, COR15B, COR413, KIN2, and RD29A. The WRKY family is one of a largest transcription factors in plants, and it is a key component of multiple stress responses. In this study, the drought- and cold-induced WRKY family gene VaWRKY14 was isolated and characterized. Phylogenetic analysis indicated that VaWRKY14 belongs to the WRKY IIa subfamily, of which several members participate in biotic and abiotic stress responses in plants. Fluorescence observation from Arabidopsis mesophyll protoplasts transformed with the VaWRKY14::eGFP fusion vector suggested that VaWRKY14 was localized in the nucleus. The VaWRKY14 in yeast cells did not display any transcriptional activity. The expression of VaWRKY14 could be induced by exogenous phytohormones, including salicylic acid (SA) and abscisic acid (ABA). Overexpression of VaWRKY14 enhanced the drought tolerance of transgenic Arabidopsis. Compared with wild-type Arabidopsis, the VaWRKY14-OE lines exhibited higher water content and antioxidant enzyme activities in leaves after drought treatment. RNA sequencing analysis revealed that several stress-related genes, including COR15A, COR15B, COR413, KIN2, and RD29A, were upregulated in transgenic plants relative to their expression in wild-type Arabidopsis under normal conditions. Several genes (3 upregulated and 49 down-regulated) modulated by VaWRKY14 were also affected by drought stress in wild-type plants. These data suggest that VaWRKY14 responds to drought and cold stresses and that drought tolerance may be enhanced by regulating the expression of stress-related genes in Arabidopsis.
Collapse
Affiliation(s)
- Langlang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Tingting Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
109
|
Zhou H, Wang C, Tan T, Cai J, He J, Lin H. Patellin1 Negatively Modulates Salt Tolerance by Regulating PM Na+/H+ Antiport Activity and Cellular Redox Homeostasis in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:1630-1642. [PMID: 29684208 DOI: 10.1093/pcp/pcy081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Soil salinity significantly represses plant development and growth. Mechanisms involved sodium (Na+) extrusion and compartmentation, intracellular membrane trafficking as well as redox homeostasis regulation play important roles in plant salt tolerance. In this study, we report that Patellin1 (PATL1), a membrane trafficking-related protein, modulates salt tolerance in Arabidopsis. The T-DNA insertion mutant of PATL1 (patl1) with an elevated PATL1 transcription level displays a salt-sensitive phenotype. PATL1 partially associates with the plasma membrane (PM) and endosomal system, and might participate in regulating membrane trafficking. Interestingly, PATL1 interacts with SOS1, a PM Na+/H+ antiporter in the Salt-Overly-Sensitive (SOS) pathway, and the PM Na+/H+ antiport activity is lower in patl1 than in Col-0. Furthermore, the reactive oxygen species (ROS) content is higher in patl1 and the redox signaling of antioxidants is partially disrupted in patl1 under salt stress conditions. Artificial elimination of ROS could partially rescue the salt-sensitive phenotype of patl1. Taken together, our results indicate that PATL1 participates in plant salt tolerance by regulating Na+ transport at least in part via SOS1, and by modulating cellular redox homeostasis during salt stress.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chongwu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tinghong Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jingqing Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiaxian He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
110
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
111
|
Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 2018; 38:1277-1296. [PMID: 29862848 DOI: 10.1080/07388551.2018.1472551] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented.
Collapse
Affiliation(s)
- Swati Tyagi
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Sikandar I Mulla
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Kui-Jae Lee
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Jong-Chan Chae
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , India
| |
Collapse
|
112
|
Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:403-413. [PMID: 29679934 DOI: 10.1016/j.plaphy.2018.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Engineered nanoparticles are utilized in agriculture for various purposes. They can be used as fertilizer, carrier for macro/micro nutrients or priming agents. Various nanoparticles are reported to have toxicity at very high doses, but at optimum concentration, they can be beneficial for plant growth and development. In the present study, low concentrations of nZVI nanoparticles were evaluated for their growth enhancement potential as seed priming agent in an aromatic rice cultivar, Oryza sativa cv. Gobindabhog. Seeds were primed with different concentrations (10, 20, 40, 80, 160 mg L-1) of nZVI and allowed to grow for 14 days. Seed germination and seedling growth were studied by assessing physiological, biochemical, and structural parameters at different time points. Maximum activities of hydrolytic and antioxidant enzymes, along with root dehydrogenase enzyme were observed in 20 mg L-1 nZVI primed seeds. Priming with low doses of nZVI increased seedling vigour, as expressed by increased root and shoot length, biomass and photosynthetic pigment content. Our study also confirmed that after 14 days growth, the seedling showed absence of membrane damage, reduction in proline level and anti-oxidant enzyme activities. However, seedlings primed with 160 mg L-1 nZVI suffered oxidative stress. SEM micrographs also revealed damage in root tissue at that concentration. AAS study confirmed uptake of nZVI by the rice plants as maximum level of iron was found in the plants treated with highest concentration (i.e. 160 mg L-1 nZVI). Thus, nZVI at low concentrations can be considered as priming agent of rice seeds for increasing plant vigour.
Collapse
Affiliation(s)
- Titir Guha
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - K V G Ravikumar
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Anita Mukherjee
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
113
|
Jiang HY, Zhang JL, Yang JW, Ma HL. Transcript Profiling and Gene Identification Involved in the Ethylene Signal Transduction Pathways of Creeping Bentgrass (Agrostis stolonifera) during ISR Response Induced by Butanediol. Molecules 2018; 23:molecules23030706. [PMID: 29558428 PMCID: PMC6017539 DOI: 10.3390/molecules23030706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Creeping bentgrass (Agrostis stolonifera) is the preferred green lawn grass, with excellent turf characteristics but poor disease resistance. At present, the mechanisms of disease resistance in creeping bentgrass are poorly understood, especially the ethylene signal transduction pathway under the induced systemic resistance (ISR) response. In this study, butanediol (BDO), as a new type of disease-resistance compound, was applied to creeping bentgrass seedlings to induce the ISR response. Then, we measured ethylene production and related enzyme activities. Additionally, transcript profiling and gene identification were performed in association to ethylene signal transduction pathways. The changes of ethylene production and related enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and 1-aminocyclopropane-1-carboxylic acid synthases (ACS) activities showed significant difference at 24 h after Rhizoctonia solani inoculation among five treatments of various BDO concentrations. After 100 µmol L-1 BDO treatment, ethylene production and related enzyme activities reached their peak levels. Additionally, 208,672 unigenes of creeping bentgrass were obtained by de novo assembly. In total, 15,903 annotated unigenes were grouped into 33 canonical pathways in the KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. Among those, 1803 unigenes were classified as 'signal transduction'. There were 6766 differentially expressed genes (DEGs) among B24 (inoculated-rhizobacteria in MS medium with 100 µmol L-1 BDO for 24 h), NB24, B72 and NB24 (no rhizobacteria in MS medium with 100 µmol L-1 BDO for 24 h) libraries, and 4,639 DEGs between B24 and B72 (inoculated-rhizobacteria in MS medium with 100 µmol L-1 BDO for 72 h) libraries, with 4489 DEGs in all three libraries. As suggested by the RT-PCR assay, the expression levels of ethylene-responsive and defense-related genes were variable among treated samples during the BDO-induced ISR responses. The expression levels of EIN, ERF, NPR1, PR3 and PR4 genes increased and reached their peaks in the first 24 h after R. solani infection in the BDO-induced ISR reaction compared with NB24 treatments. This results is consistent with the changes of important ethylene biosynthetic enzymes and ethylene concentrations during the BDO-induced ISR responses. We further found the intermediate substances for the signaling pathway, and the relationships between the expression levels of BDO-induced ISR disease-resistance genes and those of the response genes for ethylene signal pathway. Our findings present a genetic basis for systemic resistance of creeping bentgrass through transcriptomic analysis and our study provides a theoretical and practical basis for the improvement of turfgrass disease resistance and quality.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China.
- Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jin-Lin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jiang-Wei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hui-Ling Ma
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China.
- Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou 730070, China.
| |
Collapse
|
114
|
Cai W, Zhang D. The role of receptor-like kinases in regulating plant male reproduction. PLANT REPRODUCTION 2018; 31:77-87. [PMID: 29508076 DOI: 10.1007/s00497-018-0332-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
RLKs in anther development. The cell-to-cell communication is essential for specifying different cell types during plant growth, development and adaption to the ever-changing environment. Plant male reproduction, in particular, requires the exquisitely synchronized development of different cell layers within the male tissue, the anther. Receptor-like kinases (RLKs) belong to a large group of kinases localized on the cell surfaces, perceiving extracellular signals and thereafter regulating intracellular processes. Here we update the role of RLKs in early anther development by defining the cell fate and anther patterning, responding to the changing environment and controlling anther carbohydrate metabolism. We provide speculation of the poorly characterized ligands and substrates of these RLKs. The conserved and diversified aspects underlying the function of RLKs in anther development are discussed.
Collapse
Affiliation(s)
- Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
115
|
Singh A, Nath O, Singh S, Kumar S, Singh IK. Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.plgene.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
116
|
Piao Y, Jin K, He Y, Liu J, Liu S, Li X, Piao Z. Genome-wide identification and role of MKK and MPK gene families in clubroot resistance of Brassica rapa. PLoS One 2018; 13:e0191015. [PMID: 29444111 PMCID: PMC5812557 DOI: 10.1371/journal.pone.0191015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/27/2017] [Indexed: 11/29/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK or MPK) cascades play key roles in responses to various biotic stresses, as well as in plant growth and development. However, the responses of MPK and MPK kinase (MKK) in Chinese cabbage (Brassica rapa ssp. pekinensis) to Plasmodiophora brassicae, a causal agent of clubroot disease in Brassica crops, are still not clear. In the present study, a total of 11 B. rapa MKK (BraMKK) and 30 BraMPK genes were identified and unevenly distributed in 6 and 10 chromosomes, respectively. The synteny analysis indicated that these genes experienced whole-genome triplication and segmental and tandem duplication during or after the divergence of B. rapa, accompanied by the loss of three MKK and two MPK orthologs of Arabidopsis. The BraMKK and BraMPK genes were classified into four groups with similar intron/exon structures and conserved motifs in each group. A quantitative PCR analysis showed that the majority of BraMKK and BraMPK genes were natively expressed in roots, hypocotyls, and leaves, whereas 5 BraMKK and 16 BraMPK genes up-regulated in the roots upon P. brassicae infection. Additionally, these 5 BraMKK and 16 BraMPK genes exhibited a significantly different expression pattern between a pair of clubroot-resistant/susceptible near-isogenic lines (NILs). Furthermore, the possible modules of MKK-MPK involved in B. rapa-P. brassicae interaction are also discussed. The present study will provide functional clues for further characterization of the MAPK cascades in B. rapa.
Collapse
Affiliation(s)
- Yinglan Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Kaining Jin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying He
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiaxiu Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shuang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- * E-mail: (ZP); (XL)
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- * E-mail: (ZP); (XL)
| |
Collapse
|
117
|
Wang B, Song N, Zhang Q, Wang N, Kang Z. TaMAPK4 Acts as a Positive Regulator in Defense of Wheat Stripe-Rust Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:152. [PMID: 29527215 PMCID: PMC5829626 DOI: 10.3389/fpls.2018.00152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Highly conserved mitogen-activated protein kinase (MAPK) cascades regulate numerous plant processes, including hormonal responses, stress, and innate immunity. In this research, TaMAPK4 was predicted to be a target of tae-miR164. We verified the binding and suppression of TaMAPK4 by co-expression in Nicotiana benthamiana. Moreover, we found TaMAPK4 was localized in the cytoplasm and nucleus using transient expression analyses. TaMAPK4 transcripts increased following salicylic acid (SA) treatment and when host plants were infected with an avirulent race of the stripe-rust pathogen. Silencing of TaMAPK4 by virus-induced gene silencing permitted increased colonization by the avirulent pathogen race. Detailed histological results showed increased Puccinia striiformis (Pst) hyphal length, hyphal branches, and infection uredinial size compared to the non-silenced control. SA accumulation and the transcript levels of TaPR1, TaPR2, and TaPR5 were significantly down-regulated in TaMAPK4 knockdown plants. Overall, these results suggest that TaMAPK4 plays an important role in signaling during the wheat-Pst interaction. These results present new insights into MAPK signaling in wheat defense to rust pathogen.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Na Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qiong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Zhensheng Kang,
| |
Collapse
|
118
|
Wu Q, Jackson D. Detection of MAPK3/6 Phosphorylation During Hypersensitive Response (HR)-Associated Programmed Cell Death in Plants. Methods Mol Biol 2018; 1743:153-161. [PMID: 29332294 DOI: 10.1007/978-1-4939-7668-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Programmed cell death (PCD) is an essential component of development, biotic and abiotic responses. Hypersensitive response (HR)-associated cell death activated under pathogen attack is one of the most dramatic manifestations of PCD in plants. Signal transduction through mitogen-activated protein kinase (MAPK) cascades, a very conserved signaling pathway across eukaryotes, is a core mediator for HR-associated PCD. Therefore, monitoring MAPK activation enables the mechanisms underlying HR-associated PCD to be elucidated. Here, we describe the use of a phosphorylation-specific MAPK3/6 antibody to monitor the activation of MAPK3/6 during HR-associated PCD. The technique may be adapted for use in other types of PCD.
Collapse
Affiliation(s)
- Qingyu Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
119
|
Zhang M, Wu H, Su J, Wang H, Zhu Q, Liu Y, Xu J, Lukowitz W, Zhang S. Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1005-1019. [PMID: 29024034 DOI: 10.1111/tpj.13737] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 05/06/2023]
Abstract
In flowering plants, developing embryos reside in maternal sporophytes. It is known that maternal generation influences the development of next-generation embryos; however, little is known about the signaling components in the process. Previously, we demonstrated that Arabidopsis mitogen-activated protein kinase 6 (MPK6) and MPK3 play critical roles in plant reproduction. In addition, we noticed that a large fraction of seeds from mpk6 single-mutant plants showed a wrinkled seed coat or a burst-out embryo phenotype. Here, we report that these seed phenotypes can be traced back to defective embryogenesis. The defective embryos have shorter suspensors and reduced growth along the longitudinal axis. Furthermore, the cotyledons fail to bend over to progress to the bent-cotyledon stage. As a result of the uneven circumference along the axis, the seed coat wrinkles to develop raisin-like morphology after dehydration. In more severe cases, the embryo can be pushed out from the micropylar end, resulting in the burst-out embryo seed phenotype. Genetic analyses demonstrated that the defective embryogenesis of the mpk6 mutant is a maternal effect. Heterozygous or homozygous mpk6 embryos have defects only in mpk6 homozygous maternal plants, but not in wild-type or heterozygous maternal plants. The loss of function of MKK4/MKK5 also results in the same phenotypes, suggesting that MKK4/MKK5 might act upstream of MPK6 in this pathway. The maternal-mediated embryo defects are associated with changes in auxin activity maxima and PIN localization. In summary, this research demonstrates that the Arabidopsis MKK4/MKK5-MPK6 cascade is an important player in the maternal control of embryogenesis.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongjiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianbin Su
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Huachun Wang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Qiankun Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
120
|
Kamatham S, Pallu R, Pasupulati AK, Singh SS, Gudipalli P. Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis. PHYTOCHEMISTRY 2017; 143:160-169. [PMID: 28818753 DOI: 10.1016/j.phytochem.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Systemic acquired resistance (SAR) is a long lasting inducible whole plant immunity often induced by either pathogens or chemical elicitors. Salicylic acid (SA) is a known SAR signal against a broad spectrum of pathogens in plants. In a recent study, we have reported that benzoylsalicylic acid (BzSA) is a SAR inducer in tobacco and Arabidopsis plants. Here, we have synthesized BzSA derivatives using SA and benzoyl chlorides of various moieties as substrates. The chemical structures of BzSA derivatives were elucidated using Infrared spectroscopy (IR), Nuclear magnetic spectroscopy (NMR) and High-resolution mass spectrometer (HRMS) analysis. The bioefficacy of BzSA derivatives in inducing defense response against tobacco mosaic virus (TMV) was investigated in tobacco and SA abolished transgenic NahG Arabidopsis plants. Interestingly, pre-treatment of local leaves of tobacco with BzSA derivatives enhanced the expression of SAR genes such as NPR1 [Non-expressor of pathogenesis-related (PR) genes 1], PR and other defense marker genes (HSR203, SIPK, WIPK) in systemic leaves. Pre-treatment of BzSA derivatives reduced the spread of TMV infection to uninfected areas by restricting lesion number and diameter both in local and systemic leaves of tobacco in a dose-dependent manner. Furthermore, pre-treatment of BzSA derivatives in local leaves of SA deficient Arabidopsis NahG plants induced SAR through AtPR1 and AtPR5 gene expression and reduced leaf necrosis and curling symptoms in systemic leaves as compared to BzSA. These results suggest that BzSA derivatives are potent SAR inducers against TMV in tobacco and Arabidopsis.
Collapse
Affiliation(s)
- Samuel Kamatham
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Reddanna Pallu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | | | - Padmaja Gudipalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
121
|
Yang C, Wang R, Gou L, Si Y, Guan Q. Overexpression of Populus trichocarpa Mitogen-Activated Protein Kinase Kinase4 Enhances Salt Tolerance in Tobacco. Int J Mol Sci 2017; 18:E2090. [PMID: 29057789 PMCID: PMC5666772 DOI: 10.3390/ijms18102090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/03/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is one of the factors of cascade reactions affecting responses to signal pathway of environmental stimuli. Throughout the life of plants, MAPK family members participate in signal transduction pathways and regulate various intracellular physiological and metabolic reactions. To gain insights into regulatory function of MAPK kinase (MAPKK) in Populus trichocarpa under salt stress, we obtained full-length cDNA of PtMAPKK4 and analyzed different expression levels of PtMAPKK4 gene in leaves, stems, and root organs. The relationship between PtMAPKK4 and salt stress was studied by detecting expression characteristics of mRNA under 150 mM NaCl stress using real-time quantitative polymerase chain reaction. The results showed that expression of PtMAPKK4 increased under salt (NaCl) stress in leaves but initially reduced and then increased in roots. Thus, salt stress failed to induce PtMAPKK4 expression in stems. PtMAPKK4 possibly participates in regulation of plant growth and metabolism, thereby improving its salt tolerance. We used Saccharomyces cerevisiae strain INVScI to verify subcellular localization of PtMAPKK4 kinase. The yeast strains containing pYES2-PtMAPKK4-GFP plasmid expressed GFP fusion proteins under the induction of d-galactose, and the products were located in nucleus. These results were consistent with network prediction and confirmed location of PtMAPKK4 enzyme in the nucleus. We tested NaCl tolerance in transgenic tobacco lines overexpressing PtMAPKK4 under the control of 35S promoter at germination stage to detect salt tolerance function of PtMAPKK4. Compared withK326 (a wild-type tobacco), lines overexpressing PtMAPKK4 showed a certain degree of improvement in tolerance, germination, and growth. NaCl inhibited growth of overexpressed line and K326 at the seedling stage. However, statistical analysis showed longer root length, higher fresh weight, and lower MDA content in transgenic lines in comparison with that in K326.
Collapse
Affiliation(s)
- Chengjun Yang
- Northeast Forestry University, Harbin 150040, China.
| | - Ruoning Wang
- Northeast Forestry University, Harbin 150040, China.
| | - Luzheng Gou
- Northeast Forestry University, Harbin 150040, China.
| | - Yongchao Si
- Northeast Forestry University, Harbin 150040, China.
| | - Qingjie Guan
- Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
122
|
Patel A, Dey N, Chaudhuri S, Pal A. Molecular and biochemical characterization of a Vigna mungo MAP kinase associated with Mungbean Yellow Mosaic India Virus infection and deciphering its role in restricting the virus multiplication. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:127-140. [PMID: 28716408 DOI: 10.1016/j.plantsci.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Yellow Mosaic Disease caused by the begomovirus Mungbean Yellow Mosaic India Virus (MYMIV) severely affects many economically important legumes. Recent investigations in Vigna mungo - MYMIV incompatible interaction identified a MAPK homolog in the defense signaling pathway. An important branch of immunity involves phosphorylation by evolutionary conserved Mitogen-activated protein kinases (MAPK) that transduce signals of pathogen invasion to downstream molecules leading to diverse immune responses. However, most of the knowledge of MAPKs is derived from model crops, and functions of these versatile kinases are little explored in legumes. Here we report characterization of a MAP kinase (VmMAPK1), which was induced upon MYMIV-inoculation in resistant V. mungo. Phylogenetic analysis revealed that VmMAPK1 is closely related to other plant-stress-responsive MAPKs. Both mRNA and protein of VmMAPK1 were accumulated upon MYMIV infection. The VmMAPK1 protein localized in the nucleus as well as cytoplasm and possessed phosphorylation activity in vitro. A detailed biochemical characterization of purified recombinant VmMAPK1 demonstrated an intramolecular mechanism of autophosphorylation and self-catalyzed phosphate incorporation on both threonine and tyrosine residues. The Vmax and Km values of recombinant VmMAPK1 for ATP were 6.292nmol/mg/min and 0.7978μM, respectively. Furthermore, the ability of VmMAPK1 to restrict MYMIV multiplication was validated by its ectopic expression in transgenic tobacco. Importantly, overexpression of VmMAPK1 resulted in the considerable upregulation of defense-responsive marker PR genes. Thus, the present data suggests the critical role of VmMAPK1 in suppressing MYMIV multiplication presumably through SA-mediated signaling pathway and inducing PR genes establishing the significant implications in understanding MAP kinase gene function during Vigna-MYMIV interaction; and hence paves the way for introgression of resistance in leguminous crops susceptible to MYMIV.
Collapse
Affiliation(s)
- Anju Patel
- Division of Plant Biology, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Nrisingha Dey
- Division of Gene Function and Regulation, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
123
|
Zhou H, Ren S, Han Y, Zhang Q, Qin L, Xing Y. Identification and Analysis of Mitogen-Activated Protein Kinase (MAPK) Cascades in Fragaria vesca. Int J Mol Sci 2017; 18:ijms18081766. [PMID: 28805715 PMCID: PMC5578155 DOI: 10.3390/ijms18081766] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/16/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules in eukaryotes, including yeasts, plants and animals. MAPK cascades are responsible for protein phosphorylation during signal transduction events, and typically consist of three protein kinases: MAPK, MAPK kinase, and MAPK kinase kinase. In this current study, we identified a total of 12 FvMAPK, 7 FvMAPKK, 73 FvMAPKKK, and one FvMAPKKKK genes in the recently published Fragaria vesca genome sequence. This work reported the classification, annotation and phylogenetic evaluation of these genes and an assessment of conserved motifs and the expression profiling of members of the gene family were also analyzed here. The expression profiles of the MAPK and MAPKK genes in different organs and fruit developmental stages were further investigated using quantitative real-time reverse transcription PCR (qRT-PCR). Finally, the MAPK and MAPKK expression patterns in response to hormone and abiotic stresses (salt, drought, and high and low temperature) were investigated in fruit and leaves of F. vesca. The results provide a platform for further characterization of the physiological and biochemical functions of MAPK cascades in strawberry.
Collapse
Affiliation(s)
- Heying Zhou
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| | - Suyue Ren
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| | - Yuanfang Han
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| | - Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| | - Ling Qin
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| | - Yu Xing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
124
|
Zhou S, Chen Q, Sun Y, Li Y. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1512-1530. [PMID: 28337773 DOI: 10.1111/pce.12950] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 05/23/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes - DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen-activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress-induced MT depolymerization, and the PTP-MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
125
|
Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim JY, Chung WS. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res 2017; 45:6613-6627. [PMID: 28510716 PMCID: PMC5499865 DOI: 10.1093/nar/gkx417] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
The expression of CBF (C-repeat-binding factor) genes is required for freezing tolerance in Arabidopsis thaliana. CBFs are positively regulated by INDUCER OF CBF EXPRESSION1 (ICE1) and negatively regulated by MYB15. These transcription factors directly interact with specific elements in the CBF promoters. Mitogen-activated protein kinase (MAPK/MPK) cascades function upstream to regulate CBFs. However, the mechanism by which MPKs control CBF expression during cold stress signaling remains unknown. This study showed that the activity of MYB15, a transcriptional repressor of cold signaling, is regulated by MPK6-mediated phosphorylation. MYB15 specifically interacts with MPK6, and MPK6 phosphorylates MYB15 on Ser168. MPK6-induced phosphorylation reduced the affinity of MYB15 binding to the CBF3 promoter and mutation of its phosphorylation site (MYB15S168A) enhanced the transcriptional repression of CBF3 by MYB15. Furthermore, transgenic plants overexpressing MYB15S168A showed significantly reduced CBF transcript levels in response to cold stress, compared with plants overexpressing MYB15. The MYB15S168A-overexpressing plants were also more sensitive to freezing than MYB15-overexpressing plants. These results suggest that MPK6-mediated regulation of MYB15 plays an important role in cold stress signaling in Arabidopsis.
Collapse
Affiliation(s)
- Sun Ho Kim
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sunghwa Bahk
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jonguk An
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Yeji Yoo
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
126
|
Iftikhar H, Naveed N, Virk N, Bhatti MF, Song F. In silico analysis reveals widespread presence of three gene families, MAPK, MAPKK and MAPKKK, of the MAPK cascade from crop plants of Solanaceae in comparison to the distantly-related syntenic species from Rubiaceae, coffee. PeerJ 2017; 5:e3255. [PMID: 28603666 PMCID: PMC5463992 DOI: 10.7717/peerj.3255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 03/31/2017] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are an important family of genes which play roles in vital plant processes, and they also help in coping against various kinds of environmental stresses including abiotic as well as biotic factors. The advancement of genomics calls for the annotation, identification, and detailed processing of the essential gene families in plants in order to provide insights into the importance of their central roles as well as for providing the basis for making their growth vigorous even under stressed conditions and, ultimately, to benefit from them by foreseeing the potential threats to their growth. In the current study, MAPK, MAPKK, and MAPKKK families of the MAPK cascade were identified and reported from five different agriculturally and economically important crop species of the Solanaceae and Rubiaceae families based on conserved signature motifs aligned throughout the members of the families under this gene superfamily. Genes reported from the species after strict filtering were: 89, tomato; 108, potato; 63, eggplant; 79, pepper; 64, coffee. These MAPKs were found to be randomly distributed throughout the genome on the chromosomes of the respective species. Various characteristics of the identified genes were studied including gene structure, gene and coding sequence length, protein length, isoelectric point, molecular weight, and subcellular localization. Moreover, maximum likelihood test of phylogeny was conducted on the retrieved sequences for the three MAPK cascade families to determine their homologous relationships which were also analyzed quantitatively by heat plots.
Collapse
Affiliation(s)
- Hira Iftikhar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nayab Naveed
- University Institute of Information Technology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
127
|
Xiao X, Tang Z, Li X, Hong Y, Li B, Xiao W, Gao Z, Lin D, Li C, Luo L, Niu X, He C, Chen Y. Overexpressing OsMAPK12-1 inhibits plant growth and enhances resistance to bacterial disease in rice. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:694-704. [PMID: 32480599 DOI: 10.1071/fp16397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/29/2017] [Indexed: 06/11/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play important roles in plant growth and development, plant abiotic stresses signalling pathway and plant-pathogen interactions. However, little is known about the roles of MAPKs in modulating plant growth and pathogen resistance. In this study, we found that OsMAPK12-1, an alternatively spliced form of BWMK1 in rice (Oryza sativa L.), was induced by various elicitors, such as jasmonic acid, salicylic acid, melatonin and bacterial pathogens. To further investigate the involvement of OsMAPK12-1 in plant growth and stress responses to bacterial pathogens, we constructed OsMAPK12-1 overexpression and knockdown (RNAi) transgenic rice lines. Interestingly, overexpressing OsMAP12-1 inhibited seed germination and seedling growth. Additionally, the OsMAP12-1-overexpression lines displayed enhanced disease resistance against Xanthomonas oryzae pv. oryzae PXO99 and Xanthomonas oryzae pv. oryzicola RS105, whereas the OsMAPK12-1-RNAi lines were more susceptible to these pathogens than wild type. These results suggest that OsMAPK12-1 plays a negative role in plant growth and positively modulates disease resistance against bacterial blight and streak in rice.
Collapse
Affiliation(s)
- Xiaorong Xiao
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Zhijuan Tang
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Xiuqiong Li
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Yuhui Hong
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Boling Li
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Wenfang Xiao
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Zhiliang Gao
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Daozhe Lin
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Chunxia Li
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Hainan University, Haikou 570228, PR China
| |
Collapse
|
128
|
Goldental-Cohen S, Burstein C, Biton I, Ben Sasson S, Sadeh A, Many Y, Doron-Faigenboim A, Zemach H, Mugira Y, Schneider D, Birger R, Meir S, Philosoph-Hadas S, Irihomovitch V, Lavee S, Avidan B, Ben-Ari G. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound. BMC PLANT BIOLOGY 2017; 17:87. [PMID: 28511694 PMCID: PMC5434568 DOI: 10.1186/s12870-017-1035-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 05/10/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Table olives (Olea europaea L.), despite their widespread production, are still harvested manually. The low efficiency of manual harvesting and the rising costs of labor have reduced the profitability of this crop. A selective abscission treatment, inducing abscission of fruits but not leaves, is crucial for the adoption of mechanical harvesting of table olives. In the present work we studied the anatomical and molecular differences between the three abscission zones (AZs) of olive fruits and leaves. RESULTS The fruit abscission zone 3 (FAZ3), located between the fruit and the pedicel, was found to be the active AZ in mature fruits and is sensitive to ethephon, whereas FAZ2, between the pedicel and the rachis, is the flower active AZ as well as functioning as the most ethephon induced fruit AZ. We found anatomical differences between the leaf AZ (LAZ) and the two FAZs. Unlike the FAZs, the LAZ is characterized by small cells with less pectin compared to neighboring cells. In an attempt to differentiate between the fruit and leaf AZs, we examined the effect of treating olive-bearing trees with ethephon, an ethylene-releasing compound, with or without antioxidants, on the detachment force (DF) of fruits and leaves 5 days after the treatment. Ethephon treatment enhanced pectinase activity and reduced DF in all the three olive AZs. A transcriptomic analysis of the three olive AZs after ethephon treatment revealed induction of several genes encoding for hormones (ethylene, auxin and ABA), as well as for several cell wall degrading enzymes. However, up-regulation of cellulase genes was found only in the LAZ. Many genes involved in oxidative stress were induced by the ethephon treatment in the LAZ alone. In addition, we found that reactive oxygen species (ROS) mediated abscission in response to ethephon only in leaves. Thus, adding antioxidants such as ascorbic acid or butyric acid to the ethephon inhibited leaf abscission but enhanced fruit abscission. CONCLUSION Our findings suggest that treating olive-bearing trees with a combination of ethephon and antioxidants reduces the detachment force (DF) of fruit without weakening that of the leaves. Hence, this selective abscission treatment may be used in turn to promote mechanized harvest of olives.
Collapse
Affiliation(s)
- S. Goldental-Cohen
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - C. Burstein
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - I. Biton
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - S. Ben Sasson
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - A. Sadeh
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - Y. Many
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - A. Doron-Faigenboim
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - H. Zemach
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - Y. Mugira
- The Agricultural Extension Service of Israel, Bet-Dagan, Israel
| | - D. Schneider
- Migal – Galilee Technology Center, P.O. Box 831, 11016 Kiryat Shemona, Israel
| | - R. Birger
- Agriculture Valley Center, P.O. Box 73, 23100 Migdal Haemeq, Israel
| | - S. Meir
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - S. Philosoph-Hadas
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - V. Irihomovitch
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - S. Lavee
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - B. Avidan
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| | - G. Ben-Ari
- Institute of Plant Sciences, ARO, The Volcani Center, 7528809 Rishon LeZion, Israel
| |
Collapse
|
129
|
Züst T, Agrawal AA. Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:513-534. [PMID: 28142282 DOI: 10.1146/annurev-arplant-042916-040856] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Costs of defense are central to our understanding of interactions between organisms and their environment, and defensive phenotypes of plants have long been considered to be constrained by trade-offs that reflect the allocation of limiting resources. Recent advances in uncovering signal transduction networks have revealed that defense trade-offs are often the result of regulatory "decisions" by the plant, enabling it to fine-tune its phenotype in response to diverse environmental challenges. We place these results in the context of classic studies in ecology and evolutionary biology, and propose a unifying framework for growth-defense trade-offs as a means to study the plant's allocation of limiting resources. Pervasive physiological costs constrain the upper limit to growth and defense traits, but the diversity of selective pressures on plants often favors negative correlations at intermediate trait levels. Despite the ubiquity of underlying costs of defense, the current challenge is using physiological and molecular approaches to predict the conditions where they manifest as detectable trade-offs.
Collapse
Affiliation(s)
- Tobias Züst
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland;
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology and Department of Entomology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
130
|
Kwenda S, Motlolometsi TV, Birch PRJ, Moleleki LN. RNA-seq Profiling Reveals Defense Responses in a Tolerant Potato Cultivar to Stem Infection by Pectobacterium carotovorum ssp. brasiliense. FRONTIERS IN PLANT SCIENCE 2016; 7:1905. [PMID: 28066465 PMCID: PMC5167753 DOI: 10.3389/fpls.2016.01905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/01/2016] [Indexed: 05/28/2023]
Abstract
Pectobacterium carotovorum subsp. brasiliense is a member of the soft rot Enterobacteriaceae (SRE) family that causes tuber soft rot and blackleg diseases of stems in potato plants. Currently, there are no effective chemical strategies for the control of members of the SRE. Thus, an understanding of the inducible defense responses in stems of potato plants is important, particularly during colonization of the vascular system. Here, time-course RNA-sequencing analysis was used to compare expressed genes between a susceptible potato cultivar (Solanum tuberosum cv Valor) and a tolerant cultivar (S. tuberosum cv BP1) at 0, 6, 12, 24, and 72 h post-inoculation with P. c. brasiliense. In total, we identified 6139 and 8214 differentially expressed genes (DEGs) in the tolerant and susceptible cultivars, compared to mock-inoculated controls, respectively. Key DEGs distinguishing between tolerance and susceptibility were associated with negative regulation of cell death and plant-type cell wall organization/biogenesis biological processes in the tolerant and susceptible cultivars, respectively. Among these were DEGs involved in signaling (mainly MAPK cascade and ethylene pathway), defense-related transcription regulation including WRKY transcription factors, and downstream secondary cell biosynthesis. Together, our results suggest that S. tuberosum cv BP1 likely employs quantitative defense response against P. c. brasiliense. Overall, our study provides the first transcriptome-wide insight into the molecular basis of tolerance and/or resistance of potato stems to SRE infection.
Collapse
Affiliation(s)
- Stanford Kwenda
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Tshepiso V. Motlolometsi
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Paul R. J. Birch
- Division of Plant Sciences, James Hutton Institute, College of Life Sciences, University of DundeeDundee, UK
| | - Lucy N. Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
131
|
Kim HS, Park SC, Ji CY, Park S, Jeong JC, Lee HS, Kwak SS. Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweetpotato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:37-48. [PMID: 27404133 DOI: 10.1016/j.plaphy.2016.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 05/18/2023]
Abstract
Plants are continually exposed to numerous environmental stresses. To decrease damage caused by these potentially detrimental factors, various stress-related signaling cascades are activated in plants. One such stress-responsive signaling pathway, the mitogen-activated protein kinase (MAPK) module, plays a critical role in diverse plant stress responses. Here, we functionally characterized biotic and abiotic stress-responsive MAPK genes, IbMPK3 and IbMPK6, from sweetpotato. IbMPK3/6 contain totally 11 MAPK conserved subdomains and the phosphorylating motif TEY. Bacterially expressed IbMPK3/6 could be autophosphorylated in vitro, and these proteins phosphorylated universal kinase substrate, such as myelin basic protein. IbMPK3/6 transcripts were expressed in leaf, stem, and root of sweetpotato cultivars with storage roots of various colors. IbMPK3 and IbMPK6 were induced by various biotic/abiotic stress treatments. Furthermore, the kinase activity of IbMPK3/6 was induced during early NaCl, SA, H2O2, and ABA treatment. IbMPK3/6 were predominantly localized to the nucleus. To determine the biological functions of IbMPK3/6, we transiently expressed the IbMPK genes in tobacco (Nicotiana benthamiana) leaves, which resulted in enhanced tolerance to bacterial pathogen and increased expression of pathogenesis-related (PR) genes. These data demonstrate that IbMPK3 and IbMPK6 play significant roles in plant responses to environmental stress.
Collapse
Affiliation(s)
- Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea
| | - Seyeon Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
132
|
Huang Y, Li MY, Wu P, Xu ZS, Que F, Wang F, Xiong AS. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum). BMC Genomics 2016; 17:788. [PMID: 27717312 PMCID: PMC5055730 DOI: 10.1186/s12864-016-3123-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/26/2016] [Indexed: 01/18/2023] Open
Abstract
Background Transmitted by the whitefly Bemisia tabaci, tomato yellow leaf curly virus (TYLCV) has posed serious threats to plant growth and development. Plant innate immune systems against various threats involve WRKY Group III transcription factors (TFs). This group participates as a major component of biological processes in plants. Results In this study, 6 WRKY Group III TFs (SolyWRKY41, SolyWRKY42, SolyWRKY53, SolyWRKY54, SolyWRKY80, and SolyWRKY81) were identified, and these TFs responded to TYLCV infection. Subcellular localization analysis indicated that SolyWRKY41 and SolyWRKY54 were nuclear proteins in vivo. Many elements, including W-box, were found in the promoter region of Group III TFs. Interaction network analysis revealed that Group III TFs could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK) and isochorismate synthase (ICS), to respond to biotic and abiotic stresses. Positive and negative expression patterns showed that WRKY Group III genes could also respond to TYLCV infection in tomato. The DNA content of TYLCV resistant lines after SolyWRKY41 and SolyWRKY54 were subjected to virus-induced gene silencing (VIGS) was lower than that of the control lines. Conclusions In the present study, 6 WRKY Group III TFs in tomato were identified to respond to TYLCV infection. Quantitative real-time–polymerase chain reaction (RT-qPCR) and VIGS analyses demonstrated that Group III genes served as positive and negative regulators in tomato–TYLCV interaction. WRKY Group III TFs could interact with other proteins by binding to cis elements existing in the promoter regions of other genes to regulate pathogen-related gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
133
|
Beguerisse-Díaz M, Desikan R, Barahona M. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction. J R Soc Interface 2016; 13:rsif.2016.0409. [PMID: 27581482 PMCID: PMC5014067 DOI: 10.1098/rsif.2016.0409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.
Collapse
Affiliation(s)
| | - Radhika Desikan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
134
|
Carmo LST, Murad AM, Resende RO, Boiteux LS, Ribeiro SG, Jorrín-Novo JV, Mehta A. Plant responses to tomato chlorotic mottle virus: Proteomic view of the resistance mechanisms to a bipartite begomovirus in tomato. J Proteomics 2016; 151:284-292. [PMID: 27457268 DOI: 10.1016/j.jprot.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
Abstract
Tomato chlorotic mottle virus (ToCMoV) is a widespread bipartite Begomovirus species found in tomato fields in Brazil. In this study, plant responses and putative mechanisms associated with the 'Tyking'-derived recessive resistance to ToCMoV were investigated. Changes in the protein profile in the inoculated plants of two near isogenic tomato lines resistant ('LAM 157') and susceptible ('Santa Clara') to ToCMoV were analyzed. Seedlings were biolistically inoculated with an infectious ToCMoV clone. Leaves from infected plants (confirmed by PCR) were sampled at 15days after inoculation. Proteins were extracted using phenol and analyzed by shotgun MS (2D-nanoUPLC/HDMSE). Out of the 534 identified proteins, 82 presented statistically significant differences in abundance, including 35 unique proteins displayed in the resistant tomato inoculated with ToCMoV. Proteins associated to chromatin structure, cytoskeleton structure, cuticle biosynthesis, and ubiquitin pathway were identified and their putative roles during virus infection process were discussed. The protein profile analysis allowed for the development of a hypothetical model showing how the resistant host cell responds to ToCMoV infection. The data obtained provide a better understanding of resistant mechanisms used by the host plant to contain viral infection and could be the basis for further investigation in other plant-begomovirus pathosystems. BIOLOGICAL SIGNIFICANCE In this study we propose a model of resistance to begomovirus in tomato and highlight host proteins, which could be targets for future investigations in plant-begomovirus pathosystems.
Collapse
Affiliation(s)
- Lílian S T Carmo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Renato O Resende
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
135
|
Utsumi Y, Tanaka M, Kurotani A, Yoshida T, Mochida K, Matsui A, Ishitani M, Sraphet S, Whankaew S, Asvarak T, Narangajavana J, Triwitayakorn K, Sakurai T, Seki M. Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. JOURNAL OF PLANT RESEARCH 2016; 129:711-726. [PMID: 27138000 DOI: 10.1007/s10265-016-0828-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 02/14/2016] [Indexed: 05/04/2023]
Abstract
Cassava anthracnose disease (CAD), caused by the fungus Colletotrichum gloeosporioides f. sp. Manihotis, is a serious disease of cassava (Manihot esculenta) worldwide. In this study, we established a cassava oligonucleotide-DNA microarray representing 59,079 probes corresponding to approximately 30,000 genes based on original expressed sequence tags and RNA-seq information from cassava, and applied it to investigate the molecular mechanisms of resistance to fungal infection using two cassava cultivars, Huay Bong 60 (HB60, resistant to CAD) and Hanatee (HN, sensitive to CAD). Based on quantitative real-time reverse transcription PCR and expression profiling by the microarray, we showed that the expressions of various plant defense-related genes, such as pathogenesis-related (PR) genes, cell wall-related genes, detoxification enzyme, genes related to the response to bacterium, mitogen-activated protein kinase (MAPK), genes related to salicylic acid, jasmonic acid and ethylene pathways were higher in HB60 compared with HN. Our results indicated that the induction of PR genes in HB60 by fungal infection and the higher expressions of defense response-related genes in HB60 compared with HN are likely responsible for the fungal resistance in HB60. We also showed that the use of our cassava oligo microarray could improve our understanding of cassava molecular mechanisms related to environmental responses and development, and advance the molecular breeding of useful cassava plants.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Kurotani
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuhiro Yoshida
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiichi Mochida
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Biomass Research Platform Team, RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Manabu Ishitani
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Apartado Aéreo 6713, Cali, Colombia
| | - Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sukhuman Whankaew
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Thipa Asvarak
- Department of Biotechnology, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Kanokporn Triwitayakorn
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Tetsuya Sakurai
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
136
|
Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1368-80. [PMID: 26563848 PMCID: PMC11389038 DOI: 10.1111/pbi.12501] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 05/20/2023]
Abstract
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fiona Filardo
- Queensland Department of Agriculture and Fisheries (QDAF), Ecosciences Precinct, Brisbane, Old, Australia
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
137
|
Andersen EJ, Ali S, Reese RN, Yen Y, Neupane S, Nepal MP. Diversity and Evolution of Disease Resistance Genes in Barley (Hordeum vulgare L.). Evol Bioinform Online 2016; 12:99-108. [PMID: 27168720 PMCID: PMC4857794 DOI: 10.4137/ebo.s38085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 11/05/2022] Open
Abstract
Plant disease resistance genes (R-genes) play a critical role in the defense response to pathogens. Barley is one of the most important cereal crops, having a genome recently made available, for which the diversity and evolution of R-genes are not well understood. The main objectives of this research were to conduct a genome-wide identification of barley Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) genes and elucidate their evolutionary history. We employed a Hidden Markov Model using 52 Arabidopsis thaliana CNL reference sequences and analyzed for phylogenetic relationships, structural variation, and gene clustering. We identified 175 barley CNL genes nested into three clades, showing (a) evidence of an expansion of the CNL-C clade, primarily due to tandem duplications; (b) very few members of clade CNL-A and CNL-B; and (c) a complete absence of clade CNL-D. Our results also showed that several of the previously identified mildew locus A (MLA) genes may be allelic variants of two barley CNL genes, MLOC_66581 and MLOC_10425, which respond to powdery mildew. Approximately 23% of the barley CNL genes formed 15 gene clusters located in the extra-pericentromeric regions on six of the seven chromosomes; more than half of the clustered genes were located on chromosomes 1H and 7H. Higher average numbers of exons and multiple splice variants in barley relative to those in Arabidopsis and rice may have contributed to a diversification of the CNL-C members. These results will help us understand the evolution of R-genes with potential implications for developing durable resistance in barley cultivars.
Collapse
Affiliation(s)
- Ethan J. Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Shaukat Ali
- Department of Plant Science, South Dakota State University, Brookings, SD, USA
| | - R. Neil Reese
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Madhav P. Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
138
|
Choi HW, Manohar M, Manosalva P, Tian M, Moreau M, Klessig DF. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid. PLoS Pathog 2016; 12:e1005518. [PMID: 27007252 PMCID: PMC4805298 DOI: 10.1371/journal.ppat.1005518] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
Abstract
Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Murli Manohar
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Patricia Manosalva
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Miaoying Tian
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
139
|
Li MY, Xu ZS, Tian C, Huang Y, Wang F, Xiong AS. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Sci Rep 2016; 6:23101. [PMID: 26975939 PMCID: PMC4792144 DOI: 10.1038/srep23101] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/01/2016] [Indexed: 11/24/2022] Open
Abstract
WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
140
|
Kumari C, Dutta TK, Banakar P, Rao U. Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice. Sci Rep 2016; 6:22846. [PMID: 26961568 PMCID: PMC4785349 DOI: 10.1038/srep22846] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/22/2016] [Indexed: 02/01/2023] Open
Abstract
Rice is one of the major staple food crops in the world and an excellent model system for studying monocotyledonous plants. Diseases caused by nematodes in rice are well documented and among them, root-knot nematode (RKN), Meloidogyne graminicola, causes extensive yield decline. It is therefore necessary to identify novel sources of natural resistance to RKN in rice and to investigate the rice-RKN interaction in detail to understand the basal plant defence mechanisms and nematode manipulation of the host physiology. To this end, six different cultivars of rice were initially screened for RKN infection and development; Pusa 1121 and Vandana were found to be most susceptible and resistant to RKN infection, respectively. In order to investigate the role of major hormone-regulated plant defence pathways in compatible/incompatible rice-RKN interaction, some well-identified marker genes involved in salicylate/jasmonate/ethylene pathway were evaluated for their differential expression through qRT-PCR. In general, our study shows a remarkable discrepancy in the expression pattern of those genes between compatible and incompatible rice-RKN interaction. As most information on the molecular interplay between plants and nematodes were generated on dicotyledonous plants, the current study will strengthen our basic understanding of plant-nematode interaction in the monocot crops, which will aid in defining future strategies for best plant health measures.
Collapse
Affiliation(s)
- Chanchal Kumari
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
141
|
Lee Y, Kim YJ, Kim MH, Kwak JM. MAPK Cascades in Guard Cell Signal Transduction. FRONTIERS IN PLANT SCIENCE 2016; 7:80. [PMID: 26904052 PMCID: PMC4749715 DOI: 10.3389/fpls.2016.00080] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/16/2016] [Indexed: 05/03/2023]
Abstract
Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.
Collapse
Affiliation(s)
- Yuree Lee
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
| | - Myung-Hee Kim
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
| | - June M. Kwak
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and TechnologyDaegu, South Korea
| |
Collapse
|
142
|
Yu Y, Zhen S, Wang S, Wang Y, Cao H, Zhang Y, Li J, Yan Y. Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses during seed germination. BMC Genomics 2016; 17:97. [PMID: 26846093 PMCID: PMC4743158 DOI: 10.1186/s12864-016-2416-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat embryo and endosperm play important roles in seed germination, seedling survival, and subsequent vegetative growth. ABA can positively regulate dormancy induction and negatively regulates seed germination at low concentrations, while low H2O2 concentrations promote seed germination of cereal plants. In this report, we performed the first integrative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses. RESULTS We used the GeneChip® Wheat Genome Array to conduct a comparative transcriptome microarray analysis of the embryo and endosperm of elite Chinese bread wheat cultivar Zhengmai 9023 in response to ABA and H2O2 treatments during seed germination. Transcriptome profiling showed that after H2O2 and ABA treatments, the 64 differentially expressed genes in the embryo were closely related to DNA synthesis, CHO metabolism, hormone metabolism, and protein degradation, while 121 in the endosperm were involved mainly in storage reserves, transport, biotic and abiotic stresses, hormone metabolism, cell wall metabolism, signaling, and development. Scatter plot analysis showed that ABA treatment increased the similarity of regulated patterns between the two tissues, whereas H2O2 treatment decreased the global expression similarity. MapMan analysis provided a global view of changes in several important metabolism pathways (e.g., energy reserves mobilization, cell wall metabolism, and photosynthesis), as well as related functional groups (e.g., cellular processes, hormones, and signaling and transport) in the embryo and endosperm following exposure of seeds to ABA and H2O2 treatments during germination. Quantitative RT-PCR analysis was used to validate the expression patterns of nine differentially expressed genes. CONCLUSIONS Wheat seed germination involves regulation of a large number of genes involved in many functional groups. ABA/H2O2 can repress/promote seed germination by coordinately regulating related gene expression. Our results provide novel insights into the transcriptional regulation mechanisms of embryo and endosperm in response to ABA and H2O2 treatments during seed germination.
Collapse
Affiliation(s)
- Yonglong Yu
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Shoumin Zhen
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Shu Wang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Yaping Wang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Hui Cao
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Yanzhen Zhang
- College of Applied Sciences and Humanities of Beijing Union University, Beijing, 100083, China.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry, 434025, Jingzhou, China.
| |
Collapse
|
143
|
Zhang X, Wang G, Gao J, Nie M, Liu W, Xia Q. Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. tomato DC3000 in tobacco. PLANT MOLECULAR BIOLOGY 2016; 90:19-31. [PMID: 26482478 DOI: 10.1007/s11103-015-0391-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Mitogen-activated protein kinase cascades are highly conserved signaling modules downstream of receptors/sensors and play pivotal roles in signaling plant defense against pathogen attack. Extensive studies on Arabidopsis MPK4 have implicated that the MAP kinase is involved in multilayered plant defense pathways. In this study, we identified tobacco NtMPK2 as an ortholog of AtMPK4. Transgenic tobacco overexpressing NtMPK2 markedly enhances resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) virulent and avirulent strains. Transcriptome analysis of NtMPK2-dependent genes shows that possibly the basal resistance system is activated by NtMPK2 overexpression. In addition to NtMPK2-mediated resistance, multiple pathways are involved in response to the avirulent bacteria based on analysis of Pst-responding genes, including SA and ET pathways. Notably, it is possible that biosynthesis of antibacterial compounds is responsible for inhibition of Pst DC3000 avirulent strain when programmed cell death processes in the host. Our results uncover that NtMPK2 positively regulate tobacco defense response to Pst DC3000 and improve our understanding of plant molecular defense mechanism.
Collapse
Affiliation(s)
- Xingtan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Junping Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Mengyun Nie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Wenshan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
144
|
Hu X, Yang J, Li C. Transcriptomic Response to Nitric Oxide Treatment in Larix olgensis Henry. Int J Mol Sci 2015; 16:28582-97. [PMID: 26633380 PMCID: PMC4691064 DOI: 10.3390/ijms161226117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022] Open
Abstract
Larix olgensis Henry is an important coniferous species found in plantation forests in northeastern China, but it is vulnerable to pathogens. Nitric oxide (NO) is an important molecule involved in plant resistance to pathogens. To study the regulatory role of NO at the transcriptional level, we characterized the transcriptomic response of L. olgensis seedlings to sodium nitroprusside (SNP, NO donor) using Illumina sequencing and de novo transcriptome assembly. A significant number of putative metabolic pathways and functions associated with the unique sequences were identified. Genes related to plant pathogen infection (FLS2, WRKY33, MAPKKK, and PR1) were upregulated with SNP treatment. This report describes the potential contribution of NO to disease resistance in L. olgensis as induced by biotic stress. Our results provide a substantial contribution to the genomic and transcriptomic resources for L. olgensis, as well as expanding our understanding of the involvement of NO in defense responses at the transcriptional level.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
145
|
Liu Z, Li Y, Cao H, Ren D. Comparative phospho-proteomics analysis of salt-responsive phosphoproteins regulated by the MKK9-MPK6 cascade in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:138-50. [PMID: 26706066 DOI: 10.1016/j.plantsci.2015.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in the salt stress response in plants. However, the identities of specific proteins operating downstream of MAPKs in the salt stress response remain unclear. Our studies showed that mkk9 and mpk6 null mutant seedlings are hyposensitive to salt stress. Moreover, we showed that MPK6 was activated by salt stress, indicating that the MKK9-MPK6 cascade mediated the salt stress response in Arabidopsis. To identify phosphoproteins downstream of the MKK9-MPK6 cascade in the salt stress response pathway, we performed two-dimensional electrophoresis (2-DE) with Pro-Q phosphoprotein staining and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) to identify phosphoproteins induced by salt treatment in mkk9, mpk6, and wild-type seedlings. Phosphorylation of 4 proteins, including Rubisco activase (RCA), plastid ribosomal protein S 1 (PRPS1), plastid division protein (FtsZ2-2), and tortifolia2 (TOR2), was found to be regulated by activation of MKK9-MPK6 cascade. Further Phospho-proteomics analysis of MKK9(DD) mutant seedlings revealed that RCA phosphorylation was up-regulated as a result of MKK9 activation. The finding that the MKK9-MPK6 cascade functions in the salt stress response by regulating phosphorylation of RCA, PRPS1, FtsZ2-2, and TOR2, provides a novel insight into the MAPK-related mechanisms underlying the salt stress response in plants.
Collapse
Affiliation(s)
- Zhenbin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hanwei Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
146
|
Li L, Ye C, Zhao R, Li X, Liu WZ, Wu F, Yan J, Jiang YQ, Yang B. Mitogen-activated protein kinase kinase kinase (MAPKKK) 4 from rapeseed (Brassica napus L.) is a novel member inducing ROS accumulation and cell death. Biochem Biophys Res Commun 2015; 467:792-7. [PMID: 26498521 DOI: 10.1016/j.bbrc.2015.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/11/2015] [Indexed: 11/18/2022]
Abstract
MAPKKK is the largest family of MAPK cascade, which is known to play important roles in plant growth, development and immune responses. So far, only a few have been functionally characterized even in the model plant, Arabidopsis due to the potential functional redundancy of MAPKKK. We previously identified and cloned a few MAPKKK family genes from rapeseed. In this study, BnaMAPKKK4 was characterized as a member in eliciting accumulation of reactive oxygen species (ROS) and hypersensitive response (HR)-like cell death. This is accompanied with accumulation of malondialdehyde (MDA), anthocyanin as well as nuclear DNA fragmentation. The transcript abundance of a series of ROS accumulation, cell death, and defense response related genes were up-regulated by the expression of MAPKKK4. Further investigation identified BnaMAPKKK4 elicited ROS through the downstream MPK3. These results indicate that BnaMAPKKK4 and its downstream components function in the ROS-induced cell death.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Chaofei Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Rui Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Xin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Wu-zhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Feifei Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jingli Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
147
|
Islam E, Khan MT, Irem S. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:126-33. [PMID: 25637747 DOI: 10.1016/j.ecoenv.2015.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 12/29/2014] [Accepted: 01/19/2015] [Indexed: 05/08/2023]
Abstract
Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security.
Collapse
Affiliation(s)
- Ejazul Islam
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan.
| | - Muhammad Tahir Khan
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Samra Irem
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| |
Collapse
|
148
|
Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. TRENDS IN PLANT SCIENCE 2015; 20:56-64. [PMID: 25457109 DOI: 10.1016/j.tplants.2014.10.001] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/21/2014] [Accepted: 10/02/2014] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
149
|
Çakır B, Kılıçkaya O. Mitogen-activated protein kinase cascades in Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2015; 6:556. [PMID: 26257761 PMCID: PMC4511077 DOI: 10.3389/fpls.2015.00556] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/07/2015] [Indexed: 05/17/2023]
Abstract
Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera.
Collapse
Affiliation(s)
- Birsen Çakır
- Department of Horticulture, Faculty of Agriculture, Ege UniversityIzmir, Turkey
- *Correspondence: Birsen Çakır, Department of Horticulture, Faculty of Agriculture, Ege University, Bornova/Izmir 35100, Turkey
| | - Ozan Kılıçkaya
- Department of Pharmacetical Biotechnology, Faculty of Pharmacy, Cumhuriyet UniversitySivas, Turkey
| |
Collapse
|
150
|
Identification of a novel mitogen-activated protein kinase kinase gene (MKK2) in the oilseed rape Brassica campestris. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|