101
|
Time Series Analysis of Atmospheric Precipitation Characteristics in Western Siberia for 1979–2018 across Different Datasets. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A comparative statistical analysis of the spatiotemporal variability of atmospheric precipitation characteristics (mean and extreme values) in Western Siberia was performed based on data acquired from meteorological stations, global precipitation datasets such as the project of Asian Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) and from Global Precipitation Climatology Centre (GPCC), and reanalysis archives, including from National Centers of Environmental Prediction (NCEP-DOE) and the European Center for Medium Range Weather Forecasts (ERA5) for the period 1979–2018. The best agreement of the values from the observational data was observed with the values from GPCC. This archive also represented the periodicities in the time series of observational data from meteorological stations, especially in the short-period part of the spectrum. Underestimated values were revealed for the APHRODITE archive, while overestimated ones were found for the NCEP reanalysis data. In comparison with GPCC, the ERA5 dataset reproduced the general variability but with a smaller amplitude (the correlation coefficient was up to 0.9). In general, the median estimates of the precipitation amount derived from the meteorological stations’ data, as well from the reanalysis data, were in better agreement with each other rather than their extreme values. However, their temporal variability can be effectively described by other datasets.
Collapse
|
102
|
Wang S, Huang G, Hu K, Wang L, Dai T, Zhou C. The deep blue day is decreasing in China. THEORETICAL AND APPLIED CLIMATOLOGY 2022; 147:1675-1684. [PMID: 35095143 PMCID: PMC8782681 DOI: 10.1007/s00704-021-03898-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED The deep blue sky is an indicator of a lower concentration of aerosols and a cloudless sky. With increasing human emissions, a trend towards days with fewer deep blue skies might indicate a decline in a good living environment for humans. This study investigates the long-term changes of the deep blue sky in China from 1980 to 2018. Due to a lack of direct measurements, we use atmospheric visibility and low cloud cover to classify blue sky days into three grades: light blue day, medium blue day, and deep blue day. Climatologically, annual deep blue days increase from southeast China to northwest China, with the maximum number in Xinjiang and eastern Inner Mongolia and the minimum number in western Qinghai and southern Hebei. From 1980 to 2018, annual deep blue days show a prominent decreasing trend in most of China, with area-mean annual deep blue days decreasing by -0.48 days per year (d/y) in China, and the variation becomes more obvious after 2013. The maximum decreasing trend is observed in eastern China. The most prominent decreases of deep blue days are seen in winter. Both air pollution and the change in meteorological conditions contribute to the decrease of wintertime deep blue days in China. Specifically, the decrease in surface wind speed hinders the cleaning of air by winds, the increase in surface air temperature, and decrease in relative humidity is favorable for low cloud increase, and the increasing emission of pollution reduces atmospheric visibility. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00704-021-03898-1.
Collapse
Affiliation(s)
- Su Wang
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Gang Huang
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Kaiming Hu
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
- Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Lin Wang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Tie Dai
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
| | - Chunjiang Zhou
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
103
|
Bahuguna RN, Chaturvedi AK, Pal M, Viswanathan C, Jagadish SVK, Pareek A. Carbon dioxide responsiveness mitigates rice yield loss under high night temperature. PLANT PHYSIOLOGY 2022; 188:285-300. [PMID: 34643728 PMCID: PMC8774858 DOI: 10.1093/plphys/kiab470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/11/2021] [Indexed: 05/26/2023]
Abstract
Increasing night-time temperatures are a major threat to sustaining global rice (Oryza sativa L.) production. A simultaneous increase in [CO2] will lead to an inevitable interaction between elevated [CO2] (e[CO2]) and high night temperature (HNT) under current and future climates. Here, we conducted field experiments to identify [CO2] responsiveness from a diverse indica panel comprising 194 genotypes under different planting geometries in 2016. Twenty-three different genotypes were tested under different planting geometries and e[CO2] using a free-air [CO2] enrichment facility in 2017. The most promising genotypes and positive and negative controls were tested under HNT and e[CO2] + HNT in 2018. [CO2] responsiveness, measured as a composite response index on different yield components, grain yield, and photosynthesis, revealed a strong relationship (R2 = 0.71) between low planting density and e[CO2]. The most promising genotypes revealed significantly lower (P < 0.001) impact of HNT in high [CO2] responsive (HCR) genotypes compared to the least [CO2] responsive genotype. [CO2] responsiveness was the major driver determining grain yield and related components in HCR genotypes with a negligible yield loss under HNT. A systematic investigation highlighted that active selection and breeding for [CO2] responsiveness can lead to maintained carbon balance and compensate for HNT-induced yield losses in rice and potentially other C3 crops under current and future warmer climates.
Collapse
Affiliation(s)
- Rajeev Nayan Bahuguna
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
- Centre for Advance Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, India
| | - Ashish Kumar Chaturvedi
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode 673571, India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chinnusamy Viswanathan
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru 560065, India
| | - Ashwani Pareek
- School of Life Sciences, Stress Physiology and Molecular Biology Laboratory, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
104
|
Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent. REMOTE SENSING 2022. [DOI: 10.3390/rs14020412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Integrated Multi-satellite Retrievals for GPM (IMERG) data have been widely used to analyze extreme precipitation, but the data have never been validated for the Indonesian Maritime Continent (IMC). This study evaluated the capability of IMERG Early (E), Late (L), and Final (F) data to observe extreme rain in the IMC using the rain gauge data within five years (2016–2020). The capability of IMERG in the observation of the extreme rain index was evaluated using Kling–Gupta efficiency (KGE) matrices. The IMERG well captured climatologic characteristics of the index of annual total precipitation (PRCPTOT), number of wet days (R85p), number of very wet days (R95p), number of rainy days (R1mm), number of heavy rain days (R10mm), number of very heavy rain days (R20mm), consecutive dry days (CDD), and max 5-day precipitation (RX5day), indicated by KGE value >0.4. Moderate performance (KGE = 0–0.4) was shown in the index of the amount of very extremely wet days (R99p), the number of extremely heavy precipitation days (R50mm), max 1-day precipitation (RX1day), and Simple Daily Intensity Index (SDII). Furthermore, low performance of IMERG (KGE < 0) was observed in the consecutive wet days (CWDs) index. Of the 13 extreme rain indices evaluated, IMERG underestimated and overestimated precipitation of nine and four indexes, respectively. IMERG tends to overestimate precipitation of indexes related to low rainfall intensity (e.g., R1mm). The highest overestimation was observed in the CWD index, related to the overestimation of light rainfall and the high false alarm ratio (FAR) from the daily data. For all indices of extreme rain, IMERG showed good capability to observe extreme rain variability in the IMC. Overall, IMERG-L showed a better capability than IMERG-E and -F but with an insignificant difference. Thus, the data of IMERG-E and IMERG-L, with a more rapid latency than IMERG-F, have great potential to be used for extreme rain observation and flood modeling in the IMC.
Collapse
|
105
|
Ecological Security Pattern Construction in Beijing-Tianjin-Hebei Region Based on Hotspots of Multiple Ecosystem Services. SUSTAINABILITY 2022. [DOI: 10.3390/su14020699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The contradiction between urban expansion and ecological protection in the Beijing-Tianjin-Hebei region (BTH) is increasingly acute, which has become one of the main problems restricting regional development, and sustainable development of ecosystem services is the key to increasing human well-being. Based on GIS platform and multiple models, this paper analyzes the temporal and spatial variation characteristics of four key ecosystem services (water conservation, soil conservation, habitat quality, and plant net primary productivity) in different ecological regions of BTH in recent 20 years, quantifies the impact of different climate factors and land use change on ecosystem services (ESs), and discusses the primary ecosystem hotspots and ecological security pattern. The results showed that the interannual variation of water conservation (WC) and plant net primary productivity (NPP) increased from 2000 to 2020, while the change of soil conservation (SC) was not obvious, which was mainly controlled by climate factors, WC and SC were more affected by precipitation, and temperature was the key factor affecting NPP. Habitat quality (HQ) presented a significant downward trend; it was mainly attributed to the deterioration of ecological environment caused by accelerated urbanization expansion. According to hotspot analysis, it could be found that WC was the fastest-growing ecosystem service function in BTH, and NPP would become the factor with the greatest contribution to ecological importance in the future. The important protected areas and main ecological sources of ecological security pattern were mainly distributed in Yanshan-Taihang mountain area, which was consistent with the key areas of ecosystem services. In this study, the temporal and spatial differences of ecosystem service in BTH were demonstrated in a more intuitive way and provided scientific guidance for decision makers to formulate effective ecological protection policies in different regions.
Collapse
|
106
|
Assessing the Influence of Land Use/Land Cover Alteration on Climate Variability: An Analysis in the Aurangabad District of Maharashtra State, India. SUSTAINABILITY 2022. [DOI: 10.3390/su14020642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Examining the influence of land use/land cover transformation on meteorological variables has become imperative for maintaining long-term climate sustainability. Rapid growth and haphazard expansion have caused the conversion of prime agricultural land into a built-up area. This study used multitemporal Landsat data to analyze land use/land cover (LULC) changes, and Terra Climate monthly data to examine the impact of land transformation on precipitation, minimum and maximum temperature, wind speed, and soil moisture in the Aurangabad district of Maharashtra state in India during 1999–2019. Multiple linear regression and correlation analysis were performed to determine the association among LULC classes and climatic variables. This study revealed rapid urbanization in the study area over the years. The built-up area, water bodies, and barren lands have recorded a steep rise, while the agricultural area has decreased in the district. Drastic changes were observed in the climatic variables over the years. The precipitation and wind speed have shown decreasing trends during the study period. A positive relationship between soil moisture and agricultural land was found through a correlation analysis. Conspicuous findings about the positive relationship between the agricultural land and maximum temperature need further investigation. A multiple linear regression analysis demonstrated a negative relationship between the built-up area and precipitation. The intensity of the precipitation has reduced as a consequence of the developmental activities in the study area. Moreover, a positive relationship was observed between the built-up area and maximum temperature. Thus, this study calls for policy implications to formulate a futuristic land-use plan considering climate change projection in the district.
Collapse
|
107
|
Folkerts MA, Bröde P, Botzen WJW, Martinius ML, Gerrett N, Harmsen CN, Daanen HAM. Sex differences in temperature-related all-cause mortality in the Netherlands. Int Arch Occup Environ Health 2022; 95:249-258. [PMID: 34089351 PMCID: PMC8755659 DOI: 10.1007/s00420-021-01721-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Over the last few decades, a global increase in both cold and heat extremes has been observed with significant impacts on human mortality. Although it is well-identified that older individuals (> 65 years) are most prone to temperature-related mortality, there is no consensus on the effect of sex. The current study investigated if sex differences in temperature-related mortality exist in the Netherlands. METHODS Twenty-three-year ambient temperature data of the Netherlands were combined with daily mortality data which were subdivided into sex and three age classes (< 65 years, 65-80 years, ≥ 80 years). Distributed lag non-linear models were used to analyze the effect of ambient temperature on mortality and determine sex differences in mortality attributable to the cold and heat, which is defined as mean daily temperatures below and above the Minimum Mortality Temperature, respectively. RESULTS Attributable fractions in the heat were higher in females, especially in the oldest group under extreme heat (≥ 97.5th percentile), whilst no sex differences were found in the cold. Cold- and heat-related mortality was most prominent in the oldest age group (≥ 80 years) and to a smaller extent in the age group between 65-80 years. In the age group < 65 years temperature-related mortality was only significant for males in the heat. CONCLUSION Mortality in the Netherlands represents the typical V- or hockey-stick shaped curve with a higher daily mortality in the cold and heat than at milder temperatures in both males and females, especially in the age group ≥ 80 years. Heat-related mortality was higher in females than in males, especially in the oldest age group (≥ 80 years) under extreme heat, whilst in the cold no sex differences were found. The underlying cause may be of physiological or behavioral nature, but more research is necessary.
Collapse
Affiliation(s)
- Mireille A Folkerts
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - W J Wouter Botzen
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Mike L Martinius
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Nicola Gerrett
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | | | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
108
|
Variability of ecosystem carbon source from microbial respiration is controlled by rainfall dynamics. Proc Natl Acad Sci U S A 2021; 118:2115283118. [PMID: 34930848 DOI: 10.1073/pnas.2115283118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Soil heterotrophic respiration (R h) represents an important component of the terrestrial carbon cycle that affects whether ecosystems function as carbon sources or sinks. Due to the complex interactions between biological and physical factors controlling microbial growth, R h is uncertain and difficult to predict, limiting our ability to anticipate future climate trajectories. Here we analyze the global FLUXNET 2015 database aided by a probabilistic model of microbial growth to examine the ecosystem-scale dynamics of R h and identify primary predictors of its variability. We find that the temporal variability in R h is consistently distributed according to a Gamma distribution, with shape and scale parameters controlled only by rainfall characteristics and vegetation productivity. This distribution originates from the propagation of fast hydrologic fluctuations on the slower biological dynamics of microbial growth and is independent of biome, soil type, and microbial physiology. This finding allows us to readily provide accurate estimates of the mean R h and its variance, as confirmed by a comparison with an independent global dataset. Our results suggest that future changes in rainfall regime and net primary productivity will significantly alter the dynamics of R h and the global carbon budget. In regions that are becoming wetter, R h may increase faster than net primary productivity, thereby reducing the carbon storage capacity of terrestrial ecosystems.
Collapse
|
109
|
Changes of Extreme Agro-Climatic Droughts and Their Impacts on Grain Yields in Rain-Fed Agricultural Regions in China over the Past 50 Years. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change and climate extremes and their impacts on agriculture, water resources, and ecosystems have become important issues globally. Agricultural sustainability and food security are facing unprecedented challenges due to the increasing occurrence of extreme climatic events, including, notably, extreme droughts in recent years in China. In this study, a threshold determination model of extreme agro-climatic droughts (EADs) was built based on the cumulative probability distribution functions (CDF) of an agricultural drought index—the consecutive days without available precipitation (CDWAP). The CDWAP was established by combining meteorological data with the characteristics of cropping patterns and the water requirement in different growing periods of crops. The CDF of CDWAP was obtained based on the relationship of CDWAP and its occurrence frequency. Based on the model, the spatial pattern of the thresholds of EADs and the threshold exceedance time series of EADs in 500 meteorological stations were obtained, and then changes in the frequencies and intensities of EADs in China and their impacts on grain yields in rain-fed regions during the past 50 years were analyzed. The results follow: (1) The threshold value of EADs in China gradually increased from southeast to northwest. The stations of the highest value were located in the Northwest China, with the CDWAP more than 60 days, while the lowest value was in the middle reaches of the Yangzi River, with the CDWAP less than 16 days. (2) The frequencies and intensities of the EADs increased mostly in the east areas of the Hu Huanyong line, which was also the main agricultural production region in China. The North China (NC) and Southwest China (SW) regions showed the highest increasing rates of the EADs; their frequencies and intensities were 11.3% and 2.2%, respectively, for the NC region, and 9.3% and 2.7%, respectively, for the SW region. (3) Case studies in the NC, SW, and SE regions indicated that there was a negative correlation between grain yields and EAD frequency and intensity; i.e., the low grain yields often occurred in the year with relatively higher frequency or/and stronger intensity of EADs. The correlation coefficients of grain yield and EAD were generally greater than that of merely extreme climatic droughts; therefore, the study of EAD is necessary when researching the impacts of extreme drought events on grain yield.
Collapse
|
110
|
Butolo NP, Azevedo P, Alencar LD, Malaspina O, Nocelli RCF. Impact of low temperatures on the immune system of honeybees. J Therm Biol 2021; 101:103082. [PMID: 34879910 DOI: 10.1016/j.jtherbio.2021.103082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Changes in temperature resulting from climate change can impact the distribution and survival of species, including bees, where temperature may also affect their immune system. Evaluation of immune system activity is often performed by the total count of circulating hemocytes in the hemolymph. However, there are few studies on bees examining the relationship between the amount of circulating hemocytes and temperature. This study evaluated changes of circulating hemocytes in Apis mellifera hemolymph at different temperatures and development stages. Total hemocytes of bees were determined at - 8, 16, 24, and 32 °C - and at different development stages - in vivo larvae, in vitro larvae, newly emerged, and forager bees. A. mellifera larvae had a greater number of circulating hemocytes compared to the other development stages (newly emerged and foragers). Additionally, temperature was an important factor explaining variation of circulating hemocytes in the hemolymph, according to principal component analyses (PCA), as the number of circulating hemocytes was greater at higher temperatures. Therefore, extreme events arising from climate change, such as variation in temperature, can directly impact the immune system of bees, both individually and at the colony level, threatening the distribution and survival of several species.
Collapse
Affiliation(s)
- N P Butolo
- Centro de Estudos de Insetos Sociais - CEIS, Instituto de Biociências - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP-SP), Rio Claro, SP, Brazil
| | - P Azevedo
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil.
| | - L D Alencar
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil
| | - O Malaspina
- Centro de Estudos de Insetos Sociais - CEIS, Instituto de Biociências - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP-SP), Rio Claro, SP, Brazil
| | - R C F Nocelli
- Departamento de Ciências da Natureza, Matemática e Educação, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar-SP), Araras, SP, Brazil
| |
Collapse
|
111
|
Traxl D, Boers N, Rheinwalt A, Bookhagen B. The role of cyclonic activity in tropical temperature-rainfall scaling. Nat Commun 2021; 12:6732. [PMID: 34795313 PMCID: PMC8602412 DOI: 10.1038/s41467-021-27111-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/03/2021] [Indexed: 11/08/2022] Open
Abstract
The attribution of changing intensity of rainfall extremes to global warming is a key challenge of climate research. From a thermodynamic perspective, via the Clausius-Clapeyron relationship, rainfall events are expected to become stronger due to the increased water-holding capacity of a warmer atmosphere. Here, we employ global, 1-hourly temperature and 3-hourly rainfall data to investigate the scaling between temperature and extreme rainfall. Although the Clausius-Clapeyron scaling of +7% rainfall intensity increase per degree warming roughly holds on a global average, we find very heterogeneous spatial patterns. Over tropical oceans, we reveal areas with consistently strong negative scaling (below -40%∘C-1). We show that the negative scaling is due to a robust linear correlation between pre-rainfall cooling of near-surface air temperature and extreme rainfall intensity. We explain this correlation by atmospheric and oceanic dynamics associated with cyclonic activity. Our results emphasize that thermodynamic arguments alone are not enough to attribute changing rainfall extremes to global warming. Circulation dynamics must also be thoroughly considered.
Collapse
Affiliation(s)
- Dominik Traxl
- Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany.
- Potsdam Institute for Climate Impact Research, Potsdam, Germany.
| | - Niklas Boers
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Technical University of Munich, School of Engineering & Design, Earth System Modelling, Munich, Germany
- Global Systems Institute and Department of Mathematics, University of Exeter, Exeter, UK
| | - Aljoscha Rheinwalt
- Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany
| | - Bodo Bookhagen
- Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
112
|
Jirinec V, Burner RC, Amaral BR, Bierregaard RO, Fernández-Arellano G, Hernández-Palma A, Johnson EI, Lovejoy TE, Powell LL, Rutt CL, Wolfe JD, Stouffer PC. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. SCIENCE ADVANCES 2021; 7:eabk1743. [PMID: 34767440 PMCID: PMC8589309 DOI: 10.1126/sciadv.abk1743] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/16/2021] [Indexed: 06/01/2023]
Abstract
Warming from climate change is expected to reduce body size of endotherms, but studies from temperate systems have produced equivocal results. Over four decades, we collected morphometric data on a nonmigratory understory bird community within Amazonian primary rainforest that is experiencing increasingly extreme climate. All 77 species showed lower mean mass since the early 1980s—nearly half with 95% confidence. A third of species concomitantly increased wing length, driving a decrease in mass:wing ratio for 69% of species. Seasonal precipitation patterns were generally better than temperature at explaining morphological variation. Short-term climatic conditions affected all metrics, but time trends in wing and mass:wing remained robust even after controlling for annual seasonal conditions. We attribute these results to pressures to increase resource economy under warming. Both seasonal and long-term morphological shifts suggest response to climate change and highlight its pervasive consequences, even in the heart of the world’s largest rainforest.
Collapse
Affiliation(s)
- Vitek Jirinec
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Ryan C. Burner
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1435 Aas, Norway
| | - Bruna R. Amaral
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Department of Ecology, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Richard O. Bierregaard
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Gilberto Fernández-Arellano
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Department of Ecology, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Angélica Hernández-Palma
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá, Colombia
| | - Erik I. Johnson
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- National Audubon Society, 5615 Corporate Blvd., Baton Rouge, LA 70808, USA
| | - Thomas E. Lovejoy
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Luke L. Powell
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, 4485-661 Vairão, Portugal
- Biodiversity Initiative, Houghton, MI 49931, USA
| | - Cameron L. Rutt
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - Jared D. Wolfe
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Biodiversity Initiative, Houghton, MI 49931, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Philip C Stouffer
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| |
Collapse
|
113
|
Yang K, Yuan MY, Liu Y, Guo CL, Liu TX, Zhang YJ, Chu D. First evidence for thermal tolerance benefits of the bacterial symbiont Cardinium in an invasive whitefly, Bemisia tabaci. PEST MANAGEMENT SCIENCE 2021; 77:5021-5031. [PMID: 34216527 DOI: 10.1002/ps.6543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUD Cardinium symbiont is a maternally inherited bacterial endosymbiont and widely spreads in arthropods including Bemisia tabaci (Hemiptera: Aleyrodidae). However, the potential role of Cardinium played in the biology of their hosts is largely unknown. In two genetic lines (i.e. LS and SG lines) of B. tabaci MED, collected from different locations in China, we tested the effects of Cardinium on the performance of the host whitefly under a constant high temperature (31 °C) using the age-stage two-sex life table method, and explored the genes influenced by Cardinium-infection by RNA-sequencing. RESULTS We found that Cardinium did provide protection of B. tabaci against heat stress under 31 °C. However, there was a significant connection between Cardinium-infection and whitefly genetic backgrounds. Performance revealed that Cardinium infection can increase the longevity of both female and male adults and oviposition periods in both lines, but it also conferred benefits of fecundity and pre-adult period to LS line. Additionally, the population parameters such as intrinsic rate of increase (r), finite rate of increase (λ) and mean generation time (T) demonstrated that Cardinium infection conferred fitness benefits to LS line but not to SG line. Transcriptome analysis indicated that several genes related to homeostasis and metamorphosis such as ubiquitin-related genes were highly expressed in Cardinium-infected B. tabaci. CONCLUSION The research provided the first evidence that Cardinium can increase the thermal tolerance of whitefly, which may be associated with host genetic background.
Collapse
Affiliation(s)
- Kun Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Meng-Ying Yuan
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ying Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chen-Liang Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, |Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
114
|
The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy. CLIMATE 2021. [DOI: 10.3390/cli9110156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate variability can be the source of several multiple hazards and damaging phenomena, such as flash floods, debris flows, landslides, forest fires, etc. In this study the response in the frequency of landslides, floods and forest fires to a set of climate indices is studied, referring to a region of southern Italy (Calabria) located in the center of the Mediterranean basin, a hot-spot for climate change. For these comparisons, 5022 landslides and 1584 flood occurrences for a 29-year period (1990–2018) have been selected for the whole Calabria; the burnt areas have been analyzed for the same territory from 2008 to 2018. The climate indices have been calculated by means of daily rainfall and temperature data registered in 93 stations. The results showed that landslide occurrences are more linked with climate indices describing not very intense rainfall. Conversely, floods show best matches with climate indices representative of more extreme precipitation. Regarding the burnt areas, the results confirmed that very dry climate conditions, modifying the moisture content of the soil, can change the intensity and the extension of fires.
Collapse
|
115
|
Shi G, Ye P. Assessment on Temporal and Spatial Variation Analysis of Extreme Temperature Indices: A Case Study of the Yangtze River Basin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10936. [PMID: 34682686 PMCID: PMC8535737 DOI: 10.3390/ijerph182010936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Extreme temperature change is one of the most urgent challenges facing our society. In recent years, extreme temperature has exerted a considerable influence on society and the global ecosystem. The Yangtze River Basin is not only an important growth belt of China's social and economic development, but also the main commodity grain base in China. The purpose of this study is to study the extreme temperature indices in the Yangtze River Basin. In this study, the Mann-Kendall nonparametric test and R/S analysis method are used to analyze the spatial and temporal variation characteristics of major extreme temperature indices in the Yangtze River Basin from 1970 to 2014. The main conclusions are drawn as follows: (1) The occurrence of cold days (TX10), cold nights (TN10), ice days (ID), and frost days (FD) decrease at a rate of -0.66--2.5 d/10a, respectively, while the occurrence of warm days (TX90), warm nights (TN90), summer days (SU), and tropical nights (TR) show statistically significant increasing trends at a rate of 2.2-4.73 d/10a. (2) The trends of the coldest day (TXn), coldest night (TNn), warmest day (TXx), warmest night (TNx), and diurnal temperature range (DTR), range from -0.003 to 0.5 °C/10a. (3) Spatially, the main cold indices and warm indices increase and decrease the most in the upper and lower reaches of the Yangtze River Basin. (4) DTR and TN90 show no abrupt changes; the main cold indices changed abruptly in the 1980s and the main warm indices changed abruptly in the late 1990s and early 2000s. (5) The extreme temperature indices are affected by the atmospheric circulation and urban heat island effect in the Yangtze River Basin. Relative indices and absolute indices will continue to maintain the present trend in the future. In short, the main cold indices of extreme temperature indices show a decreasing trend, the main warm indices of extreme temperature indices show an increasing trend, and cold indices and warm indices will continue to maintain the present trend in the future in the Yangtze River Basin. Extreme temperature has an important impact on agriculture, social, and economic development. Therefore, extreme temperature prediction and monitoring must be strengthened to reduce losses caused by extreme temperature disasters and to promote the sustainable development in Yangtze River Basin.
Collapse
Affiliation(s)
- Guangxun Shi
- School of Geography, Nanjing Normal University, Nanjing 210023, China;
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China
| | - Peng Ye
- Urban Planning and Development Institute, Yangzhou University, Yangzhou 225127, China
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
116
|
Xie W, Tang Q, Yan F, Tao Z. Transcriptional memory and response to adverse temperatures in plants. J Zhejiang Univ Sci B 2021; 22:791-804. [PMID: 34636184 DOI: 10.1631/jzus.b2100287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Temperature is one of the major environmental signals controlling plant development, geographical distribution, and seasonal behavior. Plants perceive adverse temperatures, such as high, low, and freezing temperatures, as stressful signals that can cause physiological defects and even death. As sessile organisms, plants have evolved sophisticated mechanisms to adapt to recurring stressful environments through changing gene expression or transcriptional reprogramming. Transcriptional memory refers to the ability of primed plants to remember previously experienced stress and acquire enhanced tolerance to similar or different stresses. Epigenetic modifications mediate transcriptional memory and play a key role in adapting to adverse temperatures. Understanding the mechanisms of the formation, maintenance, and resetting of stress-induced transcriptional memory will not only enable us to understand why there is a trade-off between plant defense and growth, but also provide a theoretical basis for generating stress-tolerant crops optimized for future climate change. In this review, we summarize recent advances in dissecting the mechanisms of plant transcriptional memory in response to adverse temperatures, based mainly on studies of the model plant Arabidopsis thaliana. We also discuss remaining questions that are important for further understanding the mechanisms of transcriptional memory during the adverse temperature response.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianqian Tang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei Yan
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China. .,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
117
|
Comprehensive Risk Assessment of High Temperature Disaster to Kiwifruit in Shaanxi Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910437. [PMID: 34639737 PMCID: PMC8508214 DOI: 10.3390/ijerph181910437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022]
Abstract
In recent years, the main kiwifruit producing region, central-south Shaanxi Province, has often suffered from the threat of extreme high temperatures. Assessing the risk of high-temperature disasters in the region is essential for the rational planning of agricultural production and the development of resilience measures. In this study, a database was established to assess the risk of a high-temperature disaster to kiwifruit. Then, four aspects, hazard, vulnerability, exposure and disaster prevention and mitigation capacity, were taken into account and 19 indexes were selected to make an assessment of the risk of a high-temperature disaster. At the same time, 16 indexes were selected for the assessment of the climatic suitability of kiwifruit in terms of light, heat, water, soil and topography, and were used as one of the indexes for exposure assessment. The analytic hierarchy process and the entropy weighting method were combined to solve the weights for each index. The results reveal that: (1) The Guanzhong Plain has a high climatic suitability for kiwifruit, accounting for 15.14% of the study area. (2) The central part of the study area and southern Shaanxi are at high risk, accounting for 22.7% of the study area. The major kiwifruit producing areas in Shaanxi Province (e.g., Baoji) are at a low risk level, which is conducive to the development of the kiwifruit industry. Our study is the first to provide a comprehensive assessment of the risk of a high-temperature disaster to the economic fruit kiwifruit, providing a reference for disaster resilience and mitigation.
Collapse
|
118
|
Evaluation of the Integrated Multi-SatellitE Retrievals for the Global Precipitation Measurement (IMERG) Product in the São Francisco Basin (Brazil). WATER 2021. [DOI: 10.3390/w13192714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The São Francisco River basin is one of the largest in the Brazilian territory. This basin has enormous economic, social and cultural importance for the country. Its water is used for human and animal supply, irrigation and energy production. This basin is located in an area with different climatic characteristics (humid and semiarid) and studies related to precipitation are very important in this region. In this scenario, the objective of this investigation is to present an assessment of rainfall estimated through the Integrated Multi-SatellitE Retrievals for Global Precipitation Measurement (IMERG) product compared with rain gauges over the São Francisco river basin in Brazil. For that, a period from of 20 years and 18 surface weather stations were used to evaluate the product. Based on different evaluation techniques, the study found that the IMERG is appropriate to represent precipitation over the basin. According to the results, the performance of the IMERG product depends on the location where the rain occurs. The bias ranged from −1.67 to 0.34 mm, the RMSE ranged from 5.36 to 10.36 mm and the values of the correlation coefficients between the daily data from the IMERG and rain gauge ranged from 0.28 to 0.61. The results obtained by Student t-test, density curves and regression analysis, in general, show that the IMERG is able to satisfactorily represent rain gauge data. The exception is the eastern portion of the basin, where the product, on average, underestimates the precipitation (p-value < 0.05) and presents the worst statistical metrics.
Collapse
|
119
|
Maximum, Minimum, and Daily Air Temperature Range in Orchards: What Do Observations Reveal? ATMOSPHERE 2021. [DOI: 10.3390/atmos12101279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was designed to better understand vegetation’s impact on air maximum (Tmax), minimum (Tmin), and daily temperature range (DTR), as well as seasonality and variability. We selected a flat, under synoptic-scale, northern Serbian region with an operational network of automated weather stations (AWS) for the study. Data were collected directly from the eighteen AWSs placed in the orchard canopy during 2013–2018. Meteorological data, plant phenological data in the form of the BBCH scale, and orchards’ soil characteristics data were collected. Environmental factors influencing the temperature were classified as static (slow or unchangeable) and dynamic (fast-changing). The impact of both factors on maximum, minimum, and daily temperature range and its variability were analyzed. Results show that static factors (like soil texture) affect the annual variation of Tmax, Tmin, and DTR rather than its variability over the season. The dynamic factors, mainly coming from the plant’s phenology, substantially affected the seasonal variability of these variables. Studies like this suffer from missing data and sparse spatial coverage by the AWS network. Therefore, the alternatives of orchard micrometeorological data, nearest climatological station, and ERA5-Land reanalysis data are tested. Both data sets showcased limitations in their applicability, while reanalysis data deviated more from the in-situ measurements, both seasonally and regionally.
Collapse
|
120
|
Gap Filling and Quality Control Applied to Meteorological Variables Measured in the Northeast Region of Brazil. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, we used the MICE (Multivariate Imputation by Chained Equations) technique to impute missing daily data from six meteorological variables (precipitation, temperature, relative humidity, atmospheric pressure, wind speed and insolation) from 96 stations located in the northeast region of Brazil (NEB) for the period from 1961 to 2014. We then applied tests with a quality control system (QCS) developed for the detection, correction and possible replacement of suspicious data. Both the applied gap filling technique and the QCS showed that it was possible to solve two of the biggest problems found in time series of daily data measured in meteorological stations: the generation of plausible values for each variable of interest, in order to remedy the absence of observations, and how to detect and allow proper correction of suspicious values arising from observations.
Collapse
|
121
|
Malakar K, Mishra T, Hari V, Karmakar S. Risk mapping of Indian coastal districts using IPCC-AR5 framework and multi-attribute decision-making approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112948. [PMID: 34144320 DOI: 10.1016/j.jenvman.2021.112948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/11/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Strategic location of coastal areas across the world causes them to be prone to disaster risks. In the global south, the Indian coast is one of the most susceptible to oceanic extreme events, such as cyclones, storm surge and high tides. This study provides an understanding of the risk experienced (currently as well as back in 2001) by the districts along the Indian coastline by developing a quantitative risk index. In the process, it attempts to make a novel contribution to the risk literature by following the definition of risk as a function of hazard, exposure and vulnerability as stated in the most recent (Fifth) assessment report of the Intergovernmental Panel on Climate Change (IPCC). Indicators of bio-physical hazards (such as cyclones, storm surge, tides and precipitation), and socio-economic contributors of vulnerability (such as infrastructure, technology, finance and social nets) and exposure (space), are combined to develop an overall risk index at a fine administrative scale of district-level over the entire coastline. Further, the study employs a multi-attribute decision-making (MADM) method, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), to combine the contributing indicators and generate indices on hazard, exposure and vulnerability. The product of these three components is thereafter defined as risk. The results suggest that most districts of the eastern coast have higher risk indices compared to those in the west, and the risk has increased since 2001. The higher risk can be attributed to the higher hazard indices in the eastern districts which are aggravated by their higher vulnerability index values. This study is the first effort made to map risk for the entire coastline of India - which in turn has resulted in a new cartographic product at a district-scale. Such assessments and maps have implications for environmental and risk-managers as they can help identify the regions needing adaptive interventions.
Collapse
Affiliation(s)
- Krishna Malakar
- Interdisciplinary Program (IDP) in Climate Studies, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India.
| | - Trupti Mishra
- Interdisciplinary Program (IDP) in Climate Studies, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India; Shailesh J. Mehta School of Management, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India.
| | - Vittal Hari
- UFZ-Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany.
| | - Subhankar Karmakar
- Interdisciplinary Program (IDP) in Climate Studies, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India; Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
122
|
Ahsan S, Bhat MS, Alam A, Ahmed N, Farooq H, Ahmad B. Assessment of trends in climatic extremes from observational data in the Kashmir basin, NW Himalaya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:649. [PMID: 34523031 DOI: 10.1007/s10661-021-09439-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to assess the recent changes and trends in the extreme climate indices in the Kashmir basin using the observational records from 1980 to 2016. The extreme climate indices were computed using the ClimPACT2 software and a total of 39 indices were selected for the analysis having particular utility to various sectors like agriculture, water resources, energy consumption, and human health. Besides adopting the station scale analysis, regional averages were computed for each index. In terms of the mean climatology, an increase has been observed in the annual mean temperature with a magnitude of 0.024 °C/year. Further, differential warming patterns have been observed in the mean maximum and minimum temperatures with mean maximum temperature revealing higher increases than mean minimum temperature. On the other hand, the annual precipitation shows a decrease over most of the region, and the decreases are more pronouncing in the higher altitudes. The trend analysis of the extreme indices reveals that in consonance with the rising temperature there has been an increase in the warm temperatures and decrease in the cold temperatures across the Kashmir basin. Furthermore, our analysis suggests a decrease in the extreme precipitation events. The drought indices viz., Standardised Precipitation Index (SPI), and Standardised Precipitation Evapotranspiration Index (SPEI) manifest decreasing trends with the tendency towards drier regimes implying the need for better water resource management in the region under changing climate.
Collapse
Affiliation(s)
- Shafkat Ahsan
- Department of Geography and Disaster Management, University of Kashmir, Srinagar, 190006, India
| | - M Sultan Bhat
- Department of Geography and Disaster Management, University of Kashmir, Srinagar, 190006, India
| | - Akhtar Alam
- Department of Geography and Disaster Management, University of Kashmir, Srinagar, 190006, India.
- Institute for Risk and Disaster Reduction, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Naveed Ahmed
- Key Laboratory of Mountain Surface Process and Ecological Regulations, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hakim Farooq
- Department of Geography and Disaster Management, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad
- Department of Geology, School Education Department, Government of Jammu and Kashmir, Srinagar, 190002, India
| |
Collapse
|
123
|
Evaluating the Applicability of a Quantile–Quantile Adjustment Approach for Downscaling Monthly GCM Projections to Site Scale over the Qinghai-Tibet Plateau. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the context of global climate change, the Qinghai-Tibetan plateau (QTP) has experienced unprecedented changes in its local climate. While general circulation models (GCM) are able to forecast global-scale future climate change trends, further work needs to be done to develop techniques to apply GCM-predicted trends at site scale to facilitate local ecohydrological response studies. Given the QTP’s unique altitude-controlled climate pattern, the applicability of the quantile–quantile (Q-Q) adjustment approach for this purpose remains largely unknown and warrants investigation. In this study, this approach was evaluated at 36 sites to ensure the results are representative of different climatic and surface conditions on the QTP. Considering the practical needs of QTP studies, the study aims to assess its capability for downscaling monthly GCM simulations of major variables onto the site scale, including precipitation, air temperature, wind speed, relative humidity, and air pressure, based on two GCMs. The calibrated projections at the sites were verified against the observations and compared with those from two commonly used adjustment methods—the quantile-mapping method and the delta method. The results show that the general trends of most variables considered are well adjusted at all sites, with a quantile pair of 25–75% for all the variables except precipitation where 10–90% is used. The calibrated results are generally close to the observed values, with the best performance in air pressure, followed by air temperature and relative humidity. The performance is relatively limited in adjusting wind speed and precipitation. The accuracies decline as the adjustment extends into the future; a wider adjustment window may help increase the performance for the variables subject to climate changes. It is found that the performance of the adjustment is generally independent of the locations and seasons, but is strongly determined by the quality of GCM simulations. The Q-Q adjustment works better for the meteorological variables with fewer fluctuations and daily extremes. Variables with more similarities in probability density functions between the observations and GCM simulations tend to perform better in adjustment. Generally, this approach outperforms the two peer methods with broader applicability and higher accuracies for most major variables.
Collapse
|
124
|
Analysis of Spatiotemporal Variability in Extreme Climate and Potential Driving Factors on the Yunnan Plateau (Southwest China) during 1960–2019. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Global warming is increasing the frequency and intensity of extreme weather events around the world. The extreme climate in plateau and mountainous areas is sensitive and fragile. Based on the software Rclimdex 1.0, the spatio-temporal variation characteristics of 27 extreme climate indices at 120 meteorological stations were calculated in Yunnan from 1960 to 2019. The results show that the extreme temperature is rising, and the warming rate at night is higher than that in the daytime. It showed a trend of warming and drying, and precipitation was concentrated into more intense bursts. Extreme temperature cold indices (TX10p, TN10p, FD0, ID0, and CSDI) were negatively correlated with extreme precipitation indices (R × 5 day, PRCPTOT, R10 mm, R20 mm, and R25 mm). Extreme temperature warmth indices (TX90p and TN90p) were positively correlated with extreme precipitation indices (R × 5 day, CWD, PRCPTOT, R10 mm, R20 mm, and R25 mm). The change rate of extreme temperature does not increase linearly with altitude. The increase in middle-altitude and high-altitude areas is higher than that in low-altitude areas. Compared with ENSO and AO, NAO is a vital circulation pattern affecting the extreme climate in Yunnan. The influence of NAO on Yunnan’s extreme climate indices is most significant in the current month and the second month that follows. NAO was negatively correlated with extreme temperature warm indices (TN90p, TX90p, SU25, and TR20). NAO positively correlates with the extreme cold temperature indices (TN10p and TX10p). Except that ENSO has a significant effect on CDD, the effect of the general circulation patterns on the extreme temperature indices was more significant than that on the extreme precipitation indices in Yunnan. The results of this study are helpful to further understand and predict the characteristics of extreme climatic events and the factors affecting their geographical locations and atmospheric circulation patterns in Yunnan.
Collapse
|
125
|
Future Changes in Precipitation Extremes over East Africa Based on CMIP6 Models. WATER 2021. [DOI: 10.3390/w13172358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents an analysis of projected precipitation extremes over the East African region. The study employs six indices defined by the Expert Team on Climate Change Detection Indices to evaluate extreme precipitation. Observed datasets and Coupled Model Intercomparison Project Phase six (CMIP6) simulations are employed to assess the changes during the two main rainfall seasons: March to May (MAM) and October to December (OND). The results show an increase in consecutive dry days (CDD) and decrease in consecutive wet days (CWD) towards the end of the 21st century (2081–2100) relative to the baseline period (1995–2014) in both seasons. Moreover, simple daily intensity (SDII), very wet days (R95 p), very heavy precipitation >20 mm (R20 mm), and total wet-day precipitation (PRCPTOT) demonstrate significant changes during OND compared to the MAM season. The spatial variation for extreme incidences shows likely intensification over Uganda and most parts of Kenya, while a reduction is observed over the Tanzania region. The increase in projected extremes may pose a serious threat to the sustainability of societal infrastructure and ecosystem wellbeing. The results from these analyses present an opportunity to understand the emergence of extreme events and the capability of model outputs from CMIP6 in estimating the projected changes. More studies are recommended to examine the underlying physical features modulating the occurrence of extreme incidences projected for relevant policies.
Collapse
|
126
|
Marcotullio PJ, Keßler C, Quintero Gonzalez R, Schmeltz M. Urban Growth and Heat in Tropical Climates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.616626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This research describes the change in temperatures across approximately 270 tropical cities from 1960 to 2020 with a focus on urban warming. It associates urban growth indicators with temperature variations in tropical climate zones (tropical rainforest, tropical monsoon, and tropical wet-dry savanna). Our findings demonstrate that over time while temperatures have increased across the tropics, urban residents have experienced higher temperatures (minimum and maximum) than those living outside of cities. Moreover, in certain tropical zones, over the study period, temperatures have risen faster in urban areas than the background (non-urban) temperatures. The results also suggest that with continuing climate change and urban growth, temperatures will continue to rise at higher than background levels in tropical cities unless mitigation measures are implemented. Several fundamental characteristics of urban growth including population size, population density, infrastructure and urban land use patterns are factors associated with variations in temperatures. We find evidence that dense urban forms (compact residential and industrial developments) are associated with higher temperatures and population density is a better predictor of variation in temperatures than either urban population size or infrastructure in most tropic climate zones. Infrastructure, however, is a better predictor of temperature increases in wet-dry savanna tropical climates than population density. There are a number of potential mitigation measures available to urban managers to address heat. We focus on ecological services, but whether these services can address the projected increasing heat levels is unclear. More local research is necessary to untangle the various contributions to increasing heat in cities and evaluate whether these applications can be effective to cool tropical cities as temperature continue to rise. Our methods include combining several different datasets to identify differences in daily, seasonal, and annual maximum and minimum temperatures.
Collapse
|
127
|
Cheng H, Gong Y, Zuo X. Precipitation Variability Affects Aboveground Biomass Directly and Indirectly via Plant Functional Traits in the Desert Steppe of Inner Mongolia, Northern China. FRONTIERS IN PLANT SCIENCE 2021; 12:674527. [PMID: 34456934 PMCID: PMC8385370 DOI: 10.3389/fpls.2021.674527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 05/27/2023]
Abstract
Clarifying the response of community and dominance species to climate change is crucial for disentangling the mechanism of the ecosystem evolution and predicting the prospective dynamics of communities under the global climate scenario. We examined how precipitation changes affect community structure and aboveground biomass (AGB) according to manipulated precipitation experiments in the desert steppe of Inner Mongolia, China. Bayesian model and structural equation models (SEM) were used to test variation and causal relationship among precipitation, plant diversity, functional attributes, and AGB. The results showed that the responses of species richness, evenness, and plant community weighted means traits to precipitation changes in amount and year were significant. The SEM demonstrated that precipitation change in amount and year has a direct effect on richness, evenness, and community-weighted mean (CWM) for height, leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), and leaf carbon content (LCC) and AGB; there into CWM for height and LDMC had a direct positive effect on AGB; LA had a direct negative effect on AGB. Three dominant species showed diverse adaptation and resource utilization strategies in response to precipitation changes. A. polyrhizum showed an increase in height under the precipitation treatments that promoted AGB, whereas the AGB of P. harmala and S. glareosa was boosted through alterations in height and LA. Our results highlight the asynchronism of variation in community composition and structure, leaf functional traits in precipitation-AGB relationship. We proposed that altered AGB resulted from the direct and indirect effects of plant functional traits (plant height, LA, LDMC) rather than species diversity, plant functional traits are likely candidate traits, given that they are mechanistically linked to precipitation changes and affected aboveground biomass in a desert steppe.
Collapse
Affiliation(s)
- Huan Cheng
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Yuanbo Gong
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
| |
Collapse
|
128
|
Analyzing the Association between ENSO and Groundwater Rise in the South Atlantic-Gulf Region in the Southeastern United States. HYDROLOGY 2021. [DOI: 10.3390/hydrology8030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary goal of this study is to comprehend the effects of El Niño Southern Oscillation (ENSO) climate pattern on groundwater storage (GWS) in the South Atlantic-Gulf Region. Groundwater issues are complex and different studies focused on groundwater depletion while few emphasized “groundwater rise”. The current research is designed to develop an outline for assessing how climate patterns can affect groundwater fluctuation, which might lead to groundwater rise. The study assessed the effect of ENSO phases on spatiotemporal variability of groundwater using Spearman Rank Correlation. A significant positive correlation between ENSO and GWS was observed. An increasing trend was detected in GWS where most grids were observed in Florida by utilizing the non-parametric Mann–Kendall test. A positive trend magnitude was also detected by utilizing Theil–Sen’s Slope method with a high magnitude in the mid-Florida region. The highest GWS anomalies were observed in the peak of El Niño events and the lowermost GWS was observed during La Niña events. Furthermore, most of the stations were above normal groundwater conditions. This study provides a better insight on the research gap among groundwater rise and ENSO.
Collapse
|
129
|
Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Extreme hot temperature is dangerous to the bioeconomy, and would worsen with time. Ambient heatwaves accompanied by unusual droughts are major threats to poverty eradication in Tanzania. Due to sparsity of observation data and proper heatwave detection metrics, there has been a paucity of knowledge about heatwave events in Tanzania. In this study, the Heatwave Magnitude Index daily (HWMId) was adopted to quantitatively analyze heatwave characteristics throughout Tanzania at mid-21st century (2041–2070) and end of 21st century (2071–2100), relative to the reference period (1983–2012) using the CHIRTS-daily quasi-global high-resolution temperature dataset and climate simulations from a multi-modal ensemble of median scenarios (RCP4.5, from CORDEX-Africa). The results showed that moderate to super-extreme heatwaves occurred in Tanzania between 1983 and 2012, particularly in 1999, when ultra-extreme heatwaves (HWMId > 32) occurred in the Lake Victoria basin. It is projected that by mid-21st century, the upper category of HWMId would be hotter and longer, and would occur routinely in Tanzania. The spatial extent of all of the HWMId categories is projected to range from 34% to 73% by the end of the 21st century with a duration of 8 to 35 days, compared to 1 to 5 days during the reference period. These findings will contribute to increasing public awareness of the need for adaptation.
Collapse
|
130
|
Chowdhury S, Brown JL, Swedell L. Costs of seasonality at a southern latitude: Behavioral endocrinology of female baboons in the Cape Peninsula of South Africa. Horm Behav 2021; 134:105020. [PMID: 34391183 DOI: 10.1016/j.yhbeh.2021.105020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
Environmental challenges in the form of temperature extremes and unusual precipitation, which may lead to prolonged periods outside the thermoneutral zone, can be detrimental to animal physiology. Chacma baboons in the Cape Peninsula of South Africa, one of the highest latitudes at which nonhuman primates are found, experience extremes of both temperature and rainfall, as well as seasonal differences in day length that require animals to condense their daily routine into dramatically reduced daylight hours. Here we examine the effects of these climatic factors on the behavior (activity budgets and foraging patterns) and physiology (fecal glucocorticoid concentrations) of adult females (N = 33) in three groups of chacma baboons (Papio ursinus) inhabiting the Cape Peninsula, where temperatures ranged from 7 to 39 °C, monthly rainfall ranged from 2 to 158 mm, and day length varied by 4.5 h across seasons. Climatic variables showed a clear relationship to female baboon glucocorticoid concentrations, which significantly increased with lower temperatures, higher rainfall and shorter day lengths. Activity budgets also differed between summer and winter, with females generally spending less time socializing, moving and resting in the winter compared to summer, with some differences between troops in their feeding-related activities. Cold temperatures accompanied by rainfall and short day lengths may thus represent an ecological constraint for this population. This study highlights the potential impact of anthropogenic climate change on the physiology, behavior, and, ultimately, survival of wildlife populations.
Collapse
Affiliation(s)
- Shahrina Chowdhury
- Department of Anthropology, Brooklyn College, CUNY, 2900 Bedford Ave, Brooklyn, NY 11210, USA; Anthropology Program, Graduate Center, CUNY, 365 Fifth Ave, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA.
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - Larissa Swedell
- Anthropology Program, Graduate Center, CUNY, 365 Fifth Ave, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA; Department of Anthropology, Queens College, CUNY, 65-30 Kissena Blvd, Flushing, NY 11367, USA; Department of Archaeology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
131
|
Observed Trends and Variability of Temperature and Precipitation and Their Global Teleconnections in the Upper Indus Basin, Hindukush-Karakoram-Himalaya. ATMOSPHERE 2021. [DOI: 10.3390/atmos12080973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Having an extreme topography and heterogeneous climate, the Upper Indus Basin (UIB) is more likely to be affected by climate change and it is a crucial area for climatological studies. Based on the monthly minimum temperature (Tmin), maximum temperature (Tmax) and precipitation from nine meteorological stations, the spatiotemporal variability of temperature and precipitation were analyzed on monthly, seasonal, and annual scales. Results show a widespread significant increasing trend of 0.14 °C/decade for Tmax, but a significant decreasing trend of −0.08 °C/decade for Tmin annually, during 1955–2016 for the UIB. Seasonally, warming in Tmax is stronger in winter and spring, while the cooling in Tmin is greater in summer and autumn. Results of seasonal Tmax indicate increasing trends in winter, spring and autumn at rates of 0.38, 0.35 and 0.05 °C/decade, respectively, while decreasing in summer with −0.14 °C/decade. Moreover, seasonal Tmin results indicate increasing trends in winter and spring at rates of 0.09 and 0.08 °C/decade, respectively, while decreasing significantly in summer and autumn at rates of −0.21 and −0.22 °C/decade respectively for the whole the UIB. Precipitation exhibits an increasing trend of 2.74 mm/decade annually, while, increasing in winter, summer and autumn at rates of 1.18, 2.06 and 0.62 mm/decade respectively. The warming in Tmax and an increase in precipitation have been more distinct since the mid-1990s, while the cooling in Tmin is observed in the UIB since the mid-1980s. Warming in the middle and higher altitude (1500–2800 m and >2800 m) are much stronger, and the increase is more obvious in regions with elevation >2800 m. The wavelet analysis illustrated sporadic inter-annual covariance of seasonal Tmax, Tmin and precipitation with ENSO, NAO, IOD and PDO in the UIB. The periodicities were usually constant over short timescales and discontinuous over longer timescales. This study offers a better understanding of the local climate characteristics and provides a scientific basis for government policymakers.
Collapse
|
132
|
Observed Daily Temperature Variability and Extremes over Southeastern USA (1978–2017). CLIMATE 2021. [DOI: 10.3390/cli9070110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents an analysis of extreme temperature events over southeastern USA from 1978 to 2017. This region is part of the so-called ‘warming hole’ where long-term surface temperature trends are negative or non-significant, in contrast with the remainder of the country. This study examines whether this distinctive characteristic reflects on the region’s trends in temperature extremes. Daily maximum and minimum temperatures from the US Historical Climatology Network were used to compute extreme indices recommended by the Expert Team on Climate Change Detection and Indices. Temperature extreme indices computed for all stations using the RClimDex package were gridded onto a regular latitude–longitude grid, and a spatiotemporal analysis of associated trends was performed. The results point to a tendency toward warming due to increasing trends in the annual occurrence of the hottest day, the warmest night, warm days, warm nights, summer days, tropical nights, and warm spells, as well as decreases in cool nights, cool days, and frost days. Statistically significant trend changes over large portions of the Southeast were dominated by increases in the frequency of the coldest night, summer days, and warm nights, and decreases in cool nights and frost days. Comparison of our results with other global and regional studies indicate that most of the extreme temperature changes over the Southeast are consistent with findings from other parts of the United States (US) and the world. Overall, this study shows that being part of the ‘warming hole’ does not preclude southeastern US from an intensification of temperature extremes, whether it is an increase in warm extremes or a decrease in cold ones. Further, the results suggest that, should the current trends continue in the long term, the Southeast will not be considered as being part of a warming hole anymore.
Collapse
|
133
|
Scafaro AP, Fan Y, Posch BC, Garcia A, Coast O, Atkin OK. Responses of leaf respiration to heatwaves. PLANT, CELL & ENVIRONMENT 2021; 44:2090-2101. [PMID: 33534189 DOI: 10.1111/pce.14018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Mitochondrial respiration (R) is central to plant physiology and responds dynamically to daily short-term temperature changes. In the longer-term, changes in energy demand and membrane fluidity can decrease leaf R at a common temperature and increase the temperature at which leaf R peaks (Tmax ). However, leaf R functionality is more susceptible to short-term heatwaves. Catalysis increases with rising leaf temperature, driving faster metabolism and leaf R demand, despite declines in photosynthesis restricting assimilate supply and growth. Proteins denature as temperatures increase further, adding to maintenance costs. Excessive heat also inactivates respiratory enzymes, with a concomitant limitation on the capacity of the R system. These competing push-and-pull factors are responsible for the diminishing acceleration in leaf R rate as temperature rises. Under extreme heat, membranes become overly fluid, and enzymes such as the cytochrome c oxidase are impaired. Such changes can lead to over-reduction of the energy system culminating in reactive oxygen species production. This ultimately leads to the total breakdown of leaf R, setting the limit of leaf survival. Understanding the heat stress responses of leaf R is imperative, given the continued rise in frequency and intensity of heatwaves and the importance of R for plant fitness and survival.
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andres Garcia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Natural Resources Institute, Agriculture, Health and Environment Department, University of Greenwich, Kent, UK
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
134
|
Rodríguez‐Caro RC, Capdevila P, Graciá E, Barbosa JM, Giménez A, Salguero‐Gómez R. The limits of demographic buffering in coping with environmental variation. OIKOS 2021. [DOI: 10.1111/oik.08343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Roberto C. Rodríguez‐Caro
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Dept of Zoology, Oxford Univ. Oxford UK
| | - Pol Capdevila
- Dept of Zoology, Oxford Univ. Oxford UK
- School of Biological Sciences, Univ. of Bristol Bristol UK
| | - Eva Graciá
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH), Univ. Miguel Hernández Spain
| | - Jomar M. Barbosa
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Dept of Conservation Biology, Estación Biológica de Doñana, C.S.I.C. Seville Spain
| | - Andrés Giménez
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH), Univ. Miguel Hernández Spain
| | - Rob Salguero‐Gómez
- Dept of Zoology, Oxford Univ. Oxford UK
- Centre for Biodiversity and Conservation Science, Univ. of Queensland St Lucia QLD Australia
| |
Collapse
|
135
|
Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. The Impact of Climate Change on Agricultural Insect Pests. INSECTS 2021; 12:440. [PMID: 34066138 PMCID: PMC8150874 DOI: 10.3390/insects12050440] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Climate change and global warming are of great concern to agriculture worldwide and are among the most discussed issues in today's society. Climate parameters such as increased temperatures, rising atmospheric CO2 levels, and changing precipitation patterns have significant impacts on agricultural production and on agricultural insect pests. Changes in climate can affect insect pests in several ways. They can result in an expansion of their geographic distribution, increased survival during overwintering, increased number of generations, altered synchrony between plants and pests, altered interspecific interaction, increased risk of invasion by migratory pests, increased incidence of insect-transmitted plant diseases, and reduced effectiveness of biological control, especially natural enemies. As a result, there is a serious risk of crop economic losses, as well as a challenge to human food security. As a major driver of pest population dynamics, climate change will require adaptive management strategies to deal with the changing status of pests. Several priorities can be identified for future research on the effects of climatic changes on agricultural insect pests. These include modified integrated pest management tactics, monitoring climate and pest populations, and the use of modelling prediction tools.
Collapse
Affiliation(s)
- Sandra Skendžić
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia; (I.P.Ž.); (D.L.)
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia;
| | - Monika Zovko
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia;
| | - Ivana Pajač Živković
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia; (I.P.Ž.); (D.L.)
| | - Vinko Lešić
- Innovation Centre Nikola Tesla, Unska 3, 10000 Zagreb, Croatia;
| | - Darija Lemić
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia; (I.P.Ž.); (D.L.)
| |
Collapse
|
136
|
Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extremely hot or warm weather over the course of the year may have significant impacts on many aspects of human life, the economy, and the natural environment. Until now a thorough assessment of changes of extreme heat or warm events in Europe was hindered by the number of metrics employed, time periods examined, and most studies being conducted in the summer season only. Here, we employ the Extremity Index (EI) to investigate long-term trends in extremely hot or warm days in Europe over the course of the year, with a special focus on their frequency, spatial extent, and intensity. An extreme temperature event (ETE) is defined as a day with an unusually high temperature for a given location and season, even if such a temperature would not be considered extremely high in an absolute sense. The research is conducted in five spatial domains that together cover a large portion of Europe. The period of the most recent 70 years is considered. In all examined regions, mainly significant increasing trends since 1950 are evident for seasonal EI; therefore, also for ETE frequency, intensity, and spatial range. Yet, every region is characterized by its own event pattern, and trends across the continent strongly vary geographically and seasonally. Our study highlights that examined trends of temperature extremes are accelerating and in the last 40 years the rate of change has been even more than three times greater than in the entire study period. The greatest changes were noted for the summer season in Central Europe and Eastern Europe for the most recent 40-year period.
Collapse
|
137
|
Huang Y, Xiao W, Hou B, Zhou Y, Hou G, Yi L, Cui H. Hydrological projections in the upper reaches of the Yangtze River Basin from 2020 to 2050. Sci Rep 2021; 11:9720. [PMID: 33958608 PMCID: PMC8102517 DOI: 10.1038/s41598-021-88135-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023] Open
Abstract
Understanding the impact of climate change on runoff is essential for effective water resource management and planning. In this study, the regional climate model (RCM) RegCM4.5 was used to dynamically downscale near-future climate projections from two global climate models to a 50-km horizontal resolution over the upper reaches of the Yangtze River (UYRB). Based on the bias-corrected climate projection results, the impacts of climate change on mid-twenty-first century precipitation and temperature in the UYRB were assessed. Then, through the coupling of a large-scale hydrological model with RegCM4.5, the impacts of climate change on river flows at the outlets of the UYRB were assessed. According to the projections, the eastern UYRB will tend to be warm-dry in the near-future relative to the reference period, whereas the western UYRB will tend to be warm-humid. Precipitation will decreases at a rate of 19.05-19.25 mm/10 a, and the multiyear average annual precipitation will vary between - 0.5 and 0.5 mm/day. Temperature is projected to increases significantly at a rate of 0.38-0.52 °C/10 a, and the projected multiyear average air temperature increase is approximately 1.3-1.5 ℃. The contribution of snowmelt runoff to the annual runoff in the UYBR is only approximately 4%, whereas that to the spring runoff is approximately 9.2%. Affected by climate warming, the annual average snowmelt runoff in the basin will be reduced by 36-39%, whereas the total annual runoff will be reduced by 4.1-5%, and the extreme runoff will be slightly reduced. Areas of projected decreased runoff depth are mainly concentrated in the southeast region of the basin. The decrease in precipitation is driving this decrease in the southeast, whereas the decreased runoff depth in the northwest is mainly driven by the increase in evaporation.
Collapse
Affiliation(s)
- Ya Huang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Catchment, China Institute of Water Resources and Hydropower Research, Beijing, 100038 China ,College of Oceanography, Hohai University, Nanjing, 210098 China ,China Water Resources Pearl River Planning, Surveying & Designing Co., Ltd., Zhanyi Road 19#, Guangzhou, 510610 China ,Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK Canada
| | - Weihua Xiao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Catchment, China Institute of Water Resources and Hydropower Research, Beijing, 100038 China
| | - Baodeng Hou
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Catchment, China Institute of Water Resources and Hydropower Research, Beijing, 100038 China
| | - Yuyan Zhou
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Catchment, China Institute of Water Resources and Hydropower Research, Beijing, 100038 China
| | - Guibing Hou
- China Water Resources Pearl River Planning, Surveying & Designing Co., Ltd., Zhanyi Road 19#, Guangzhou, 510610 China
| | - Ling Yi
- China Water Resources Pearl River Planning, Surveying & Designing Co., Ltd., Zhanyi Road 19#, Guangzhou, 510610 China
| | - Hao Cui
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Catchment, China Institute of Water Resources and Hydropower Research, Beijing, 100038 China
| |
Collapse
|
138
|
de Schrijver E, Folly CL, Schneider R, Royé D, Franco OH, Gasparrini A, Vicedo‐Cabrera AM. A Comparative Analysis of the Temperature-Mortality Risks Using Different Weather Datasets Across Heterogeneous Regions. GEOHEALTH 2021; 5:e2020GH000363. [PMID: 34084982 PMCID: PMC8143899 DOI: 10.1029/2020gh000363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 06/01/2023]
Abstract
New gridded climate datasets (GCDs) on spatially resolved modeled weather data have recently been released to explore the impacts of climate change. GCDs have been suggested as potential alternatives to weather station data in epidemiological assessments on health impacts of temperature and climate change. These can be particularly useful for assessment in regions that have remained understudied due to limited or low quality weather station data. However to date, no study has critically evaluated the application of GCDs of variable spatial resolution in temperature-mortality assessments across regions of different orography, climate, and size. Here we explored the performance of population-weighted daily mean temperature data from the global ERA5 reanalysis dataset in the 10 regions in the United Kingdom and the 26 cantons in Switzerland, combined with two local high-resolution GCDs (HadUK-grid UKPOC-9 and MeteoSwiss-grid-product, respectively) and compared these to weather station data and unweighted homologous series. We applied quasi-Poisson time series regression with distributed lag nonlinear models to obtain the GCD- and region-specific temperature-mortality associations and calculated the corresponding cold- and heat-related excess mortality. Although the five exposure datasets yielded different average area-level temperature estimates, these deviations did not result in substantial variations in the temperature-mortality association or impacts. Moreover, local population-weighted GCDs showed better overall performance, suggesting that they could be excellent alternatives to help advance knowledge on climate change impacts in remote regions with large climate and population distribution variability, which has remained largely unexplored in present literature due to the lack of reliable exposure data.
Collapse
Affiliation(s)
- Evan de Schrijver
- Institute of Social and Preventive Medicine (ISPM)University of BernBernSwitzerland
- Oeschger Center for Climate Change Research (OCCR)University of BernBernSwitzerland
- Graduate school of Health Sciences (GHS)University of BernBernSwitzerland
| | - Christophe L. Folly
- Institute of Social and Preventive Medicine (ISPM)University of BernBernSwitzerland
- Graduate school of Health Sciences (GHS)University of BernBernSwitzerland
| | - Rochelle Schneider
- Ф‐LabEuropean Space Agency (ESA/ESRIN)FrascatiItaly
- Forecast DepartmentEuropean Centre for Medium‐Range Weather Forecast (ECMWF)ReadingUK
- Centre on Climate Change and Planetary HealthLondon School of Hygiene & Tropical Medicine, London (LSHTM)LondonUK
- Department of Public HealthEnvironments and Society, London School of Hygiene & Tropical MedicineLondonUK
| | - Dominic Royé
- Department of GeographyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
- CIBER of Epidemiology and Public Health (CIBERESP)Spain
| | - Oscar H. Franco
- Institute of Social and Preventive Medicine (ISPM)University of BernBernSwitzerland
| | - Antonio Gasparrini
- Centre on Climate Change and Planetary HealthLondon School of Hygiene & Tropical Medicine, London (LSHTM)LondonUK
- Department of Public HealthEnvironments and Society, London School of Hygiene & Tropical MedicineLondonUK
- Centre for Statistical MethodologyLondon School of Hygiene & Tropical MedicineLondonUK
| | - Ana M. Vicedo‐Cabrera
- Institute of Social and Preventive Medicine (ISPM)University of BernBernSwitzerland
- Oeschger Center for Climate Change Research (OCCR)University of BernBernSwitzerland
| |
Collapse
|
139
|
Effects of Shade Net Colors on Mineral Elements and Postharvest Shelf Life and Quality of Fresh Fig (Ficus carica L.) under Rain-Fed Condition. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photoselective netting is well known for filtering the intercepted solar radiation, thus affecting light quality. While its effects on leaf mineral elements have been well investigated, how color netting affects fruit mineral nutrients remains elusive. This study was conducted to evaluate the effects of shade provided by blue and yellow nets on mineral nutrients of fig trees under rain-fed conditions. The experiment was arranged as a split-plot treatment in a randomized complete block design with three replications. Cultivars “Sabz” and “Siah” were covered with color nets or left uncovered (as the control group). The highest nitrogen content (8710 ppm) was recorded for cultivar “Sabz” covered with blue net. Color nets enhanced calcium concentration in cultivar “Siah”. Covering fig trees with yellow net increased magnesium content in cultivar “Siah” and phosphorus content in cultivar “Sabz”. Our observation showed the significant positive effect of photo selective nets on postharvest quality, by decreasing fig fruit weight loss and extending shelf life of fruits. In general, color nets as a new agro-technological approach can maintain fruit nutrition under rain-fed conditions and increase postharvest shelf life and quality of fresh fig.
Collapse
|
140
|
Capacity of the PERSIANN-CDR Product in Detecting Extreme Precipitation over Huai River Basin, China. REMOTE SENSING 2021. [DOI: 10.3390/rs13091747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Assessing satellite-based precipitation product capacity for detecting precipitation and linear trends is fundamental for accurately knowing precipitation characteristics and changes, especially for regions with scarce and even no observations. In this study, we used daily gauge observations across the Huai River Basin (HRB) during 1983–2012 and four validation metrics to evaluate the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) capacity for detecting extreme precipitation and linear trends. The PERSIANN-CDR well captured climatologic characteristics of the precipitation amount- (PRCPTOT, R85p, R95p, and R99p), duration- (CDD and CWD), and frequency-based indices (R10mm, R20mm, and Rnnmm), followed by moderate performance for the intensity-based indices (Rx1day, R5xday, and SDII). Based on different validation metrics, the PERSIANN-CDR capacity to detect extreme precipitation varied spatially, and meanwhile the validation metric-based performance differed among these indices. Furthermore, evaluation of the PERSIANN-CDR linear trends indicated that this product had a much limited and even no capacity to represent extreme precipitation changes across the HRB. Briefly, this study provides a significant reference for PERSIANN-CDR developers to use to improve product accuracy from the perspective of extreme precipitation, and for potential users in the HRB.
Collapse
|
141
|
On the Breaking of the Milankovitch Cycles Triggered by Temperature Increase: The Stochastic Resonance Response. CLIMATE 2021. [DOI: 10.3390/cli9040067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent decades have registered the hottest temperature variation in instrumentally recorded data history. The registered temperature rise is particularly significant in the so-called hot spot or sentinel regions, characterized by higher temperature increases in respect to the planet average value and by more marked connected effects. In this framework, in the present work, following the climate stochastic resonance model, the effects, due to a temperature increase independently from a specific trend, connected to the 105 year Milankovitch cycle were tested. As a result, a breaking scenario induced by global warming is forecasted. More specifically, a wavelet analysis, innovatively performed with different sampling times, allowed us, besides to fully characterize the cycles periodicities, to quantitatively determine the stochastic resonance conditions by optimizing the noise level. Starting from these system resonance conditions, numerical simulations for increasing planet temperatures have been performed. The obtained results show that an increase of the Earth temperature boosts a transition towards a chaotic regime where the Milankovitch cycle effects disappear. These results put into evidence the so-called threshold effect, namely the fact that also a small temperature increase can give rise to great effects above a given threshold, furnish a perspective point of view of a possible future climate scenario, and provide an account of the ongoing registered intensity increase of extreme meteorological events.
Collapse
|
142
|
Multiscale Spatiotemporal Analysis of Extreme Events in the Gomati River Basin, India. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accelerating climate change is causing considerable changes in extreme events, leading to immense socioeconomic loss of life and property. In this study, we investigate the characteristics of extreme climate events at a regional scale to -understand these events’ propagation in the near future. We have considered sixteen extreme climate indices defined by the World Meteorological Organization’s Expert Team on Climate Change Detection and Indices from a long-term dataset (1951–2018) of 53 locations in Gomati River Basin, North India. We computed the present and future spatial variation of theses indices using the Sen’s slope estimator and Hurst exponent analysis. The periodicities and non-stationary features were estimated using the continuous wavelet transform. Bivariate copulas were fitted to estimate the joint probabilities and return periods for certain combinations of indices. The study results show different variation in the patterns of the extreme climate indices: D95P, R95TOT, RX5D, and RX showed negative trends for all stations over the basin. The number of dry days (DD) showed positive trends over the basin at 36 stations out of those 17 stations are statistically significant. A sustainable decreasing trend is observed for D95P at all stations, indicating a reduction in precipitation in the future. DD exhibits a sustainable decreasing trend at almost all the stations over the basin barring a few exceptions highlight that the basin is turning drier. The wavelet power spectrum for D95P showed significant power distributed across the 2–16-year bands, and the two-year period was dominant in the global power spectrum around 1970–1990. One interesting finding is that a dominant two-year period in D95P has changed to the four years after 1984 and remains in the past two decades. The joint return period’s resulting values are more significant than values resulting from univariate analysis (R95TOT with 44% and RTWD of 1450 mm). The difference in values highlights that ignoring the mutual dependence can lead to an underestimation of extremes.
Collapse
|
143
|
Flood Monitoring in Rural Areas of the Pearl River Basin (China) Using Sentinel-1 SAR. REMOTE SENSING 2021. [DOI: 10.3390/rs13071384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flood hazards result in enormous casualties and huge economic losses every year in the Pearl River Basin (PRB), China. It is, therefore, crucial to monitor floods in PRB for a better understanding of the flooding patterns and characteristics of the PRB. Previous studies, which utilized hydrological data were not successful in identifying flooding patterns in the rural and remote regions in PRB. Such regions are the key supplier of agricultural products and water resources for the entire PRB. Thus, an analysis of the impacts of floods could provide a useful tool to support mitigation strategies. Using 66 Sentinel-1 images, this study employed Otsu’s method to investigate floods and explore flood patterns across the PRB from 2017 to 2020. The results indicated that floods are mainly located in the central West River Basin (WRB), middle reaches of the North River (NR) and middle reaches of the East River (ER). WRB is more prone to flood hazards. In 2017, 94.0% flood-impacted croplands were located in WRB; 95.0% of inundated croplands (~9480 hectares) were also in WRB. The most vulnerable areas to flooding are sections of the Yijiang, Luoqingjiang, Qianjiang, and Xunjiang tributaries and the lower reaches of Liujiang. Our results highlight the severity of flood hazards in a rural region of the PRB and emphasize the need for policy overhaul to enhance flood control in rural regions in the PRB to ensure food safety.
Collapse
|
144
|
A Comprehensive Study of Spatiotemporal Variations in Temperature Extremes across China during 1960–2018. SUSTAINABILITY 2021. [DOI: 10.3390/su13073807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the changing patterns of extreme temperatures is important for taking measures to reduce their associated negative impacts. Based on daily temperature data derived from 2272 meteorological stations in China, the spatiotemporal variations in temperature extremes were examined with respect to covariates by means of the Mann–Kendall test and a spatiotemporal model during 1960–2018. The results indicated that the temporal changes in cold extremes showed decreasing trends and warm extremes experienced increasing trends across almost all of China, with mean change rates of −3.9 days, −1.8 days, 3.7 days and 2.3 days per decade for TN10p, TX10p, TN90p and TX90p, respectively. Nighttime warming/cooling was higher than daytime warming/cooling, which indicated that trends in minimum temperature extremes are more rapid than trends in maximum temperature extremes. In addition, the temporal effect on the temperature extremes varied throughout the year, with significant increasing trends in the temporal heterogeneity of warm extremes occurring during 1992–2018. The areas with strong spatial heterogeneity of cool nights mainly included northeastern and central China, and the spatial variation on cool days was more prominent in northern China. For warm nights, the areas showing high spatial heterogeneity were mainly located in the northwestern part of China, while areas for warm days were distributed in northern China. Our results provide meaningful information for a deeper understanding of the spatiotemporal variations in temperature extremes across mainland China.
Collapse
|
145
|
Vegetation Change and Its Response to Climate Extremes in the Arid Region of Northwest China. REMOTE SENSING 2021. [DOI: 10.3390/rs13071230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Changes in climate extremes have a profound impact on vegetation growth. In this study, we employed the Moderate Resolution Imaging Spectroradiometer (MODIS) and a recently published climate extremes dataset (HadEX3) to study the temporal and spatial evolution of vegetation cover, and its responses to climate extremes in the arid region of northwest China (ARNC). Mann-Kendall test, Anomaly analysis, Pearson correlation analysis, Time lag cross-correlation method, and Least absolute shrinkage and selection operator logistic regression (Lasso) were conducted to quantitatively analyze the response characteristics between Normalized Difference Vegetation Index (NDVI) and climate extremes from 2000 to 2018. The results showed that: (1) The vegetation in the ARNC had a fluctuating upward trend, with vegetation significantly increasing in Xinjiang Tianshan, Altai Mountain, and Tarim Basin, and decreasing in the central inland desert. (2) Temperature extremes showed an increasing trend, with extremely high-temperature events increasing and extremely low-temperature events decreasing. Precipitation extremes events also exhibited a slightly increasing trend. (3) NDVI was overall positively correlated with the climate extremes indices (CEIs), although both positive and negative correlations spatially coexisted. (4) The responses of NDVI and climate extremes showed time lag effects and spatial differences in the growing period. (5) Precipitation extremes were closely related to NDVI than temperature extremes according to Lasso modeling results. This study provides a reference for understanding vegetation variations and their response to climate extremes in arid regions.
Collapse
|
146
|
Li X, Zhang K, Gu P, Feng H, Yin Y, Chen W, Cheng B. Changes in precipitation extremes in the Yangtze River Basin during 1960-2019 and the association with global warming, ENSO, and local effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144244. [PMID: 33348157 DOI: 10.1016/j.scitotenv.2020.144244] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Extreme precipitation events can pose great risks to natural ecosystems and human society. Investigating past changes in the frequency, intensity, and duration of such events and understanding the possible driving factors are critical for reliable projections of future changes and for informing adaptation strategies planning. Here we analyze trends in a complete list of extreme precipitation indices (EPIs) over the Yangtze River Basin (YRB) during the period of 1960-2019. Also, we examine the possible influences of global warming, ENSO, and local effects on the spatiotemporal variability of the EPIs. Our results show that average and extreme precipitation intensities, and the frequency of extreme heavy precipitation in the YRB have significantly increased, while precipitation frequency and maximum duration of wet spells have significantly decreased. A regional difference in trend occurrence and magnitude is also observed, showing the intensity and frequency of precipitation extremes over the Middle and Lower reaches are more likely to increase and increase faster, compared with those of the Upper reach of the YRB. Furthermore, our correlation analysis shows global warming, ENSO, and local effects all are significant driving factors that control the spatiotemporal variability of precipitation extremes over the YRB. Global warming tends to enhance the frequency and intensity of precipitation extremes. The La Niña phase of ENSO often corresponds to an increase of frequency and intensity of precipitation extremes in the current year, but a decrease of frequency and intensity in the coming year. Local warming mainly exerts a reducing effect on precipitation extremes, which is likely a response to the significant decrease of relative humidity in the YRB. Our findings highlight the need for a systematic approach to examine global, regional, and local drivers of trends in precipitation extremes in the YRB, and contribute to the understanding of precipitation changes in this region.
Collapse
Affiliation(s)
- Xin Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; CMA-HHU Joint Laboratory for HydroMeteorological Studies, Hohai University, Nanjing 210098, China
| | - Ke Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Nanjing 210098, China; CMA-HHU Joint Laboratory for HydroMeteorological Studies, Hohai University, Nanjing 210098, China.
| | - Pengrui Gu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Haotian Feng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yifan Yin
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Wang Chen
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Bochang Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
147
|
Hydrological changes: are they present at local scales? RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00983-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
148
|
Habermann E, Dias de Oliveira EA, Delvecchio G, Belisário R, Barreto RF, Viciedo DO, Rossingnoli NO, de Pinho Costa KA, de Mello Prado R, Gonzalez-Meler M, Martinez CA. How does leaf physiological acclimation impact forage production and quality of a warmed managed pasture of Stylosanthes capitata under different conditions of soil water availability? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143505. [PMID: 33223164 DOI: 10.1016/j.scitotenv.2020.143505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 05/25/2023]
Abstract
Tropical pastures play a significant role in the global carbon cycle and are crucial for world livestock production. Despite its importance, there is a paucity of field studies that clarify how tropical pasture species will be affected by environmental changes predicted for tropical regions. Using a temperature-free air-controlled enhancement (T-FACE) system, we increased canopy temperature (+2 °C over ambient) and evaluated the effects of warming under two soil moisture conditions in a factorial design over the physiology, forage production, and forage quality of a tropical forage legume, Stylosanthes capitata. Under well-watered conditions, warming increased the PSII efficiency, net photosynthesis, and aboveground biomass accumulation, but reduced forage quality and digestibility by decreasing crude protein content and increasing lignin content. Non-irrigated conditions under ambient temperature reduced leaf water status presumably promoting the reduction in net photosynthesis, forage production, and forage quality and digestibility. Under the combination of canopy warming and non-irrigated conditions, warming mitigated the effects of reduced soil moisture on leaf photosynthesis and biomass production, but a significant interaction reduced forage quality and digestibility more than under isolated treatments of warming or non-irrigated conditions. We found a potential physiological acclimation of the tropical forage species to moderate warming when grown under rainfed or well-watered conditions. However, this acclimation was achieved due to a trade-off that reduced forage nutritional value and digestibility that may impact future animal feeding, livestock production, and would contribute to methane emissions.
Collapse
Affiliation(s)
- Eduardo Habermann
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo A Dias de Oliveira
- Ecology and Evolution, Department of Biological Sciences, University of Illinois, Chicago, IL, United States
| | - Gustavo Delvecchio
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Belisário
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Ferreira Barreto
- Department of Soils and Fertilizers, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University, São Paulo, Brazil
| | - Dilier Olivera Viciedo
- Department of Soils and Fertilizers, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University, São Paulo, Brazil
| | | | | | - Renato de Mello Prado
- Department of Soils and Fertilizers, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University, São Paulo, Brazil
| | - Miquel Gonzalez-Meler
- Ecology and Evolution, Department of Biological Sciences, University of Illinois, Chicago, IL, United States
| | | |
Collapse
|
149
|
Shrestha S, Roachanakanan R. Extreme climate projections under representative concentration pathways in the Lower Songkhram River Basin, Thailand. Heliyon 2021; 7:e06146. [PMID: 33665405 PMCID: PMC7900689 DOI: 10.1016/j.heliyon.2021.e06146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
This paper aims to assess changes in the extreme climate indices of the Lower Songkhram River Basin of Thailand under Representative Concentration Pathways (RCPs) scenarios. A linear scaling method was used to correct climate data bias in three Regional Climate Models (RCMs) under RCP 4.5 and RCP 8.5 scenarios. Thereafter, extreme climate indices related to temperature and rainfall were analysed for the wet and dry seasons in upstream and downstream areas of the basin. A total of 14 climate indices were analysed for three time periods: the 2030s (2020–2044), 2055s (2045–2069), and 2080s (2070–2094) and compared with the baseline climate from 1980‒2004. The results show that considerable variability is expected in the extreme climate of the basin in future. The average annual and monthly maximum and minimum temperature is projected to increase, with a lesser increase in the near future and higher in the far future. Heat events (TXx, TXn) are projected to increase while the cold events (TNx, TNn) are projected to decrease in both dry and wet seasons upstream and downstream of the basin. The future average annual rainfall in the basin is projected to decrease under RCP 4.5 and RCP 8.5 scenarios for all three periods. However, the variability in average monthly rainfall is expected to increase in the dry season (Jan–May) and decrease in the wet (Aug–Dec). The most intense rainfall in one day (RX1Day) and five consecutive days (RX5Day) in the wet season is observed to increase in future, with a higher increase in the near future and a lower increase in the far future. The very heavy rainfall days (R20) (the number of days receiving more than 20 mm/day in the basin) are observed to decrease in both wet and dry seasons under RCP 4.5 and RCP 8.5 scenarios in both locations. The results of this study will be helpful for the planning and management of natural resources as well as disaster risk reduction in the Lower Songkhram River Basin.
Collapse
Affiliation(s)
- Sumana Shrestha
- Faculty of Environment and Resource Studies, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Raywadee Roachanakanan
- Faculty of Environment and Resource Studies, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
150
|
Generating Projections for the Caribbean at 1.5, 2.0 and 2.5 °C from a High-Resolution Ensemble. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Six members of the Hadley Centre’s Perturbed Physics Ensemble for the Quantifying Uncertainty in Model Predictions (QUMP) project are downscaled using the PRECIS (Providing Regional Climates for Impact Studies) RCM (Regional Climate Model). Climate scenarios at long-term temperature goals (LTTGs) of 1.5, 2.0, and 2.5 °C above pre-industrial warming levels are generated for the Caribbean and six sub-regions for annual and seasonal timescales. Under a high emissions scenario, the LTTGs are attained in the mid-2020s, end of the 2030s, and the early 2050s, respectively. At 1.5 °C, the region is slightly cooler than the globe, land areas warmer than ocean, and for the later months, the north is warmer than the south. The far western and southern Caribbean including the eastern Caribbean island chain dry at 1.5 °C (up to 50%). At 2.0 °C, the warming and drying intensify and there is a reversal of a wet tendency in parts of the north Caribbean. Drying in the rainfall season accounts for much of the annual change. There is limited further intensification of the region-wide drying at 2.5 °C. Changes in wind strength in the Caribbean low-level jet region may contribute to the patterns seen. There are implications for urgent and targeted adaptation planning in the Caribbean.
Collapse
|