101
|
Scienza L, de Carvalho MP, Machado A, Moreno AM, Biscassi N, de Souza DDG. Simple discrimination in stingless bees (Melipona quadrifasciata): Probing for select- and reject-stimulus control. J Exp Anal Behav 2019; 112:74-87. [PMID: 31254277 DOI: 10.1002/jeab.531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/06/2019] [Indexed: 11/08/2022]
Abstract
Simple and conditional discrimination training may produce various types of controlling relations. Responses may be controlled primarily by the positive stimulus (select-control relation) or by the negative stimulus (reject-control relation; the subject excludes the negative stimulus and chooses the positive). Bees learn to respond in simple and conditional discriminations. However, no study has searched for reject-control responding in Melipona bees. We trained Melipona quadrifasciata on a simple discrimination task (S+ vs. S-; e.g., blue vs. yellow) and then probed for stimulus control with two types of probe trials, S+ versus a new stimulus (Select-control probes) and S- versus a new stimulus (Reject-control probes). For Group Different, a new-stimulus color (e.g., white) was used in one type of probe and another color (e.g., black) was used in the other type. For Group Same, a single new-stimulus color was used in both types of probes. On Select probes, the bees always preferred S+ to the new stimulus. On Reject probes, results were mixed. Depending on the colors used in training and probing, bees responded to both stimuli, and even preferred the S-. The data suggest no control by the negative function of the S- and support the select-stimulus control hypothesis of responding.
Collapse
|
102
|
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Symbolic representation of numerosity by honeybees ( Apis mellifera): matching characters to small quantities. Proc Biol Sci 2019; 286:20190238. [PMID: 31161903 DOI: 10.1098/rspb.2019.0238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assignment of a symbolic representation to a specific numerosity is a fundamental requirement for humans solving complex mathematical calculations used in diverse applications such as algebra, accounting, physics and everyday commerce. Here we show that honeybees are able to learn to match a sign to a numerosity, or a numerosity to a sign, and subsequently transfer this knowledge to novel numerosity stimuli changed in colour properties, shape and configuration. While honeybees learned the associations between two quantities (two; three) and two signs (N-shape; inverted T-shape), they failed at reversing their specific task of sign-to-numerosity matching to numerosity-to-sign matching and vice versa (i.e. a honeybee that learned to match a sign to a number of elements was not able to invert this learning to match the numerosity of elements to a sign). Thus, while bees could learn the association between a symbol and numerosity, it was linked to the specific task and bees could not spontaneously extrapolate the association to a novel, reversed task. Our study therefore reveals that the basic requirement for numerical symbolic representation can be fulfilled by an insect brain, suggesting that the absence of its spontaneous emergence in animals is not due to cognitive limitation.
Collapse
Affiliation(s)
- Scarlett R Howard
- 1 Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University , Melbourne, Victoria , Australia.,3 Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Aurore Avarguès-Weber
- 3 Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Jair E Garcia
- 1 Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University , Melbourne, Victoria , Australia
| | - Andrew D Greentree
- 2 ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University , Melbourne, Victoria , Australia
| | - Adrian G Dyer
- 1 Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University , Melbourne, Victoria , Australia.,4 Department of Physiology, Monash University , Clayton, Victoria , Australia
| |
Collapse
|
103
|
Nouvian M, Galizia CG. Aversive Training of Honey Bees in an Automated Y-Maze. Front Physiol 2019; 10:678. [PMID: 31231238 PMCID: PMC6558987 DOI: 10.3389/fphys.2019.00678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Honeybees have remarkable learning abilities given their small brains, and have thus been established as a powerful model organism for the study of learning and memory. Most of our current knowledge is based on appetitive paradigms, in which a previously neutral stimulus (e.g., a visual, olfactory, or tactile stimulus) is paired with a reward. Here, we present a novel apparatus, the yAPIS, for aversive training of walking honey bees. This system consists in three arms of equal length and at 120° from each other. Within each arm, colored lights (λ = 375, 465 or 520 nm) or odors (here limonene or linalool) can be delivered to provide conditioned stimuli (CS). A metal grid placed on the floor and roof delivers the punishment in the form of mild electric shocks (unconditioned stimulus, US). Our training protocol followed a fully classical procedure, in which the bee was exposed sequentially to a CS paired with shocks (CS+) and to another CS not punished (CS-). Learning performance was measured during a second phase, which took advantage of the Y-shape of the apparatus and of real-time tracking to present the bee with a choice situation, e.g., between the CS+ and the CS-. Bees reliably chose the CS- over the CS+ after only a few training trials with either colors or odors, and retained this memory for at least a day, except for the shorter wavelength (λ = 375 nm) that produced mixed results. This behavior was largely the result of the bees avoiding the CS+, as no evidence was found for attraction to the CS-. Interestingly, trained bees initially placed in the CS+ spontaneously escaped to a CS- arm if given the opportunity, even though they could never do so during the training. Finally, honey bees trained with compound stimuli (color + odor) later avoided either components of the CS+. Thus, the yAPIS is a fast, versatile and high-throughput way to train honey bees in aversive paradigms. It also opens the door for controlled laboratory experiments investigating bimodal integration and learning, a field that remains in its infancy.
Collapse
Affiliation(s)
- Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
104
|
Lazarowski L, Goodman A, Galizio M, Bruce K. Effects of set size on identity and oddity abstract-concept learning in rats. Anim Cogn 2019; 22:733-742. [PMID: 31147849 DOI: 10.1007/s10071-019-01270-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Match (MTS) and non-match-to-sample (NMTS) procedures are used to assess concepts of identity and oddity across species and are measured by transfer performance to novel stimuli. The number of exemplars used in training (set size) has been shown to affect learning with evidence of larger set sizes promoting concept learning in several species. The present study explored the effects of set size and procedure on concept learning in rats using olfactory stimuli. Concept learning was assessed for 20 rats via transfer tests consisting of novel stimuli after rats were initially trained to either MTS or NMTS with two or ten stimuli as exemplars. No difference was found in acquisition or transfer between MTS and NMTS, but rats trained with ten stimuli performed better on novel transfer tests than rats trained with two. When set size was expanded for rats originally trained with two stimuli and rats were re-tested with ten novel stimuli, performance showed full transfer demonstrating that training with multiple exemplars facilitates concept learning.
Collapse
Affiliation(s)
- Lucia Lazarowski
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA.,Canine Performance Sciences, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Adam Goodman
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark Galizio
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| | - Katherine Bruce
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA.
| |
Collapse
|
105
|
Honeybees foraging for numbers. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:439-450. [DOI: 10.1007/s00359-019-01344-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
|
106
|
Spatial Concept Learning: A Spiking Neural Network Implementation in Virtual and Physical Robots. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:8361369. [PMID: 31065256 PMCID: PMC6466944 DOI: 10.1155/2019/8361369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/11/2019] [Indexed: 11/18/2022]
Abstract
This paper proposes an artificial spiking neural network (SNN) sustaining the cognitive abstract process of spatial concept learning, embedded in virtual and real robots. Based on an operant conditioning procedure, the robots learn the relationship of horizontal/vertical and left/right visual stimuli, regardless of their specific pattern composition or their location on the images. Tests with novel patterns and locations were successfully completed after the acquisition learning phase. Results show that the SNN can adapt its behavior in real time when the rewarding rule changes.
Collapse
|
107
|
Abstract
Humans' ability to create and manipulate symbolic structures far exceeds that of other animals. We hypothesized that this ability rests on an early capacity to use arbitrary signs to represent any mental representation, even as abstract as an algebraic rule. In three experiments, we collected high-density EEG recordings while 150 5-month-old infants were presented with speech triplets characterized by their abstract syllabic structure-the location of syllable repetition-which predicted a following arbitrary label (e.g., ABA words were followed by a fish picture, AAB words by a lion). After a brief learning phase, EEG responses to novel words revealed that infants built expectations about the upcoming label based on the triplet structure and were surprised when it happened to be incongruent. Preverbal infants were thus able to recode the incoming triplets into abstract mental variables to which arbitrary labels were flexibly assigned. Importantly, infants also generalized to novel trials in which the pairing order was reversed (with the label preceding the auditory structure). Beyond conditioned associations, infants instantly inferred a bidirectional mapping between the abstract structures and the following label, a foundational operation for any symbolic system.
Collapse
Affiliation(s)
- Claire Kabdebon
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Université Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Université Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
| |
Collapse
|
108
|
Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol 2019; 8:rsob.170224. [PMID: 29321240 PMCID: PMC5795053 DOI: 10.1098/rsob.170224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Esther Kolbe
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Noa B Kahana
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nadav Yayon
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Weiss
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Guy Bloch
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
109
|
Javoiš J, Davis RB, Tammaru T. A comparative morphometric study of sensory capacity in geometrid moths. J Evol Biol 2019; 32:380-389. [DOI: 10.1111/jeb.13422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Juhan Javoiš
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of Tartu Tartu Estonia
| | - Robert B. Davis
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of Tartu Tartu Estonia
| | - Toomas Tammaru
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of Tartu Tartu Estonia
| |
Collapse
|
110
|
Precise relative-quantity judgement in the striped field mouse Apodemus agrarius Pallas. Anim Cogn 2019; 22:277-289. [PMID: 30707366 DOI: 10.1007/s10071-019-01244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 02/03/2023]
Abstract
Applying the classical experimental scheme of training animals with food rewards to discriminate between quantities of visual stimuli, we demonstrated that not only can striped field mice Apodemus agrarius discriminate between clearly distinctive quantities such as 5 and 10, but some of these mice also exhibit high accuracy in discriminating between quantities that differ only by one. The latter include both small (such as 2 versus 3) and relatively large (such as 5 versus 6, and 8 versus 9) quantities of elements. This is the first evidence of precise relative-quantity judgement in wild rodents. We found striking individual variation in cognitive performance among striped field mice, which possibly reflects individual cognitive variation in natural populations. We speculate that high accuracy in differentiating large quantities is based on the adaptive ability of wild rodents to capture subtle changes in their environment. We suggest that the striped field mouse may be a powerful model species to develop advanced cognitive tests for comparative studies of numerical competence in animals and for understanding evolutionary roots of quantity processing.
Collapse
|
111
|
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Numerical cognition in honeybees enables addition and subtraction. SCIENCE ADVANCES 2019; 5:eaav0961. [PMID: 30775440 PMCID: PMC6365119 DOI: 10.1126/sciadv.aav0961] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/20/2018] [Indexed: 05/31/2023]
Abstract
Many animals understand numbers at a basic level for use in essential tasks such as foraging, shoaling, and resource management. However, complex arithmetic operations, such as addition and subtraction, using symbols and/or labeling have only been demonstrated in a limited number of nonhuman vertebrates. We show that honeybees, with a miniature brain, can learn to use blue and yellow as symbolic representations for addition or subtraction. In a free-flying environment, individual bees used this information to solve unfamiliar problems involving adding or subtracting one element from a group of elements. This display of numerosity requires bees to acquire long-term rules and use short-term working memory. Given that honeybees and humans are separated by over 400 million years of evolution, our findings suggest that advanced numerical cognition may be more accessible to nonhuman animals than previously suspected.
Collapse
Affiliation(s)
- Scarlett R. Howard
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jair E. Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
112
|
|
113
|
Vasas V, Chittka L. Insect-Inspired Sequential Inspection Strategy Enables an Artificial Network of Four Neurons to Estimate Numerosity. iScience 2018; 11:85-92. [PMID: 30590253 PMCID: PMC6308245 DOI: 10.1016/j.isci.2018.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022] Open
Abstract
Varying levels of numerical cognition have been found in several animal species. Bees, in particular, have been argued to be able to count up to four items and solve complex numerical tasks. Here we present an exceedingly simple neural circuit that, when provided with the actual visual input that the bee is receiving while carrying out the task, can make reliable estimates on the number of items in the display. Thus we suggest that the elegance of numerical problem solving in bees might not lie in the formation of numerical concepts (such as “more,” “less,” or “zero”), but in the use of specific flight movements to scan targets, which streamlines the visual input and so renders the task of counting computationally inexpensive. Careful examination of the actual inspection strategies used by animals might reveal that animals often employ active scanning behaviors as shortcuts to simplify complex visual pattern discrimination tasks. Small-brained animals such as bees can solve counting tasks Exceedingly small neural circuits can mediate numerosity estimations The method requires a sequential inspection strategy to generate the visual input Active scanning behavior is suggested to play a role in complex cognitive tasks
Collapse
Affiliation(s)
- Vera Vasas
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Berlin 14193, Germany
| |
Collapse
|
114
|
Mustard JA, Oquita R, Garza P, Stoker A. Honey Bees (Apis mellifera) Show a Preference for the Consumption of Ethanol. Alcohol Clin Exp Res 2018; 43:26-35. [PMID: 30347437 DOI: 10.1111/acer.13908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse and alcoholism are significant global issues. Honey bees are excellent models for learning and other complex behaviors; furthermore, they share many behavioral responses to ethanol (EtOH) with humans and animal models. We develop a 2-feeder choice assay to determine whether honey bees will self-administer and preferentially consume solutions containing EtOH. METHODS Gustatory responsiveness to EtOH is determined using the proboscis extension reflex and consumption assays. A 2-feeder choice assay is used to examine preference for the consumption of EtOH. Survival assays assess the metabolic and toxic effects of EtOH consumption. RESULTS Honey bees find the taste of EtOH to be aversive when in water, but addition of sucrose masks the aversive taste. Even though the taste of EtOH is not appetitive, honey bees preferentially consume sucrose solutions containing 1.25 to 2.5% EtOH in a dose-dependent manner. Based on survival assays, honey bees may not be able to derive caloric value from EtOH, and EtOH concentrations of 2.5% or higher lead to significant increases in mortality. CONCLUSIONS Honey bees will self-administer EtOH and show a preference for consuming solutions containing EtOH. Bees may not be able to efficiently utilize EtOH as an energy source, but EtOH-dependent increases in mortality complicate separating the effects of caloric value and toxicity.
Collapse
Affiliation(s)
- Julie A Mustard
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Ramiro Oquita
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Paulina Garza
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Alexander Stoker
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
115
|
Abramson CI, Wells H. An Inconvenient Truth: Some Neglected Issues in Invertebrate Learning. Perspect Behav Sci 2018; 41:395-416. [PMID: 31976402 PMCID: PMC6701716 DOI: 10.1007/s40614-018-00178-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The burgeoning field of invertebrate behavior is moving into what was the realm of human psychology concepts. This invites comparative studies not only between invertebrate and vertebrate species but also among the diverse taxa within the invertebrates, diverse even when considering only the insects. In order to make lasting progress two issues must be addressed. The first is inconsistent use of fundamental terms defining learning. The second is a focus on similarities, giving little attention to dissimilarities. In addition, much work is needed on whether behavioral similarities are grounded in the same neuronal architecture when considering disparate phyla. These concerns identify are "inconvenient truths" that weaken comparative behavioral analysis.
Collapse
Affiliation(s)
- Charles I. Abramson
- Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State University, 116 N. Murray, Stillwater, OK 74078 USA
| | - Harrington Wells
- Department of Biological Science, University of Tulsa, Tulsa, OK 74021 USA
| |
Collapse
|
116
|
Suenami S, Oya S, Kohno H, Kubo T. Kenyon Cell Subtypes/Populations in the Honeybee Mushroom Bodies: Possible Function Based on Their Gene Expression Profiles, Differentiation, Possible Evolution, and Application of Genome Editing. Front Psychol 2018; 9:1717. [PMID: 30333766 PMCID: PMC6176018 DOI: 10.3389/fpsyg.2018.01717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Mushroom bodies (MBs), a higher-order center in the honeybee brain, comprise some subtypes/populations of interneurons termed as Kenyon cells (KCs), which are distinguished by their cell body size and location in the MBs, as well as their gene expression profiles. Although the role of MBs in learning ability has been studied extensively in the honeybee, the roles of each KC subtype and their evolution in hymenopteran insects remain mostly unknown. This mini-review describes recent progress in the analysis of gene/protein expression profiles and possible functions of KC subtypes/populations in the honeybee. Especially, the discovery of novel KC subtypes/populations, the “middle-type KCs” and “KC population expressing FoxP,” necessitated a redefinition of the KC subtype/population. Analysis of the effects of inhibiting gene function in a KC subtype-preferential manner revealed the function of the gene product as well as of the KC subtype where it is expressed. Genes expressed in a KC subtype/population-preferential manner can be used to trace the differentiation of KC subtypes during the honeybee ontogeny and the possible evolution of KC subtypes in hymenopteran insects. Current findings suggest that the three KC subtypes are unique characteristics to the aculeate hymenopteran insects. Finally, prospects regarding future application of genome editing for the study of KC subtype functions in the honeybee are described. Genes expressed in a KC subtype-preferential manner can be good candidate target genes for genome editing, because they are likely related to highly advanced brain functions and some of them are dispensable for normal development and sexual maturation in honeybees.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
117
|
Cope AJ, Vasilaki E, Minors D, Sabo C, Marshall JAR, Barron AB. Abstract concept learning in a simple neural network inspired by the insect brain. PLoS Comput Biol 2018; 14:e1006435. [PMID: 30222735 PMCID: PMC6160224 DOI: 10.1371/journal.pcbi.1006435] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/27/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022] Open
Abstract
The capacity to learn abstract concepts such as 'sameness' and 'difference' is considered a higher-order cognitive function, typically thought to be dependent on top-down neocortical processing. It is therefore surprising that honey bees apparantly have this capacity. Here we report a model of the structures of the honey bee brain that can learn sameness and difference, as well as a range of complex and simple associative learning tasks. Our model is constrained by the known connections and properties of the mushroom body, including the protocerebral tract, and provides a good fit to the learning rates and performances of real bees in all tasks, including learning sameness and difference. The model proposes a novel mechanism for learning the abstract concepts of 'sameness' and 'difference' that is compatible with the insect brain, and is not dependent on top-down or executive control processing.
Collapse
Affiliation(s)
- Alex J. Cope
- Department of Computer Science, University of Sheffield, Sheffield, UK
- Sheffield Robotics, University of Sheffield, Sheffield, UK
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield, UK
- Sheffield Robotics, University of Sheffield, Sheffield, UK
| | - Dorian Minors
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Chelsea Sabo
- Department of Computer Science, University of Sheffield, Sheffield, UK
- Sheffield Robotics, University of Sheffield, Sheffield, UK
| | - James A. R. Marshall
- Department of Computer Science, University of Sheffield, Sheffield, UK
- Sheffield Robotics, University of Sheffield, Sheffield, UK
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
118
|
Guiraud M, Roper M, Chittka L. High-Speed Videography Reveals How Honeybees Can Turn a Spatial Concept Learning Task Into a Simple Discrimination Task by Stereotyped Flight Movements and Sequential Inspection of Pattern Elements. Front Psychol 2018; 9:1347. [PMID: 30123157 PMCID: PMC6086205 DOI: 10.3389/fpsyg.2018.01347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/13/2018] [Indexed: 11/23/2022] Open
Abstract
Honey bees display remarkable visual learning abilities, providing insights regarding visual information processing in a miniature brain. It was discovered that bees can solve a task that is generally viewed as spatial concept learning in primates, specifically the concept of “above” and “below.” In these works, two pairs of visual stimuli were shown in the two arms of a Y-maze. Each arm displayed a “referent” shape (e.g., a cross, or a horizontal line) and a second geometric shape that appeared either above or below the referent. Bees learning the “concept of aboveness” had to choose the arm of the Y-maze in which a shape–any shape–occurred above the referent, while those learning the “concept of belowness” had to pick the arm in which there was an arbitrary item beneath the referent. Here, we explore the sequential decision-making process that allows bees to solve this task by analyzing their flight trajectories inside the Y-maze. Over 368 h of high-speed video footage of the bees' choice strategies were analyzed in detail. In our experiments, many bees failed the task, and, with the possible exception of a single forager, bees as a group failed to reach significance in picking the correct arm from the decision chamber of the maze. Of those bees that succeeded in choosing correctly, most required a close-up inspection of the targets. These bees typically employed a close-up scan of only the bottom part of the pattern before taking the decision of landing on a feeder. When rejecting incorrect feeders, they repeatedly scanned the pattern features, but were still, on average, faster at completing the task than the non-leaners. This shows that solving a concept learning task could actually be mediated by turning it into a more manageable discrimination task by some animals, although one individual in this study appeared to have gained the ability (by the end of the training) to solve the task in a manner predicted by concept learning.
Collapse
Affiliation(s)
- Marie Guiraud
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Mark Roper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Drone Development Lab, Ben Thorns Ltd, Colchester, United Kingdom
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Wissenschaftskolleg, Institute of Advanced Study, Berlin, Germany
| |
Collapse
|
119
|
Hochmann JR, Carey S, Mehler J. Infants learn a rule predicated on the relation same but fail to simultaneously learn a rule predicated on the relation different. Cognition 2018; 177:49-57. [DOI: 10.1016/j.cognition.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
|
120
|
Abstract
Maeterlinck did not mean to suggest that honeybees rival humans in intelligence - rather he saw in the bee a qualitatively different form of intelligence, tailored to the challenges of a profoundly different kind of society and lifestyle. Insects are strange "aliens from inner space", with sensory and cognitive worlds wholly different from our own. The 19th century discovery that ants can detect ultraviolet light triggered a golden age in the exploration of the diversity of sensory systems of insects (and indeed other animals), identifying such abilities as magnetic compasses, electrosensitivity, polarization vision, and peculiar locations for sense organs such as the infrared sensors on the abdomens of some beetles or photoreceptors on the genitalia of some butterflies. Could insect minds be equally strange and diverse?
Collapse
|
121
|
Fuss T, John L, Schluessel V. Same or different? Abstract relational concept use in juvenile bamboo sharks and Malawi cichlids. Curr Zool 2018; 67:279-292. [PMID: 34616920 PMCID: PMC8489000 DOI: 10.1093/cz/zoy059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022] Open
Abstract
Sorting objects and events into categories and concepts is an important cognitive prerequisite that spares an individual the learning of every object or situation encountered in its daily life. Accordingly, specific items are classified in general groups that allow fast responses to novel situations. The present study assessed whether bamboo sharks Chiloscyllium griseum and Malawi cichlids Pseudotropheus zebra can distinguish sets of stimuli (each stimulus consisting of two abstract, geometric objects) that meet two conceptual preconditions, i.e., (1) “sameness” versus “difference” and (2) a certain spatial arrangement of both objects. In two alternative forced choice experiments, individuals were first trained to choose two different, vertically arranged objects from two different but horizontally arranged ones. Pair discriminations were followed by extensive transfer test experiments. Transfer tests using stimuli consisting of (a) black and gray circles and (b) squares with novel geometric patterns provided conflicting information with respect to the learnt rule “choose two different, vertically arranged objects”, thereby investigating (1) the individuals’ ability to transfer previously gained knowledge to novel stimuli and (2) the abstract relational concept(s) or rule(s) applied to categorize these novel objects. Present results suggest that the level of processing and usage of both abstract concepts differed considerably between bamboo sharks and Malawi cichlids. Bamboo sharks seemed to combine both concepts—although not with equal but hierarchical prominence—pointing to advanced cognitive capabilities. Conversely, Malawi cichlids had difficulties in discriminating between symbols and failed to apply the acquired training knowledge on new sets of geometric and, in particular, gray-level transfer stimuli.
Collapse
Affiliation(s)
- Theodora Fuss
- Institute of Zoology, Rheinische Friedrich-Wilhelms-University Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| | - Leonie John
- Institute of Zoology, Rheinische Friedrich-Wilhelms-University Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| | - Vera Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-University Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| |
Collapse
|
122
|
Buatois A, Flumian C, Schultheiss P, Avarguès-Weber A, Giurfa M. Transfer of Visual Learning Between a Virtual and a Real Environment in Honey Bees: The Role of Active Vision. Front Behav Neurosci 2018; 12:139. [PMID: 30057530 PMCID: PMC6053632 DOI: 10.3389/fnbeh.2018.00139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
To study visual learning in honey bees, we developed a virtual reality (VR) system in which the movements of a tethered bee walking stationary on a spherical treadmill update the visual panorama presented in front of it (closed-loop conditions), thus creating an experience of immersion within a virtual environment. In parallel, we developed a small Y-maze with interchangeable end-boxes, which allowed replacing repeatedly a freely walking bee into the starting point of the maze for repeated decision recording. Using conditioning and transfer experiments between the VR setup and the Y-maze, we studied the extent to which movement freedom and active vision are crucial for learning a simple color discrimination. Approximately 57% of the bees learned the visual discrimination in both conditions. Transfer from VR to the maze improved significantly the bees’ performances: 75% of bees having chosen the CS+ continued doing so and 100% of bees having chosen the CS− reverted their choice in favor of the CS+. In contrast, no improvement was seen for these two groups of bees during the reciprocal transfer from the Y-maze to VR. In this case, bees exhibited inconsistent choices in the VR setup. The asymmetric transfer between contexts indicates that the information learned in each environment may be different despite the similar learning success. Moreover, it shows that reducing the possibility of active vision and movement freedom in the passage from the maze to the VR impairs the expression of visual learning while increasing them in the reciprocal transfer improves it. Our results underline the active nature of visual processing in bees and allow discussing the developments required for immersive VR experiences in insects.
Collapse
Affiliation(s)
- Alexis Buatois
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Clara Flumian
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Patrick Schultheiss
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Aurore Avarguès-Weber
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| |
Collapse
|
123
|
Mhatre N, Robert D. The Drivers of Heuristic Optimization in Insect Object Manufacture and Use. Front Psychol 2018; 9:1015. [PMID: 29977216 PMCID: PMC6021527 DOI: 10.3389/fpsyg.2018.01015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022] Open
Abstract
Insects have small brains and heuristics or 'rules of thumb' are proposed here to be a good model for how insects optimize the objects they make and use. Generally, heuristics are thought to increase the speed of decision making by reducing the computational resources needed for making decisions. By corollary, heuristic decisions are also deemed to impose a compromise in decision accuracy. Using examples from object optimization behavior in insects, we will argue that heuristics do not inevitably imply a lower computational burden or lower decision accuracy. We also show that heuristic optimization may be driven by certain features of the optimization problem itself: the properties of the object being optimized, the biology of the insect, and the properties of the function being optimized. We also delineate the structural conditions under which heuristic optimization may achieve accuracy equivalent to or better than more fine-grained and onerous optimization methods.
Collapse
Affiliation(s)
- Natasha Mhatre
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
124
|
Kim J, Ricci M, Serre T. Not-So-CLEVR: learning same-different relations strains feedforward neural networks. Interface Focus 2018; 8:20180011. [PMID: 29951191 DOI: 10.1098/rsfs.2018.0011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 11/12/2022] Open
Abstract
The advent of deep learning has recently led to great successes in various engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural network, now approach human accuracy on visual recognition tasks like image classification and face recognition. However, here we will show that feedforward neural networks struggle to learn abstract visual relations that are effortlessly recognized by non-human primates, birds, rodents and even insects. We systematically study the ability of feedforward neural networks to learn to recognize a variety of visual relations and demonstrate that same-different visual relations pose a particular strain on these networks. Networks fail to learn same-different visual relations when stimulus variability makes rote memorization difficult. Further, we show that learning same-different problems becomes trivial for a feedforward network that is fed with perceptually grouped stimuli. This demonstration and the comparative success of biological vision in learning visual relations suggests that feedback mechanisms such as attention, working memory and perceptual grouping may be the key components underlying human-level abstract visual reasoning.
Collapse
Affiliation(s)
- Junkyung Kim
- Department of Cognitive, Linguistic & Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Matthew Ricci
- Department of Cognitive, Linguistic & Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Thomas Serre
- Department of Cognitive, Linguistic & Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
125
|
Lawson DA, Chittka L, Whitney HM, Rands SA. Bumblebees distinguish floral scent patterns, and can transfer these to corresponding visual patterns. Proc Biol Sci 2018; 285:20180661. [PMID: 29899070 PMCID: PMC6015847 DOI: 10.1098/rspb.2018.0661] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 11/21/2022] Open
Abstract
Flowers act as multisensory billboards to pollinators by using a range of sensory modalities such as visual patterns and scents. Different floral organs release differing compositions and quantities of the volatiles contributing to floral scent, suggesting that scent may be patterned within flowers. Early experiments suggested that pollinators can distinguish between the scents of differing floral regions, but little is known about how these potential scent patterns might influence pollinators. We show that bumblebees can learn different spatial patterns of the same scent, and that they are better at learning to distinguish between flowers when the scent pattern corresponds to a matching visual pattern. Surprisingly, once bees have learnt the spatial arrangement of a scent pattern, they subsequently prefer to visit novel unscented flowers that have an identical arrangement of visual marks, suggesting that multimodal floral signals may exploit the mechanisms by which learnt information is stored by the bee.
Collapse
Affiliation(s)
- David A Lawson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Lars Chittka
- Department of Experimental and Biological Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
126
|
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
127
|
Gallo V, Chittka L. Cognitive Aspects of Comb-Building in the Honeybee? Front Psychol 2018; 9:900. [PMID: 29951014 PMCID: PMC6008556 DOI: 10.3389/fpsyg.2018.00900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/17/2018] [Indexed: 02/04/2023] Open
Abstract
The wax-made comb of the honeybee is a masterpiece of animal architecture. The highly regular, double-sided hexagonal structure is a near-optimal solution to storing food and housing larvae, economizing on building materials and space. Elaborate though they may seem, such animal constructions are often viewed as the result of 'just instinct,' governed by inflexible, pre-programmed, innate behavior routines. An inspection of the literature on honeybee comb construction, however, reveals a different picture. Workers have to learn, at least in part, certain elements of the technique, and there is considerable flexibility in terms of how the shape of the comb and its gradual manufacture is tailored to the circumstances, especially the available space. Moreover, we explore the 2-century old and now largely forgotten work by François Huber, where glass screens were placed between an expanding comb construction and the intended target wall. Bees took corrective action before reaching the glass obstacle, and altered the ongoing construction so as to reach the nearest wooden wall. Though further experiments will be necessary, these results suggest a form of spatial planning skills. We discuss these findings in the context of what is now known about insect cognition, and ask if it is possible that the production of hexagonal wax combs is the result of behavioral heuristics where a complex structure emerges as the result of simple behavioral rules applied by each individual, or whether prospective cognition might be involved.
Collapse
Affiliation(s)
- Vincent Gallo
- Department of Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lars Chittka
- Department of Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Berlin, Germany
| |
Collapse
|
128
|
Varnon CA, Dinges CW, Black TE, Wells H, Abramson CI. Failure to Find Ethanol-Induced Conditioned Taste Aversion in Honey Bees (Apis mellifera L.). Alcohol Clin Exp Res 2018; 42:1260-1270. [PMID: 29687910 DOI: 10.1111/acer.13761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/15/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Conditioned taste aversion (CTA) learning is a highly specialized form of conditioning found across taxa that leads to avoidance of an initially neutral stimulus, such as taste or odor, that is associated with, but is not the cause of, a detrimental health condition. This study examines if honey bees (Apis mellifera L.) develop ethanol (EtOH)-induced CTA. METHODS Restrained bees were first administered a sucrose solution that was cinnamon scented, lavender scented, or unscented, and contained either 0, 2.5, 5, 10, or 20% EtOH. Then, 30 minutes later, we used a proboscis extension response (PER) conditioning procedure where the bees were taught to associate either cinnamon odor, lavender odor, or an air-puff with repeated sucrose feedings. For some bees, the odor of the previously consumed EtOH solution was the same as the odor associated with sucrose in the conditioning procedure. If bees are able to learn EtOH-induced CTA, they should show an immediate low level of response to odors previously associated with EtOH. RESULTS We found that bees did not develop CTA despite the substantial inhibitory and aversive effects EtOH has on behavior. Instead, bees receiving a conditioning odor that was previously associated with EtOH showed an immediate high level of response. While this demonstrates bees are capable of one-trial learning common to CTA experiments, this high level of response is the opposite of what would occur if the bees developed a CTA. Responding on subsequent trials also showed a general inhibitory effect of EtOH. Finally, we found that consumption of cinnamon extract reduced the effects of EtOH. CONCLUSIONS The honey bees' lack of learned avoidance to EtOH mirrors that seen in human alcoholism. These findings demonstrate the usefulness of honey bees as an insect model for EtOH consumption.
Collapse
Affiliation(s)
| | | | - Timothy E Black
- Department of Psychology, Oklahoma State University, Stillwater, Oklahoma
| | - Harrington Wells
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma
| | - Charles I Abramson
- Department of Psychology, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
129
|
Perry CJ, Baciadonna L. Studying emotion in invertebrates: what has been done, what can be measured and what they can provide. ACTA ACUST UNITED AC 2018; 220:3856-3868. [PMID: 29093185 DOI: 10.1242/jeb.151308] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Until recently, whether invertebrates might exhibit emotions was unknown. This possibility has traditionally been dismissed by many as emotions are frequently defined with reference to human subjective experience, and invertebrates are often not considered to have the neural requirements for such sophisticated abilities. However, emotions are understood in humans and other vertebrates to be multifaceted brain states, comprising dissociable subjective, cognitive, behavioural and physiological components. In addition, accumulating literature is providing evidence of the impressive cognitive capacities and behavioural flexibility of invertebrates. Alongside these, within the past few years, a number of studies have adapted methods for assessing emotions in humans and other animals, to invertebrates, with intriguing results. Sea slugs, bees, crayfish, snails, crabs, flies and ants have all been shown to display various cognitive, behavioural and/or physiological phenomena that indicate internal states reminiscent of what we consider to be emotions. Given the limited neural architecture of many invertebrates, and the powerful tools available within invertebrate research, these results provide new opportunities for unveiling the neural mechanisms behind emotions and open new avenues towards the pharmacological manipulation of emotion and its genetic dissection, with advantages for disease research and therapeutic drug discovery. Here, we review the increasing evidence that invertebrates display some form of emotion, discuss the various methods used for assessing emotions in invertebrates and consider what can be garnered from further emotion research on invertebrates in terms of the evolution and underlying neural basis of emotion in a comparative context.
Collapse
Affiliation(s)
- Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Luigi Baciadonna
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
130
|
Lüdke A, Raiser G, Nehrkorn J, Herz AVM, Galizia CG, Szyszka P. Calcium in Kenyon Cell Somata as a Substrate for an Olfactory Sensory Memory in Drosophila. Front Cell Neurosci 2018; 12:128. [PMID: 29867361 PMCID: PMC5960692 DOI: 10.3389/fncel.2018.00128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
Animals can form associations between temporally separated stimuli. To do so, the nervous system has to retain a neural representation of the first stimulus until the second stimulus appears. The neural substrate of such sensory stimulus memories is unknown. Here, we search for a sensory odor memory in the insect olfactory system and characterize odorant-evoked Ca2+ activity at three consecutive layers of the olfactory system in Drosophila: in olfactory receptor neurons (ORNs) and projection neurons (PNs) in the antennal lobe, and in Kenyon cells (KCs) in the mushroom body. We show that the post-stimulus responses in ORN axons, PN dendrites, PN somata, and KC dendrites are odor-specific, but they are not predictive of the chemical identity of past olfactory stimuli. However, the post-stimulus responses in KC somata carry information about the identity of previous olfactory stimuli. These findings show that the Ca2+ dynamics in KC somata could encode a sensory memory of odorant identity and thus might serve as a basis for associations between temporally separated stimuli.
Collapse
Affiliation(s)
- Alja Lüdke
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - Georg Raiser
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Organismal Biology, Konstanz, Germany
| | - Johannes Nehrkorn
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| | - Andreas V. M. Herz
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| | - C. Giovanni Galizia
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - Paul Szyszka
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
131
|
Gong T, Shuai L, Wu Y. Rethinking foundations of language from a multidisciplinary perspective. Phys Life Rev 2018; 26-27:120-138. [PMID: 29709463 DOI: 10.1016/j.plrev.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 11/28/2022]
Abstract
The issue of language foundations has been of great controversy ever since it was first raised in Lenneberg's (1967) monograph Biological Foundations of Language. Based on a survey of recent findings relevant to the study of language acquisition and evolution, we propose that: (i) the biological predispositions for language are largely domain-general, not necessarily language-specific or human-unique; (ii) the socio-cultural environment of language serves as another important foundation of language, which helps shape language components, induce and drive language shift; and (iii) language must have coevolved with the cognitive mechanisms associated with it through intertwined biological and cultural evolution. In addition to theoretical issues, this paper also evaluates the primary approaches recently joining the endeavor of studying language foundations and evolution, including human experiments and computer simulations. Most of the evidence surveyed in this paper comes from a variety of disciplines, and methodology therein complements each other to form a global picture of language foundations. These reflect the complexity of the issue of language foundations and the necessity of taking a multidisciplinary perspective to address it.
Collapse
Affiliation(s)
- Tao Gong
- Center for Linguistics & Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou, China; Educational Testing Service, Princeton, NJ, United States of America.
| | - Lan Shuai
- Educational Testing Service, Princeton, NJ, United States of America
| | - Yicheng Wu
- Department of Linguistics and Translation, School of International Studies, Zhejiang University, Hangzhou, China.
| |
Collapse
|
132
|
Hu X, Ke L, Wang Z, Zeng Z. Dynamic transcriptome landscape of Asian domestic honeybee (Apis cerana) embryonic development revealed by high-quality RNA sequencing. BMC DEVELOPMENTAL BIOLOGY 2018; 18:11. [PMID: 29653508 PMCID: PMC5899340 DOI: 10.1186/s12861-018-0169-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Background Honeybee development consists of four stages: embryo, larva, pupa and adult. Embryogenesis, a key process of cell division and differentiation, takes 3 days in honeybees. However, the embryonic transcriptome and the dynamic regulation of embryonic transcription are still largely uncharacterized in honeybees, especially in the Asian honeybee (Apis cerana). Here, we employed high-quality RNA-seq to explore the transcriptome of Asian honeybee embryos at three ages, approximately 24, 48 and 72 h (referred to as Day1, Day2 and Day3, respectively). Results Nine embryo samples, three from each age, were collected for RNA-seq. According to the staging scheme of honeybee embryos and the morphological features we observed, our Day1, Day2 and Day3 embryos likely corresponded to the late stage four, stage eight and stage ten development stages, respectively. Hierarchical clustering and principal component analysis showed that same-age samples were grouped together, and the Day2 samples had a closer relationship with the Day3 samples than the Day1 samples. Finally, a total of 18,284 genes harboring 55,646 transcripts were detected in the A. cerana embryos, of which 44.5% consisted of the core transcriptome shared by all three ages of embryos. A total of 4088 upregulated and 3046 downregulated genes were identified among the three embryo ages, of which 2010, 3177 and 1528 genes were upregulated and 2088, 2294 and 303 genes were downregulated from Day1 to Day2, from Day1 to Day3 and from Day2 to Day3, respectively. The downregulated genes were mostly involved in cellular, biosynthetic and metabolic processes, gene expression and protein localization, and macromolecule modification; the upregulated genes mainly participated in cell development and differentiation, tissue, organ and system development, and morphogenesis. Interestingly, several biological processes related to the response to and detection of light stimuli were enriched in the first-day A. cerana embryogenesis but not in the Apis mellifera embryogenesis, which was valuable for further investigations. Conclusions Our transcriptomic data substantially expand the number of known transcribed elements in the A. cerana genome and provide a high-quality view of the transcriptome dynamics of A. cerana embryonic development. Electronic supplementary material The online version of this article (10.1186/s12861-018-0169-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofen Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Li Ke
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zilong Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
133
|
Balkenius C, Tjøstheim TA, Johansson B, Gärdenfors P. From Focused Thought to Reveries: A Memory System for a Conscious Robot. Front Robot AI 2018; 5:29. [PMID: 33500916 PMCID: PMC7805698 DOI: 10.3389/frobt.2018.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/07/2018] [Indexed: 11/26/2022] Open
Abstract
We introduce a memory model for robots that can account for many aspects of an inner world, ranging from object permanence, episodic memory, and planning to imagination and reveries. It is modeled after neurophysiological data and includes parts of the cerebral cortex together with models of arousal systems that are relevant for consciousness. The three central components are an identification network, a localization network, and a working memory network. Attention serves as the interface between the inner and the external world. It directs the flow of information from sensory organs to memory, as well as controlling top-down influences on perception. It also compares external sensations to internal top-down expectations. The model is tested in a number of computer simulations that illustrate how it can operate as a component in various cognitive tasks including perception, the A-not-B test, delayed matching to sample, episodic recall, and vicarious trial and error.
Collapse
Affiliation(s)
- Christian Balkenius
- Lund University Cognitive Science, Department of Philosophy, Lund University, Lund, Sweden
| | - Trond A Tjøstheim
- Lund University Cognitive Science, Department of Philosophy, Lund University, Lund, Sweden
| | - Birger Johansson
- Lund University Cognitive Science, Department of Philosophy, Lund University, Lund, Sweden
| | - Peter Gärdenfors
- Lund University Cognitive Science, Department of Philosophy, Lund University, Lund, Sweden.,University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
134
|
Singh AS, Shah A, Brockmann A. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway. INSECT MOLECULAR BIOLOGY 2018; 27:90-98. [PMID: 28987007 DOI: 10.1111/imb.12350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses.
Collapse
Affiliation(s)
- A S Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - A Shah
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - A Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
135
|
Genome-wide DNA methylation changes associated with olfactory learning and memory in Apis mellifera. Sci Rep 2017; 7:17017. [PMID: 29208987 PMCID: PMC5717273 DOI: 10.1038/s41598-017-17046-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
The honeybee is a model organism for studying learning and memory formation and its underlying molecular mechanisms. While DNA methylation is well studied in caste differentiation, its role in learning and memory is not clear in honeybees. Here, we analyzed genome-wide DNA methylation changes during olfactory learning and memory process in A. mellifera using whole genome bisulfite sequencing (WGBS) method. A total of 853 significantly differentially methylated regions (DMRs) and 963 differentially methylated genes (DMGs) were identified. We discovered that 440 DMRs of 648 genes were hypermethylated and 274 DMRs of 336 genes were hypomethylated in trained group compared to untrained group. Of these DMGs, many are critical genes involved in learning and memory, such as Creb, GABABR and Ip3k, indicating extensive involvement of DNA methylation in honeybee olfactory learning and memory process. Furthermore, key enzymes for histone methylation, RNA editing and miRNA processing also showed methylation changes during this process, implying that DNA methylation can affect learning and memory of honeybees by regulating other epigenetic modification processes.
Collapse
|
136
|
Hochmann JR, Tuerk AS, Sanborn S, Zhu R, Long R, Dempster M, Carey S. Children's representation of abstract relations in relational/array match-to-sample tasks. Cogn Psychol 2017; 99:17-43. [PMID: 29132016 DOI: 10.1016/j.cogpsych.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
Five experiments compared preschool children's performance to that of adults and of non-human animals on match to sample tasks involving 2-item or 16-item arrays that varied according to their composition of same or different items (Array Match-to-Sample, AMTS). They establish that, like non-human animals in most studies, 3- and 4-year-olds fail 2-item AMTS (the classic relational match to sample task introduced into the literature by Premack, 1983), and that robust success is not observed until age 6. They also establish that 3-year-olds, like non-human animal species, succeed only when they are able to encode stimuli in terms of entropy, a property of an array (namely its internal variability), rather than relations among the individuals in the array (same vs. different), whereas adults solve both 2-item and 16-item AMTS on the basis of the relations same and different. As in the case of non-human animals, the acuity of 3- and 4-year-olds' representation of entropy is insufficient to solve the 2-item same-different AMTS task. At age 4, behavior begins to contrast with that of non-human species. On 16-item AMTS, a subgroup of 4-year-olds induce a categorical rule matching all-same arrays to all-same arrays, while matching other arrays (mixed arrays of same and different items) to all-different arrays. These children tend to justify their choices using the words "same" and "different." By age 4 a number of our participants succeed at 2-item AMTS, also justifying their choices by explicit verbal appeals using words for same and different. Taken together these results suggest that the recruitment of the relational representations corresponding to the meaning of these words contributes to the better performance over the preschool years at solving array match-to-sample tasks.
Collapse
Affiliation(s)
- Jean-Rémy Hochmann
- CNRS, UMR 5304, Institut des Sciences Cognitives - Marc Jeannerod, 67 Bd Pinel, 69675 Bron, France; Université Claude Bernard Lyon 1, France.
| | - Arin S Tuerk
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| | - Sophia Sanborn
- Department of Psychology, UC Berkeley, Tolman Hall, Berkeley, CA 94720-1650, USA
| | - Rebecca Zhu
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| | - Robert Long
- Department of Philosophy, New York University, 5 Washington Place, New York, NY 10003, USA
| | - Meg Dempster
- Department of Psychology, University of Bath, Claverton Down, Bath, United Kingdom
| | - Susan Carey
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| |
Collapse
|
137
|
Buatois A, Pichot C, Schultheiss P, Sandoz JC, Lazzari CR, Chittka L, Avarguès-Weber A, Giurfa M. Associative visual learning by tethered bees in a controlled visual environment. Sci Rep 2017; 7:12903. [PMID: 29018218 PMCID: PMC5635106 DOI: 10.1038/s41598-017-12631-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/08/2017] [Indexed: 11/22/2022] Open
Abstract
Free-flying honeybees exhibit remarkable cognitive capacities but the neural underpinnings of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but display poor visual learning. To overcome this limitation, we aimed at establishing a controlled visual environment in which tethered bees walking on a spherical treadmill learn to discriminate visual stimuli video projected in front of them. Freely flying bees trained to walk into a miniature Y-maze displaying these stimuli in a dark environment learned the visual discrimination efficiently when one of them (CS+) was paired with sucrose and the other with quinine solution (CS−). Adapting this discrimination to the treadmill paradigm with a tethered, walking bee was successful as bees exhibited robust discrimination and preferred the CS+ to the CS− after training. As learning was better in the maze, movement freedom, active vision and behavioral context might be important for visual learning. The nature of the punishment associated with the CS− also affects learning as quinine and distilled water enhanced the proportion of learners. Thus, visual learning is amenable to a controlled environment in which tethered bees learn visual stimuli, a result that is important for future neurobiological studies in virtual reality.
Collapse
Affiliation(s)
- Alexis Buatois
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Cécile Pichot
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Patrick Schultheiss
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Jean-Christophe Sandoz
- Laboratory Evolution Genomes Behavior and Ecology, CNRS, Univ Paris-Sud, IRD, University Paris Saclay, F-91198, Gif-sur-Yvette, France
| | - Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, University François Rabelais of Tours, F-37200, Tours, France
| | - Lars Chittka
- Queen Mary University of London, School of Biological and Chemical Sciences, Biological and Experimental Psychology, Mile End Road, London, E1 4NS, United Kingdom
| | - Aurore Avarguès-Weber
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France.
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France.
| |
Collapse
|
138
|
Rusch C, Roth E, Vinauger C, Riffell JA. Honeybees in a virtual reality environment learn unique combinations of colour and shape. ACTA ACUST UNITED AC 2017; 220:3478-3487. [PMID: 28751492 DOI: 10.1242/jeb.164731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022]
Abstract
Honeybees are well-known models for the study of visual learning and memory. Whereas most of our knowledge of learned responses comes from experiments using free-flying bees, a tethered preparation would allow fine-scale control of the visual stimuli as well as accurate characterization of the learned responses. Unfortunately, conditioning procedures using visual stimuli in tethered bees have been limited in their efficacy. In this study, using a novel virtual reality environment and a differential training protocol in tethered walking bees, we show that the majority of honeybees learn visual stimuli, and need only six paired training trials to learn the stimulus. We found that bees readily learn visual stimuli that differ in both shape and colour. However, bees learn certain components over others (colour versus shape), and visual stimuli are learned in a non-additive manner with the interaction of specific colour and shape combinations being crucial for learned responses. To better understand which components of the visual stimuli the bees learned, the shape-colour association of the stimuli was reversed either during or after training. Results showed that maintaining the visual stimuli in training and testing phases was necessary to elicit visual learning, suggesting that bees learn multiple components of the visual stimuli. Together, our results demonstrate a protocol for visual learning in restrained bees that provides a powerful tool for understanding how components of a visual stimulus elicit learned responses as well as elucidating how visual information is processed in the honeybee brain.
Collapse
Affiliation(s)
- Claire Rusch
- Department of Biology, University of Washington, Seattle, WA 98195, USA.,University of Washington Institute for Neuroengineering, Seattle, WA 98195, USA
| | - Eatai Roth
- Department of Biology, University of Washington, Seattle, WA 98195, USA.,University of Washington Institute for Neuroengineering, Seattle, WA 98195, USA
| | - Clément Vinauger
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA .,University of Washington Institute for Neuroengineering, Seattle, WA 98195, USA
| |
Collapse
|
139
|
Bruce K, Dyer K, Mathews M, Nealley C, Phasukkan T, Prichard A, Galizio M. Successive odor matching- and non-matching-to-sample in rats: A reversal design. Behav Processes 2017; 155:26-32. [PMID: 28713029 DOI: 10.1016/j.beproc.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 11/30/2022]
Abstract
There is a growing body of research on matching- and non-matching-to-sample (MTS, NMTS) relations with rats using olfactory stimuli; however, the specific characteristics of this relational control are unclear. In the current study we examine MTS and NMTS in rats with an automated olfactometer using a successive (go, no-go) procedure. Ten rats were trained to either match- or non-match-to-sample with common scents (apple, cinnamon, etc.) as olfactory stimuli. After matching or non-matching training with four odorants, rats were tested for transfer twice with four new odorants on each test. Most rats trained on MTS showed immediate transfer to new stimuli, and most rats trained on NMTS showed full transfer by the second set of new odors. After meeting criterion on the second transfer test, the contingencies were reversed with four new odor stimuli such that subjects trained on matching were shifted to non-matching and vice versa. Following these reversed contingencies, the effects of the original training persisted for many trials with new odorants. These data extend previous studies on same-different concept formation in rats, showing strong generalization requiring few exemplars. The critical role of olfactory stimuli is discussed.
Collapse
Affiliation(s)
- Katherine Bruce
- University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA.
| | - Katherine Dyer
- University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| | - Michael Mathews
- University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| | - Catharine Nealley
- University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| | - Tiffany Phasukkan
- University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| | - Ashley Prichard
- University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| | - Mark Galizio
- University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| |
Collapse
|
140
|
|
141
|
Abstract
Three recent papers reject Darwin's claim that there is no fundamental difference between humans and animals. Each offers a unique theory of the difference. The first theory holds that although animals can perceive perceptual relations, humans alone can reinterpret the higher order relations between these relations. The theory offers analogical reasoning as an example of the uniquely human ability to deal with higher order relations between relations. However, chimpanzees are capable of analogical reasoning if the analogies are conceptually simple. The second theory proposes that human intelligence has far better developed social than physical competence—a claim that ignores, and is contradicted by 20 years of infant research showing that the infant's social and physical modules are almost equally developed. The third theory finds that whereas animal abilities are limited adaptations restricted to a single goal, human abilities are domain general and serve indeterminately many goals. This article rejects the first two theories and explains the unique character of domain-general human competence in terms of the interweaving of evolutionarily independent abilities—an interweaving found in humans only.
Collapse
|
142
|
Abstract
There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.
Collapse
Affiliation(s)
- Hilton F Japyassú
- Biology Institute, Federal University of Bahia, Rua Barão de Jeremoabo s/n, Campus de Ondina, Salvador, Bahia, 40170-115, Brazil.
- Centre for Biodiversity, School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife, UK, KY16 9TH.
| | - Kevin N Laland
- Centre for Biodiversity, School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife, UK, KY16 9TH
| |
Collapse
|
143
|
Lateral thinking - Interocular symmetry and asymmetry in neurovascular patterning, in health and disease. Prog Retin Eye Res 2017; 59:131-157. [PMID: 28457789 DOI: 10.1016/j.preteyeres.2017.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
No biological system or structure is likely to be perfectly symmetrical, or have identical right and left forms. This review explores the evidence for eye and visual pathway asymmetry, in health and in disease, and attempts to provide guidance for those studying the structure and function of the visual system, where recognition of symmetry or asymmetry may be essential. The principal question with regards to asymmetry is not 'are the eyes the same?', for some degree of asymmetry is pervasive, but 'when are they importantly different?'. Knowing if right and left eyes are 'importantly different' could have significant consequences for deciding whether right or left eyes are included in an analysis or for examining the association between a phenotype and ocular parameter. The presence of significant asymmetry would also have important implications for the design of normative databases of retinal and optic nerve metrics. In this review, we highlight not only the universal presence of asymmetry, but provide evidence that some elements of the visual system are inherently more asymmetric than others, pointing to the need for improved normative data to explain sources of asymmetry and their impact on determining associations with genetic, environmental or health-related factors and ultimately in clinical practice.
Collapse
|
144
|
Cross FR, Jackson RR. Representation of different exact numbers of prey by a spider-eating predator. Interface Focus 2017; 7:20160035. [PMID: 28479976 DOI: 10.1098/rsfs.2016.0035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Our objective was to use expectancy-violation methods for determining whether Portia africana, a salticid spider that specializes in eating other spiders, is proficient at representing exact numbers of prey. In our experiments, we relied on this predator's known capacity to gain access to prey by following pre-planned detours. After Portia first viewed a scene consisting of a particular number of prey items, it could then take a detour during which the scene went out of view. Upon reaching a tower at the end of the detour, Portia could again view a scene, but now the number of prey items might be different. We found that, compared with control trials in which the number was the same as before, Portia's behaviour was significantly different in most instances when we made the following changes in number: 1 versus 2, 1 versus 3, 1 versus 4, 2 versus 3, 2 versus 4 or 2 versus 6. These effects were independent of whether the larger number was seen first or second. No significant effects were evident when the number of prey changed between 3 versus 4 or 3 versus 6. When we changed prey size and arrangement while keeping prey number constant, no significant effects were detected. Our findings suggest that Portia represents 1 and 2 as discrete number categories, but categorizes 3 or more as a single category that we call 'many'.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, PO Box 30, Mbita Point, Kenya
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, PO Box 30, Mbita Point, Kenya
| |
Collapse
|
145
|
Howard SR, Avarguès-Weber A, Garcia J, Dyer AG. Free-flying honeybees extrapolate relational size rules to sort successively visited artificial flowers in a realistic foraging situation. Anim Cogn 2017; 20:627-638. [DOI: 10.1007/s10071-017-1086-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 02/08/2023]
|
146
|
Kohno H, Suenami S, Takeuchi H, Sasaki T, Kubo T. Production of Knockout Mutants by CRISPR/Cas9 in the European Honeybee, Apis mellifera L. Zoolog Sci 2017; 33:505-512. [PMID: 27715425 DOI: 10.2108/zs160043] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The European honeybee (Apis mellifera L.) is used as a model organism in studies of the molecular and neural mechanisms underlying social behaviors and/or advanced brain functions. The entire honeybee genome has been sequenced, which has further advanced molecular biologic studies of the honeybee. Functions of genes of interest, however, remain largely to be elucidated in the honeybee due to the lack of effective reverse genetic methods. Moreover, genetically modified honeybees must be maintained under restricted laboratory conditions due to legal restrictions, further complicating the application of reverse genetics to this species. Here we applied CRISPR/Cas9 to the honeybee to develop an effective reverse genetic method. We targeted major royal jelly protein 1 (mrjp1) for genome editing, because this gene is predominantly expressed in adult workers and its mutation is not expected to affect normal development. By injecting sgRNA and Cas9 mRNA into 57 fertilized embryos collected within 3 h after oviposition, we successfully created six queens, one of which produced genome-edited male offspring. Of the 161 males produced, genotyping demonstrated that the genome was edited in 20 males. All of the processes necessary for producing these genome-edited queens and males were performed in the laboratory. Therefore, we developed essential techniques to create knockout honeybees by CRISPR/Cas9. Our findings also suggested that mrjp1 is dispensable for normal male development, at least till the pupal stage. This new technology could pave the way for future functional analyses of candidate genes involved in honeybee social behaviors.
Collapse
Affiliation(s)
- Hiroki Kohno
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shota Suenami
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Takeuchi
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuhiko Sasaki
- 2 Honeybee Science Research Center, Research Institute, Tamagawa University,Machida, Tokyo 194-8610, Japan
| | - Takeo Kubo
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
147
|
Loukola OJ, Solvi C, Coscos L, Chittka L. Bumblebees show cognitive flexibility by
improving on an observed complex behavior. Science 2017; 355:833-836. [DOI: 10.1126/science.aag2360] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 11/02/2022]
Abstract
We explored bees’ behavioral flexibility
in a task that required transporting a small ball
to a defined location to gain a reward. Bees were
pretrained to know the correct location of the
ball. Subsequently, to obtain a reward, bees had
to move a displaced ball to the defined location.
Bees that observed demonstration of the technique
from a live or model demonstrator learned the task
more efficiently than did bees observing a “ghost”
demonstration (ball moved via magnet) or without
demonstration. Instead of copying demonstrators
moving balls over long distances, observers solved
the task more efficiently, using the ball
positioned closest to the target, even if it was
of a different color than the one previously
observed. Such unprecedented cognitive flexibility
hints that entirely novel behaviors could emerge
relatively swiftly in species whose lifestyle
demands advanced learning abilities, should
relevant ecological pressures arise.
Collapse
Affiliation(s)
- Olli J. Loukola
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Cwyn Solvi
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Louie Coscos
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Lars Chittka
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
148
|
Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as Regulators of Behavior in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:35-52. [PMID: 27813667 DOI: 10.1146/annurev-ento-031616-035500] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Collapse
Affiliation(s)
- Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Matthias Boris Van Hiel
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| |
Collapse
|
149
|
Fernandes ASD, Buckley CL, Niven JE. Visual associative learning in wood ants. J Exp Biol 2017; 221:jeb.173260. [DOI: 10.1242/jeb.173260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
Wood ants are a model system for studying visual learning and navigation. They can forage for food and navigate to their nests effectively by forming memories of visual features in their surrounding environment. Previous studies of freely behaving ants have revealed many of the behavioural strategies and environmental features necessary for successful navigation. However, little is known about the exact visual properties of the environment that animals learn or the neural mechanisms that allow them to achieve this. As a first step towards addressing this, we developed a classical conditioning paradigm for visual learning in harnessed wood ants that allows us to control precisely the learned visual cues. In this paradigm, ants are fixed and presented with a visual cue paired with an appetitive sugar reward. Using this paradigm, we found that visual cues learnt by wood ants through Pavlovian conditioning are retained for at least one hour. Furthermore, we found that memory retention is dependent upon the ants’ performance during training. Our study provides the first evidence that wood ants can form visual associative memories when restrained. This classical conditioning paradigm has the potential to permit detailed analysis of the dynamics of memory formation and retention, and the neural basis of learning in wood ants.
Collapse
Affiliation(s)
- A. Sofia D. Fernandes
- Department of Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, UK
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - C. L. Buckley
- Department of Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, UK
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - J. E. Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
150
|
Vonk J. Advances in Animal Cognition. Behav Sci (Basel) 2016; 6:E27. [PMID: 27916874 PMCID: PMC5197940 DOI: 10.3390/bs6040027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022] Open
Abstract
This editorial endorses a diverse approach to the study of animal cognition and emphasizes the theoretical and applied gains that can be made by embracing this approach. This diversity emerges from cross-talk among scientists trained in a variety of backgrounds and theoretical approaches, who study a variety of topics with a range of species. By shifting from an anthropocentric focus on humans and our closest living relatives, and the historic reliance on the lab rat or pigeon, modern students of animal cognition have uncovered many fascinating facets of cognition in species ranging from insects to carnivores. Diversity in both topic and species of study will allow researchers to better understand the complex evolutionary forces giving rise to widely shared and unique cognitive processes. Furthermore, this increased understanding will translate into more effective strategies for managing wild and captive populations of nonhuman species.
Collapse
Affiliation(s)
- Jennifer Vonk
- Department of Psychology, Oakland University, 654 Pioneer Drive, Rochester, MI 48309, USA.
| |
Collapse
|