101
|
Transmission of trained immunity and heterologous resistance to infections across generations. Nat Immunol 2021; 22:1382-1390. [PMID: 34663978 DOI: 10.1038/s41590-021-01052-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/16/2021] [Indexed: 01/20/2023]
Abstract
Intergenerational inheritance of immune traits linked to epigenetic modifications has been demonstrated in plants and invertebrates. Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. The progeny of trained mice exhibited cellular, developmental, transcriptional and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment. Moreover, the progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous Escherichia coli and Listeria monocytogenes infections. Sperm DNA of parental male mice intravenously infected with the fungus C. albicans showed DNA methylation differences linked to immune gene loci. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.
Collapse
|
102
|
Sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress via evading offspring embryonic reprogramming. Cell Discov 2021; 7:101. [PMID: 34711814 PMCID: PMC8553786 DOI: 10.1038/s41421-021-00343-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Paternal life experiences impact offspring health via germline, and epigenetic inheritance provides a potential mechanism. However, global reprogramming during offspring embryogenesis and gametogenesis represents the largest hurdle to conceptualize it. Yet, detailed characterization of how sperm epigenetic alterations carrying "environmental memory" can evade offspring embryonic reprogramming remains elusive. Here, mice exposed to long-term restraint stress were employed to study the mechanisms underlying inter- and transgenerational effects of paternal exposure to a long-term psychological stress. We found that stress could induce paternal inheritance of reproductive, behavioral, and metabolic disorders. Bisulfite methylation profiling of 18 sperm and 12 embryo samples of three consecutive generations identified inter- and transgenerational inheritance of paternal Differential DNA Methylation Regions (DMRs) at frequencies ~11.36% and 0.48%, respectively. These DMRs related to genes with functional implications for psychological stress response, and tissue inheritance of these DMRs passed paternal disorders epigenetically to offspring. More importantly, these DMRs evaded offspring embryonic reprogramming through erasure and subsequent reestablishment, but not via un-erasure way. Nonetheless, their reestablishment proportions in the primitive streak (E7.5) stage were altered. Furthermore, sncRNA-seq revealed that stress-induced tsRNA, miRNA and rsRNA dysregulation in paternal sperm might play important roles in DMRs occurrence and paternal inheritance. These finding implied that sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress, and highlighted the possible underlying molecular mechanism.
Collapse
|
103
|
Costello KR, Leung A, Trac C, Lee M, Basam M, Pospisilik JA, Schones DE. Sequence features of retrotransposons allow for epigenetic variability. eLife 2021; 10:71104. [PMID: 34668484 PMCID: PMC8555987 DOI: 10.7554/elife.71104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that make up a large fraction of mammalian genomes. While select TEs have been co-opted in host genomes to have function, the majority of these elements are epigenetically silenced by DNA methylation in somatic cells. However, some TEs in mice, including the Intracisternal A-particle (IAP) subfamily of retrotransposons, have been shown to display interindividual variation in DNA methylation. Recent work has revealed that IAP sequence differences and strain-specific KRAB zinc finger proteins (KZFPs) may influence the methylation state of these IAPs. However, the mechanisms underlying the establishment and maintenance of interindividual variability in DNA methylation still remain unclear. Here, we report that sequence content and genomic context influence the likelihood that IAPs become variably methylated. IAPs that differ from consensus IAP sequences have altered KZFP recruitment that can lead to decreased KAP1 recruitment when in proximity of constitutively expressed genes. These variably methylated loci have a high CpG density, similar to CpG islands, and can be bound by ZF-CxxC proteins, providing a potential mechanism to maintain this permissive chromatin environment and protect from DNA methylation. These observations indicate that variably methylated IAPs escape silencing through both attenuation of KZFP binding and recognition by ZF-CxxC proteins to maintain a hypomethylated state.
Collapse
Affiliation(s)
- Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | | | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| |
Collapse
|
104
|
Vernaz G, Malinsky M, Svardal H, Du M, Tyers AM, Santos ME, Durbin R, Genner MJ, Turner GF, Miska EA. Mapping epigenetic divergence in the massive radiation of Lake Malawi cichlid fishes. Nat Commun 2021; 12:5870. [PMID: 34620871 PMCID: PMC8497601 DOI: 10.1038/s41467-021-26166-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Epigenetic variation modulates gene expression and can be heritable. However, knowledge of the contribution of epigenetic divergence to adaptive diversification in nature remains limited. The massive evolutionary radiation of Lake Malawi cichlid fishes displaying extensive phenotypic diversity despite extremely low sequence divergence is an excellent system to study the epigenomic contribution to adaptation. Here, we present a comparative genome-wide methylome and transcriptome study, focussing on liver and muscle tissues in phenotypically divergent cichlid species. In both tissues we find substantial methylome divergence among species. Differentially methylated regions (DMR), enriched in evolutionary young transposons, are associated with transcription changes of ecologically-relevant genes related to energy expenditure and lipid metabolism, pointing to a link between dietary ecology and methylome divergence. Unexpectedly, half of all species-specific DMRs are shared across tissues and are enriched in developmental genes, likely reflecting distinct epigenetic developmental programmes. Our study reveals substantial methylome divergence in closely-related cichlid fishes and represents a resource to study the role of epigenetics in species diversification.
Collapse
Affiliation(s)
- Grégoire Vernaz
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Milan Malinsky
- Wellcome Sanger Institute, Cambridge, UK
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Hannes Svardal
- Wellcome Sanger Institute, Cambridge, UK
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Mingliu Du
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Alexandra M Tyers
- School of Natural Sciences, Sciences, Bangor University, Bangor, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - George F Turner
- School of Natural Sciences, Sciences, Bangor University, Bangor, UK
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
105
|
The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int J Mol Sci 2021; 22:ijms221910743. [PMID: 34639084 PMCID: PMC8509551 DOI: 10.3390/ijms221910743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world’s population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80–90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.
Collapse
|
106
|
Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol 2021; 17:521-533. [PMID: 34234312 DOI: 10.1038/s41574-021-00517-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and is associated with a substantially increased lifetime risk of comorbidities, including type 2 diabetes mellitus, psychiatric disorders and gynaecological cancers. Despite its high prevalence (~15%) and substantial economic burden, the aetiology of PCOS remains elusive. The genetic loci linked to PCOS so far account for only ~10% of its heritability, which is estimated at 70%. However, growing evidence suggests that altered epigenetic and developmental programming resulting from hormonal dysregulation of the maternal uterine environment contributes to the pathogenesis of PCOS. Male as well as female relatives of women with PCOS are also at an increased risk of developing PCOS-associated reproductive and metabolic disorders. Although PCOS phenotypes are highly heterogenous, hyperandrogenism is thought to be the principal driver of this condition. Current treatments for PCOS are suboptimal as they can only alleviate some of the symptoms; preventative and targeted treatments are sorely needed. This Review presents an overview of the current understanding of the aetiology of PCOS and focuses on the developmental origin and epigenetic inheritance of this syndrome.
Collapse
Affiliation(s)
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
107
|
Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol 2021; 127:121-132. [PMID: 34426067 DOI: 10.1016/j.semcdb.2021.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
Inherited epigenetic information has been observed to regulate a variety of complex organismal phenotypes across diverse taxa of life. This continually expanding body of literature suggests that epigenetic inheritance plays a significant, and potentially fundamental, role in inheritance. Despite the important role these types of effects play in biology, the molecular mediators of this non-genetic transmission of information are just now beginning to be deciphered. Here we provide an intellectual framework for interpreting these findings and how they can interact with each other. We also define the different types of mechanisms that have been found to mediate epigenetic inheritance and to regulate whether epigenetic information persists for one or many generations. The field of epigenetic inheritance is entering an exciting phase, in which we are beginning to understand the mechanisms by which non-genetic information is transmitted to, and deciphered by, subsequent generations to maintain essential environmental information without permanently altering the genetic code. A more complete understanding of how and when epigenetic inheritance occurs will advance our understanding of numerous different aspects of biology ranging from how organisms cope with changing environments to human pathologies influenced by a parent's environment.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
108
|
Bertozzi TM, Becker JL, Blake GET, Bansal A, Nguyen DK, Fernandez-Twinn DS, Ozanne SE, Bartolomei MS, Simmons RA, Watson ED, Ferguson-Smith AC. Variably methylated retrotransposons are refractory to a range of environmental perturbations. Nat Genet 2021; 53:1233-1242. [PMID: 34326545 PMCID: PMC7611517 DOI: 10.1038/s41588-021-00898-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
The agouti viable yellow (Avy) allele is an insertional mutation in the mouse genome caused by a variably methylated intracisternal A particle (VM-IAP) retrotransposon. Avy expressivity is sensitive to a range of early-life chemical exposures and nutritional interventions, suggesting that environmental perturbations can have long-lasting effects on the methylome. However, the extent to which VM-IAP elements are environmentally labile with phenotypic implications is unknown. Using a recently identified repertoire of VM-IAPs, we assessed the epigenetic effects of different environmental contexts. A longitudinal aging analysis indicated that VM-IAPs are stable across the murine lifespan, with only small increases in DNA methylation detected for a subset of loci. No significant effects were observed after maternal exposure to the endocrine disruptor bisphenol A, an obesogenic diet or methyl donor supplementation. A genetic mouse model of abnormal folate metabolism exhibited shifted VM-IAP methylation levels and altered VM-IAP-associated gene expression, yet these effects are likely largely driven by differential targeting by polymorphic KRAB zinc finger proteins. We conclude that epigenetic variability at retrotransposons is not predictive of environmental susceptibility.
Collapse
Affiliation(s)
| | | | - Georgina E T Blake
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Australian National University Medical School, John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Duy K Nguyen
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge, UK
| | - Marisa S Bartolomei
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erica D Watson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
109
|
Altintaş A, Liu J, Fabre O, Chuang TD, Wang Y, Sakurai R, Chehabi GN, Barrès R, Rehan VK. Perinatal exposure to nicotine alters spermatozoal DNA methylation near genes controlling nicotine action. FASEB J 2021; 35:e21702. [PMID: 34153130 PMCID: PMC9231556 DOI: 10.1096/fj.202100215r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Perinatal smoke/nicotine exposure alters lung development and causes asthma in exposed offspring, transmitted transgenerationally. The mechanism underlying the transgenerational inheritance of perinatal smoke/nicotine-induced asthma remains unknown, but germline epigenetic modulations may play a role. Using a well-established rat model of perinatal nicotine-induced asthma, we determined the DNA methylation pattern of spermatozoa of F1 rats exposed perinatally to nicotine in F0 gestation. To identify differentially methylated regions (DMRs), reduced representation bisulfite sequencing was performed on spermatozoa of F1 litters. The top regulated gene body and promoter DMRs were tested for lung gene expression levels, and key proteins involved in lung development and repair were determined. The overall CpG methylation in F1 sperms across gene bodies, promoters, 5'-UTRs, exons, introns, and 3'-UTRs was not affected by nicotine exposure. However, the methylation levels were different between the different genomic regions. Eighty one CpG sites, 16 gene bodies, and 3 promoter regions were differentially methylated. Gene enrichment analysis of DMRs revealed pathways involved in oxidative stress, nicotine response, alveolar and brain development, and cellular signaling. Among the DMRs, Dio1 and Nmu were the most hypermethylated and hypomethylated genes, respectively. Gene expression analysis showed that the mRNA expression and DNA methylation were incongruous. Key proteins involved in lung development and repair were significantly different (FDR < 0.05) between the nicotine and placebo-treated groups. Our data show that DNA methylation is remodeled in offspring spermatozoa upon perinatal nicotine exposure. These epigenetic alterations may play a role in transgenerational inheritance of perinatal smoke/nicotine induced asthma.
Collapse
Affiliation(s)
- Ali Altintaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jie Liu
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tsai-Der Chuang
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Ying Wang
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Reiko Sakurai
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Galal Nazih Chehabi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Virender K. Rehan
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| |
Collapse
|
110
|
Judd J, Sanderson H, Feschotte C. Evolution of mouse circadian enhancers from transposable elements. Genome Biol 2021; 22:193. [PMID: 34187518 PMCID: PMC8240256 DOI: 10.1186/s13059-021-02409-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transposable elements are increasingly recognized as a source of cis-regulatory variation. Previous studies have revealed that transposons are often bound by transcription factors and some have been co-opted into functional enhancers regulating host gene expression. However, the process by which transposons mature into complex regulatory elements, like enhancers, remains poorly understood. To investigate this process, we examined the contribution of transposons to the cis-regulatory network controlling circadian gene expression in the mouse liver, a well-characterized network serving an important physiological function. RESULTS ChIP-seq analyses reveal that transposons and other repeats contribute ~ 14% of the binding sites for core circadian regulators (CRs) including BMAL1, CLOCK, PER1/2, and CRY1/2, in the mouse liver. RSINE1, an abundant murine-specific SINE, is the only transposon family enriched for CR binding sites across all datasets. Sequence analyses and reporter assays reveal that the circadian regulatory activity of RSINE1 stems from the presence of imperfect CR binding motifs in the ancestral RSINE1 sequence. These motifs matured into canonical motifs through point mutations after transposition. Furthermore, maturation occurred preferentially within elements inserted in the proximity of ancestral CR binding sites. RSINE1 also acquired motifs that recruit nuclear receptors known to cooperate with CRs to regulate circadian gene expression specifically in the liver. CONCLUSIONS Our results suggest that the birth of enhancers from transposons is predicated both by the sequence of the transposon and by the cis-regulatory landscape surrounding their genomic integration site.
Collapse
Affiliation(s)
- Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Hayley Sanderson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
111
|
Bellver-Sanchis A, Pallàs M, Griñán-Ferré C. The Contribution of Epigenetic Inheritance Processes on Age-Related Cognitive Decline and Alzheimer's Disease. EPIGENOMES 2021; 5:15. [PMID: 34968302 PMCID: PMC8594669 DOI: 10.3390/epigenomes5020015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
During the last years, epigenetic processes have emerged as important factors for many neurodegenerative diseases, such as Alzheimer's disease (AD). These complex diseases seem to have a heritable component; however, genome-wide association studies failed to identify the genetic loci involved in the etiology. So, how can these changes be transmitted from one generation to the next? Answering this question would allow us to understand how the environment can affect human populations for multiple generations and explain the high prevalence of neurodegenerative diseases, such as AD. This review pays particular attention to the relationship among epigenetics, cognition, and neurodegeneration across generations, deepening the understanding of the relevance of heritability in neurodegenerative diseases. We highlight some recent examples of EI induced by experiences, focusing on their contribution of processes in learning and memory to point out new targets for therapeutic interventions. Here, we first describe the prominent role of epigenetic factors in memory processing. Then, we briefly discuss aspects of EI. Additionally, we summarize evidence of how epigenetic marks inherited by experience and/or environmental stimuli contribute to cognitive status offspring since better knowledge of EI can provide clues in the appearance and development of age-related cognitive decline and AD.
Collapse
Affiliation(s)
| | | | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain; (A.B.-S.); (M.P.)
| |
Collapse
|
112
|
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes (Basel) 2021; 12:genes12060918. [PMID: 34203645 PMCID: PMC8232201 DOI: 10.3390/genes12060918] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.
Collapse
Affiliation(s)
- Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK;
| | - Marcin Falis
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Justin Wilcox
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Correspondence:
| |
Collapse
|
113
|
Epimutations and mutations, nurturing phenotypic diversity. Genetica 2021; 150:171-181. [PMID: 34114171 DOI: 10.1007/s10709-021-00124-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/26/2021] [Indexed: 12/22/2022]
Abstract
Epimutations and mutations are two dissimilar mechanisms that have contributed to the phenotypic diversities in organisms. Though dissimilar, many previous studies have revealed that the consequences of epimutations and mutations are not mutually exclusive. DNA rich in epigenetic modifications can be prone to mutations and vice versa. In order to get a better insight into the molecular evolution in organisms, it is important to consider the information of both genetic and epigenetic changes in their genomes. Understanding the similarities and differences between the consequences of epimutations and mutations is required for a better interpretation of phenotypic diversities in organisms. Factors contributing to epigenetic changes such as paramutations and mutation hotspots and, the correlation of the interdependence of mutations and epigenetic changes in DNA are important aspects that need to be considered for molecular evolutionary studies. Thus, this review explains what epimutations are, their causes, how they are similar/different from mutations, and the influence of epigenetic changes and mutations on each other, further emphasizing how molecular evolution involving both mutations and epimutations can lead to speciation. Considering this approach will aid in reorganizing taxonomic classifications, importantly, solving disparities in species identification.
Collapse
|
114
|
Yu D, Horton JR, Yang J, Hajian T, Vedadi M, Sagum CA, Bedford MT, Blumenthal RM, Zhang X, Cheng X. Human MettL3-MettL14 RNA adenine methyltransferase complex is active on double-stranded DNA containing lesions. Nucleic Acids Res 2021; 49:11629-11642. [PMID: 34086966 PMCID: PMC8599731 DOI: 10.1093/nar/gkab460] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer – a major lesion of UV radiation-induced products – or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 – two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.
Collapse
Affiliation(s)
- Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
115
|
Brodie ED, Gregory B, Lisch D, Riddle NC. The epigenome and beyond: How does non-genetic inheritance change our view of evolution? Integr Comp Biol 2021; 61:2199-2207. [PMID: 34028538 DOI: 10.1093/icb/icab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence from across the tree of life suggests that epigenetic inheritance is more common than previously thought. If epigenetic inheritance is indeed as common as the data suggest, this finding has potentially important implications for evolutionary theory and our understanding of how evolution and adaptation progress. However, we currently lack an understanding of how common various epigenetic inheritance types are, and how they impact phenotypes. In this perspective, we review the open questions that need to be addressed to fully integrate epigenetic inheritance into evolutionary theory and to develop reliable predictive models for phenotypic evolution. We posit that addressing these challenges will require the collaboration of biologists from different disciplines and a focus on the exploration of data and phenomena without preconceived limits on potential mechanisms or outcomes.
Collapse
Affiliation(s)
- Edmund D Brodie
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Brian Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
116
|
Sahay D, Lloyd SE, Rivera JA, Jezioro J, McDonald JD, Pitiranggon M, Yan B, Szabolcs M, Terry MB, Miller RL. Prenatal polycyclic aromatic hydrocarbons, altered ERα pathway-related methylation and expression, and mammary epithelial cell proliferation in offspring and grandoffspring adult mice. ENVIRONMENTAL RESEARCH 2021; 196:110961. [PMID: 33675803 PMCID: PMC8119355 DOI: 10.1016/j.envres.2021.110961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Airborne polycyclic aromatic hydrocarbons (PAH) possess carcinogenic and endocrine disrupting properties linked to mammary tumorigenesis. These effects may be initiated during a prenatal period of susceptibility to PAH activation of the aryl hydrocarbon receptor (Ahr) and through downstream effects on estrogen receptor (Er) α. PURPOSE We hypothesized prenatal airborne PAH exposure induces sustained effects in female adult wild type BALB/cByj mice detected in the offspring (F1) and grandoffspring (F2) generation. We hypothesized these effects would include altered expression and epigenetic regulation of Erα and altered expression of aryl hydrocarbon receptor repressor (Ahrr, Ahrr/aryl hydrocarbon receptor nuclear translocator (Arnt), and breast cancer type 1 susceptibility (Brca1). Further, we hypothesized that PAH would induce precancerous outcomes such as epithelial cell proliferation and epithelial cell hyperplasia in mammary glands of adult female offspring and grandoffspring. RESULTS Prenatal ambient PAH exposure lowered Erα mRNA expression (F1 and F2: p<0.001 for each) and induced methylation in the Erα promoter in mammary tissue in offspring and grandoffspring mice on postnatal day (PND) 60. Prenatal PAH lowered Brca1 mRNA (F1: p=0.002, F2: p=0.02); Erα mRNA was correlated with Brca1 (F1: r=0.42, p=0.02; F2: r=0.53, p=0.005). Prenatal PAH lowered Ahrr (F1: p=0.03, F2: p=0.009) and raised Arnt mRNA expression (F1: p=0.01, F2: p=0.03). Alterations in Erα mRNA (F2: p<0.0001) and Ahrr (F2: p=0.02) in the grandoffspring mice also occured by PND 28, and similarly occurred in the dam on postpartum day (PPD) 28. Finally, prenatal PAH was associated with higher mammary epithelial cell proliferation in the offspring (p=0.02), but not grandoffspring mice, without differences in the frequency of mammary cell hyperplasia. These results did not differ after adjustment by each candidate gene expression level. CONCLUSIONS Prenatal PAH exposure induces DNA methylation and alters gene expression in the Erα-mediated pathway across generations, and suggests that functional outcomes such as mammary cell proliferation also may occur in offspring as a result.
Collapse
Affiliation(s)
- Debashish Sahay
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Susan E Lloyd
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States
| | - Janelle A Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Jacqueline Jezioro
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Jacob D McDonald
- Department of Toxicology, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Masha Pitiranggon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Matthias Szabolcs
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, United States
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, United States.
| |
Collapse
|
117
|
Stajic D, Jansen LET. Empirical evidence for epigenetic inheritance driving evolutionary adaptation. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200121. [PMID: 33866813 DOI: 10.1098/rstb.2020.0121] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular machinery that regulates gene expression can be self-propagated across cell division cycles and even generations. This renders gene expression states and their associated phenotypes heritable, independently of genetic changes. These phenotypic states, in turn, can be subject to selection and may influence evolutionary adaptation. In this review, we will discuss the molecular basis of epigenetic inheritance, the extent of its transmission and mechanisms of evolutionary adaptation. The current work shows that heritable gene expression can facilitate the process of adaptation through the increase of survival in a novel environment and by enlarging the size of beneficial mutational targets. Moreover, epigenetic control of gene expression enables stochastic switching between different phenotypes in populations that can potentially facilitate adaptation in rapidly fluctuating environments. Ecological studies of the variation of epigenetic markers (e.g. DNA methylation patterns) in wild populations show a potential contribution of this mode of inheritance to local adaptation in nature. However, the extent of the adaptive contribution of the naturally occurring variation in epi-alleles compared to genetic variation remains unclear. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Dragan Stajic
- Department of Zoology, University of Stockholm, 106 91 Stockholm, Sweden
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
118
|
Canever L, Varela R, Mastella GA, Damázio LS, Valvassori SS, Quevedo JL, Zugno AI. Effects of maternal folic acid supplementation on nuclear methyltransferase activity of adult rats subjected to an animal model of schizophrenia. Int J Dev Neurosci 2021; 81:461-467. [PMID: 33786893 DOI: 10.1002/jdn.10109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Schizophrenia is considered one of the most disabling and severe human diseases worldwide. The etiology of schizophrenia is thought to be multifactorial and evidence suggests that DNA methylation can play an important role in underlying pivotal neurobiological alterations of this disorder. Some studies have demonstrated the effects of dietary supplementation as an alternative approach to the prevention of schizophrenia, including folic acid. However, no study has ever investigated the role of such supplementation in altering the DNA methylation system in the context of schizophrenia. OBJECTIVES The present study aims to investigate the effects of maternal folic acid supplementation at different doses on nuclear methyltransferase activity of adult rat offspring subjected to an animal model schizophrenia induced by ketamine. METHODS Adult female Wistar rats, (60 days old) received folic acid-deficient diet, control diet, or control diet plus folic acid supplementation (at 5, 10, or 50 mg/kg) during pregnancy and lactation. After reaching adulthood (60 days), the male offspring of these dams were subjected to the animal model of schizophrenia induced by 7 days of ketamine intraperitoneal injection (25 mg/kg). After the 7-day protocol, the activity of nuclear methyltransferase was evaluated in the brains of the offspring. RESULTS Maternal folic acid supplementation at 50 mg/kg increased methyltransferase activity in the frontal cortex, while 10 mg/kg increased methyltransferase activity in the hippocampus. In the striatum of offspring treated with ketamine, maternal deficient diet, control diet, and folic acid supplementation at 5 mg/kg decreased methyltransferase activity compared to the control group. The folic acid supplementation at 10 and 50 mg/kg reversed this ketamine effect. CONCLUSIONS Maternal FA deficiency could be related to schizophrenia pathophysiology, while FA supplementation could present a protective effect since it demonstrated persistent effects in epigenetic parameters in adult offspring.
Collapse
Affiliation(s)
- Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Roger Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo A Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Louyse S Damázio
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João L Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
119
|
Winz C, Suh N. Understanding the Mechanistic Link between Bisphenol A and Cancer Stem Cells: A Cancer Prevention Perspective. J Cancer Prev 2021; 26:18-24. [PMID: 33842402 PMCID: PMC8020171 DOI: 10.15430/jcp.2021.26.1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Endocrine disruptors, such as bisphenol A (BPA), have become more frequently present in the environment as contaminants, especially in industrialized countries. Long-term effects of these environmental contaminants in humans are elusive. With their structural similarity to estrogen, many environmental contaminants including BPA, have been shown to mimic the biological functions of estrogen, potentially contributing to the development of breast cancer. It has been well established that BPA exerts estrogenic activity in animal models and in vitro systems. There is a concern for adverse effects from the exposure to BPA in regard to developmental and reproductive toxicities. However, the mechanisms by which BPA promotes breast cancer development remain unknown. Understanding the role of endocrine disruptors and their key mechanisms of action is important for public health, especially by providing a foundation for a better intervention approach in cancer prevention.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
- Toxicology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
120
|
Bertozzi TM, Takahashi N, Hanin G, Kazachenka A, Ferguson-Smith AC. A spontaneous genetically induced epiallele at a retrotransposon shapes host genome function. eLife 2021; 10:e65233. [PMID: 33755012 PMCID: PMC8084528 DOI: 10.7554/elife.65233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Intracisternal A-particles (IAPs) are endogenous retroviruses (ERVs) responsible for most insertional mutations in the mouse. Full-length IAPs harbour genes flanked by long terminal repeats (LTRs). Here, we identify a solo LTR IAP variant (Iap5-1solo) recently formed in the inbred C57BL/6J mouse strain. In contrast to the C57BL/6J full-length IAP at this locus (Iap5-1full), Iap5-1solo lacks DNA methylation and H3K9 trimethylation. The distinct DNA methylation levels between the two alleles are established during preimplantation development, likely due to loss of KRAB zinc finger protein binding at the Iap5-1solo variant. Iap5-1solo methylation increases and becomes more variable in a hybrid genetic background yet is unresponsive to maternal dietary methyl supplementation. Differential epigenetic modification of the two variants is associated with metabolic differences and tissue-specific changes in adjacent gene expression. Our characterisation of Iap5-1 as a genetically induced epiallele with functional consequences establishes a new model to study transposable element repression and host-element co-evolution.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Nozomi Takahashi
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Geula Hanin
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | | | | |
Collapse
|
121
|
Garcinol-A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug. Int J Mol Sci 2021; 22:ijms22062828. [PMID: 33799504 PMCID: PMC8001519 DOI: 10.3390/ijms22062828] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
Garcinol extracted from Garcinia indica fruit peel and leaves is a polyisoprenylated benzophenone. In traditional medicine it was used for its antioxidant and anti-inflammatory properties. Several studies have shown anti-cancer properties of garcinol in cancer cell lines and experimental animal models. Garcinol action in cancer cells is based on its antioxidant and anti-inflammatory properties, but also on its potency to inhibit histone acetyltransferases (HATs). Recent studies indicate that garcinol may also deregulate expression of miRNAs involved in tumour development and progression. This paper focuses on the latest research concerning garcinol as a HAT inhibitor and miRNA deregulator in the development and progression of various cancers. Garcinol may be considered as a candidate for next generation epigenetic drugs, but further studies are needed to establish the precise toxicity, dosages, routes of administration, and safety for patients.
Collapse
|
122
|
Hu J, Wuitchik SJS, Barry TN, Jamniczky HA, Rogers SM, Barrett RDH. Heritability of DNA methylation in threespine stickleback (Gasterosteus aculeatus). Genetics 2021; 217:1-15. [PMID: 33683369 PMCID: PMC8045681 DOI: 10.1093/genetics/iyab001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.
Collapse
Affiliation(s)
- Juntao Hu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| | - Sara J S Wuitchik
- Informatics Group, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tegan N Barry
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| |
Collapse
|
123
|
Elmer JL, Hay AD, Kessler NJ, Bertozzi TM, Ainscough EAC, Ferguson-Smith AC. Genomic properties of variably methylated retrotransposons in mouse. Mob DNA 2021; 12:6. [PMID: 33612119 PMCID: PMC7898769 DOI: 10.1186/s13100-021-00235-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are enriched in cytosine methylation, preventing their mobility within the genome. We previously identified a genome-wide repertoire of candidate intracisternal A particle (IAP) TEs in mice that exhibit inter-individual variability in this methylation (VM-IAPs) with implications for genome function. RESULTS Here we validate these metastable epialleles and discover a novel class that exhibit tissue specificity (tsVM-IAPs) in addition to those with uniform methylation in all tissues (constitutive- or cVM-IAPs); both types have the potential to regulate genes in cis. Screening for variable methylation at other TEs shows that this phenomenon is largely limited to IAPs, which are amongst the youngest and most active endogenous retroviruses. We identify sequences enriched within cVM-IAPs, but determine that these are not sufficient to confer epigenetic variability. CTCF is enriched at VM-IAPs with binding inversely correlated with DNA methylation. We uncover dynamic physical interactions between cVM-IAPs with low methylation ranges and other genomic loci, suggesting that VM-IAPs have the potential for long-range regulation. CONCLUSION Our findings indicate that a recently evolved interplay between genetic sequence, CTCF binding, and DNA methylation at young TEs can result in inter-individual variability in transcriptional outcomes with implications for phenotypic variation.
Collapse
Affiliation(s)
- Jessica L. Elmer
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Amir D. Hay
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Noah J. Kessler
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Tessa M. Bertozzi
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | | | | |
Collapse
|
124
|
Pappalardo AM, Ferrito V, Biscotti MA, Canapa A, Capriglione T. Transposable Elements and Stress in Vertebrates: An Overview. Int J Mol Sci 2021; 22:1970. [PMID: 33671215 PMCID: PMC7922186 DOI: 10.3390/ijms22041970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Since their identification as genomic regulatory elements, Transposable Elements (TEs) were considered, at first, molecular parasites and later as an important source of genetic diversity and regulatory innovations. In vertebrates in particular, TEs have been recognized as playing an important role in major evolutionary transitions and biodiversity. Moreover, in the last decade, a significant number of papers has been published highlighting a correlation between TE activity and exposition to environmental stresses and dietary factors. In this review we present an overview of the impact of TEs in vertebrate genomes, report the silencing mechanisms adopted by host genomes to regulate TE activity, and finally we explore the effects of environmental and dietary factor exposures on TE activity in mammals, which is the most studied group among vertebrates. The studies here reported evidence that several factors can induce changes in the epigenetic status of TEs and silencing mechanisms leading to their activation with consequent effects on the host genome. The study of TE can represent a future challenge for research for developing effective markers able to detect precocious epigenetic changes and prevent human diseases.
Collapse
Affiliation(s)
- Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Teresa Capriglione
- Department of Biology, University of Naples "Federico II", Via Cinthia 21-Ed7, 80126 Naples, Italy
| |
Collapse
|
125
|
Chen Y, Hu S, Liu M, Zhao B, Yang N, Li J, Chen Q, Zhou J, Bao G, Wu X. Analysis of Genome DNA Methylation at Inherited Coat Color Dilutions of Rex Rabbits. Front Genet 2021; 11:603528. [PMID: 33552123 PMCID: PMC7859435 DOI: 10.3389/fgene.2020.603528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022] Open
Abstract
Background: The dilution of color in rabbits is associated with many different genetic mechanisms that form different color groups. A number of previous studies have revealed potential regulatory mechanisms by which epigenetics regulate pigmentation. However, the genome-wide DNA methylation involved in animal coat color dilution remains unknown. Results: We compared genome-wide DNA methylation profiles in Rex rabbit hair follicles in a Chinchilla group (Ch) and a diluted Chinchilla group (DCh) through whole-genome bisulfite sequencing (WGBS). Approximately 3.5% of the cytosine sites were methylated in both groups, of which the CG methylation type was in greatest abundance. In total, we identified 126,405 differentially methylated regions (DMRs) between the two groups, corresponding to 11,459 DMR-associated genes (DMGs). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that these DMGs were principally involved in developmental pigmentation and Wnt signaling pathways. In addition, two DMRs were randomly selected to verify that the WGBS data were reliable using bisulfite sequencing PCR, and seven DMGs were analyzed to establish the relationship between the level of DNA methylation and mRNA expression using qRT-PCR. Due to the limitation of small sample size, replication of the results with a larger sample size would be important in future studies. Conclusion: These findings provide evidence that there is an association between inherited color dilution and DNA methylation alterations in hair follicles, greatly contributing to our understanding of the epigenetic regulation of rabbit pigmentation.
Collapse
Affiliation(s)
- Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiuran Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Juan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guolian Bao
- Animal Husbandry and Veterinary Research Institute Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
126
|
Epigenetic Mechanisms of Paternal Stress in Offspring Development and Diseases. Int J Genomics 2021; 2021:6632719. [PMID: 33532485 PMCID: PMC7837765 DOI: 10.1155/2021/6632719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
The major biological function of the sperm cell is to transmit the paternal genetic and epigenetic information to the embryo as well as the following offspring. Sperm has a unique epigenome. An increasing body of epidemiological study supports that paternal stress induced by environmental exposures and lifestyle can modulate the sperm epigenome (including histone modification, DNA methylation, and noncoding RNA expression), sperm-egg fusion, embryo development, and offspring health. Based on the existing literature, we have summarized the paternal exposure on sperm epigenome along with the representative phenotypes of offspring and the possible mechanism involved.
Collapse
|
127
|
Li F, Qasim S, Li D, Dou QP. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol 2021; 83:335-352. [PMID: 33453404 DOI: 10.1016/j.semcancer.2020.11.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
In-depth insights in cancer biology over the past decades have highlighted the important roles of epigenetic mechanisms in the initiation and progression of tumorigenesis. The cancer epigenome usually experiences multiple alternations, including genome-wide DNA hypomethylation and site-specific DNA hypermethylation, various histone posttranslational modifications, and dysregulation of non-coding RNAs (ncRNAs). These epigenetic changes are plastic and reversible, and could potentially occur in the early stage of carcinogenesis preceding genetic mutation, offering unique opportunities for intervention therapies. Therefore, targeting the cancer epigenome or cancer epigenetic dysregulation with some selected agents (called epi-drugs) represents an evolving and promising strategy for cancer chemoprevention and therapy. Phytochemicals, as a class of pleiotropic molecules, have manifested great potential in modulating different cancer processes through epigenetic machinery, of which green tea polyphenol epigallocatechin-3-gallate (EGCG) is one of the most extensively studied. In this review, we first summarize epigenetic events involved in the pathogenesis of cancer, including DNA/RNA methylations, histone modifications and ncRNAs' dysregulations. We then focus on the recently discovered roles of phytochemicals, with a special emphasis on EGCG, in modulating different cancer processes through regulating epigenetic machinery. We finally discuss limitations of EGCG as an epigenetic modulator for cancer chemoprevention and treatment and offer potential strategies to overcome the shortcomings.
Collapse
Affiliation(s)
- Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Syeda Qasim
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA; Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
128
|
Happle R. Can Waardenburg syndrome type 2 be explained by epigenetic mosaicism? Am J Med Genet A 2021; 185:1304-1306. [PMID: 33438357 DOI: 10.1002/ajmg.a.62075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Rudolf Happle
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
129
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
130
|
Wanner NM, Colwell M, Drown C, Faulk C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin Epigenetics 2021; 13:4. [PMID: 33407853 PMCID: PMC7789000 DOI: 10.1186/s13148-020-00993-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. RESULTS F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. CONCLUSIONS These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Chelsea Drown
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA.
| |
Collapse
|
131
|
Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol 2021; 22:18. [PMID: 33402197 PMCID: PMC7786996 DOI: 10.1186/s13059-020-02223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although the genomes of monozygotic twins are practically identical, their methylomes may evolve divergently throughout their lifetime as a consequence of factors such as the environment or aging. Particularly for young and healthy monozygotic twins, DNA methylation divergence, if any, may be restricted to stochastic processes occurring post-twinning during embryonic development and early life. However, to what extent such stochastic mechanisms can systematically provide a stable source of inter-individual epigenetic variation remains uncertain until now. RESULTS We enriched for inter-individual stochastic variation by using an equivalence testing-based statistical approach on whole blood methylation microarray data from healthy adolescent monozygotic twins. As a result, we identified 333 CpGs displaying similarly large methylation variation between monozygotic co-twins and unrelated individuals. Although their methylation variation surpasses measurement error and is stable in a short timescale, susceptibility to aging is apparent in the long term. Additionally, 46% of these CpGs were replicated in adipose tissue. The identified sites are significantly enriched at the clustered protocadherin loci, known for stochastic methylation in developing neurons. We also confirmed an enrichment in monozygotic twin DNA methylation discordance at these loci in whole genome bisulfite sequencing data from blood and adipose tissue. CONCLUSIONS We have isolated a component of stochastic methylation variation, distinct from genetic influence, measurement error, and epigenetic drift. Biomarkers enriched in this component may serve in the future as the basis for universal epigenetic fingerprinting, relevant for instance in the discrimination of monozygotic twin individuals in forensic applications, currently impossible with standard DNA profiling.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
132
|
Saeidi M, Vieira A. Dietary Factors and the Epigenetics of Fatty Liver Disease. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
133
|
Bondada R, Somasundaram S, Marimuthu MP, Badarudeen MA, Puthiyaveedu VK, Maruthachalam R. Natural epialleles of Arabidopsis SUPERMAN display superwoman phenotypes. Commun Biol 2020; 3:772. [PMID: 33319840 PMCID: PMC7738503 DOI: 10.1038/s42003-020-01525-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023] Open
Abstract
Epimutations are heritable changes in gene function due to loss or gain of DNA cytosine methylation or chromatin modifications without changes in the DNA sequence. Only a few natural epimutations displaying discernible phenotypes are documented in plants. Here, we report natural epimutations in the cadastral gene, SUPERMAN(SUP), showing striking phenotypes despite normal transcription, discovered in a natural tetraploid, and subsequently in eleven diploid Arabidopsis genetic accessions. This natural lois lane(lol) epialleles behave as recessive mendelian alleles displaying a spectrum of silent to strong superwoman phenotypes affecting only the carpel whorl, in contrast to semi-dominant superman or supersex features manifested by induced epialleles which affect both stamen and carpel whorls. Despite its unknown origin, natural lol epialleles are subjected to the same epigenetic regulation as induced clk epialleles. The existence of superwoman epialleles in diverse wild populations is interpreted in the light of the evolution of unisexuality in plants. Ramesh Bondada et al. report natural epimutations in the Arabidopsis SUPERMAN gene from tetraploid and diploid accessions. The existence of these epialleles in diverse wild populations have the potential to shed light on the evolution of unisexuality in plants.
Collapse
Affiliation(s)
- Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Vithura, Kerala, 695551, India
| | - Saravanakumar Somasundaram
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Vithura, Kerala, 695551, India
| | | | - Mohammed Afsal Badarudeen
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Vithura, Kerala, 695551, India
| | - Vaishak Kanjirakol Puthiyaveedu
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Vithura, Kerala, 695551, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Vithura, Kerala, 695551, India.
| |
Collapse
|
134
|
Bertozzi TM, Elmer JL, Macfarlan TS, Ferguson-Smith AC. KRAB zinc finger protein diversification drives mammalian interindividual methylation variability. Proc Natl Acad Sci U S A 2020; 117:31290-31300. [PMID: 33239447 PMCID: PMC7733849 DOI: 10.1073/pnas.2017053117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most transposable elements (TEs) in the mouse genome are heavily modified by DNA methylation and repressive histone modifications. However, a subset of TEs exhibit variable methylation levels in genetically identical individuals, and this is associated with epigenetically conferred phenotypic differences, environmental adaptability, and transgenerational epigenetic inheritance. The evolutionary origins and molecular mechanisms underlying interindividual epigenetic variability remain unknown. Using a repertoire of murine variably methylated intracisternal A-particle (VM-IAP) epialleles as a model, we demonstrate that variable DNA methylation states at TEs are highly susceptible to genetic background effects. Taking a classical genetics approach coupled with genome-wide analysis, we harness these effects and identify a cluster of KRAB zinc finger protein (KZFP) genes that modifies VM-IAPs in trans in a sequence-specific manner. Deletion of the cluster results in decreased DNA methylation levels and altered histone modifications at the targeted VM-IAPs. In some cases, these effects are accompanied by dysregulation of neighboring genes. We find that VM-IAPs cluster together phylogenetically and that this is linked to differential KZFP binding, suggestive of an ongoing evolutionary arms race between TEs and this large family of epigenetic regulators. These findings indicate that KZFP divergence and concomitant evolution of DNA binding capabilities are mechanistically linked to methylation variability in mammals, with implications for phenotypic variation and putative paradigms of mammalian epigenetic inheritance.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom
| | - Jessica L Elmer
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
135
|
Nohara K, Nakabayashi K, Okamura K, Suzuki T, Suzuki S, Hata K. Gestational arsenic exposure induces site-specific DNA hypomethylation in active retrotransposon subfamilies in offspring sperm in mice. Epigenetics Chromatin 2020; 13:53. [PMID: 33267854 PMCID: PMC7709384 DOI: 10.1186/s13072-020-00375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/12/2020] [Indexed: 01/26/2023] Open
Abstract
Background Environmental impacts on a fetus can disrupt germ cell development leading to epimutations in mature germ cells. Paternal inheritance of adverse health effects through sperm epigenomes, including DNA methylomes, has been recognized in human and animal studies. However, the impacts of gestational exposure to a variety of environmental factors on the germ cell epigenomes are not fully investigated. Arsenic, a naturally occurring contaminant, is one of the most concerning environmental chemicals, that is causing serious health problems, including an increase in cancer, in highly contaminated areas worldwide. We previously showed that gestational arsenic exposure of pregnant C3H mice paternally induces hepatic tumor increase in the second generation (F2). In the present study, we have investigated the F1 sperm DNA methylomes genome-widely by one-base resolution analysis using a reduced representation bisulfite sequencing (RRBS) method. Results We have clarified that gestational arsenic exposure increases hypomethylated cytosines in all the chromosomes and they are significantly overrepresented in the retrotransposon LINEs and LTRs, predominantly in the intergenic regions. Closer analyses of detailed annotated DNA sequences showed that hypomethylated cytosines are especially accumulated in the promoter regions of the active full-length L1MdA subfamily in LINEs, and 5′LTRs of the active IAPE subfamily in LTRs. This is the first report that has identified the specific positions of methylomes altered in the retrotransposon elements by environmental exposure, by genome-wide methylome analysis. Conclusion Lowered DNA methylation potentially enhances L1MdA retrotransposition and cryptic promoter activity of 5′LTR for coding genes and non-coding RNAs. The present study has illuminated the environmental impacts on sperm DNA methylome establishment that can lead to augmented retrotransposon activities in germ cells and can cause harmful effects in the following generation.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Shigekatsu Suzuki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| |
Collapse
|
136
|
Song X, Wang X, Bhandari RK. Developmental abnormalities and epigenetic alterations in medaka (Oryzias latipes) embryos induced by triclosan exposure. CHEMOSPHERE 2020; 261:127613. [PMID: 32738708 DOI: 10.1016/j.chemosphere.2020.127613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS), an antibacterial and antifungal agent present in some consumer products, has been detected in the environment at varying concentrations. TCS exposure has been found to cause developmental abnormalities and endocrine disruption in various species of fish. It is not clearly understood whether TCS exposure causes epigenetic alterations in developing embryos and their germ cells. In the present study, we examined the effects of TCS exposure (0, 50, 100 and, 200 μg/L) on embryonic development and primordial germ cells (PGCs), which are precursors of sperm and eggs, in medaka (Oyzias latipes). Developmental TCS exposure from 8 h post-fertilization through 15 days post-fertilization (dpf) resulted in several developmental abnormalities, including enlarged yolk sac, decreased head trunk angle (HTA), and severe edema in the pericardial region. The male ratio increased in the 100 μg/L TCS exposure group, which was negatively correlated with the expression of cyp19ala (a gene encoding aromatase) and arα (androgen receptor alpha). Developmental 50 μg/L TCS exposure resulted in global hypomethylation in the whole body but not in the isolated PGCs. Expression of the gene encoding DNA methyltransferases (dnmt1 and dnmt3aa) was decreased by 50 μg/L TCS exposure both in the whole body and PGCs. TCS altered the expression of genes encoding enzymes involved in DNA methylation and demethylation in PGCs, suggesting epigenetic effects on germ cells. The present results demonstrate that the embryos exposed to the tested concentrations of TCS develop deformities during the early life stages and that the TCS within this range possesses endocrine disrupting properties potential enough to alter sex ratios of developing embryos.
Collapse
Affiliation(s)
- Xiaohong Song
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
137
|
Braun K, Bock J, Wainstock T, Matas E, Gaisler-Salomon I, Fegert J, Ziegenhain U, Segal M. Experience-induced transgenerational (re-)programming of neuronal structure and functions: Impact of stress prior and during pregnancy. Neurosci Biobehav Rev 2020; 117:281-296. [DOI: 10.1016/j.neubiorev.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
|
138
|
Host Gene Regulation by Transposable Elements: The New, the Old and the Ugly. Viruses 2020; 12:v12101089. [PMID: 32993145 PMCID: PMC7650545 DOI: 10.3390/v12101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
The human genome has been under selective pressure to evolve in response to emerging pathogens and other environmental challenges. Genome evolution includes the acquisition of new genes or new isoforms of genes and changes to gene expression patterns. One source of genome innovation is from transposable elements (TEs), which carry their own promoters, enhancers and open reading frames and can act as ‘controlling elements’ for our own genes. TEs include LINE-1 elements, which can retrotranspose intracellularly and endogenous retroviruses (ERVs) that represent remnants of past retroviral germline infections. Although once pathogens, ERVs also represent an enticing source of incoming genetic material that the host can then repurpose. ERVs and other TEs have coevolved with host genes for millions of years, which has allowed them to become embedded within essential gene expression programmes. Intriguingly, these host genes are often subject to the same epigenetic control mechanisms that evolved to combat the TEs that now regulate them. Here, we illustrate the breadth of host gene regulation through TEs by focusing on examples of young (The New), ancient (The Old), and disease-causing (The Ugly) TE integrants.
Collapse
|
139
|
Odhiambo JF, Pankey CL, Ghnenis AB, Ford SP. A Review of Maternal Nutrition during Pregnancy and Impact on the Offspring through Development: Evidence from Animal Models of Over- and Undernutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186926. [PMID: 32971930 PMCID: PMC7559343 DOI: 10.3390/ijerph17186926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
Abstract
Similarities in offspring phenotype due to maternal under- or over-nutrition during gestation have been observed in studies conducted at University of Wyoming. In these studies, ewes were either nutrient-restricted (NR) from early to mid-gestation, or fed an obesogenic diet (MO) from preconception through term. Offspring necropsies occurred at mid-gestation, late-gestation, and after parturition. At mid gestation, body weights of NR fetuses were ~30% lighter than controls, whereas MO fetuses were ~30% heavier than those of controls. At birth, lambs born to NR, MO, and control ewes exhibited similar weights. This was a consequence of accelerated fetal growth rates in NR ewes, and reduced fetal growth rates in MO ewes in late gestation, when compared to their respective controls. These fetal growth patterns resulted in remarkably similar effects of increased susceptibility to obesity, cardiovascular disease, and glucose intolerance in offspring programmed mostly during fetal stages of development. These data provide evidence that maternal under- and over-nutrition similarly induce the development of the same cadre of physical and metabolic problems in postnatal life.
Collapse
Affiliation(s)
- John F. Odhiambo
- Division of Agricultural Sciences, Florida A&M University, Tallahassee, FL 32307, USA
- Formerly, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA; (C.L.P.); (A.B.G.); (S.P.F.)
- Correspondence:
| | - Christopher L. Pankey
- Formerly, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA; (C.L.P.); (A.B.G.); (S.P.F.)
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - Adel B. Ghnenis
- Formerly, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA; (C.L.P.); (A.B.G.); (S.P.F.)
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX 77807, USA
| | - Stephen P. Ford
- Formerly, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA; (C.L.P.); (A.B.G.); (S.P.F.)
| |
Collapse
|
140
|
Liu J, Yu C, Doherty TM, Akbari O, Allard P, Rehan VK. Perinatal nicotine exposure-induced transgenerational asthma: Effects of reexposure in F1 gestation. FASEB J 2020; 34:11444-11459. [PMID: 32654256 PMCID: PMC7839813 DOI: 10.1096/fj.201902386r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 01/31/2023]
Abstract
In a rat model, perinatal nicotine exposure results in an epigenetically driven multi- and trans-generationally transmitted asthmatic phenotype that tends to wane over successive generations. However, the effect of repeat nicotine exposure during the F1 (Filial 1) gestational period on the transmitted phenotype is unknown. Using a well-established rat model, we compared lung function, mesenchymal markers of airway reactivity, and global gonadal DNA methylation changes in F2 offspring in a sex-specific manner following perinatal exposure to nicotine in only the F0 gestation, in both F0 and F1 (F0/F1) gestations, and in neither (control group). Both F0 only and F0/F1 exposure groups showed an asthmatic phenotype, an effect that was more pronounced in the F0/F1 exposure group, especially in males. Testicular global DNA methylation increased, while ovarian global DNA methylation decreased in the F0/F1 exposed group. Since the offspring of smokers are more likely to smoke than the offspring of nonsmokers, this sets the stage for more severe asthma if both mother and grandmother had smoked during their pregnancies. Increased gonadal DNA methylation changes following nicotine reexposure in the F1 generation suggests that epigenetic mechanisms might well underlie the transgenerational inheritance of acquired phenotypic traits in general and nicotine-induced asthma in particular.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatrics/Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Celia Yu
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Terence M. Doherty
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Patrick Allard
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Institute for Society and Genetics, UCLA, Los Angeles, CA, USA
| | - Virender K. Rehan
- Department of Pediatrics/Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Institute for Society and Genetics, UCLA, Los Angeles, CA, USA
| |
Collapse
|
141
|
Son W, Choi KW. The Classic Lobe Eye Phenotype of Drosophila Is Caused by Transposon Insertion-Induced Misexpression of a Zinc-Finger Transcription Factor. Genetics 2020; 216:117-134. [PMID: 32641295 PMCID: PMC7463288 DOI: 10.1534/genetics.120.303486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/06/2020] [Indexed: 11/18/2022] Open
Abstract
Drosophila Lobe (L) alleles were first discovered ∼100 years ago as spontaneous dominant mutants with characteristic developmental eye defects. However, the molecular basis for L dominant eye phenotypes has not been clearly understood. A previous work reported identification of CG10109/PRAS40 as the L gene, but subsequent analyses suggested that PRAS40 may not be related to L Here, we revisited the L gene to clarify this discrepancy and understand the basis for the dominance of L mutations. Genetic analysis localized the L gene to Oaz, which encodes a homolog of the vertebrate zinc finger protein 423 (Zfp423) family transcriptional regulators. We demonstrate that RNAi knockdown of Oaz almost completely restores all L dominant alleles tested. Lrev6-3 , a revertant allele of the L2 dominant eye phenotype, has an inframe deletion in the Oaz coding sequence. Molecular analysis of L dominant mutants identified allele-specific insertions of natural transposons (roo[ ]L1 , hopper[ ]L5 , and roo[ ]Lr ) or alterations of a preexisting transposon (L2 -specific mutations in roo[ ]Mohr) in the Oaz region. In addition, we generated additional L2 -reversion alleles by CRISPR targeting at Oaz These new loss-of-function Oaz mutations suppress the dominant L eye phenotype. Oaz protein is not expressed in wild-type eye disc but is expressed ectopically in L2/+ mutant eye disc. We induced male recombination between Oaz-GAL4 insertions and the L2 mutation through homologous recombination. By using the L2 -recombined GAL4 reporters, we show that Oaz-GAL4 is expressed ectopically in L2 eye imaginal disc. Taken together, our data suggest that neomorphic L eye phenotypes are likely due to misregulation of Oaz by spontaneous transposon insertions.
Collapse
Affiliation(s)
- Wonseok Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
142
|
Strain-Specific Epigenetic Regulation of Endogenous Retroviruses: The Role of Trans-Acting Modifiers. Viruses 2020; 12:v12080810. [PMID: 32727076 PMCID: PMC7472028 DOI: 10.3390/v12080810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Approximately 10 percent of the mouse genome consists of endogenous retroviruses (ERVs), relics of ancient retroviral infections that are classified based on their relatedness to exogenous retroviral genera. Because of the ability of ERVs to retrotranspose, as well as their cis-acting regulatory potential due to functional elements located within the elements, mammalian ERVs are generally subject to epigenetic silencing by DNA methylation and repressive histone modifications. The mobilisation and expansion of ERV elements is strain-specific, leading to ERVs being highly polymorphic between inbred mouse strains, hinting at the possibility of the strain-specific regulation of ERVs. In this review, we describe the existing evidence of mouse strain-specific epigenetic control of ERVs and discuss the implications of differential ERV regulation on epigenetic inheritance models. We consider Krüppel-associated box domain (KRAB) zinc finger proteins as likely candidates for strain-specific ERV modifiers, drawing on insights gained from the study of the strain-specific behaviour of transgenes. We conclude by considering the coevolution of KRAB zinc finger proteins and actively transposing ERV elements, and highlight the importance of cross-strain studies in elucidating the mechanisms and consequences of strain-specific ERV regulation.
Collapse
|
143
|
Williams BP, Gehring M. Principles of Epigenetic Homeostasis Shared Between Flowering Plants and Mammals. Trends Genet 2020; 36:751-763. [PMID: 32711945 DOI: 10.1016/j.tig.2020.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
In diverse eukaryotes, epigenetic information such as DNA methylation is stably propagated over many cell divisions and generations, and can remain the same over thousands or millions of years. However, this stability is the product of dynamic processes that add and remove DNA methylation by specialized enzymatic pathways. The activities of these dynamic pathways must therefore be finely orchestrated in order to ensure that the DNA methylation landscape is maintained with high fidelity - a concept we term epigenetic homeostasis. In this review, we summarize recent insights into epigenetic homeostasis mechanisms in flowering plants and mammals, highlighting analogous mechanisms that have independently evolved to achieve the same goal of stabilizing the epigenetic landscape.
Collapse
Affiliation(s)
- Ben P Williams
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, MA 02142, USA.
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
144
|
Cullen H, Schorn AJ. Endogenous Retroviruses Walk a Fine Line between Priming and Silencing. Viruses 2020; 12:v12080792. [PMID: 32718022 PMCID: PMC7472051 DOI: 10.3390/v12080792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
Endogenous retroviruses (ERVs) in mammals are closely related to infectious retroviruses and utilize host tRNAs as a primer for reverse transcription and replication, a hallmark of long terminal repeat (LTR) retroelements. Their dependency on tRNA makes these elements vulnerable to targeting by small RNAs derived from the 3′-end of mature tRNAs (3′-tRFs), which are highly expressed during epigenetic reprogramming and potentially protect many tissues in eukaryotes. Here, we review some key functions of ERV reprogramming during mouse and human development and discuss how small RNA-mediated silencing maintains genome stability when ERVs are temporarily released from heterochromatin repression. In particular, we take a closer look at the tRNA primer binding sites (PBS) of two highly active ERV families in mice and their sequence variation that is shaped by the conflict of successful tRNA priming for replication versus evasion of silencing by 3′-tRFs.
Collapse
|
145
|
Wang Z, Song J, Li C, Li Y, Shen L, Dong B, Zou Z, Ma J. DNA methylation of the INSR gene as a mediator of the association between prenatal exposure to famine and adulthood waist circumference. Sci Rep 2020; 10:12212. [PMID: 32699300 DOI: 10.1038/s41598-020-69120-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
The aims of this study were to explore whether DNA methylation at INSR and IGF2 mediated the association of prenatal exposure to the Chinese great famine with adulthood waist circumference (WC) and BMI. A total of 235 subjects were selected into the present study from severely affected province and a neighbor province with less severely affected famine in China through multi-stage clustered random sampling. DNA methylation at the INSR and IGF2 gene promoter regions was detected by the Sequenom's MassARRAY system. The "mediation" package of R was used to evaluate the mediation effect of DNA methylation on the association between prenatal exposure to the famine and adult WC and BMI. The results showed that prenatal famine exposure was significantly associated with higher overall methylation level of the INSR gene (d = 3.6%; 95% CI 1.2-6.0; P = 0.027) and larger adulthood WC (d = 2.72 cm; 95% CI 0.20-5.24; P = 0.034). Furthermore, famine significantly increased methylation levels at four CpG sites. Methylation of the CpG7 site mediated 32.0% (95% CI 5.0-100.0%, P = 0.029) of the association between prenatal exposure to the Chinese great famine and adulthood WC. In conclusion, Epigenetic changes to the INSR might mediate the adverse effect of prenatal famine exposure on WC in adulthood.
Collapse
Affiliation(s)
- Zhenghe Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Changwei Li
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA, USA
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Luqi Shen
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA, USA
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China. .,National Health Commission Key Laboratory of Reproductive Health, Peking University Health Science Center, Beijing, 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
146
|
Choi JY, Lee YCG. Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements. PLoS Genet 2020; 16:e1008872. [PMID: 32673310 PMCID: PMC7365398 DOI: 10.1371/journal.pgen.1008872] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transposable elements (TEs) are genomic parasites that selfishly replicate at the expense of host fitness. Fifty years of evolutionary studies of TEs have concentrated on the deleterious genetic effects of TEs, such as their effects on disrupting genes and regulatory sequences. However, a flurry of recent work suggests that there is another important source of TEs' harmful effects-epigenetic silencing. Host genomes typically silence TEs by the deposition of repressive epigenetic marks. While this silencing reduces the selfish replication of TEs and should benefit hosts, a picture is emerging that the epigenetic silencing of TEs triggers inadvertent spreading of repressive marks to otherwise expressed neighboring genes, ultimately jeopardizing host fitness. In this Review, we provide a long-overdue overview of the recent genome-wide evidence for the presence and prevalence of TEs' epigenetic effects, highlighting both the similarities and differences across mammals, insects, and plants. We lay out the current understanding of the functional and fitness consequences of TEs' epigenetic effects, and propose possible influences of such effects on the evolution of both hosts and TEs themselves. These unique evolutionary consequences indicate that TEs' epigenetic effect is not only a crucial component of TE biology but could also be a significant contributor to genome function and evolution.
Collapse
Affiliation(s)
- Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York State, United States of America
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
147
|
Calaf GM, Ponce-Cusi R, Aguayo F, Muñoz JP, Bleak TC. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett 2020; 20:19-32. [PMID: 32565930 PMCID: PMC7286136 DOI: 10.3892/ol.2020.11566] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Evaluation of carcinogenic substances from the environment is a challenge for scientists. Recently, a novel approach based on 10 key characteristics of human carcinogens classified by the International Agency for Research on Cancer (IARC) has emerged. Carcinogenesis depends on different mechanisms and factors, including genetic, infectious (bacteria, viruses) and environmental (chemicals) factors. Endocrine disruptors are exogenous chemicals that can interfere and impair the function of the endocrine system due to their interaction with estrogen receptors or their estrogen signaling pathways inducing adverse effects in the normal mammary development, originating cancer. They are heterogeneous chemicals and include numerous synthetic substances used worldwide in agriculture, industry and consumer products. The most common are plasticizers, such as bisphenol A (BPA), pesticides, such as dichlorodiphenyltrichloroethane, and polychlorinated biphenyls (PCBs). Xenoestrogens appear to serve an important role in the increased incidence of breast cancer in the United States and numerous other countries. Several studies have demonstrated the role of organochlorine xenoestrogens in breast cancer. Therefore, the overall cumulative exposure of women to estrogens results in an increased risk for this type of cancer. Factors like lifestyle and diet also serve a role in the increased incidence of this disease. The aim of the present study was to analyze these chemical compounds based on the key characteristics given by the IARC, with a special focus on breast cancer, to establish whether these compounds are carcinogens, and to create a model for future analysis of other endocrine disruptors.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard Ponce-Cusi
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380000, Chile
| | - Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
148
|
Zhang D, Cheng C, Cao M, Wang T, Chen X, Zhao Y, Wang B, Ren Y, Liu D, Liu L, Chen X, Liu F, Zhou Q, Tian G, Li Q, Guo C, Li H, Wang J, Cheng R, Hu D, Zhang M. TXNIP hypomethylation and its interaction with obesity and hypertriglyceridemia increase type 2 diabetes mellitus risk: A nested case-control study. J Diabetes 2020; 12:512-520. [PMID: 31919985 DOI: 10.1111/1753-0407.13021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This study aims to estimate type 2 diabetes mellitus (T2DM) incidence with DNA methylation of the thioredoxin-interacting protein (TXNIP) gene and its interaction with environmental factors. MATERIALS AND METHODS This case-control study included 286 incident T2DM cases and 286 non-T2DM controls matched by sex, age, marital status, race, and residence village nested in the Rural Chinese Cohort Study. A conditional logistic regression model was used to estimate the association of DNA methylation at TXNIP gene with T2DM risk. Also, multifactor dimensionality reduction (MDR) and classification and regression tree (CART) analyses were used to investigate the interaction between TXNIP methylation and environmental risk factors. RESULTS Methylation levels of all five CpG loci at TXNIP gene were significantly lower in T2DM than in controls (all P < .001). With increasing methylation level, risk of T2DM was significantly decreased (odds ratio, 95% CI 0.80, 0.69-0.94 for CpG1; 0.80, 0.69-0.93 for CpG2; 0.70, 0.56-0.88 for CpG3; 0.78, 0.66-0.92 for CpG4; and 0.76, 0.60-0.97 for CpG5). Additionally, the essential interactions among TXNIP methylation, obesity, and hypertriglyceridemia were identified by CART and MDR analyses. On logistic regression analysis, the risk of T2DM was reduced with terminal node 5 (CpG3 methylation ≥72%, nonobesity, normal triglyceride (TG) level, and CpG4 methylation ≥83%) vs terminal node 1 (CpG3 methylation <72%) (odds ratio 95% CI 0.20, 0.10-0.40). CONCLUSIONS TXNIP methylation is associated with T2DM incidence in a Chinese population. Interaction between TXNIP methylation and environmental factors may influence T2DM risk and needs more investigation.
Collapse
Affiliation(s)
- Dongdong Zhang
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Cheng Cheng
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Meng Cao
- Department of Environmental Health, Jinan Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Tieqiang Wang
- Key Lab of Epidemiology, Department of Infectious Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiaoliang Chen
- Key Lab of Epidemiology, Department of Infectious Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yang Zhao
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyuan Wang
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongcheng Ren
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- Key Lab of Epidemiology, Department of Infectious Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Dechen Liu
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- Key Lab of Epidemiology, Department of Infectious Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Leilei Liu
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Xu Chen
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Feiyan Liu
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Qionggui Zhou
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Gang Tian
- Key Lab of Epidemiology, Department of Infectious Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Quanman Li
- Key Lab of Epidemiology, Department of Infectious Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Chunmei Guo
- Key Lab of Epidemiology, Department of Infectious Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Honghui Li
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jian Wang
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Ruirong Cheng
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Dongsheng Hu
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Zhang
- Center for Community Health Management, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
149
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
150
|
Kaspar D, Hastreiter S, Irmler M, Hrabé de Angelis M, Beckers J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm Genome 2020; 31:119-133. [PMID: 32350605 PMCID: PMC7368866 DOI: 10.1007/s00335-020-09839-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Nutritional constraints including not only caloric restriction or protein deficiency, but also energy-dense diets affect metabolic health and frequently lead to obesity and insulin resistance, as well as glucose intolerance and type 2 diabetes. The effects of these environmental factors are often mediated via epigenetic modifiers that target the expression of metabolic genes. More recently, it was discovered that such parentally acquired metabolic changes can alter the metabolic health of the filial and grand-filial generations. In mammals, this epigenetic inheritance can either follow an intergenerational or transgenerational mode of inheritance. In the case of intergenerational inheritance, epimutations established in gametes persist through the first round of epigenetic reprogramming occurring during preimplantation development. For transgenerational inheritance, epimutations persist additionally throughout the reprogramming that occurs during germ cell development later in embryogenesis. Differentially expressed transcripts, genomic cytosine methylations, and several chemical modifications of histones are prime candidates for tangible marks which may serve as epimutations in inter- and transgenerational inheritance and which are currently being investigated experimentally. We review, here, the current literature in support of epigenetic inheritance of metabolic traits caused by nutritional constraints and potential mechanisms in man and in rodent model systems.
Collapse
Affiliation(s)
- Daniela Kaspar
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Sieglinde Hastreiter
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, Weihenstephan, Germany
- Deutsches Zentrum für Diabetesforschung E.V. (DZD), Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany.
- Chair of Experimental Genetics, Technische Universität München, Weihenstephan, Germany.
- Deutsches Zentrum für Diabetesforschung E.V. (DZD), Neuherberg, Germany.
| |
Collapse
|