101
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
102
|
Dual lipidation of the brain-specific Cdc42 isoform regulates its functional properties. Biochem J 2015; 456:311-22. [PMID: 24059268 DOI: 10.1042/bj20130788] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cdc42 (cell division cycle 42) is a member of the Rho GTPase family which regulates a variety of cellular activities by controlling actin cytoskeleton and gene expression. Cdc42 is expressed in the form of two splice variants. The canonical Cdc42 isoform is prenylated (Cdc42-prenyl), whereas the brainspecific isoform can be palmitoylated (Cdc42-palm). In the present study we have demonstrated palmitoylation of endogenous Cdc42 in rodent and human brains and identified Cys(188) and Cys(189) as acylation sites of Cdc42-palm. Moreover, we have shown that Cys(188) can also be prenylated. Analysis of acylation-deficient mutants revealed that lipidation of Cys(188) is essential for proper membrane binding of Cdc42-palm as well as for Cdc42-mediated regulation of gene transcription and induction of densely packed filopodia in neuroblastoma cells. We also found that Cdc42-prenyl is a dominant splice variant in a wide range of commonly used cell lines as well as in the cerebellum, whereas Cdc42-palm is the main Cdc42 isoform in hippocampus, where it is critically involved in the formation of dendritic filopodia and spines. Replacement of endogenous Cdc42 by its acylation-deficient mutants revealed the importance of Cdc42-palm lipidation for its morphogenic and synaptogenic effects in neurons. These findings demonstrate that dual lipidation of Cdc42-palm represents an important regulator of morphogenic signalling in hippocampal neurons.
Collapse
|
103
|
Effects of neurosteroids on a model membrane including cholesterol: A micropipette aspiration study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1268-76. [PMID: 25660752 DOI: 10.1016/j.bbamem.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/14/2015] [Accepted: 01/23/2015] [Indexed: 11/21/2022]
Abstract
Amphiphilic molecules supposed to affect membrane protein activity could strongly interact also with the lipid component of the membrane itself. Neurosteroids are amphiphilic molecules that bind to plasma membrane receptors of cells in the central nervous system but their effect on membrane is still under debate. For this reason it is interesting to investigate their effects on pure lipid bilayers as model systems. Using the micropipette aspiration technique (MAT), here we studied the effects of a neurosteroid, allopregnanolone (3α,5α-tetrahydroprogesterone or Allo) and of one of its isoforms, isoallopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), on the physical properties of pure lipid bilayers composed by DOPC/bSM/chol. Allo is a well-known positive allosteric modulator of GABAA receptor activity while isoAllo acts as a non-competitive functional antagonist of Allo modulation. We found that Allo, when applied at nanomolar concentrations (50-200 nM) to a lipid bilayer model system including cholesterol, induces an increase of the lipid bilayer area and a decrease of the mechanical parameters. Conversely, isoAllo, decreases the lipid bilayer area and, when applied, at the same nanomolar concentrations, it does not affect significantly its mechanical parameters. We characterized the kinetics of Allo uptake by the lipid bilayer and we also discussed its aspects in relation to the slow kinetics of Allo gating effects on GABAA receptors. The overall results presented here show that a correlation exists between the modulation of Allo and isoAllo of GABAA receptor activity and their effects on a lipid bilayer model system containing cholesterol.
Collapse
|
104
|
Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat Chem Biol 2015; 11:192-4. [DOI: 10.1038/nchembio.1733] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022]
|
105
|
Parker JA, Mattos C. The Ras-Membrane Interface: Isoform-specific Differences in The Catalytic Domain. Mol Cancer Res 2015; 13:595-603. [PMID: 25566993 DOI: 10.1158/1541-7786.mcr-14-0535] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022]
Abstract
The small GTPase Ras is mutated in about 20% of human cancers, primarily at active site amino acid residues G12, G13, and Q61. Thus, structural biology research has focused on the active site, impairment of GTP hydrolysis by oncogenic mutants, and characterization of protein-protein interactions in the effector lobe half of the protein. The C-terminal hypervariable region has increasingly gained attention due to its importance in H-Ras, N-Ras, and K-Ras differences in membrane association. A high-resolution molecular view of the Ras-membrane interaction involving the allosteric lobe of the catalytic domain has lagged behind, although evidence suggests that it contributes to isoform specificity. The allosteric lobe has recently gained interest for harboring potential sites for more selective targeting of this elusive "undruggable" protein. The present review reveals critical insight that isoform-specific differences appear prominently at these potentially targetable sites and integrates these differences with knowledge of Ras plasma membrane localization, with the intent to better understand the structure-function relationships needed to design isoform-specific Ras inhibitors.
Collapse
Affiliation(s)
- Jillian A Parker
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
106
|
Tang HC, Chen YC. Molecular insight and resolution for tumors harboring the H-ras(G12V) mutation. RSC Adv 2015. [DOI: 10.1039/c4ra16763e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GTP-bound H-ras(G12V) provides a convenient condition to phosphorylate the substrate protein.
Collapse
Affiliation(s)
- Hsin-Chieh Tang
- Department of Biomedical Informatics
- Asia University
- Taichung
- Taiwan
| | - Yu-Chian Chen
- Department of Biomedical Informatics
- Asia University
- Taichung
- Taiwan
- Human Genetic Center
| |
Collapse
|
107
|
Najumudeen AK, Guzmán C, Posada IMD, Abankwa D. Rab-NANOPS: FRET biosensors for Rab membrane nanoclustering and prenylation detection in mammalian cells. Methods Mol Biol 2015; 1298:29-45. [PMID: 25800830 DOI: 10.1007/978-1-4939-2569-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rab proteins constitute the largest subfamily of Ras-like small GTPases. They are central to vesicular transport and organelle definition in eukaryotic cells. Unlike their Ras counterparts, they are not a hallmark of cancer. However, a number of diseases, including cancer, show a misregulation of Rab protein activity. As for all membrane-anchored signaling proteins, correct membrane organization is critical for Rabs to operate. In this chapter, we provide a detailed protocol for the use of a flow cytometry-based Fluorescence Resonance Energy Transfer (FRET)-biosensors assay, which allows to detect changes in membrane anchorage, subcellular distribution, and of the nanoscale organization of Rab-GTPases in mammalian cell lines. This assay is high-throughput amenable and can therefore be utilized in chemical-genomic and drug discovery efforts.
Collapse
Affiliation(s)
- Arafath Kaja Najumudeen
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
| | | | | | | |
Collapse
|
108
|
Abstract
Human germinal center-associated lymphoma (HGAL) is specifically expressed only in germinal center (GC) B lymphocytes and GC-derived lymphomas. HGAL protein decreases lymphocyte motility by inhibiting the ability of myosin to translocate actin via direct interaction with F-actin and myosin II and by activating RhoA signaling via direct interactions with RhoA-specific guanine nucleotide exchange factors. HGAL protein also regulates B-cell receptor (BCR) signaling by directly binding to and enhancing Syk kinase activity and activation of its downstream effectors. Herein we demonstrate that HGAL protein can be myristoylated and palmitoylated and that these modifications localize HGAL to cellular membrane raft microdomains with distinct consequences for BCR signaling and chemoattractant-induced cell mobility. In BCR signaling, raft localization of HGAL facilitates interaction with Syk and modulation of the BCR activation and signaling, which induces HGAL phosphorylation and redistribution from lipid raft to bulk membrane and cytoplasm, followed by degradation. In contrast, HGAL myristoylation and palmitoylation avert its inhibitory effects on chemoattractant-induced cell motility. These findings further elucidate the growing and complex role of HGAL in B-cell biology and suggest that membrane-bound and cytoplasmic HGAL protein differently regulates distinct biological processes.
Collapse
|
109
|
Huff LP, DeCristo MJ, Cox AD. Effector recruitment method to study spatially regulated activation of Ras and Rho GTPases. Methods Mol Biol 2014; 1120:263-83. [PMID: 24470032 DOI: 10.1007/978-1-62703-791-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Ras and Rho family GTPases control a wide variety of cellular processes, and the signaling downstream of these GTPases is influenced by their subcellular localization when activated. Since only a minority of total cellular GTPases is active, observation of the total subcellular distribution of GTPases does not reveal where active GTPases are localized. In this chapter, we describe the use of effector recruitment assays to monitor the subcellular localization of active Ras and Rho family GTPases. The recruitment assay relies on preferential binding of downstream effectors to active GTPases versus inactive GTPases. Tagging the GTPase-binding-domain (GBD) of a downstream effector with a fluorescent protein produces a probe that is recruited to compartments where GTPases are active. We describe an example of a recruitment assay using the GBD of PAK1 to monitor Rac1 activity and explain how the assay can be expanded to determine the subcellular localization of activation of other GTPases.
Collapse
Affiliation(s)
- Lauren P Huff
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
110
|
Moissoglu K, Kiessling V, Wan C, Hoffman BD, Norambuena A, Tamm LK, Schwartz MA. Regulation of Rac1 translocation and activation by membrane domains and their boundaries. J Cell Sci 2014; 127:2565-76. [PMID: 24695858 DOI: 10.1242/jcs.149088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The activation of Rac1 and related Rho GTPases involves dissociation from Rho GDP-dissociation inhibitor proteins and translocation to membranes, where they bind effectors. Previous studies have suggested that the binding of Rac1 to membranes requires, and colocalizes with, cholesterol-rich liquid-ordered (lo) membrane domains (lipid rafts). Here, we have developed a fluorescence resonance energy transfer (FRET) assay that robustly detects Rac1 membrane targeting in living cells. Surprisingly, FRET with acceptor constructs that were targeted to either raft or non-raft areas indicated that Rac1 was present in both regions. Functional studies showed that Rac1 localization to non-raft regions decreased GTP loading as a result of inactivation by GTPase-activating proteins. In vitro, Rac1 translocation to supported lipid bilayers also required lo domains, yet Rac1 was concentrated in the liquid-disordered (ld) phase. Single-molecule analysis demonstrated that translocation occurred preferentially at lo-ld boundaries. These results, therefore, suggest that Rac1 translocates to the membrane at domain boundaries, then diffuses into raft and non-raft domains, which controls interactions. These findings resolve discrepancies in our understanding of Rac biology and identify novel mechanisms by which lipid rafts modulate Rho GTPase signaling.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Center for Membrane Biology, University of Virginia, Charlottesville, VA 22908, USA Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Chen Wan
- Center for Membrane Biology, University of Virginia, Charlottesville, VA 22908, USA Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Brenton D Hoffman
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Andres Norambuena
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lukas K Tamm
- Center for Membrane Biology, University of Virginia, Charlottesville, VA 22908, USA Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Martin Alexander Schwartz
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
111
|
Ariotti N, Fernández-Rojo MA, Zhou Y, Hill MM, Rodkey TL, Inder KL, Tanner LB, Wenk MR, Hancock JF, Parton RG. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. ACTA ACUST UNITED AC 2014; 204:777-92. [PMID: 24567358 PMCID: PMC3941050 DOI: 10.1083/jcb.201307055] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Caveolae transduce mechanical stress into plasma membrane lipid alterations that disrupt Ras organization in an isoform-specific manner and modulate downstream signal transduction. The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization.
Collapse
Affiliation(s)
- Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc Natl Acad Sci U S A 2014; 111:2996-3001. [PMID: 24516166 DOI: 10.1073/pnas.1321155111] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-, and K-Ras are widely suspected to be responsible for guiding protein organization in membranes. Here, we report that H-Ras forms a dimer on membrane surfaces through a protein-protein binding interface. A Y64A point mutation in the switch II region, known to prevent Son of sevenless and PI3K effector interactions, abolishes dimer formation. This suggests that the switch II region, near the nucleotide binding cleft, is either part of, or allosterically coupled to, the dimer interface. By tethering H-Ras to bilayers via a membrane-miscible lipid tail, we show that dimer formation is mediated by protein interactions and does not require lipid anchor clustering. We quantitatively characterize H-Ras dimerization in supported membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, time-resolved fluorescence anisotropy, single-molecule tracking, and step photobleaching analysis. The 2D dimerization Kd is measured to be ∼1 × 10(3) molecules/µm(2), and no higher-order oligomers were observed. Dimerization only occurs on the membrane surface; H-Ras is strictly monomeric at comparable densities in solution. Analysis of a number of H-Ras constructs, including key changes to the lipidation pattern of the hypervariable region, suggest that dimerization is a general property of native H-Ras on membrane surfaces.
Collapse
|
113
|
Eicosapentaenoic acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. PLoS One 2014; 9:e85025. [PMID: 24454781 PMCID: PMC3890293 DOI: 10.1371/journal.pone.0085025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, contribute to tumor development and progression. Silencing of tumor suppressor genes may be ascribed to promoter DNA hypermethylation, a reversible phenomenon intensely investigated as potential therapeutic target. Previously, we demonstrated that eicosapentaenoic acid (EPA) exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). The C/EBPβ/C/EBPδ heterodimer formed appears essential for the monocyte differentiation commitment. The present study aims to evaluate the effect of EPA on RAS/extracellular signal regulated kinases (ERK1/2)/C/EBPβ pathway, known to be induced during the monocyte differentiation program. We found that EPA conditioning of U937 leukemia cells activated RAS/ERK/C/EBPβ pathway, increasing the C/EBPβ and ERK1/2 active phosphorylated forms. Transcriptional induction of the upstream activator H-Ras gene resulted in increased expression of H-Ras protein in the active pool of non raft membrane fraction. H-Ras gene analysis identified an hypermethylated CpG island in intron 1 that can affect the DNA-protein interaction modifying RNA polymerase II (RNAPII) activity. EPA treatment demethylated almost completely this CpG island, which was associated with an enrichment of active RNAPII. The increased binding of the H-Ras transcriptional regulator p53 to its consensus sequence within the intronic CpG island further confirmed the effect of EPA as demethylating agent. Our results provide the first evidence that an endogenous polyunsaturated fatty acid (PUFA) promotes a DNA demethylation process responsible for the activation of RAS/ERK/C/EBPβ pathway during the monocyte differentiation commitment. The new role of EPA as demethylating agent paves the way for studying PUFA action when aberrant DNA methylation is involved.
Collapse
|
114
|
Cortical F-actin stabilization generates apical-lateral patterns of junctional contractility that integrate cells into epithelia. Nat Cell Biol 2014; 16:167-78. [PMID: 24413434 DOI: 10.1038/ncb2900] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/28/2013] [Indexed: 12/20/2022]
Abstract
E-cadherin cell-cell junctions couple the contractile cortices of epithelial cells together, generating tension within junctions that influences tissue organization. Although junctional tension is commonly studied at the apical zonula adherens, we now report that E-cadherin adhesions induce the contractile actomyosin cortex throughout the apical-lateral axis of junctions. However, cells establish distinct regions of contractile activity even within individual contacts, producing high tension at the zonula adherens but substantially lower tension elsewhere. We demonstrate that N-WASP (also known as WASL) enhances apical junctional tension by stabilizing local F-actin networks, which otherwise undergo stress-induced turnover. Further, we find that cells are extruded from monolayers when this pattern of intra-junctional contractility is disturbed, either when N-WASP redistributes into lateral junctions in H-Ras(V12)-expressing cells or on mosaic redistribution of active N-WASP itself. We propose that local control of actin filament stability regulates the landscape of intra-junctional contractility to determine whether or not cells integrate into epithelial populations.
Collapse
|
115
|
Baker R, Wilkerson EM, Sumita K, Isom DG, Sasaki AT, Dohlman HG, Campbell SL. Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination. J Biol Chem 2013; 288:36856-62. [PMID: 24247240 DOI: 10.1074/jbc.c113.525691] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.
Collapse
Affiliation(s)
- Rachael Baker
- From the Departments of Biochemistry and Biophysics and
| | | | | | | | | | | | | |
Collapse
|
116
|
Miura H, Matsuda M, Aoki K. Development of a FRET biosensor with high specificity for Akt. Cell Struct Funct 2013; 39:9-20. [PMID: 24212374 DOI: 10.1247/csf.13018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The serine/threonine kinase Akt plays a critical role in cell proliferation, survival, and tumorigenesis. As a central kinase in the phosphatidylinositol 3-kinase pathway, its activation mechanism at the plasma membrane has been well characterized. However, the subcellular Akt activity in living cells is still largely unknown. Fluorescence resonance energy transfer (FRET)-based biosensors have emerged as indispensable tools to visualize the subcellular activities of signaling molecules. In this study, we developed a highly specific FRET biosensor for Akt based on the Eevee backbone, called Eevee-iAkt. Using inhibitors targeting kinases upstream and downstream of Akt, we showed that Eevee-iAkt specifically monitors Akt activity in living cells. To visualize Akt activity at different subcellular compartments, we targeted Eevee-iAkt to raft and non-raft regions of the plasma membrane, mitochondria, and nucleus in HeLa and Cos7 cells. Interestingly, we revealed substantial differences in Akt activation between HeLa and Cos7 cells upon epidermal growth factor (EGF) stimulation: Akt was transiently activated in HeLa cells with comparable levels at the plasma membrane, cytosol, and mitochondria. In contrast, sustained and spatially localized Akt activation was observed in EGF-stimulated Cos7 cells. We found high Akt activity at the plasma membrane, low activity in the cytosol, and no detectable activity at the mitochondria and nucleus in Cos7 cells. The Eevee-iAkt biosensor was shown to be a valuable tool to study the functional relationship between subcellular Akt activation and its anti-apoptotic role in living cells.
Collapse
Affiliation(s)
- Haruko Miura
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| | | | | |
Collapse
|
117
|
Zhou Y, Maxwell KN, Sezgin E, Lu M, Liang H, Hancock JF, Dial EJ, Lichtenberger LM, Levental I. Bile acids modulate signaling by functional perturbation of plasma membrane domains. J Biol Chem 2013; 288:35660-70. [PMID: 24165125 DOI: 10.1074/jbc.m113.519116] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.
Collapse
Affiliation(s)
- Yong Zhou
- From the Department of Integrative Biology and Pharmacology, the University of Texas Medical School, Houston, Texas 77030 and
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Fujii S, Akaike T. redox Signaling by 8-nitro-cyclic guanosine monophosphate: nitric oxide- and reactive oxygen species-derived electrophilic messenger. Antioxid Redox Signal 2013; 19:1236-46. [PMID: 23157314 DOI: 10.1089/ars.2012.5067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Emerging evidence has revealed that nitric oxide (NO)- and reactive oxygen species (ROS)-derived electrophiles formed in cells mediate signal transduction for responses to oxidative stress. RECENT ADVANCES The cyclic nucleotide with a nitrated guanine moiety-8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP)-first identified in 2007 as a second messenger for NO and ROS-has certain unique properties that its parental cGMP lacks. For example, it can react with particular protein Cys thiols because of its electrophilicity and can cause unique post-translational modifications of redox-sensor proteins such as Keap1 and H-Ras. CRITICAL ISSUES Site-specific S-guanylation of Keap1 at Cys434 induced NO- and ROS-mediated adaptive responses to oxidative stress. H-Ras Cys184 S-guanylation was recently found to be involved in activation of mitogen-activated protein kinase cascades as manifested by cellular senescence and heart failure in mouse cardiac hypertrophy models. The latest finding related to the concept of electrophile-based redox signaling is a potent regulatory function of endogenously produced hydrogen sulfide for redox signaling via 8-nitro-cGMP. FUTURE DIRECTIONS Electrophile modification of 8-nitro-cGMP, as a second messenger for NO and ROS, by hydrogen sulfide (i.e., electrophile sulfhydration) can most likely effect physiological regulation of cellular redox signaling. Continued investigation of the precise function of cellular hydrogen sulfide that may control electrophile-dependent redox cellular signaling, most typically via 8-nitro-cGMP formation, may provide novel insights into the molecular mechanisms of oxidative stress responses, oxidative stress-related pathology and disease control, and development of therapeutics for various diseases.
Collapse
Affiliation(s)
- Shigemoto Fujii
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | | |
Collapse
|
119
|
Barceló C, Paco N, Beckett AJ, Alvarez-Moya B, Garrido E, Gelabert M, Tebar F, Jaumot M, Prior I, Agell N. Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. J Cell Sci 2013; 126:4553-9. [PMID: 23943869 DOI: 10.1242/jcs.123737] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activating mutations in the K-Ras small GTPase are extensively found in human tumors. Although these mutations induce the generation of a constitutively GTP-loaded, active form of K-Ras, phosphorylation at Ser181 within the C-terminal hypervariable region can modulate oncogenic K-Ras function without affecting the in vitro affinity for its effector Raf-1. In striking contrast, K-Ras phosphorylated at Ser181 shows increased interaction in cells with the active form of Raf-1 and with p110α, the catalytic subunit of PI 3-kinase. Because the majority of phosphorylated K-Ras is located at the plasma membrane, different localization within this membrane according to the phosphorylation status was explored. Density-gradient fractionation of the plasma membrane in the absence of detergents showed segregation of K-Ras mutants that carry a phosphomimetic or unphosphorylatable serine residue (S181D or S181A, respectively). Moreover, statistical analysis of immunoelectron microscopy showed that both phosphorylation mutants form distinct nanoclusters that do not overlap. Finally, induction of oncogenic K-Ras phosphorylation - by activation of protein kinase C (PKC) - increased its co-clustering with the phosphomimetic K-Ras mutant, whereas (when PKC is inhibited) non-phosphorylated oncogenic K-Ras clusters with the non-phosphorylatable K-Ras mutant. Most interestingly, PI 3-kinase (p110α) was found in phosphorylated K-Ras nanoclusters but not in non-phosphorylated K-Ras nanoclusters. In conclusion, our data provide - for the first time - evidence that PKC-dependent phosphorylation of oncogenic K-Ras induced its segregation in spatially distinct nanoclusters at the plasma membrane that, in turn, favor activation of Raf-1 and PI 3-kinase.
Collapse
Affiliation(s)
- Carles Barceló
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina. Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Ras GTPases are important regulators of pathways controlling proliferation, differentiation and transformation. Three ubiquitously expressed almost identical Ras genes are not functionally redundant; this has been attributed to their distinctive trafficking and localization profiles. A palmitoylation cycle controls the correct compartmentalization of H-Ras and N-Ras. We review recent data that reveal how this cycle can be regulated by membrane organization to influence the spatiotemporal signalling of Ras.
Collapse
|
121
|
Prakash P, Gorfe AA. Lessons from computer simulations of Ras proteins in solution and in membrane. Biochim Biophys Acta Gen Subj 2013; 1830:5211-8. [PMID: 23906604 DOI: 10.1016/j.bbagen.2013.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role. SCOPE OF REVIEW Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments. MAJOR CONCLUSIONS The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research. GENERAL SIGNIFICANCE Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Priyanka Prakash
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
122
|
Najumudeen AK, Köhnke M, Šolman M, Alexandrov K, Abankwa D. Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS One 2013; 8:e66425. [PMID: 23824448 PMCID: PMC3688908 DOI: 10.1371/journal.pone.0066425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Hundreds of eukaryotic signaling proteins require myristoylation to functionally associate with intracellular membranes. N-myristoyl transferases (NMT) responsible for this modification are established drug targets in cancer and infectious diseases. Here we describe NANOMS (NANOclustering and Myristoylation Sensors), biosensors that exploit the FRET resulting from plasma membrane nanoclustering of myristoylated membrane targeting sequences of Gαi2, Yes- or Src-kinases fused to fluorescent proteins. When expressed in mammalian cells, NANOMS report on loss of membrane anchorage due to chemical or genetic inhibition of myristoylation e.g. by blocking NMT and methionine-aminopeptidase (Met-AP). We used Yes-NANOMS to assess inhibitors of NMT and a cherry-picked compound library of putative Met-AP inhibitors. Thus we successfully confirmed the activity of DDD85646 and fumagillin in our cellular assay. The developed assay is unique in its ability to identify modulators of signaling protein nanoclustering, and is amenable to high throughput screening for chemical or genetic inhibitors of functional membrane anchorage of myristoylated proteins in mammalian cells.
Collapse
Affiliation(s)
| | - Monika Köhnke
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| |
Collapse
|
123
|
Compartmentalized Ras signaling differentially contributes to phenotypic outputs. Cell Signal 2013; 25:1748-53. [PMID: 23707528 PMCID: PMC3776226 DOI: 10.1016/j.cellsig.2013.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/07/2013] [Indexed: 12/30/2022]
Abstract
Ras isoforms are membrane bound proteins that differentially localize to the plasma membrane and subcellular compartments within the cell. Whilst the cell surface is the main site for Ras activity the extent to which intracellular pools contribute to Ras function is debated. We have generated Ras chimeras targeting Ras to the ER, Golgi, mitochondria and endosomes to compare the capacity of each of these locations to support activity equivalent to normal Ras function. We find that all locations are capable of regulating the MAP kinase and Akt pathways. Furthermore, whilst endomembranous Ras pools show location-specific competence to support proliferation and transformation, Golgi-Ras is as potent as N-Ras.
Collapse
|
124
|
Sawa T, Ihara H, Ida T, Fujii S, Nishida M, Akaike T. Formation, signaling functions, and metabolisms of nitrated cyclic nucleotide. Nitric Oxide 2013; 34:10-8. [PMID: 23632125 DOI: 10.1016/j.niox.2013.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/16/2013] [Indexed: 01/07/2023]
Abstract
8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a unique derivative of guanosine 3',5'-cyclic monophosphate (cGMP) formed in mammalian and plant cells in response to production of nitric oxide and reactive oxygen species. 8-Nitro-cGMP possesses signaling activity inherited from parental cGMP, including induction of vasorelaxation through activation of cGMP-dependent protein kinase. On the other hand, 8-nitro-cGMP mediates cellular signaling that is not observed for native cGMP, e.g., it behaves as an electrophile and reacts with protein sulfhydryls, which results in cGMP adduction to protein sulfhydryls (protein S-guanylation). Several proteins have been identified as targets for endogenous protein S-guanylation, including Kelch-like ECH-associated protein 1 (Keap1), H-Ras, and mitochondrial heat shock proteins. 8-Nitro-cGMP signaling via protein S-guanylation of those proteins may have evolved to convey adaptive cellular stress responses. 8-Nitro-cGMP may not undergo conventional cGMP metabolism because of its resistance to phosphodiesterases. Hydrogen sulfide has recently been identified as a potent regulator for metabolisms of electrophiles including 8-nitro-cGMP, through sulfhydration of electrophiles, e.g., leading to the formation of 8-SH-cGMP. Better understanding of the molecular basis for the formation, signaling functions, and metabolisms of 8-nitro-cGMP would be useful for the development of new diagnostic approaches and treatment of diseases related to oxidative stress and redox metabolisms.
Collapse
Key Words
- 15-deoxy-Δ(12,14)-prostaglandin J(2)
- 15d-PGJ(2)
- 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one
- 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide
- 4-hydroxy-2-nonenal
- 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one
- 60-kDa heat-shock protein
- 8-Nitro-cGMP
- 8-bromo-cGMP
- 8-bromoguanosine 3′,5′-cyclic monophosphate
- 8-nitroguanosine 3′,5′-cyclic monophosphate
- ATP
- CBS
- CSE
- ELISA
- ETC
- Electrophile
- GSH
- GTP
- HNE
- HO-1
- HPLC-ECD
- HSP60
- Hydrogen sulfide
- IFN-γ
- IL-1β
- Keap1
- Kelch-like ECH-associated protein 1
- LC–MS/MS
- LPS
- MI
- MPO
- N(G)-nitro-l-arginine methyl ester
- N(ω)-monomethyl-l-arginine
- NADPH oxidase
- NADPH oxidase 2
- NOS
- NS 2028
- Nox
- Nox2
- Nrf2
- ODQ
- Oxidative stress
- PDEs
- PKG
- PTM
- Protein S-guanylation
- RAR
- RNOS
- ROS
- SOD
- TNFα
- adenosine 3′,5′-cyclic monophosphate
- adenosine 5′-triphosphate
- cAMP
- cGMP
- cGMP-dependent protein kinase
- cPTIO
- cystathionine β-synthase
- cystathionine γ-lyase
- eNOS
- electron transport chain
- endothelial NOS
- enzyme-linked immunosorbent assay
- glutathione
- guanosine 3′,5′-cyclic monophosphate
- guanosine 5′-triphosphate
- heme oxygenase-1
- high-performance liquid chromatography with electrochemical detector
- iNOS
- inducible NOS
- interferon-γ
- interleukin-1β
- l-NAME
- l-NMMA
- lipopolysaccharide
- liquid chromatography with tandem mass spectrometry
- mPTP
- mitochondrial permeability transition pore
- myeloperoxidase
- myocardial infarction
- nNOS
- neuronal NOS
- nitric oxide synthases
- nuclear factor erythroid 2-related factor 2
- pGC
- particulate-type guanylyl cyclase
- phosphodiesterases
- post-translational modification
- reactive nitrogen oxide species
- reactive oxygen species
- retinoic acid receptor
- sGC
- soluble-type guanylyl cyclase
- superoxide dismutase
- tumor necrosis factor α
Collapse
Affiliation(s)
- Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-001, Japan
| | | | | | | | | | | |
Collapse
|
125
|
Grunwald A, Gottfried I, Cox AD, Haklai R, Kloog Y, Ashery U. Rasosomes originate from the Golgi to dispense Ras signals. Cell Death Dis 2013; 4:e496. [PMID: 23412389 PMCID: PMC3734827 DOI: 10.1038/cddis.2013.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ras proteins undergo an incompletely understood trafficking process in the cell. Rasosomes are protein nanoparticles of 80–100 nm diameter that carry lipidated Ras isoforms (H-Ras and N-Ras) as well as their effectors through the cytoplasm and near the plasma membrane (PM). In this study, we identified the subcellular origin of rasosomes and how they spread Ras proteins through the cell. We found no dependency of rasosome formation on galectins, or on the GDP-/GTP-bound state of Ras. We found that significantly more rasosomes are associated with forms of Ras that are localized to the Golgi, namely N-Ras or the singly palmitoylated H-Ras mutant (C181S). To explore the possibility that rasosome originate from the Golgi, we used photoactivatable (PA)-GFP-H-Ras mutants and showed that rasosomes bud from the Golgi in a two-step mechanism. Newly released rasosomes first move in an energy-dependent directed fashion and then convert to randomly diffusing rasosomes. Dual fluorescence time-lapse imaging revealed the appearance of dually labeled rasosomes, indicating a dynamic exchange of cytoplasmic and PM-associated Ras with rasosome-associated Ras. Finally, higher levels of rasosomes correlate with higher levels of ERK phosphorylation, a key marker of Ras downstream signaling. We suggest that H-Ras and N-Ras proteins exchange with rasosomes that can function as carriers of palmitoylated Ras and its signals.
Collapse
Affiliation(s)
- A Grunwald
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
126
|
Billcliff PG, Rollason R, Prior I, Owen DM, Gaus K, Banting G. CD317/tetherin is an organiser of membrane microdomains. J Cell Sci 2013; 126:1553-64. [PMID: 23378022 DOI: 10.1242/jcs.112953] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The integral membrane protein tetherin has been associated with an eclectic mix of cellular processes, including restricting the release of a range of enveloped viruses from infected cells. The unusual topology of tetherin (it possesses both a conventional transmembrane domain and a glycosylphosphatidylinositol anchor), its localisation to membrane microdomains (lipid rafts) and the fact that its cytosolic domain can be linked (indirectly) to the actin cytoskeleton, led us to speculate that tetherin might form a 'tethered picket fence' and thereby play a role in the organisation of lipid rafts. We now show that knocking down expression of tetherin leads to changes in the distribution of lipid raft-localised proteins and changes in the organisation of lipids in the plasma membrane. These changes can be reversed by re-expression of wild-type tetherin, but not by any of a range of tetherin-based constructs, indicating that no individual feature of the tetherin sequence is dispensable in the context of its lipid raft organising function.
Collapse
|
127
|
MASL1 induces erythroid differentiation in human erythropoietin-dependent CD34+ cells through the Raf/MEK/ERK pathway. Blood 2013; 121:3216-27. [PMID: 23327923 DOI: 10.1182/blood-2011-10-385252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human erythropoiesis is a dynamic and complex multistep process involving differentiation of early erythroid progenitors into enucleated RBCs. The mechanisms underlying erythropoiesis still remain incompletely understood. We previously demonstrated that erythropoietin-stimulated clone-1, which is selectively expressed in normal human erythroid-lineage cells, shares 99.5% identity with malignant fibrous histiocytoma-amplified sequences with leucine-rich tandem repeats 1 (MASL1). In this study, we hypothesized that the MASL1 gene plays a role in erythroid differentiation, and used a human erythroid cell culture system to explore this concept. MASL1 mRNA and protein expression levels were significantly increased during the erythroid differentiation of CD34(+) cells following erythropoietin (EPO) treatment. Conversely, MASL1 knockdown reduced erythroid differentiation in EPO-treated CD34(+) cells. In addition, MASL1 knockdown interrupted the Raf/MEK/ERK signaling pathway in CD34(+) cells. MASL1 mutant-transfected CD34(+) cells also showed decreased erythroid differentiation. Furthermore, inhibition of the SH3 domain of Son of Sevenless, which is an upstream adapter protein in EPO-induced erythroid differentiation, also reduced MASL1 expression and phosphorylation of Raf/MEK/ERK kinases that consequently reduced erythroid differentiation of EPO-induced CD34(+) cells. Importantly, we also demonstrated that MASL1 interacts physically with Raf1. Taken together, our data provide novel insights into MASL1 regulation of erythropoiesis through the Raf/MEK/ERK pathway.
Collapse
|
128
|
Turk HF, Chapkin RS. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2013; 88:43-7. [PMID: 22515942 PMCID: PMC3404206 DOI: 10.1016/j.plefa.2012.03.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 01/20/2023]
Abstract
Fish oil, enriched in bioactive n-3 polyunsaturated fatty acids (PUFA), has been shown to play a role in prevention of colon cancer. The effects of n-3 PUFA are pleiotropic and multifaceted, resulting in an incomplete understanding of their molecular mechanisms of action. Here, we focus on a highly conserved mechanism of n-3 PUFA, which is the alteration of the organization of the plasma membrane. We highlight recent work demonstrating that enrichment of n-3 PUFA in the plasma membrane alters the lateral organization of membrane signaling assemblies (i.e. lipid rafts). This mechanism is central for n-3 PUFA regulation of downstream signaling, T-cell activation, transcriptional activation, and cytokine secretion. We conclude that these studies provide strong evidence for a predominant mechanism by which n-3 PUFA function in colon cancer prevention.
Collapse
Affiliation(s)
- Harmony F Turk
- Program in Integrative Nutrition and Complex Diseases and the Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
129
|
de Jong DH, Lopez CA, Marrink SJ. Molecular view on protein sorting into liquid-ordered membrane domains mediated by gangliosides and lipid anchors. Faraday Discuss 2013; 161:347-63; discussion 419-59. [DOI: 10.1039/c2fd20086d] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
130
|
Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission. Mol Cell Biol 2012; 33:237-51. [PMID: 23129805 DOI: 10.1128/mcb.00884-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.
Collapse
|
131
|
Inder K, Hancock JF. System output of the MAPK module is spatially regulated. Commun Integr Biol 2012; 1:178-9. [PMID: 19704886 DOI: 10.4161/cib.1.2.7197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 01/17/2023] Open
Abstract
Signaling via the Raf/MEK/ERK (MAPK) module controls multiple cell functions including proliferation, differentiation and survival. How this single pathway can regulate such diverse cell fates is unknown. Recently, we examined system outputs of the MAPK pathway from different cellular compartments. We observed robust activation of the MAPK cascade from both the plasma membrane and the Golgi. When the MAPK module is localized to plasma membrane nanoclusters corresponding to those occupied by activated H-, N- and K-ras, ERKpp output is digital, with both low and high Raf kinase inputs processed to generate a maximal ERKpp output. In contrast, when the MAPK module is localized to the Golgi, ERKpp output is graded such that Raf kinase input corresponds to ERKpp output. These results clearly demonstrate that different cellular environments available to the MAPK module can fundamentally rewire system output, which in turn may allow this single cascade to direct different cell fate decisions.
Collapse
Affiliation(s)
- Kerry Inder
- Institute for Molecular Bioscience; University of Queensland; Brisbane Australia
| | | |
Collapse
|
132
|
Bellavia M, Gioviale MC, Damiano G, Palumbo VD, Spinelli G, Buscemi G, Lo Monte AI. Dissecting the different biological effects of oncogenic Ras isoforms in cancer cell lines: could stimulation of oxidative stress be the one more weapon of H-Ras? Regulation of oxidative stress and Ras biological effects. Med Hypotheses 2012; 79:731-4. [PMID: 22981836 DOI: 10.1016/j.mehy.2012.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 11/25/2022]
Abstract
Ras proteins are small GTPase functioning as molecular switches that, in response to particular extracellular signalling, as growth factors, activate a diverse array of intracellular effector cascades regulating cell proliferation, differentiation and apoptosis. Human tumours frequently express Ras proteins (Ha-, Ki-, N-Ras) activated by point mutations which contribute to malignant phenotype, including invasiveness and angiogenesis. Despite the common signalling pathways leading to similar cellular responses, studies clearly demonstrate unique roles of the Ras family members in normal and pathological conditions and the lack of functional redundancy seems to be explainable, at least in part, by the ability of Ras isoforms to localize in different microdomains to plasma membrane and intracellular organelles. This different intracellular compartmentalization could help Ras isoforms to contact different downstream effectors finally leading to different biological outcomes. Interestingly, it has also been shown that Ha- and Ki-Ras exert an opposite role in regulating intracellular redox status. In this regard we suggest that H-Ras specific induction of ROS (reactive oxygen species) production could be one of the main determinants of the invasive phenotype which characterize cancer cells harbouring H-Ras mutations. In our hypothesis then, while K-Ras (not able to promote oxidative stress) could mainly contribute to cancer progression and invasiveness through activation of MAPK and PI3K, H-Ras-mediated oxidative stress could play a unique role in modulation of intercellular contacts leading to a loss of cell adhesion and eventually also to a metastatic spread.
Collapse
Affiliation(s)
- Maurizio Bellavia
- Department of Surgical and Oncological Disciplines, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
133
|
Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 2012; 8:714-24. [PMID: 22772154 DOI: 10.1038/nchembio.1018] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/04/2012] [Indexed: 01/13/2023]
Abstract
An emerging aspect of redox signaling is the pathway mediated by electrophilic byproducts, such as nitrated cyclic nucleotide (for example, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP)) and nitro or keto derivatives of unsaturated fatty acids, generated via reactions of inflammation-related enzymes, reactive oxygen species, nitric oxide and secondary products. Here we report that enzymatically generated hydrogen sulfide anion (HS(-)) regulates the metabolism and signaling actions of various electrophiles. HS(-) reacts with electrophiles, best represented by 8-nitro-cGMP, via direct sulfhydration and modulates cellular redox signaling. The relevance of this reaction is reinforced by the significant 8-nitro-cGMP formation in mouse cardiac tissue after myocardial infarction that is modulated by alterations in HS(-) biosynthesis. Cardiac HS(-), in turn, suppresses electrophile-mediated H-Ras activation and cardiac cell senescence, contributing to the beneficial effects of HS(-) on myocardial infarction-associated heart failure. Thus, this study reveals HS(-)-induced electrophile sulfhydration as a unique mechanism for regulating electrophile-mediated redox signaling.
Collapse
|
134
|
Turk HF, Barhoumi R, Chapkin RS. Alteration of EGFR spatiotemporal dynamics suppresses signal transduction. PLoS One 2012; 7:e39682. [PMID: 22761867 PMCID: PMC3384615 DOI: 10.1371/journal.pone.0039682] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/29/2012] [Indexed: 01/18/2023] Open
Abstract
The epidermal growth factor receptor (EGFR), which regulates cell growth and survival, is integral to colon tumorigenesis. Lipid rafts play a role in regulating EGFR signaling, and docosahexaenoic acid (DHA) is known to perturb membrane domain organization through changes in lipid rafts. Therefore, we investigated the mechanistic link between EGFR function and DHA. Membrane incorporation of DHA into immortalized colonocytes altered the lateral organization of EGFR. DHA additionally increased EGFR phosphorylation but paradoxically suppressed downstream signaling. Assessment of the EGFR-Ras-ERK1/2 signaling cascade identified Ras GTP binding as the locus of the DHA-induced disruption of signal transduction. DHA also antagonized EGFR signaling capacity by increasing receptor internalization and degradation. DHA suppressed cell proliferation in an EGFR-dependent manner, but cell proliferation could be partially rescued by expression of constitutively active Ras. Feeding chronically-inflamed, carcinogen-injected C57BL/6 mice a fish oil containing diet enriched in DHA recapitulated the effects on the EGFR signaling axis observed in cell culture and additionally suppressed tumor formation. We conclude that DHA-induced alteration in both the lateral and subcellular localization of EGFR culminates in the suppression of EGFR downstream signal transduction, which has implications for the molecular basis of colon cancer prevention by DHA.
Collapse
Affiliation(s)
- Harmony F. Turk
- Program in Integrative Nutrition and Complex Diseases, Texas A & M University, College Station, Texas, United States of America
| | - Rola Barhoumi
- Image Analysis Laboratory, Texas A & M University, College Station, Texas, United States of America
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A & M University, College Station, Texas, United States of America
- Center for Environmental and Rural Health, Texas A & M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
135
|
Jin Q, Ding W, Mulder KM. The TGFβ receptor-interacting protein km23-1/DYNLRB1 plays an adaptor role in TGFβ1 autoinduction via its association with Ras. J Biol Chem 2012; 287:26453-63. [PMID: 22637579 DOI: 10.1074/jbc.m112.344887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously elucidated the signaling events that are required for TGFβ1 autoinduction (Yue, J., and Mulder, K. M. (2000) J. Biol. Chem. 275, 30765-30773). Further, we have reported that the TGFβ receptor (TβR)-interacting protein km23-1 plays an important role in TGFβ signal transduction (Jin, Q., Ding, W., and Mulder, K. M. (2007) J. Biol. Chem. 282, 19122-19132). Here we examined the role of km23-1 in TGFβ1 autoinduction in TGFβ-sensitive epithelial cells. siRNA blockade of km23-1 reduced TGFβ1 mRNA expression, as well as DNA binding and transcriptional activation of the relevant activator protein-1 site in the human TGFβ1 promoter. Further, knockdown of km23-1 inhibited TGFβ-mediated activation of ERK and JNK, phosphorylation of c-Jun, and transactivation of the c-Jun promoter. Sucrose gradient analyses indicate that km23-1 was present in lipid rafts together with Ras and TβRII after TGFβ treatment. Immunoprecipitation/blot analyses revealed the formation of a TGFβ-inducible complex between Ras and km23-1 in vivo within minutes of TGFβ addition. Moreover, we demonstrate for the first time that km23-1 is required for Ras activation by TGFβ. Our results indicate that km23-1 is required for TGFβ1 autoinduction through Smad2-independent Ras/ERK/JNK pathways. More importantly, our findings demonstrate that km23-1 functions as a critical adaptor coupling TβR activation to activation of Ras effector pathways downstream.
Collapse
Affiliation(s)
- Qunyan Jin
- Department of Biochemistry and Molecular Biology, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
136
|
Bettinger JC, Leung K, Bolling MH, Goldsmith AD, Davies AG. Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans. PLoS One 2012; 7:e35192. [PMID: 22574115 PMCID: PMC3344825 DOI: 10.1371/journal.pone.0035192] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/10/2012] [Indexed: 11/18/2022] Open
Abstract
The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs) via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.
Collapse
Affiliation(s)
- Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America.
| | | | | | | | | |
Collapse
|
137
|
Zhou Y, Cho KJ, Plowman SJ, Hancock JF. Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J Biol Chem 2012; 287:16586-95. [PMID: 22433858 DOI: 10.1074/jbc.m112.348490] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ras proteins on the inner leaflet of the plasma membrane signal from transient nanoscale proteolipid assemblies called nanoclusters. Interactions between the Ras lipid anchors and plasma membrane phospholipids, cholesterol, and actin cytoskeleton contribute to the formation, stability, and dynamics of Ras nanoclusters. Many small biological molecules are amphiphilic and capable of intercalating into membranes and altering lipid immiscibility. In this study we systematically examined whether amphiphiles such as indomethacin influence Ras protein nanoclustering in intact plasma membrane. We found that indomethacin, a nonsteroidal anti-inflammatory drug, induced profound and complex effects on Ras spatial organization, all likely related to liquid-ordered domain stabilization. Indomethacin enhanced the clustering of H-Ras.GDP and N-Ras.GTP in cholesterol-dependent nanoclusters. Indomethacin also abrogated efficient GTP-dependent lateral segregation of H- and N-Ras between cholesterol-dependent and cholesterol-independent clusters, resulting in mixed heterotypic clusters of Ras proteins that normally are separated spatially. These heterotypic Ras nanoclusters showed impaired Raf recruitment and kinase activation resulting in significantly compromised MAPK signaling. All of the amphiphilic anti-inflammatory agents we tested had similar effects on Ras nanoclustering and signaling. The potency of these effects correlated with the membrane partition coefficients of the individual agents and was independent of COX inhibition. This study shows that biological amphiphiles have wide-ranging effects on plasma membrane heterogeneity and protein nanoclustering, revealing a novel mechanism of drug action that has important consequences for cell signaling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
138
|
Zheng ZY, Cheng CM, Fu XR, Chen LY, Xu L, Terrillon S, Wong ST, Bar-Sagi D, Songyang Z, Chang EC. CHMP6 and VPS4A mediate the recycling of Ras to the plasma membrane to promote growth factor signaling. Oncogene 2012; 31:4630-8. [PMID: 22231449 PMCID: PMC3326214 DOI: 10.1038/onc.2011.607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling.
Collapse
Affiliation(s)
- Z-Y Zheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 2011; 13:39-51. [PMID: 22189424 PMCID: PMC3879958 DOI: 10.1038/nrm3255] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RAS proteins are monomeric GTPases that act as binary molecular switches to regulate a wide range of cellular processes. The exchange of GTP for GDP on RAS is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which regulate the activation state of RAS without covalently modifying it. By contrast, post-translational modifications (PTMs) of RAS proteins direct them to various cellular membranes and, in some cases, modulate GTP-GDP exchange. Important RAS PTMs include the constitutive and irreversible remodelling of its carboxy-terminal CAAX motif by farnesylation, proteolysis and methylation, reversible palmitoylation, and conditional modifications, including phosphorylation, peptidyl-prolyl isomerisation, monoubiquitylation, diubiquitylation, nitrosylation, ADP ribosylation and glucosylation.
Collapse
Affiliation(s)
- Ian M Ahearn
- NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
140
|
A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J 2011; 31:534-51. [PMID: 22157745 DOI: 10.1038/emboj.2011.446] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 11/16/2011] [Indexed: 01/02/2023] Open
Abstract
The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization.
Collapse
|
141
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
142
|
Castellano E, Santos E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer 2011; 2:216-31. [PMID: 21779495 DOI: 10.1177/1947601911408081] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
H-ras, N-ras, and K-ras are canonical ras gene family members frequently activated by point mutation in human cancers and coding for 4 different, highly related protein isoforms (H-Ras, N-Ras, K-Ras4A, and K-Ras4B). Their expression is nearly ubiquitous and broadly conserved across eukaryotic species, although there are quantitative and qualitative differences of expression depending on the tissue and/or developmental stage under consideration. Extensive functional studies have determined during the last quarter century that these Ras gene products are critical components of signaling pathways that control eukaryotic cell proliferation, survival, and differentiation. However, because of their homology and frequent coexpression in various cellular contexts, it remained unclear whether the different Ras proteins play specific or overlapping functional roles in physiological and pathological processes. Initially, their high degree of sequence homology and the observation that all Ras isoforms share common sets of downstream effectors and upstream activators suggested that they were mostly redundant functionally. In contrast, the notion of functional specificity for each of the different Ras isoforms is supported at present by an increasing body of experimental observations, including 1) the fact that different ras isoforms are preferentially mutated in specific types of tumors or developmental disorders; 2) the different transforming potential of transfected ras genes in different cell contexts; 3) the distinct sensitivities exhibited by the various Ras family members for modulation by different GAPs or GEFs; 4) the demonstration that different Ras isoforms follow distinct intracellular processing pathways and localize to different membrane microdomains or subcellular compartments; 5) the different phenotypes displayed by genetically modified animal strains for each of the 3 ras loci; and 6) the specific transcriptional networks controlled by each isoform in different cellular settings.
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | | |
Collapse
|
143
|
Arozarena I, Calvo F, Crespo P. Ras, an actor on many stages: posttranslational modifications, localization, and site-specified events. Genes Cancer 2011; 2:182-94. [PMID: 21779492 DOI: 10.1177/1947601911409213] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the wealth of information that we have gathered about Ras in the past decade, the introduction of the concept of space in the field has constituted a major revolution that has enabled many pieces of the Ras puzzle to fall into place. In the early days, it was believed that Ras functioned exclusively at the plasma membrane. Today, we know that within the plasma membrane, the 3 Ras isoforms-H-Ras, K-Ras, and N-Ras-occupy different microdomains and that these isoforms are also present and active in endomembranes. We have also discovered that Ras proteins are not statically associated with these localizations; instead, they traffic dynamically between compartments. And we have learned that at these localizations, Ras is under site-specific regulatory mechanisms, distinctively engaging effector pathways and switching on diverse genetic programs to generate different biological responses. All of these processes are possible in great part due to the posttranslational modifications whereby Ras proteins bind to membranes and to regulatory events such as phosphorylation and ubiquitination that Ras is subject to. As such, space and these control mechanisms act in conjunction to endow Ras signals with an enormous signal variability that makes possible its multiple biological roles. These data have established the concept that the Ras signal, instead of being one single, homogeneous entity, results from the integration of multiple, site-specified subsignals, and Ras has become a paradigm of how space can differentially shape signaling.
Collapse
Affiliation(s)
- Imanol Arozarena
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-IDICAN-Universidad de Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Cantabria, Spain
| | | | | |
Collapse
|
144
|
Boulter E, Estrach S, Garcia-Mata R, Féral CC. Off the beaten paths: alternative and crosstalk regulation of Rho GTPases. FASEB J 2011; 26:469-79. [PMID: 22038046 DOI: 10.1096/fj.11-192252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rho proteins are small GTPases of the Ras superfamily that regulate a wide variety of biological processes, ranging from gene expression to cell migration. Mechanistically, the major Rho GTPases function as molecular switches cycling between an inactive GDP-bound and an active GTP-bound conformation, although several Rho proteins spontaneously exchange nucleotides or are simply devoid of GTPase activity. For over a decade, RhoGEFs and RhoGAPs have been established as the mainstream regulators of Rho proteins, respectively flipping the switch on or off. However, regulation by GEFs and GAPs leaves several fundamental questions on the operation of the Rho switch unanswered, indicating that the regulation of Rho proteins does not rely exclusively on RhoGEFs and RhoGAPs. Recent evidence indeed suggests that Rho GTPases are finely tuned by multiple alternative regulatory mechanisms, including post-translational modifications and protein degradation, as well as crosstalk mechanisms between Rho proteins. Here we review these alternative mechanisms and discuss how they alter Rho protein function and signaling. We also envision how the classic binary Rho switch may indeed function more like a switchboard with multiple switches and dials that can all contribute to the regulation of Rho protein function.
Collapse
Affiliation(s)
- Etienne Boulter
- Institut National de la Santé et de la Recherche Médicale Avenir Team, Nice Sophia-Antipolis University, Nice, France.
| | | | | | | |
Collapse
|
145
|
Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization. Biol Cell 2011; 103:287-301. [PMID: 21524273 DOI: 10.1042/bc20110018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND INFORMATION Cholesterol/sphingolipid-rich membrane microdomains or membrane rafts have been implicated in various aspects of receptor function such as activation, trafficking and synapse localization. More specifically in muscle, membrane rafts are involved in AChR (acetylcholine receptor) clustering triggered by the neural factor agrin, a mechanism considered integral to NMJ (neuromuscular junction) formation. In addition, actin polymerization is required for the formation and stabilization of AChR clusters in muscle fibres. Since membrane rafts are platforms sustaining actin nucleation, we hypothesize that these microdomains provide the suitable microenvironment favouring agrin/MuSK (muscle-specific kinase) signalling, eliciting in turn actin cytoskeleton reorganization and AChR clustering. However, the identity of the signalling pathways operating through these microdomains still remains unclear. RESULTS In this work, we attempted to identify the interactions between membrane raft components and cortical skeleton that regulate, upon signalling by agrin, the assembly and stabilization of synaptic proteins of the postsynaptic membrane domain at the NMJ. We provide evidence that in C2C12 myotubes, agrin triggers the association of a subset of membrane rafts enriched in AChR, the -MuSK and Cdc42 (cell division cycle 42) to the actin cytoskeleton. Disruption of the liquid-ordered phase by methyl-β-cyclodextrin abolished this association. We further show that actin and the actin-nucleation factors, N-WASP (neuronal Wiscott-Aldrich syndrome protein) and Arp2/3 (actin-related protein 2/3) are transiently associated with rafts on agrin engagement. Consistent with these observations, pharmacological inhibition of N-WASP activity perturbed agrin-elicited AChR clustering. Finally, immunoelectron microscopic analyses of myotube membrane uncovered that AChRs were constitutively associated with raft nanodomains at steady state that progressively coalesced on agrin activation. These rearrangements of membrane domains correlated with the reorganization of cortical actin cytoskeleton through concomitant and transient recruitment of the Arp2/3 complex to AChR-enriched rafts. CONCLUSIONS The present observations support the notion that membrane rafts are involved in AChR clustering by promoting local actin cytoskeleton reorganization through the recruitment of effectors of the agrin/MuSK signalling cascade. These mechanisms are believed to play an important role in vivo in the formation of the NMJ.
Collapse
|
146
|
Roizard S, Danelon C, Hassaïne G, Piguet J, Schulze K, Hovius R, Tampé R, Vogel H. Activation of G-protein-coupled receptors in cell-derived plasma membranes supported on porous beads. J Am Chem Soc 2011; 133:16868-74. [PMID: 21910424 DOI: 10.1021/ja205302g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-protein-coupled receptors (GPCRs) are ubiquitous mediators of signal transduction across cell membranes and constitute a very important class of therapeutic targets. In order to study the complex biochemical signaling network coupling to the intracellular side of GPCRs, it is necessary to engineer and control the downstream signaling components, which is difficult to realize in living cells. We have developed a bioanalytical platform enabling the study of GPCRs in their native membrane transferred inside-out from live cells to lectin-coated beads, with both membrane sides of the receptor being accessible for molecular interactions. Using heterologously expressed adenosine A(2A) receptor carrying a yellow fluorescent protein, we showed that the tethered membranes comprised fully functional receptors in terms of ligand and G protein binding. The interactions between the different signaling partners during the formation and subsequent dissociation of the ternary signaling complex on single beads could be observed in real time using multicolor fluorescence microscopy. This approach of tethering inside-out native membranes accessible from both sides is straightforward and readily applied to other transmembrane proteins. It represents a generic platform suitable for ensemble as well as single-molecule measurements to investigate signaling processes at plasma membranes.
Collapse
Affiliation(s)
- Sophie Roizard
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 2011; 23:145-53. [PMID: 21924373 DOI: 10.1016/j.semcdb.2011.09.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 12/30/2022]
Abstract
Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes.
Collapse
|
148
|
Balghi H, Robert R, Rappaz B, Zhang X, Wohlhuter-Haddad A, Evagelidis A, Luo Y, Goepp J, Ferraro P, Roméo P, Trebak M, Wiseman PW, Thomas DY, Hanrahan JW. Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways. FASEB J 2011; 25:4274-91. [PMID: 21873556 DOI: 10.1096/fj.11-187682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR). The most common mutation, ΔF508, causes retention of CFTR in the endoplasmic reticulum (ER). Some CF abnormalities can be explained by altered Ca(2+) homeostasis, although it remains unknown how CFTR influences calcium signaling. This study examined the novel hypothesis that store-operated calcium entry (SOCE) through Orai1 is abnormal in CF. The significance of Orai1-mediated SOCE for increased interleukin-8 (IL-8) expression in CF was also investigated. CF and non-CF human airway epithelial cell line and primary cells (obtained at lung transplantation) were used in Ca(2+) imaging, electrophysiology, and fluorescence imaging experiments to explore differences in Orai1 function in CF vs. non-CF cells. Protein expression and localization was assessed by Western blots, cell surface biotinylation, ELISA, and image correlation spectroscopy (ICS). We show here that store-operated Ca(2+) entry (SOCE) is elevated in CF human airway epithelial cells (hAECs; ≈ 1.8- and ≈ 2.5-fold for total Ca(2+)(i) increase and Ca(2+) influx rate, respectively, and ≈ 2-fold increase in the I(CRAC) current) and is caused by increased exocytotic insertion (≈ 2-fold) of Orai1 channels into the plasma membrane, which is normalized by rescue of ΔF508-CFTR trafficking to the cell surface. Augmented SOCE in CF cells is a major factor leading to increased IL-8 secretion (≈ 2-fold). CFTR normally down-regulates the Orai1/stromal interaction molecule 1 (STIM1) complex, and loss of this inhibition due to the absence of CFTR at the plasma membrane helps to explain the potentiated inflammatory response in CF cells.
Collapse
Affiliation(s)
- Haouaria Balghi
- Department of Physiology, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Raft protein clustering alters N-Ras membrane interactions and activation pattern. Mol Cell Biol 2011; 31:3938-52. [PMID: 21807892 DOI: 10.1128/mcb.05570-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The trafficking, membrane localization, and lipid raft association of Ras proteins, which are crucial oncogenic mediators, dictate their isoform-specific biological responses. Accordingly, their spatiotemporal dynamics are tightly regulated. While extensively studied for H- and K-Ras, such information on N-Ras, an etiological oncogenic factor, is limited. Here, we report a novel mechanism regulating the activation-dependent spatiotemporal organization of N-Ras, its modulation by biologically relevant stimuli, and isoform-specific effects on signaling. We combined patching/immobilization of another membrane protein with fluorescence recovery after photobleaching (patch-FRAP) and FRAP beam size analysis to investigate N-Ras membrane interactions. Clustering of raft-associated proteins, either glycosylphosphatidylinositol-anchored influenza virus hemagglutinin (HA-GPI) or fibronectin receptors, selectively enhanced the plasma membrane-cytoplasm exchange of N-Ras-GTP (preferentially associated with raft domains) in a cholesterol-dependent manner. Electron microscopy (EM) analysis showed N-Ras-GTP localization in cholesterol-sensitive clusters, from which it preferentially detached upon HA-GPI cross-linking. HA-GPI clustering enhanced the Golgi compartment (GC) accumulation and signaling of epidermal growth factor (EGF)-stimulated N-Ras-GTP. Notably, the cross-linking-mediated enhancement of N-Ras-GTP exchange and GC accumulation depended strictly on depalmitoylation. We propose that the N-Ras activation pattern (e.g., by EGF) is altered by raft protein clustering, which enhances N-Ras-GTP raft localization and depalmitoylation, entailing its exchange and GC accumulation following repalmitoylation. This mechanism demonstrates a functional signaling role for the activation-dependent differential association of Ras isoforms with raft nanodomains.
Collapse
|
150
|
Inder KL, Hill MM, Hancock JF. Nucleophosmin and nucleolin regulate K-Ras signaling. Commun Integr Biol 2011; 3:188-90. [PMID: 20585519 DOI: 10.4161/cib.3.2.10923] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022] Open
Abstract
Ras proteins are laterally segregated into transient nanoclusters on the plasma membrane, a property essential for high fidelity signal transduction through the MAPK pathway. From a proteomic screen we identified nucleophosmin (NPM) and nucleolin as two novel regulators of K-Ras plasma membrane interactions that in turn influence MAP Kinase signaling. NPM and nucleolin are predominately nucleolar proteins but also possess extra-nuclear functions. We showed that a subset of NPM and nucleolin localize to the inner leaflet of the plasma membrane and specifically interact with K-Ras but not H-Ras. This interaction is independent of the activation state of K-Ras, and stabilizes K-Ras membrane levels. NPM expression also increases the fraction of K-Ras in nanoclusters. The increase in clustered K-Ras-GTP enhances signaling through the MAPK pathway. Together these results identify NPM and nucleolin as a new class of K-Ras regulators that modulate signal transduction via the MAPK pathway.
Collapse
|