101
|
Sapp M, Day PM. Structure, attachment and entry of polyoma- and papillomaviruses. Virology 2009; 384:400-9. [PMID: 19157477 DOI: 10.1016/j.virol.2008.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
Polyoma- (PY) and Papillomavirus (PV) virions have remarkable structural equivalence although no discernable sequence similarities among the capsid proteins can be detected. Their similarities include the overall surface organization, the presence of 72 capsomeres composed of five molecules of the major capsid proteins, VP1 and L1, respectively, the structure of the core segment of capsomeres with classical antiparallel "jelly roll" beta strands as the major feature, and the linkage of neighboring capsomeres by invading C-terminal arms. Differences include the size of surface exposed loops that contain the dominant neutralizing epitopes, the details of the intercapsomeric interactions, and the presence of 2 or 1 minor capsid proteins, respectively. These differences may affect the dramatic differences observed in receptor binding and internalization pathways utilized by these viruses, but as detailed later even structural differences cannot completely explain receptor and pathway usage. In recent years, technical advances aiding the study of entry processes have allowed the identification of novel endocytic compartments and an appreciation of the links between endocytic pathways that were previously thought to be completely separable. This review is intended to highlight recent advances in our understanding of virus receptor interactions and their consequences for endocytosis and intracellular trafficking.
Collapse
Affiliation(s)
- Martin Sapp
- Department of Microbiology and Immunology, Feist Weiller-Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, 71130-3932, USA.
| | | |
Collapse
|
102
|
Krautkrämer E, Klein TM, Sommerer C, Schnitzler P, Zeier M. Mutations in the BC-loop of the BKV VP1 region do not influence viral load in renal transplant patients. J Med Virol 2008; 81:75-81. [PMID: 19031459 DOI: 10.1002/jmv.21359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The reactivation and replication of the BK polyomavirus (BKV) leading to BKV-associated nephropathy (BKVAN) is one of the major complications in renal transplantation patients. BKV isolates were classified into four subtypes (I-IV) based on genotype variations within the VP1-coding region. The type-specific amino acid differences cluster within the BC-loop of the major capsid protein VP1. As demonstrated in vitro, mutations in this region also play a role in the infectivity, attachment and stability of viral particles. Therefore, we analyzed the prevalence of BC-loop mutations in isolates of kidney transplant patients and compared their viral load in the urine. The VP1 subtyping regions of BKV isolates obtained from urine samples of 45 renal transplant patients were sequenced. The phylogenetic analysis of these sequences revealed that subtype I (66.67%) is the most prevalent genotype. The remaining isolates belong to subtype IV (33.33%). A high frequency of changes to specific amino acids within the BC-loop was identified among the BKV isolates from renal transplant patients. Patients with BKVAN exhibited a higher viral replication than patients without nephropathy. Although titers of isolates of subtype I were higher than titers of subtype IV isolates, the difference did not reach statistical significance. In addition, amino acid changes in the BC-loop did not influence the viral load and the incidence of BKVAN. These in vivo results demonstrate that high replication rates which serve as a predictive marker for BKVAN are not caused by altered receptor binding or affinity via mutated BC-loops.
Collapse
Affiliation(s)
- Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
103
|
Newburg DS. Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J Anim Sci 2008; 87:26-34. [PMID: 19028867 DOI: 10.2527/jas.2008-1347] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This review discusses the role of human milk glycans in protecting infants, but the conclusion that the human milk glycans constitute an innate immune system whereby the mother protects her offspring may have general applicability in all mammals, including species of commercial importance. Infants that are not breastfed have a greater incidence of severe diarrhea and respiratory diseases than those who are breastfed. In the past, this had been attributed primarily to human milk secretory antibodies. However, the oligosaccharides are major components of human milk, and milk is also rich in other glycans, including glycoproteins, mucins, glycosaminoglycans, and glycolipids. These milk glycans, especially the oligosaccharides, are composed of thousands of components. The milk factor that promotes gut colonization by Bifidobacterium bifidum was found to be a glycan, and such prebiotic characteristics may contribute to protection against infectious agents. However, the ability of human milk glycans to protect the neonate seems primarily to be due to their inhibition of pathogen binding to their host cell target ligands. Many such examples include specific fucosylated oligosaccharides and glycans that inhibit specific pathogens. Most human milk oligosaccharides are fucosylated, and their production depends on fucosyltransferase enzymes; mutations in these fucosyltransferase genes are common and underlie the various Lewis blood types in humans. Variable expression of specific fucosylated oligosaccharides in milk, also a function of these genes (and maternal Lewis blood type), is significantly associated with the risk of infectious disease in breastfed infants. Human milk also contains major quantities and large numbers of sialylated oligosaccharides, many of which are also present in bovine colostrum. These could similarly inhibit several common viral pathogens. Moreover, human milk oligosaccharides strongly attenuate inflammatory processes in the intestinal mucosa. These results support the hypothesis that oligosaccharides and other glycans are the major constituents of an innate immune system of human milk whereby the mother protects her infant from enteric and other pathogens through breastfeeding. These protective glycans may prove useful as a basis for the development of novel prophylactic and therapeutic agents that inhibit disease by mucosal pathogens in many species.
Collapse
Affiliation(s)
- D S Newburg
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
104
|
The C-terminal domain of ERp29 mediates polyomavirus binding, unfolding, and infection. J Virol 2008; 83:1483-91. [PMID: 19019959 DOI: 10.1128/jvi.02057-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penetration of the endoplasmic reticulum (ER) membrane by polyomavirus (PyV) is a decisive step in virus entry. We showed previously that the ER-resident factor ERp29 induces the local unfolding of PyV to initiate the ER membrane penetration process. ERp29 contains an N-terminal thioredoxin domain (NTD) that mediates its dimerization and a novel C-terminal all-helical domain (CTD) whose function is unclear. The NTD-mediated dimerization of ERp29 is critical for its unfolding activity; whether the CTD plays any role in PyV unfolding is unknown. We now show that three hydrophobic residues within the last helix of the ERp29 CTD that were individually mutated to either lysine or alanine abolished ERp29's ability to stimulate PyV unfolding and infection. This effect was not due to global misfolding of the mutant proteins, as they dimerize and do not form aggregates or display increased protease sensitivity. Moreover, the mutant proteins stimulated secretion of the secretory protein thyroglobulin with an efficiency similar to that of wild-type ERp29. Using a cross-linking coimmunoprecipitation assay, we found that the physical interaction of the ERp29 CTD mutants with PyV is inefficient. Our data thus demonstrate that the ERp29 CTD plays a crucial role in PyV unfolding and infection, likely by serving as part of a substrate-binding domain.
Collapse
|
105
|
Trache A, Meininger GA. Total internal reflection fluorescence (TIRF) microscopy. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2A.2.1-2A.2.22. [PMID: 18729056 DOI: 10.1002/9780471729259.mc02a02s10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Total internal reflection fluorescence (TIRF) microscopy represents a method of exciting and visualizing fluorophores present in the near-membrane region of live or fixed cells grown on coverslips. TIRF microscopy is based on the total internal reflection phenomenon that occurs when light passes from a high-refractive medium (e.g., glass) into a low-refractive medium (e.g., cell, water). The evanescent field produced by total internally reflected light excites the fluorescent molecules at the cell-substrate interface and is accompanied by minimal exposure of the remaining cell volume. This technique provides high-contrast fluorescence images, with very low background and virtually no out-of-focus light, ideal for visualization and spectroscopy of single-molecule fluorescence near a surface. This unit presents, in a concise manner, the principle of operation, instrument diversity, and TIRF microscopy applications for the study of biological samples.
Collapse
Affiliation(s)
- Andreea Trache
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
106
|
Mukherjee S, Thorsteinsson MV, Johnston LB, DePhillips PA, Zlotnick A. A Quantitative Description of In Vitro Assembly of Human Papillomavirus 16 Virus-Like Particles. J Mol Biol 2008; 381:229-37. [DOI: 10.1016/j.jmb.2008.05.079] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 05/25/2008] [Accepted: 05/29/2008] [Indexed: 11/25/2022]
|
107
|
Shevchuk AI, Hobson P, Lab MJ, Klenerman D, Krauzewicz N, Korchev YE. Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy. Biophys J 2008; 94:4089-94. [PMID: 18199668 PMCID: PMC2367192 DOI: 10.1529/biophysj.107.112524] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/22/2007] [Indexed: 12/15/2022] Open
Abstract
We have developed a high-resolution scanning surface confocal microscopy technique capable of imaging single virus-like particles (VLPs) on the surfaces of cells topographically and by fluorescence. The technique combines recently published single-molecule-resolution ion-conductance microscopy that acquires topographical data with confocal microscopy providing simultaneous fluorescent imaging. In our experiments we have demonstrated that the cell membrane exhibits numerous submicrometer-sized surface structures that could be topographically confused with virus particles. However, simultaneous acquisition of confocal images allows the positions of fluorescently tagged particles to be identified. Using this technique, we have, for the first time, visualized single polyoma VLPs adsorbed onto the cell membrane. Observed VLPs had a mean width of 108 +/- 16 nm. The particles were randomly distributed across the cell membrane, and no specific interactions were seen with cell membrane structures such as microvilli. These experiments demonstrate the utility of this new microscope for imaging the interactions of nanoparticles with the cell surface to provide novel insights into the earliest interactions of viruses and other nanoparticles such as gene therapy vectors with the cell.
Collapse
Affiliation(s)
- Andrew I Shevchuk
- Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
108
|
Carroll J, Dey D, Kreisman L, Velupillai P, Dahl J, Telford S, Bronson R, Benjamin T. Receptor-binding and oncogenic properties of polyoma viruses isolated from feral mice. PLoS Pathog 2008; 3:e179. [PMID: 18085820 PMCID: PMC2134959 DOI: 10.1371/journal.ppat.0030179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/11/2007] [Indexed: 02/07/2023] Open
Abstract
Laboratory strains of the mouse polyoma virus differ markedly in their abilities to replicate and induce tumors in newborn mice. Major determinants of pathogenicity lie in the sialic binding pocket of the major capsid protein Vp1 and dictate receptor-binding properties of the virus. Substitutions at two sites in Vp1 define three prototype strains, which vary greatly in pathogenicity. These strains replicate in a limited fashion and induce few or no tumors, cause a disseminated infection leading to the development of multiple solid tumors, or replicate and spread acutely causing early death. This investigation was undertaken to determine the Vp1 type(s) of new virus isolates from naturally infected mice. Compared with laboratory strains, truly wild-type viruses are constrained with respect to their selectivity and avidity of binding to cell receptors. Fifteen of 15 new isolates carried the Vp1 type identical to that of highly tumorigenic laboratory strains. Upon injection into newborn laboratory mice, the new isolates induced a broad spectrum of tumors, including ones of epithelial as well as mesenchymal origin. Though invariant in their Vp1 coding sequences, these isolates showed considerable variation in their regulatory sequences. The common Vp1 type has two essential features: 1) failure to recognize “pseudoreceptors” with branched chain sialic acids binding to which would attenuate virus spread, and 2) maintenance of a hydrophobic contact with true receptors bearing a single sialic acid, which retards virus spread and avoids acute and potentially lethal infection of the host. Conservation of these receptor-binding properties under natural selection preserves the oncogenic potential of the virus. These findings emphasize the importance of immune protection of neonates under conditions of natural transmission. Strains of the mouse polyoma virus adapted to growth in cell culture vary greatly in their abilities to cause disease. Pathogenicities of these laboratory strains range from “attenuated” to “highly virulent” when tested in animals. The biological differences are based in large part on variations in the outer capsid protein, which dictate the manner in which the virus recognizes and binds to cell receptors. In contrast, strains of virus newly isolated from wild mice are uniform in their receptor-binding properties. Naturally occurring strains avoid binding to pseudoreceptors, which would severely limit their ability to spread. At the same time, their avidity of binding to true receptors is sufficiently strong to avoid rapid dissociation and potentially lethal spread. They are therefore neither attenuated nor virulent. The new isolates do, however, retain the ability to induce a broad spectrum of tumors in the laboratory. These findings emphasize the importance of neonatal and maternal immune responses in allowing a potentially highly oncogenic virus to disseminate without causing disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Animals, Wild
- Binding Sites
- Capsid Proteins/metabolism
- Carcinoma/immunology
- Carcinoma/pathology
- Carcinoma/virology
- Cells, Cultured
- DNA, Viral/analysis
- Mice
- Mice, Inbred C3H
- N-Acetylneuraminic Acid/metabolism
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/virology
- Polyomavirus/genetics
- Polyomavirus/isolation & purification
- Polyomavirus/pathogenicity
- Polyomavirus Infections/immunology
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Receptors, Virus/metabolism
- Rodent Diseases/immunology
- Rodent Diseases/metabolism
- Rodent Diseases/virology
- Sarcoma/immunology
- Sarcoma/pathology
- Sarcoma/virology
- Sequence Analysis, DNA
- Tumor Virus Infections/immunology
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Replication
Collapse
Affiliation(s)
- John Carroll
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dilip Dey
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lori Kreisman
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Palanivel Velupillai
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean Dahl
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samuel Telford
- Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Roderick Bronson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas Benjamin
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
109
|
Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Natl Acad Sci U S A 2008; 105:5219-24. [PMID: 18353982 DOI: 10.1073/pnas.0710301105] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simian virus 40 (SV40) has been a paradigm for understanding attachment and entry of nonenveloped viruses, viral DNA replication, and virus assembly, as well as for endocytosis pathways associated with caveolin and cholesterol. We find by glycan array screening that SV40 recognizes its ganglioside receptor GM1 with a quite narrow specificity, but isothermal titration calorimetry shows that individual binding sites have a relatively low affinity, with a millimolar dissociation constant. The high-resolution crystal structure of recombinantly produced SV40 capsid protein, VP1, in complex with the carbohydrate portion of GM1, reveals that the receptor is bound in a shallow solvent-exposed groove at the outer surface of the capsid. Through a complex network of interactions, VP1 recognizes a conformation of GM1 that is the dominant one in solution. Analysis of contacts provides a structural basis for the observed specificity and suggests binding mechanisms for additional physiologically relevant GM1 variants. Comparison with murine Polyomavirus (Polyoma) receptor complexes reveals that SV40 uses a different mechanism of sialic acid binding, which has implications for receptor binding of human polyomaviruses. The SV40-GM1 complex reveals a parallel to cholera toxin, which uses a similar cell entry pathway and binds GM1 in the same conformation.
Collapse
|
110
|
Lindesmith LC, Donaldson EF, LoBue AD, Cannon JL, Zheng DP, Vinje J, Baric RS. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med 2008; 5:e31. [PMID: 18271619 PMCID: PMC2235898 DOI: 10.1371/journal.pmed.0050031] [Citation(s) in RCA: 443] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 12/12/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Noroviruses are the leading cause of viral acute gastroenteritis in humans, noted for causing epidemic outbreaks in communities, the military, cruise ships, hospitals, and assisted living communities. The evolutionary mechanisms governing the persistence and emergence of new norovirus strains in human populations are unknown. Primarily organized by sequence homology into two major human genogroups defined by multiple genoclusters, the majority of norovirus outbreaks are caused by viruses from the GII.4 genocluster, which was first recognized as the major epidemic strain in the mid-1990s. Previous studies by our laboratory and others indicate that some noroviruses readily infect individuals who carry a gene encoding a functional alpha-1,2-fucosyltransferase (FUT2) and are designated "secretor-positive" to indicate that they express ABH histo-blood group antigens (HBGAs), a highly heterogeneous group of related carbohydrates on mucosal surfaces. Individuals with defects in the FUT2 gene are termed secretor-negative, do not express the appropriate HBGA necessary for docking, and are resistant to Norwalk infection. These data argue that FUT2 and other genes encoding enzymes that regulate processing of the HBGA carbohydrates function as susceptibility alleles. However, secretor-negative individuals can be infected with other norovirus strains, and reinfection with the GII.4 strains is common in human populations. In this article, we analyze molecular mechanisms governing GII.4 epidemiology, susceptibility, and persistence in human populations. METHODS AND FINDINGS Phylogenetic analyses of the GII.4 capsid sequences suggested an epochal evolution over the last 20 y with periods of stasis followed by rapid evolution of novel epidemic strains. The epidemic strains show a linear relationship in time, whereby serial replacements emerge from the previous cluster. Five major evolutionary clusters were identified, and representative ORF2 capsid genes for each cluster were expressed as virus-like particles (VLPs). Using salivary and carbohydrate-binding assays, we showed that GII.4 VLP-carbohydrate ligand binding patterns have changed over time and include carbohydrates regulated by the human FUT2 and FUT3 pathways, suggesting that strain sensitivity to human susceptibility alleles will vary. Variation in surface-exposed residues and in residues that surround the fucose ligand interaction domain suggests that antigenic drift may promote GII.4 persistence in human populations. Evidence supporting antigenic drift was obtained by measuring the antigenic relatedness of GII.4 VLPs using murine and human sera and demonstrating strain-specific serologic and carbohydrate-binding blockade responses. These data suggest that the GII.4 noroviruses persist by altering their HBGA carbohydrate-binding targets over time, which not only allows for escape from highly penetrant host susceptibility alleles, but simultaneously allows for immune-driven selection in the receptor-binding region to facilitate escape from protective herd immunity. CONCLUSIONS Our data suggest that the surface-exposed carbohydrate ligand binding domain in the norovirus capsid is under heavy immune selection and likely evolves by antigenic drift in the face of human herd immunity. Variation in the capsid carbohydrate-binding domain is tolerated because of the large repertoire of similar, yet distinct HBGA carbohydrate receptors available on mucosal surfaces that could interface with the remodeled architecture of the capsid ligand-binding pocket. The continuing evolution of new replacement strains suggests that, as with influenza viruses, vaccines could be targeted that protect against norovirus infections, and that continued epidemiologic surveillance and reformulations of norovirus vaccines will be essential in the control of future outbreaks.
Collapse
Affiliation(s)
- Lisa C Lindesmith
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric F Donaldson
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anna D LoBue
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jennifer L Cannon
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Du-Ping Zheng
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Vinje
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ralph S Baric
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
111
|
Direct correlation between sialic acid binding and infection of cells by two human polyomaviruses (JC virus and BK virus). J Virol 2007; 82:2560-4. [PMID: 18094176 DOI: 10.1128/jvi.02123-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the human polyomaviruses JC virus (JCV) and BK virus (BKV), the first step to a successful infection involves binding to sialic acid moieties located on the surfaces of host cells. By stripping and then reconstituting specific sialic acid linkages on host cells, we show that JCV uses both alpha(2,3)-linked and alpha(2,6)-linked sialic acids on N-linked glycoproteins to infect cells. For both JCV and BKV, the sialic acid linkages required for cell surface binding directly correlate with the linkages required for infection. In addition to sialic acid linkage data, these data suggest that the third sugar from the carbohydrate chain terminus is important for virus binding and infection.
Collapse
|
112
|
Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A, Feizi T. N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 2007; 81:12846-58. [PMID: 17855525 PMCID: PMC2169104 DOI: 10.1128/jvi.01311-07] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 09/05/2007] [Indexed: 01/08/2023] Open
Abstract
Carbohydrate microarrays have emerged as powerful tools in analyses of microbe-host interactions. Using a microarray with 190 sequence-defined oligosaccharides in the form of natural glycolipids and neoglycolipids representative of diverse mammalian glycans, we examined interactions of simian virus 40 (SV40) with potential carbohydrate receptors. While the results confirmed the high specificity of SV40 for the ganglioside GM1, they also revealed that N-glycolyl GM1 ganglioside [GM1(Gc)], which is characteristic of simian species and many other nonhuman mammals, is a better ligand than the N-acetyl analog [GM1(Ac)] found in mammals, including humans. After supplementing glycolipid-deficient GM95 cells with GM1(Ac) and GM1(Gc) gangliosides and the corresponding neoglycolipids with phosphatidylethanolamine lipid groups, it was found that GM1(Gc) analogs conferred better virus binding and infectivity. Moreover, we visualized the interaction of NeuGc with VP1 protein of SV40 by molecular modeling and identified a conformation for GM1(Gc) ganglioside in complex with the virus VP1 pentamer that is compatible with its presentation as a membrane receptor. Our results open the way not only to detailed studies of SV40 infection in relation to receptor expression in host cells but also to the monitoring of changes that may occur with time in receptor usage by the virus.
Collapse
Affiliation(s)
- Maria A Campanero-Rhodes
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Northwick Park and St. Mark's Campus, Watford Road, Harrow, Middlesex HA1 3UJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Identification of a mutation in the SV40 capsid protein VP1 that influences plaque morphology, vacuolization, and receptor usage. Virology 2007; 370:343-51. [PMID: 17936868 DOI: 10.1016/j.virol.2007.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/01/2007] [Accepted: 08/30/2007] [Indexed: 11/22/2022]
Abstract
A plaque variant of SV40 that was first isolated in the 1960s, designated SV40-LP(KT), was molecularly cloned and subjected to sequence analysis. The genome of SV40-LP(KT) was found to be nearly identical to the previously described isolate known as 777. However, SV40-LP(KT) contained a mutation in the VP1 coding region resulting in a change of histidine 136 to tyrosine. This VP1 mutation was identified as a genetic determinant influencing a number of phenotypes associated with SV40-LP(KT) such as plaque morphology, intracellular vacuole formation, and ganglioside receptor usage.
Collapse
|
114
|
Knappe M, Bodevin S, Selinka HC, Spillmann D, Streeck RE, Chen XS, Lindahl U, Sapp M. Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem 2007; 282:27913-22. [PMID: 17640876 DOI: 10.1074/jbc.m705127200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient infection of cells by human papillomaviruses (HPVs) and pseudovirions requires primary interaction with cell surface proteoglycans with apparent preference for species carrying heparan sulfate (HS) side chains. To identify residues contributing to virus/cell interaction, we performed point mutational analysis of the HPV16 major capsid protein, L1, targeting surface-exposed amino acid residues. Replacement of lysine residues 278, 356, or 361 for alanine reduced cell binding and infectivity of pseudovirions. Various combinations of these amino acid exchanges further decreased cell attachment and infectivity with residual infectivity of less than 5% for the triple mutant, suggesting that these lysine residues cooperate in HS binding. Single, double, or triple exchanges for arginine did not impair infectivity, demonstrating that interaction is dependent on charge distribution rather than sequence-specific. The lysine residues are located within a pocket on the capsomere surface, which was previously proposed as the putative receptor binding site. Fab fragments of binding-neutralizing antibody H16.56E that recognize an epitope directly adjacent to lysine residues strongly reduced HS-mediated cell binding, further corroborating our findings. In contrast, mutation of basic surface residues located in the cleft between capsomeres outside this pocket did not significantly reduce interaction with HS or resulted in assembly-deficient proteins. Computer-simulated heparin docking suggested that all three lysine residues can form hydrogen bonds with 2-O-, 6-O-, and N-sulfate groups of a single HS molecule with a minimal saccharide domain length of eight monomer units. This prediction was experimentally confirmed in binding experiments using capsid protein, heparin molecules of defined length, and sulfate group modifications.
Collapse
Affiliation(s)
- Maren Knappe
- Institute for Medical Microbiology, University of Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Rainey-Barger EK, Magnuson B, Tsai B. A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J Virol 2007; 81:12996-3004. [PMID: 17881435 PMCID: PMC2169125 DOI: 10.1128/jvi.01037-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The nonenveloped polyomavirus (Py) traffics from the plasma membrane to the endoplasmic reticulum (ER), where it penetrates the ER membrane, allowing the viral genome to reach the nucleus to cause infection. The mechanism of membrane penetration for Py, and for other nonenveloped viruses, remains poorly characterized. We showed previously that the ER chaperone ERp29 alters the conformation of Py coat protein VP1, enabling the virus to interact with membranes. Here, we developed a membrane perforation assay and showed that the ERp29-activated Py perforates the physiologically relevant ER membrane, an event that likely initiates viral penetration. Biochemical analysis revealed that the internal protein VP2 is exposed in the activated viral particle. Accordingly, we demonstrate that VP2 binds to, integrates into, and perforates the ER membrane; the other internal protein, VP3, binds to and integrates into the ER membrane but is not sufficient for perforation. Our data thus link the activity of a cellular factor on a nonenveloped virus to the membrane perforation event and identify a viral component that mediates this process.
Collapse
Affiliation(s)
- Emily K Rainey-Barger
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Rm. 3043, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
116
|
Fujitani N, Shimizu H, Matsubara T, Ohta T, Komata Y, Miura N, Sato T, Nishimura SI. Structural transition of a 15 amino acid residue peptide induced by GM1. Carbohydr Res 2007; 342:1895-903. [PMID: 17572397 DOI: 10.1016/j.carres.2007.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 11/15/2022]
Abstract
The ganglioside GM1-binding peptide, p3, with a sequence of VWRLLAPPFSNRLLP, displayed a clear structural alteration depending on the presence or absence of GM1 micelles. The three-dimensional structures of the p3 peptide in the free and GM1 bound states were analyzed using two-dimensional NMR spectroscopic experiments with distance-restrained simulated annealing calculations. The NMR experiments for the p3 peptide alone indicated that the peptide has two conformers derived from the exchange of cis and trans forms at Pro(7)-Pro(8). Further study with theoretical modeling revealed that the p3 peptide has a curb conformation without regular secondary structure. On the other hand, the NMR studies for the p3 peptide with the GM1 micelles elucidated a trans conformer and gave a structure stabilized by hydrophobic interactions of beta- and helical turns. Based on these structural investigations, tryptophan, a core residue of the hydrophobic cluster, might be an essential residue for the recognition of the GM1 saccharides. The dynamic transition of the p3 peptide may play an important role in the function of GM1 as a multiple receptor as in the traditional pathway of the infection by cholera toxin.
Collapse
Affiliation(s)
- Naoki Fujitani
- Division of Advanced Chemical Biology, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, Sapporo 011-0021, Japan
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Dugan AS, Gasparovic ML, Tsomaia N, Mierke DF, O'Hara BA, Manley K, Atwood WJ. Identification of amino acid residues in BK virus VP1 that are critical for viability and growth. J Virol 2007; 81:11798-808. [PMID: 17699578 PMCID: PMC2168807 DOI: 10.1128/jvi.01316-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK virus (BKV) is a ubiquitous pathogen that establishes a persistent infection in the urinary tract of 80% of the human population. Like other polyomaviruses, the major capsid protein of BKV, virion protein 1 (VP1), is critical for host cell receptor recognition and for proper virion assembly. BKV uses a carbohydrate complex containing alpha(2,3)-linked sialic acid attached to glycoprotein and glycolipid motifs as a cellular receptor. To determine the amino acids important for BKV binding to the sialic acid portion of the complex, we generated a series of 17 point mutations in VP1 and scored them for viral growth. The first set of mutants behaved identically to wild-type virus, suggesting that these amino acids were not critical for virus propagation. Another group of VP1 mutants rendered the virus nonviable. These mutations failed to protect viral DNA from DNase I digestion, indicating a role for these domains in capsid assembly and/or packaging of DNA. A third group of VP1 mutations packaged DNA similarly to the wild type but failed to propagate. The initial burst size of these mutations was similar to that of the wild type, indicating that there is no defect in the lytic release of the mutated virions. Binding experiments revealed that a subset of the BKV mutants were unable to attach to their host cells. These motifs are likely important for sialic acid recognition. We next mapped these mutations onto a model of BKV VP1 to provide atomic insight into the role of these sites in the binding of sialic acid to VP1.
Collapse
Affiliation(s)
- Aisling S Dugan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Ashok A, Atwood WJ. Virus receptors and tropism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 577:60-72. [PMID: 16626027 DOI: 10.1007/0-387-32957-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyomaviruses are small, tumorigenic, nonenveloped viruses that infect several different species. Interaction of these viruses with cell surface receptors represents the initial step during infection of host cells. This interaction can be a major determinant of viral host and tissue tropism. This chapter reviews what is currently known about the cellular receptors for each of five polyomavirus family members: Mouse polyomavirus (PyV), JC virus (JCV), BK virus (BKV), Lymphotropic papovavirus (LPV) and Simian virus 40 (SV40). These polyomaviruses serve to illustrate the enormous diversity of virus-cell surface interactions and allow us to closely evaluate the role of receptors in their life cycles. The contribution of other factors such as transcriptional regulators and signaling pathways are also summarized.
Collapse
|
119
|
Rainey-Barger EK, Mkrtchian S, Tsai B. Dimerization of ERp29, a PDI-like protein, is essential for its diverse functions. Mol Biol Cell 2007; 18:1253-60. [PMID: 17267685 PMCID: PMC1838973 DOI: 10.1091/mbc.e06-11-1004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein disulfide isomerase (PDI)-like proteins act as oxido-reductases and chaperones in the endoplasmic reticulum (ER). How oligomerization of the PDI-like proteins control these activities is unknown. Here we show that dimerization of ERp29, a PDI-like protein, regulates its protein unfolding and escort activities. We have demonstrated previously that ERp29 induces the local unfolding of polyomavirus in the ER, a step required for viral infection. We now find that, in contrast to wild-type ERp29, a mutant ERp29 (D42A) that dimerizes inefficiently is unable to unfold polyomavirus or stimulate infection. A compensatory mutation that partially restores dimerization to the mutant ERp29 (G37D/D42A) rescues ERp29 activity. These results indicate that dimerization of ERp29 is crucial for its protein unfolding function. ERp29 was also suggested to act as an escort factor by binding to the secretory protein thyroglobulin (Tg) in the ER, thereby facilitating its secretion. We show that this escort function likewise depends on ERp29 dimerization. Thus our data demonstrate that dimerization of a PDI-like protein acts to regulate its diverse ER activities.
Collapse
Affiliation(s)
- Emily K. Rainey-Barger
- *Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Billy Tsai
- *Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
120
|
Teuton JR, Brandt CR. Sialic acid on herpes simplex virus type 1 envelope glycoproteins is required for efficient infection of cells. J Virol 2007; 81:3731-9. [PMID: 17229687 PMCID: PMC1866119 DOI: 10.1128/jvi.02250-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) envelope proteins are posttranslationally modified by the addition of sialic acids to the termini of the glycan side chains. Although gC, gD, and gH are sialylated, it is not known whether sialic acids on these envelope proteins are functionally important. Digestion of sucrose gradient purified virions for 4 h with neuraminidases that remove both alpha2,3 and alpha2,6 linked sialic acids reduced titers by 1,000-fold. Digestion with a alpha2,3-specific neuraminidase had no effect, suggesting that alpha2,6-linked sialic acids are required for infection. Lectins specific for either alpha2,3 or alpha2,6 linkages blocked attachment and infection to the same extent. In addition, the mobility of gH, gB, and gD in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels was altered by digestion with either alpha2,3 specific neuraminidase or nonspecific neuraminidases, indicating the presence of both linkages on these proteins. The infectivity of a gC-1-null virus, DeltagC2-3, was reduced to the same extent as wild-type virus after neuraminidase digestion, and attachment was not altered. Neuraminidase digestion of virions resulted in reduced VP16 translocation to the nucleus, suggesting that the block occurred between attachment and entry. These results show for the first time that sialic acids on HSV-1 virions play an important role in infection and suggest that targeting virion sialic acids may be a valid antiviral drug development strategy.
Collapse
Affiliation(s)
- Jeremy R. Teuton
- Program in Cell and Molecular Biology, Department of Medical Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Curtis R. Brandt
- Program in Cell and Molecular Biology, Department of Medical Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Corresponding author. Mailing address: Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 6630 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706. Phone: (608) 262-8054. Fax: (608) 262-0479. E-mail:
| |
Collapse
|
121
|
Chen T, Zhang Z, Glotzer SC. A precise packing sequence for self-assembled convex structures. Proc Natl Acad Sci U S A 2007; 104:717-22. [PMID: 17215354 PMCID: PMC1783380 DOI: 10.1073/pnas.0604239104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Indexed: 12/20/2022] Open
Abstract
Molecular simulations of the self-assembly of cone-shaped particles with specific, attractive interactions are performed. Upon cooling from random initial conditions, we find that the cones self-assemble into clusters and that clusters comprised of particular numbers of cones (e.g., 4-17, 20, 27, 32, and 42) have a unique and precisely packed structure that is robust over a range of cone angles. These precise clusters form a sequence of structures at specific cluster sizes (a "precise packing sequence") that for small sizes is identical to that observed in evaporation-driven assembly of colloidal spheres. We further show that this sequence is reproduced and extended in simulations of two simple models of spheres self-assembling from random initial conditions subject to convexity constraints, including an initial spherical convexity constraint for moderate- and large-sized clusters. This sequence contains six of the most common virus capsid structures obtained in vivo, including large chiral clusters and a cluster that may correspond to several non-icosahedral, spherical virus capsids obtained in vivo. Our findings suggest that this precise packing sequence results from free energy minimization subject to convexity constraints and is applicable to a broad range of assembly processes.
Collapse
Affiliation(s)
- Ting Chen
- Departments of *Chemical Engineering and
| | | | - Sharon C. Glotzer
- Departments of *Chemical Engineering and
- Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2136
| |
Collapse
|
122
|
Mazik M, Cavga H. Molecular Recognition of N-Acetylneuraminic Acid with Acyclic Benzimidazolium- and Aminopyridine/guanidinium-Based Receptors. J Org Chem 2007; 72:831-8. [PMID: 17253802 DOI: 10.1021/jo061901e] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acyclic receptors incorporating neutral and cationic recognition sites show effective binding of N-acetylneuraminic acid (Neu5Ac), the most naturally abundant sialic acid, in highly competitive solvents such as dimethyl sulfoxide (DMSO) and water/DMSO. Receptors 6b and 7b are able to form neutral/charge-reinforced hydrogen bonds and ion pairs with Neu5Ac, similar to sialic acid-binding proteins. Syntheses and binding properties of the artificial receptors are discussed.
Collapse
Affiliation(s)
- Monika Mazik
- Institut für Organische Chemie der Technischen Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | | |
Collapse
|
123
|
Bishop B, Dasgupta J, Chen XS. Structure-based engineering of papillomavirus major capsid l1: controlling particle assembly. Virol J 2007; 4:3. [PMID: 17210082 PMCID: PMC1781933 DOI: 10.1186/1743-422x-4-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 01/08/2007] [Indexed: 11/29/2022] Open
Abstract
The outer shell of the papillomavirus particle is comprised of 72 pentamers of the major capsid L1 protein arranged on a T = 7 icosahedral lattice. The recombinant L1 can form T = 7 virus-like particles in vitro. The crystal structure of a T = 7 papilloma virion has not yet been determined; however, the crystal structure of a T = 1 particle containing 12 pentamers is known. The T = 1 structure reveals that helix-helix interactions, through three helices–h2, h3, and h4–near the C-terminus of L1, mediate the inter-pentameric bonding that is responsible for T = 1 assembly. Based on the T = 1 crystal structure, we have generated a set of internal deletions to test the role of the three C-terminal helices in T = 7 assembly. We have demonstrated that the h2, h3, and h4 near the C-terminal end of L1 are important for the L1 structure and particle assembly. In particular, we found that h2 and h3 are essential for L1 folding and pentamer formation, whereas h4 is indispensable for the assembly of not only T1, but also of the T7 virus-like particle.
Collapse
Affiliation(s)
- Brooke Bishop
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Genetics, University of Colorado HSC, Denver, CO 80262, USA
| | - Jhimli Dasgupta
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
124
|
|
125
|
Caruso M, Busanello A, Sthandier O, Cavaldesi M, Gentile M, Garcia MI, Amati P. Mutation in the VP1-LDV motif of the murine polyomavirus affects viral infectivity and conditions virus tissue tropism in vivo. J Mol Biol 2006; 367:54-64. [PMID: 17239397 DOI: 10.1016/j.jmb.2006.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 11/24/2022]
Abstract
The first contact of a virus with the host cell surface and further entry are important steps for a successful outcome of the infection process and for the virus-associated pathogenicity. We have previously shown that the entry of the murine Polyomavirus (Py) into fibroblasts is a multi-step process involving, at least, the attachment to primary sialic acids (SA)-containing cell receptors followed by post-binding interaction with secondary receptors, such as the alpha4beta1 integrin, likely through the VP1-LDV motif. Here we report on the functional role of the VP1-LDV motif in Py infectivity and in vivo virus tissue tropism. For this purpose, we have characterized a recombinant virus mutant, PyLNV, harboring a single aa substitution in this motif (D138N). Although not critical for virus viability, the D138N substitution abrogates the post-attachment Py-alpha4beta1 interaction, rendering the PyLNV mutant virus twofold less infectious than the Py wild-type (Wt) in alpha4beta1-positive fibroblasts. To study the putative role of the VP1-LDV motif in vivo, newborn C57BL/6 mice were inoculated with PyWt or PyLNV and, after six days, organs were analyzed for the presence of viral DNA. Intriguingly, PyLNV showed an altered spectrum of in vivo replication compared with PyWt, particularly in the skin and in the kidney. The implication of Py-alpha4beta1 integrin interaction in conditioning tissue-specificity of virus replication is discussed.
Collapse
Affiliation(s)
- Maddalena Caruso
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
126
|
Gee GV, Dugan AS, Tsomaia N, Mierke DF, Atwood WJ. The role of sialic acid in human polyomavirus infections. Glycoconj J 2006; 23:19-26. [PMID: 16575519 DOI: 10.1007/s10719-006-5434-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
JC virus (JCV) and BK virus (BKV) are human polyomaviruses that infect approximately 85% of the population worldwide [1,2]. JCV is the underlying cause of the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML), a condition resulting from JCV induced lytic destruction of myelin producing oligodendrocytes in the brain [3]. BKV infection of kidneys in renal transplant recipients results in a gradual loss of graft function known as polyomavirus associated nephropathy (PVN) [4]. Following the identification of these viruses as the etiological agents of disease, there has been greater interest in understanding the basic biology of these human pathogens [5,6]. Recent advances in the field have shown that viral entry of both JCV and BKV is dependent on the ability to interact with sialic acid. This review focuses on what is known about the human polyomaviruses and the role that sialic acid plays in determining viral tropism.
Collapse
Affiliation(s)
- Gretchen V Gee
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
127
|
Neugebauer M, Walders B, Brinkman M, Ruehland C, Schumacher T, Bertling WM, Geuther E, Reiser COA, Reichel C, Strich S, Hess J. Development of a vaccine marker technology: Display of B cell epitopes on the surface of recombinant polyomavirus-like pentamers and capsoids induces peptide-specific antibodies in piglets after vaccination. Biotechnol J 2006; 1:1435-46. [PMID: 17109492 DOI: 10.1002/biot.200600149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly immunogenic capsomers (pentamers) and virus-like particles (VLPs) were generated through insertion of foreign B cell epitopes into the surface-exposed loops of the VP1 protein of murine polyomavirus and via heterologous expression of the recombinant fusion proteins in E. coli. Usually, complex proteins like the keyhole limpet hemocyanin (KLH) act as standard carrier devices for the display of such immunogenic peptides after chemical linkage. Here, a comparative analysis revealed that antibody responses raised against the carrier entities, KLH or VP1 pentamers, did not significantly differ up to 18 weeks, demonstrating the highly immunogenic nature of VP1-based particulate structures. The carrier-specific antibody response was reproducibly detected in the meat juice after processing. More importantly, chimeric VP1 pentamers and VLPs carrying peptides of 12 and 14 amino acids in length, inserted into the BC2 loop, induced a strong and long-lasting humoral immune response against VP1 and the inserted foreign epitope. Remarkably, the epitope-specific antibody response was only moderately decreased when VP1 pentamers were used instead of VLPs. In conclusion, we identified polyomavirus VP1-based structures displaying surface-exposed immunodominant B cell epitopes as being an efficient carrier system for the induction of potent peptide-specific antibodies. The application of this approach in vaccine marker technology in livestock holding and the meat production chain is discussed.
Collapse
|
128
|
Nakanishi A, Nakamura A, Liddington R, Kasamatsu H. Identification of amino acid residues within simian virus 40 capsid proteins Vp1, Vp2, and Vp3 that are required for their interaction and for viral infection. J Virol 2006; 80:8891-8. [PMID: 16940501 PMCID: PMC1563927 DOI: 10.1128/jvi.00781-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction of simian virus 40 (SV40) major capsid protein Vp1 with the minor capsid proteins Vp2 and Vp3 is an integral aspect of the SV40 architecture. Two Vp3 sequence elements mediate Vp1 pentamer binding in vitro, Vp3 residues 155 to 190, or D1, and Vp3 residues 222 to 234, or D2. Of the two, D1 but not D2 was necessary and sufficient to direct the interaction with Vp1 in vivo. Rational mutagenesis of Vp3 residues (Phe157, Ile158, Pro164, Gly165, Gly166, Leu177, and Leu181) or Vp1 residues (Val243 and Leu245), based on a structural model of the SV40 Vp1 pentamer complexed with Vp3 D1, was carried out to disrupt the interaction between Vp1 and Vp3 and to study the consequences of these mutations for viral viability. Altering these residues to bulky, charged residues blocked the interaction in vitro. When these alterations were introduced into the viral genome, they reduced viral viability. Mutants with alterations in Vp1 Val243, Leu245, or both to glutamate were nearly nonviable, whereas those with Vp3 alterations reduced, but did not eliminate, viability. Our results defined the residues of Vp1 and the minor capsid proteins that are essential for both the interaction of the capsid proteins and viral viability in permissive cells.
Collapse
Affiliation(s)
- Akira Nakanishi
- Molecular Biology Institute, University of California-Los Angeles, 611 East Charles E. Young Drive, Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
129
|
Lilley BN, Gilbert JM, Ploegh HL, Benjamin TL. Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection. J Virol 2006; 80:8739-44. [PMID: 16912321 PMCID: PMC1563856 DOI: 10.1128/jvi.00791-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathways by which viruses enter cells are diverse, but in all cases, infection necessitates the transfer of the viral genome across a cellular membrane. Polyomavirus (Py) particles, after binding to glycolipid and glycoprotein receptors at the cell surface, are delivered to the lumen of the endoplasmic reticulum (ER). The nature and extent of virus disassembly in the ER, how the viral genome is transported to the cytosol and subsequently to the nucleus, and whether any cellular proteins are involved are not known. Here, we identify an ER-resident protein, Derlin-2, a factor implicated in the removal of misfolded proteins from the ER for cytosolic degradation, as a component of the machinery required for mouse Py to establish an infection. Inhibition of Derlin-2 function by expression of either a dominant-negative form of Derlin-2 or a short hairpin RNA that reduces Derlin-2 levels blocks Py infection by 50 to 75%. The block imposed by Derlin-2 inhibition occurs after the virus reaches the ER and can be bypassed by the introduction of Py DNA into the cytosol. These findings suggest a mode of Py entry that involves cytosolic access via the quality control machinery in the ER.
Collapse
Affiliation(s)
- Brendan N Lilley
- Department of Pathology, Havard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
130
|
Zielonka A, Gedvilaite A, Ulrich R, Lüschow D, Sasnauskas K, Müller H, Johne R. Generation of virus-like particles consisting of the major capsid protein VP1 of goose hemorrhagic polyomavirus and their application in serological tests. Virus Res 2006; 120:128-37. [PMID: 16780983 DOI: 10.1016/j.virusres.2006.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
Goose hemorrhagic polyomavirus (GHPV) is the causative agent of hemorrhagic nephritis and enteritis of geese (HNEG), a fatal disease of young geese with high mortality rates. GHPV cannot be efficiently propagated in tissue culture. To provide antigens for diagnostic tests and vaccines, its major structural protein VP1 was recombinantly expressed in Sf9 insect cells and in the yeast Saccharomyces cerevisiae. As demonstrated by density gradient centrifugation and electron microscopy, GHPV-VP1 expressed in insect cells formed virus-like particles (VLPs) with a diameter of 45 nm indistinguishable from infectious polyomavirus particles. However, efficiency of VLP formation was low as compared to the monkey polyomavirus SV-40-VP1. In yeast cells, GHPV-VP1 alone formed smaller VLPs, 20 nm in diameter. Remarkably, co-expression of GHPV-VP2 resulted in VLPs with a diameter of 45 nm. All three types of GHPV-VLPs were shown to hemagglutinate chicken erythrocytes. ELISA and hemagglutination inhibition tests using the VLPs as antigen detected GHPV-specific antibodies in up to 85.7% of sera derived from flocks with HNEG but in none of the sera of a clinically healthy flock. However, GHPV-specific antibodies were also detected in sera from two other flocks without HNEG indicating a broad distribution of GHPV due to subclinical or unrecognised infections.
Collapse
Affiliation(s)
- Anja Zielonka
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
Dang X, Koralnik IJ. A granule cell neuron-associated JC virus variant has a unique deletion in the VP1 gene. J Gen Virol 2006; 87:2533-2537. [PMID: 16894191 DOI: 10.1099/vir.0.81945-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human polyomavirus JC (JCV) typically infects glial cells and is the aetiological agent of progressive multifocal leukoencephalopathy (PML), which occurs in immunosuppressed individuals. The full-length sequence of a granule cell neuron-tropic JCV variant, JCVGCN1, associated with lytic infection of granule cell neurons and cerebellar atrophy in a human immunodeficiency virus-infected patient with PML was determined and compared with the sequence of the JCV isolate from the classic PML lesions present in the hemispheric white matter of the same individual (JCVHWM). A unique deletion was found in the C terminus of the VP1 gene of JCVGCN1, which encodes the major capsid protein, resulting in a frame shift and a total change of the C-terminal amino acid sequence of this protein. This deletion was not present in JCVHWM, suggesting that this mutation may be instrumental in facilitating entry or replication of JCV into granule cell neurons.
Collapse
Affiliation(s)
- Xin Dang
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, RE 213C, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Igor J Koralnik
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, RE 213C, 330 Brookline Avenue, Boston, MA 02215, USA
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, RE 213C, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
132
|
Voronkova T, Kazaks A, Ose V, Ozel M, Scherneck S, Pumpens P, Ulrich R. Hamster polyomavirus-derived virus-like particles are able to transfer in vitro encapsidated plasmid DNA to mammalian cells. Virus Genes 2006; 34:303-14. [PMID: 16927120 DOI: 10.1007/s11262-006-0028-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 04/25/2006] [Indexed: 01/31/2023]
Abstract
The authentic major capsid protein 1 (VP1) of hamster polyomavirus (HaPyV) consists of 384 amino acid (aa) residues (42 kDa). Expression from an additional in-frame initiation codon located upstream from the authentic VP1 open reading frame (at position -4) might result in the synthesis of a 388 aa-long, amino-terminally extended VP1 (aa -4 to aa 384; VP1(ext)). In a plasmid-mediated Drosophila Schneider (S2) cell expression system, both VP1 derivatives as well as a VP1(ext) variant with an amino acid exchange of the authentic Met1Gly (VP1(ext-M1)) were expressed to a similar high level. Although all three proteins were detected in nuclear as well as cytoplasmic fractions, formation of virus-like particles (VLPs) was observed exclusively in the nucleus as confirmed by negative staining electron microscopy. The use of a tryptophan promoter-driven Escherichia coli expression system resulted in the efficient synthesis of VP1 and VP1(ext) and formation of VLPs. In addition, establishment of an in vitro disassembly/reassembly system allowed the encapsidation of plasmid DNA into VLPs. Encapsidated DNA was found to be protected against the action of DNase I. Mammalian COS-7 and CHO cells were transfected with HaPyV-VP1-VLPs carrying a plasmid encoding enhanced green fluorescent protein (eGFP). In both cell lines eGFP expression was detected indicating successful transfer of the plasmid into the cells, though at a still low level. Cesium chloride gradient centrifugation allowed the separation of VLPs with encapsidated DNA from "empty" VLPs, which might be useful for further optimization of transfection. Therefore, heterologously expressed HaPyV-VP1 may represent a promising alternative carrier for foreign DNA in gene transfer applications.
Collapse
Affiliation(s)
- Tatyana Voronkova
- Biomedical Research and Study Centre, Ratsupites 1, Riga LV-1067, Latvia.
| | | | | | | | | | | | | |
Collapse
|
133
|
Gedvilaite A, Dorn DC, Sasnauskas K, Pecher G, Bulavaite A, Lawatscheck R, Staniulis J, Dalianis T, Ramqvist T, Schönrich G, Raftery MJ, Ulrich R. Virus-like particles derived from major capsid protein VP1 of different polyomaviruses differ in their ability to induce maturation in human dendritic cells. Virology 2006; 354:252-60. [PMID: 16904154 DOI: 10.1016/j.virol.2006.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/13/2006] [Accepted: 07/07/2006] [Indexed: 11/20/2022]
Abstract
As polyomavirus major capsid protein VP1-derived virus-like particles (VLPs) have been demonstrated to be highly immunogenic, we studied their interaction with human dendritic cells (hDCs). Exposure of hDCs to VLPs originating from murine (MPyV) or hamster polyomavirus (HaPyV) induced hDC maturation. In contrast, exposure of hDCs to VLPs derived from human polyomaviruses (BK and JC) and simian virus 40 (SV40) only marginally induced DC maturation. The hDCs stimulated by HaPyV- or MPyV-derived VLPs readily produced interleukin-12 and stimulated CD8-positive T-cell responses in vitro. The highest frequencies of activated T cells were again observed after pulsing with HaPyV- and MPyV-derived VLPs. Monocyte-derived hDCs both bound and internalized the various tested polyomavirus VP1-derived VLPs with different levels of efficiency, partially explaining their individual maturation potentials. In conclusion, our data suggest a high variability in uptake of polyomavirus-derived VLPs and potency to induce hDC maturation.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology, V Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Kasamatsu H, Woo J, Nakamura A, Müller P, Tevethia MJ, Liddington RC. A structural rationale for SV40 Vp1 temperature-sensitive mutants and their complementation. Protein Sci 2006; 15:2207-13. [PMID: 16882989 PMCID: PMC2242610 DOI: 10.1110/ps.062195606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two groups of temperature-sensitive (ts) mutants, termed ts B and ts C, have mutations in the major capsid protein of SV40, Vp1. These mutants have virion assembly defects at the nonpermissive temperature, but can complement one another when two mutants, one from each group, coinfect a cell. A third group of mutants, termed ts BC, have related phenotypes, but do not complement other mutants. We found that the mutations fall into two structural and functional classes. All ts C and one ts BC mutations map to the region close to the Ca2+ binding sites, and are predicted to disrupt the insertion of the distal part of the C-terminal invading arm (C-arm) into the receiving clamp. They share a severe defect in assembly at the nonpermissive temperature, with few capsid proteins attached to the viral minichromosome. By contrast, all ts B and most ts BC mutations map to a contiguous region including acceptor sites for the proximal part of the C-arm and intrapentamer contacts. These mutants form assembly intermediates that carry substantial capsid proteins on the minichromosome. Thus, accurate virion assembly is prevented by mutations that disrupt interactions between the receiving pentamer and both the proximal and distal parts of the C-arms, with the latter having a greater effect. The distinct spatial localization and assembly defects of the two classes of mutants provide a rationale for their intracistronic complementation and suggest models of capsid assembly.
Collapse
Affiliation(s)
- Harumi Kasamatsu
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
135
|
Abstract
BK virus (BKV) is a small, non-enveloped, double-stranded DNA virus and a member of the Polyomaviridae family. As the recently recognized etiologic agent of polyomavirus-associated nephropathy, the events involved in BKV invasion of host cells are an important area of study. Using cell culture models, the mechanism by which BKV infects permissive hosts to gain access to the replication machinery within these cells is beginning to unfold. BKV uses an N-linked glycoprotein containing an alpha(2,3)-linked sialic acid as a receptor. After this initial attachment, BKV enters cells through caveolae-mediated endocytosis. Intracellular trafficking via cellular cytoskeletal components follows this relatively slow and cholesterol-dependent internalization. BKV must reach the nucleus for viral transcription and replication to occur. Elucidating the steps of the early viral lifecycle would provide clues to help explain the infectious spread and pathology of this human pathogen.
Collapse
Affiliation(s)
- A S Dugan
- Graduate Program in Pathobiology, Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
136
|
Gedvilaite A, Aleksaite E, Staniulis J, Ulrich R, Sasnauskas K. Size and position of truncations in the carboxy-terminal region of major capsid protein VP1 of hamster polyomavirus expressed in yeast determine its assembly capacity. Arch Virol 2006; 151:1811-25. [PMID: 16575481 DOI: 10.1007/s00705-006-0745-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
The hamster polyomavirus major capsid protein VP1 was modified in its carboxy-terminal region by consecutive truncations and single amino acid exchanges. The ability of yeast-expressed VP1 variants to form virus-like particles (VLPs) strongly depended on the size and position of the truncation. VP1 variants lacking 21, 69, and 79 amino acid (aa) residues in their carboxy-terminal region efficiently formed VLPs similar to those formed by the unmodified VP1 (diameter 40-45 nm). In contrast, VP1 derivatives with carboxy-terminal truncations of 35 to 56 aa residues failed to form VLPs. VP1 mutants with a single A336G aa exchange or internal deletions of aa 335 to aa 346 and aa 335 to aa 363 resulted in the formation of VLPs of a smaller size (diameter 20 nm). These data indicate that certain parts of the carboxy-terminal region of VP1 are not essential for pentamer-pentamer interactions in the capsid, at least in the yeast expression system used.
Collapse
|
137
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
138
|
López-Bueno A, Rubio MP, Bryant N, McKenna R, Agbandje-McKenna M, Almendral JM. Host-selected amino acid changes at the sialic acid binding pocket of the parvovirus capsid modulate cell binding affinity and determine virulence. J Virol 2006; 80:1563-73. [PMID: 16415031 PMCID: PMC1346950 DOI: 10.1128/jvi.80.3.1563-1573.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 11/10/2005] [Indexed: 12/26/2022] Open
Abstract
The role of receptor recognition in the emergence of virulent viruses was investigated in the infection of severe combined immunodeficient (SCID) mice by the apathogenic prototype strain of the parvovirus minute virus of mice (MVMp). Genetic analysis of isolated MVMp viral clones (n = 48) emerging in mice, including lethal variants, showed only one of three single changes (V325M, I362S, or K368R) in the common sequence of the two capsid proteins. As was found for the parental isolates, the constructed recombinant viruses harboring the I362S or the K368R single substitutions in the capsid sequence, or mutations at both sites, showed a large-plaque phenotype and lower avidity than the wild type for cells in the cytotoxic interaction with two permissive fibroblast cell lines in vitro and caused a lethal disease in SCID mice when inoculated by the natural oronasal route. Significantly, the productive adsorption of MVMp variants carrying any of the three mutations selected through parallel evolution in mice showed higher sensitivity to the treatment of cells by neuraminidase than that of the wild type, indicating a lower affinity of the viral particle for the sialic acid component of the receptor. Consistent with this, the X-ray crystal structure of the MVMp capsids soaked with sialic acid (N-acetyl neuraminic acid) showed the sugar allocated in the depression at the twofold axis of symmetry (termed the dimple), immediately adjacent to residues I362 and K368, which are located on the wall of the dimple, and approximately 22 A away from V325 in a threefold-related monomer. This is the first reported crystal structure identifying an infectious receptor attachment site on a parvovirus capsid. We conclude that the affinity of the interactions of sialic-acid-containing receptors with residues at or surrounding the dimple can evolutionarily regulate parvovirus pathogenicity and adaptation to new hosts.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
139
|
Velupillai P, Garcea RL, Benjamin TL. Polyoma virus-like particles elicit polarized cytokine responses in APCs from tumor-susceptible and -resistant mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:1148-53. [PMID: 16394003 DOI: 10.4049/jimmunol.176.2.1148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PERA/Ei (PE) mice are highly susceptible to tumor induction by polyoma virus, whereas C57BR/cdj (BR) mice are highly resistant. PE mice respond to viral infection with a type 2 (IL-10) and BR mice with a type 1 (IL-12) cytokine response, underlining the importance of a sustained T cell response for effective antitumor immunity. PE and BR mice showed comparable Ab responses to the virus, indicating that a Th1 response is fully compatible with strong humoral immunity. Tumor susceptibility is dominant, and a type 2 response prevails in F1 mice derived from these strains. In this study, we show that the different cytokine responses of virus-infected hosts are recapitulated in vitro by exposure of APCs from uninfected PE, BR, and F1 animals to the virus. Importantly, virus-like particles formed from recombinant VP1, the major viral capsid protein, elicited the same host-specific cytokine responses as infectious virus. Assembly of VP1 pentamers into capsid shells is required because unassembled VP1 pentamers were ineffective. Binding of virus-like particles to sialic acid is required because pretreatment of APCs with neuraminidase prevented the response. Expression of TLR2 and TLR4 differed among different subpopulations of APCs and also between resistant and susceptible mice. Evidence is presented indicating that these TLRs play a role in mediating the host-specific cytokine responses to the virus.
Collapse
|
140
|
Abstract
A virus capsid is constructed from many copies of the same protein(s). Molecular recognition is central to capsid assembly. The capsid protein must polymerize in order to create a three-dimensional protein polymer. More than structure is required to understand this self-assembly reaction: one must understand how the pieces come together in solution.
Collapse
Affiliation(s)
- Adam Zlotnick
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
141
|
Boura E, Liebl D, Spísek R, Fric J, Marek M, Stokrová J, Holán V, Forstová J. Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Lett 2005; 579:6549-58. [PMID: 16298367 DOI: 10.1016/j.febslet.2005.10.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/25/2005] [Accepted: 10/31/2005] [Indexed: 11/21/2022]
Abstract
A vector for preparation of mouse polyomavirus capsid-like particles for transfer of foreign peptides or proteins into cells was constructed. Model pseudocapsids carrying EGFP fused with the C-terminal part of the VP3 minor protein (EGFP-VLPs) have been prepared and analysed for their ability to be internalised and processed by mouse cells and to activate mouse and human dendritic cells (DC) in vitro. EGFP-VLPs entered mouse epithelial cells, fibroblasts and human and mouse DC efficiently and were processed by both, lysosomes and proteasomes. Surprisingly, they did not induce upregulation of DC co-stimulation molecules or maturation markers in vitro; however, they did induce interleukin 12 secretion.
Collapse
Affiliation(s)
- E Boura
- Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicná 5, 128 44 Prague 2, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Magnuson B, Rainey EK, Benjamin T, Baryshev M, Mkrtchian S, Tsai B. ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 2005; 20:289-300. [PMID: 16246730 DOI: 10.1016/j.molcel.2005.08.034] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/28/2005] [Accepted: 08/31/2005] [Indexed: 11/20/2022]
Abstract
Membrane penetration of nonenveloped viruses is a poorly understood process. We have investigated early stages of this process by studying the conformational change experienced by polyomavirus (Py) in the lumen of the endoplasmic reticulum (ER), a step that precedes its transport into the cytosol. We show that a PDI-like protein, ERp29, exposes the C-terminal arm of Py's VP1 protein, leading to formation of a hydrophobic particle that binds to a lipid bilayer; this reaction likely mimics initiation of Py penetration across the ER membrane. Expression of a dominant-negative ERp29 decreases Py infection, indicating ERp29 facilitates viral infection. Interestingly, cholera toxin, another toxic agent that crosses the ER membrane into the cytosol, is unfolded by PDI in the ER. Our data thus identify an ER factor that mediates membrane penetration of a nonenveloped virus and suggest that PDI family members are generally involved in ER remodeling reactions.
Collapse
Affiliation(s)
- Brian Magnuson
- Department of Cell and Developmental Biology, University of Michigan Medical School, 4643 Medical Sciences II, 1335 East Catherine Street, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
143
|
Ewers H, Smith AE, Sbalzarini IF, Lilie H, Koumoutsakos P, Helenius A. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci U S A 2005; 102:15110-5. [PMID: 16219700 PMCID: PMC1257700 DOI: 10.1073/pnas.0504407102] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lateral mobility of individual murine polyoma virus-like particles (VLPs) bound to live cells and artificial lipid bilayers was studied by single fluorescent particle tracking using total internal reflection fluorescence microscopy. The particle trajectories were analyzed in terms of diffusion rates and modes of motion as described by the moment scaling spectrum. Although VLPs bound to their ganglioside receptor in lipid bilayers exhibited only free diffusion, analysis of trajectories on live 3T6 mouse fibroblasts revealed three distinct modes of mobility: rapid random motion, confined movement in small zones (30-60 nm in diameter), and confined movement in zones with a slow drift. After binding to the cell surface, particles typically underwent free diffusion for 5-10 s, and then they were confined in an actin filament-dependent manner without involvement of clathrin-coated pits or caveolae. Depletion of cholesterol dramatically reduced mobility of VLPs independently of actin, whereas inhibition of tyrosine kinases had no effect on confinement. The results suggested that clustering of ganglioside molecules by the multivalent VLPs induced transmembrane coupling that led to confinement of the virus/receptor complex by cortical actin filaments.
Collapse
Affiliation(s)
- Helge Ewers
- Institute of Biochemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
144
|
Abstract
Breastfed infants have lower morbidity and mortality due to diarrhea than those fed artificially. This had been attributed primarily to the secretory antibodies and prebiotic factors in human milk. Oligosaccharides are the third largest component of human milk. They were initially considered to be functionless by-products of glycoprotein and glycolipid synthesis during milk production. However, in the past few decades it has become apparent that the human milk oligosaccharides are composed of thousands of components, at least some of which protect against pathogens. Oligosaccharide protection against infectious agents may result in part from their prebiotic characteristics, but is thought to be primarily due to their inhibition of pathogen binding to host cell ligands. Most human milk oligosaccharides are fucosylated, and their production depends on enzymes encoded by the genes associated with expression of the Lewis blood group system. The expression of specific fucosylated oligosaccharides in milk thus varies in relation to maternal Lewis blood group type, and is significantly associated with the risk of infectious disease in breastfed infants. Specific fucosylated moieties of oligosaccharides and related glycoconjugates (glycans) are able to inhibit binding and disease by specific pathogens. This review presents the argument that specific glycans, especially the oligosaccharides, are the major constituent of an innate immune system of human milk whereby the mother protects her infant from enteric and other pathogens through breastfeeding. The large input of energy expended by the mother in the synthesis of milk oligosaccharides is consistent with the human reproductive strategy of large parental input into rearing relatively few offspring through a prolonged period of maturation. These protective glycans may prove useful as a basis for the development of novel prophylactic and therapeutic agents that inhibit diseases caused by mucosal pathogens.
Collapse
Affiliation(s)
- David S Newburg
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Charlestown, Massachusetts 02129-4404, USA.
| | | | | |
Collapse
|
145
|
Nokhbeh MR, Hazra S, Alexander DA, Khan A, McAllister M, Suuronen EJ, Griffith M, Dimock K. Enterovirus 70 binds to different glycoconjugates containing alpha2,3-linked sialic acid on different cell lines. J Virol 2005; 79:7087-94. [PMID: 15890948 PMCID: PMC1112099 DOI: 10.1128/jvi.79.11.7087-7094.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Enterovirus 70 (EV70), the causative agent of acute hemorrhagic conjunctivitis, exhibits a restricted tropism for conjunctival and corneal cells in vivo but infects a wide spectrum of mammalian cells in culture. Previously, we demonstrated that human CD55 is a receptor for EV70 on HeLa cells but that EV70 also binds to sialic acid-containing receptors on a variety of other human cell lines. Virus recognition of sialic acid attached to underlying glycans by a particular glycosidic linkage may contribute to host range, tissue tropism, and pathogenesis. Therefore, we tested the possibility that EV70 binds to alpha2,3-linked sialic acid, like other viruses associated with ocular infections. Through the use of linkage-specific sialidases, sialyltransferases, and lectins, we show that EV70 recognizes alpha2,3-linked sialic acid on human corneal epithelial cells and on U-937 cells. Virus attachment to both cell lines is CD55 independent and sensitive to benzyl N-acetyl-alpha-D-galactosaminide, an inhibitor of O-linked glycosylation. Virus binding to corneal cells, but not U-937 cells, is inhibited by proteinase K, but not by phosphatidylinositol-specific phospholipase C treatment. These results are consistent with the idea that a major EV70 receptor on corneal epithelial cells is an O-glycosylated, non-glycosyl phosphatidylinositol-anchored membrane glycoprotein containing alpha2,3-linked sialic acid, while sialylated receptors on U-937 cells are not proteinaceous.
Collapse
Affiliation(s)
- M Reza Nokhbeh
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Nilsson J, Miyazaki N, Xing L, Wu B, Hammar L, Li TC, Takeda N, Miyamura T, Cheng RH. Structure and assembly of a T=1 virus-like particle in BK polyomavirus. J Virol 2005; 79:5337-45. [PMID: 15827148 PMCID: PMC1082729 DOI: 10.1128/jvi.79.9.5337-5345.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In polyomaviruses the pentameric capsomers are interlinked by the long C-terminal arm of the structural protein VP1. The T=7 icosahedral structure of these viruses is possible due to an intriguing adaptability of this linker arm to the different local environments in the capsid. To explore the assembly process, we have compared the structure of two virus-like particles (VLPs) formed, as we found, in a calcium-dependent manner by the VP1 protein of human polyomavirus BK. The structures were determined using electron cryomicroscopy (cryo-EM), and the three-dimensional reconstructions were interpreted by atomic modeling. In the small VP1 particle, 26.4 nm in diameter, the pentameric capsomers form an icosahedral T=1 surface lattice with meeting densities at the threefold axes that interlinked three capsomers. In the larger particle, 50.6 nm in diameter, the capsomers form a T=7 icosahedral shell with three unique contacts. A folding model of the BKV VP1 protein was obtained by alignment with the VP1 protein of simian virus 40 (SV40). The model fitted well into the cryo-EM density of the T=7 particle. However, residues 297 to 362 of the C-terminal arm had to be remodeled to accommodate the higher curvature of the T=1 particle. The loops, before and after the C-terminal short helix, were shown to provide the hinges that allowed curvature variation in the particle shell. The meeting densities seen at the threefold axes in the T=1 particle were consistent with the triple-helix interlinking contact at the local threefold axes in the T=7 structure.
Collapse
Affiliation(s)
- Josefina Nilsson
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Johne R, Enderlein D, Nieper H, Müller H. Novel polyomavirus detected in the feces of a chimpanzee by nested broad-spectrum PCR. J Virol 2005; 79:3883-7. [PMID: 15731285 PMCID: PMC1075742 DOI: 10.1128/jvi.79.6.3883-3887.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In order to screen for new polyomaviruses in samples derived from various animal species, degenerated PCR primer pairs were constructed. By using a nested PCR protocol, the sensitive detection of nine different polyomavirus genomes was demonstrated. The screening of field samples revealed the presence of a new polyomavirus, tentatively designated chimpanzee polyomavirus (ChPyV), in the feces of a juvenile chimpanzee (Pan troglodytes). Analysis of the region encoding the major capsid protein VP1 revealed a unique insertion in the EF loop of the protein and showed that ChPyV is a distinct virus related to the monkey polyomavirus B-lymphotropic polyomavirus and the human polyomavirus JC polyomavirus.
Collapse
Affiliation(s)
- Reimar Johne
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
148
|
Casini GL, Graham D, Heine D, Garcea RL, Wu DT. In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 2004; 325:320-7. [PMID: 15246271 DOI: 10.1016/j.virol.2004.04.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 03/24/2004] [Accepted: 04/13/2004] [Indexed: 11/27/2022]
Abstract
Pentamers of the L1 major capsid protein of human papillomavirus (HPV type 11) were purified after expression in E. coli and analyzed for the kinetics of in vitro capsid self-assembly using multi-angle light scattering (MALS). Pentamers self-assembled into capsid-like structures at a rate that was a function of protein concentration. The kinetics of capsid formation were sigmoidal with a concentration-dependent lag phase, followed by a rapid increase in polymerization. Nucleation size and the rate order of subsequent subunit addition were calculated from the concentration dependence of the extent of capsid formation and the rate of the fast phase, respectively. Assembly was second order with a nucleation size of two pentamers. Thus, we suggest that dimers of pentamers are the nucleus for L1 assembly into capsid-like structures, with rapid sequential addition of single pentamers to the growing shell. Although studied in vitro without accessory factors that may be present in vivo, these data are in contrast with the "five-around-one" assembly nucleus previously proposed for polyomaviruses.
Collapse
Affiliation(s)
- Greg L Casini
- Section of Pediatric Hematology/Oncology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
149
|
Gee GV, Tsomaia N, Mierke DF, Atwood WJ. Modeling a sialic acid binding pocket in the external loops of JC virus VP1. J Biol Chem 2004; 279:49172-6. [PMID: 15347668 DOI: 10.1074/jbc.m409326200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
JC virus (JCV) is a common human polyomavirus that infects over 70% of the population worldwide. JCV has a restricted cell tropism that is caused partly by the initial interaction between the virus and sialic acid-containing host cell receptors. To identify the molecular interactions between the virus and its cellular receptor, we used a combined approach of site-directed mutagenesis and homology-based molecular modeling. A model of the major viral capsid protein VP1 based on sequence alignment with other closely related polyomaviruses allowed us to target specific amino acids in the extracellular loops of VP1 for mutagenesis. An analysis of the growth rates of 17 point mutants led to the identification of VP1 amino acids that are critical in virus-host cell receptor interactions. Molecular dynamics simulations were then used to build and confirm a model of the interaction between VP1 and the sialic acid component of the JCV receptor.
Collapse
Affiliation(s)
- Gretchen V Gee
- Graduate Program in Molecular and Cell Biology and Biochemistry and Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
150
|
Cavaldesi M, Caruso M, Sthandier O, Amati P, Garcia MI. Conformational changes of murine polyomavirus capsid proteins induced by sialic acid binding. J Biol Chem 2004; 279:41573-9. [PMID: 15292169 DOI: 10.1074/jbc.m405995200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Murine polyomavirus (Py) infection initiates by the recognition of cell membrane molecules containing terminal sialic acid (SA) residues through specific binding pockets formed at the major capsid protein VP1 surface. VP1 Pockets 1, 2, and 3 bind terminal SA, Gal, and second branched SA, respectively. The consequence of recognition on viral cell entry remains elusive. In this work, we show that preincubation of Py with soluble compounds within Pocket 1 (N-acetyl or N-glycolyl neuraminic acids) increases Py cell binding and infectivity in murine 3T6 fibroblasts. In contrast, Gal does not significantly alter Py binding nor infectivity, whereas sialyllactose, in Pockets 1 and 2, decreases cell binding and infectivity. Binding experiments with Py virus-like particles confirmed the direct involvement of VP1 in this effect. To determine whether such results could reflect VP1 conformational changes induced by SA binding, protease digestion assays were performed after pretreatment of Py or virus-like particles with soluble receptor fragments. Binding of SA with the VP1 Pocket 1, but not of compounds interacting with Pocket 2, was associated with a transition of this protein from a protease-sensitive to a protease-resistant state. This effect was transmitted to the minor capsid proteins VP2 and VP3 in virus particles. Attachment of Py to cell monolayers similarly led to a VP1 trypsin-resistant pattern. Taken together, these data present evidence that initial binding of Py to terminal SA induces conformational changes in the viral capsid, which may influence subsequent virus cell entry steps.
Collapse
Affiliation(s)
- Michaela Cavaldesi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma "La Sapienza," Viale Regina Elena 324, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|