101
|
Gregory CD, Rimmer MP. Extracellular vesicles arising from apoptosis: forms, functions, and applications. J Pathol 2023; 260:592-608. [PMID: 37294158 PMCID: PMC10952477 DOI: 10.1002/path.6138] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher D Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| | - Michael P Rimmer
- Centre for Reproductive HealthInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| |
Collapse
|
102
|
Samano-Barbosa GA, López-Trinidad BP, Rodríguez-Tobón A, Chávez-Zamora JC, Cortés-Barberena E, León-Galván MA, Rodríguez-Tobón E, Arenas-Ríos E. Participation of apoptotic markers in the process of maturation and elimination of spermatozoa in the epididymis of the Corynorhinus mexicanus bat. Mol Reprod Dev 2023; 90:749-757. [PMID: 37565711 DOI: 10.1002/mrd.23701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
The Corynorhinus mexicanus bat is characterized by a specific form of reproductive asynchrony between males and females. After mating, some sperm remain in the male's epididymis, the organ where the sperm had matured. It has not yet been determined if apoptotic markers participate in the process of the maturation and/or elimination of these cells, so studying this topic is essential for our understanding of this species. Male bats were collected during three stages: Before mating; during the Mating phase; After mating and the final phase, which we call, Storage. Their epididymides were removed, weighed and measured. Sperm were extracted and the following sperm parameters were evaluated: active caspases, phosphatidylserine externalization, and mitochondrial membrane potential. Sperm from the testes enter the epididymis during Before mating, causing the organ to grow. During Mating phase, spermatozoa present a large amount of active caspases with externalization of phosphatidyl serine, even while still alive. This suggests that these two markers could participate in maturation and elimination, respectively.
Collapse
Affiliation(s)
- Gihovani Ademir Samano-Barbosa
- Laboratorio de Morfofisiología y Bioquímica del Espermatozoide, Universidad Autónoma Metropolitana, Iztapalapa, México
- Maestría en Biología de la Reproducción Animal, Universidad Autónoma Metropolitana, Iztapalapa, México
| | | | - Ahiezer Rodríguez-Tobón
- Laboratorio de Biología y Ecología de Mamíferos, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Julio Cesar Chávez-Zamora
- Consorcio de Fisiología del Espermatozoide, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Edith Cortés-Barberena
- Laboratorio de Biología Celular y Citometría de Flujo, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Miguel Angel León-Galván
- Laboratorio de Biología y Ecología de Mamíferos, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Ernesto Rodríguez-Tobón
- Laboratorio de Morfofisiología y Bioquímica del Espermatozoide, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Edith Arenas-Ríos
- Laboratorio de Morfofisiología y Bioquímica del Espermatozoide, Universidad Autónoma Metropolitana, Iztapalapa, México
| |
Collapse
|
103
|
Zhang H, Zhang J, Luan S, Liu Z, Li X, Liu B, Yuan Y. Unraveling the Complexity of Regulated Cell Death in Esophageal Cancer: from Underlying Mechanisms to Targeted Therapeutics. Int J Biol Sci 2023; 19:3831-3868. [PMID: 37564206 PMCID: PMC10411468 DOI: 10.7150/ijbs.85753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Esophageal cancer (EC) is the sixth most common and the seventh most deadly malignancy of the digestive tract, representing a major global health challenge. Despite the availability of multimodal therapeutic strategies, the existing EC treatments continue to yield unsatisfactory results due to their limited efficacy and severe side effects. Recently, knowledge of the subroutines and molecular mechanisms of regulated cell death (RCD) has progressed rapidly, enhancing the understanding of key pathways related to the occurrence, progression, and treatment of many types of tumors, including EC. In this context, the use of small-molecule compounds to target such RCD subroutines has emerged as a promising therapeutic strategy for patients with EC. Thus, in this review, we firstly discussed the risk factors and prevention of EC. We then outlined the established treatment regimens for patients with EC. Furthermore, we not only briefly summarized the mechanisms of five best studied subroutines of RCD related to EC, including apoptosis, ferroptosis, pyroptosis, necroptosis and autophagy, but also outlined the recent advances in the development of small-molecule compounds and long non-coding RNA (lncRNA) targeting the abovementioned RCD subroutines, which may serve as a new therapeutic strategy for patients with EC in the future.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
104
|
Komarla A, Dufresne S, Towers CG. Recent Advances in the Role of Autophagy in Endocrine-Dependent Tumors. Endocr Rev 2023; 44:629-646. [PMID: 36631217 PMCID: PMC10335171 DOI: 10.1210/endrev/bnad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response. We summarize clinical trial results thus far and highlight the need for additional mechanistic, preclinical, and clinical studies in endocrine-dependent tumors, particularly in breast cancer and prostate cancer.
Collapse
Affiliation(s)
- Anvita Komarla
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Suzanne Dufresne
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christina G Towers
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
105
|
Galluzzi L, Myint M. Cell death and senescence. J Transl Med 2023; 21:425. [PMID: 37386590 DOI: 10.1186/s12967-023-04297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | | |
Collapse
|
106
|
Abdel-Aziz HF, Hamdy AE, Sharaf A, Abd El-Wahed AEWN, Elnaggar IA, Seleiman MF, Omar M, Al-Saif AM, Shahid MA, Sharaf M. Effects of Fogging System and Nitric Oxide on Growth and Yield of 'Naomi' Mango Trees Exposed to Frost Stress. Life (Basel) 2023; 13:1359. [PMID: 37374143 DOI: 10.3390/life13061359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In years with unfavorable weather, winter frost during the blossoming season can play a significant role in reducing fruit yield and impacting the profitability of cultivation. The mango Naomi cultivar Mangifera indica L. has a low canopy that is severely affected by the effects of frost stress. As a result of the canopy being exposed to physiological problems, vegetative development is significantly inhibited. The current investigation aimed to study the influence of spraying nitric oxide and fogging spray systems on Naomi mango trees grafted on 'Succary' rootstock under frost stress conditions. The treatments were as follows: nitric oxide (NO) 50 and 100 μM, fogging spray system, and control. In comparison to the control, the use of nitric oxide and a fogging system significantly improved the leaf area, photosynthesis pigments of the leaf, the membrane stability index, yield, and physical and chemical characteristics of the Naomi mango cultivar. For instance, the application of 50 μM NO, 100 μM NO, and the fogging spray system resulted in an increase in yield by 41.32, 106.12, and 121.43% during the 2020 season, and by 39.37, 101.30, and 124.68% during the 2021 season compared to the control, respectively. The fogging spray system and highest level of NO decreased electrolyte leakage, proline content, total phenolic content, catalase (CAT), peroxidases (POX), and polyphenol oxidase (PPO) enzyme activities in leaves. Furthermore, the number of damaged leaves per shoot was significantly reduced after the application of fogging spray systems and nitric oxide in comparison to the control. Regarding vegetative growth, our results indicated that the fogging spray system and spraying nitric oxide at 100 μM enhanced the leaf surface area compared to the control and other treatments. A similar trend was noticed regarding yield and fruit quality, whereas the best values were obtained when the fogging spray system using nitric oxide was sprayed at a concentration of 100 μM. The application of fogging spray systems and nitric oxide can improve the production and fruit quality of Naomi mango trees by reducing the effects of adverse frost stress conditions.
Collapse
Affiliation(s)
- Hosny F Abdel-Aziz
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Ashraf E Hamdy
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Sharaf
- Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | | | - Ibrahim A Elnaggar
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Magdy Omar
- Department of Agriculture Botany, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Adel M Al-Saif
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo 11651, Egypt
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
107
|
Kowalski S, Karska J, Łapińska Z, Hetnał B, Saczko J, Kulbacka J. An overview of programmed cell death: Apoptosis and pyroptosis-Mechanisms, differences, and significance in organism physiology and pathophysiology. J Cell Biochem 2023. [PMID: 37269535 DOI: 10.1002/jcb.30413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/05/2023]
Abstract
Regulated cell death is an essential and heterogeneous process occurring in the life cycle of organisms, from embryonic development and aging to the regulation of homeostasis and organ maintenance. Under this term, we can distinguish many distinct pathways, including apoptosis and pyroptosis. Recently, there has been an increasing comprehension of the mechanisms governing these phenomena and their characteristic features. The coexistence of different types of cell death and the differences and similarities between them has been the subject of many studies. This review aims to present the latest literature in the field of pyroptosis and apoptosis and compare their molecular pathway's elements and significance in the physiology and pathophysiology of the organism.
Collapse
Affiliation(s)
- Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julia Karska
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Hetnał
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
108
|
He W, Chang L, Li X, Mei Y. Research progress on the mechanism of ferroptosis and its role in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1155296. [PMID: 37334304 PMCID: PMC10268817 DOI: 10.3389/fendo.2023.1155296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Ferroptosis is iron-dependent regulatory cell death (RCD). Morphologically, ferroptosis is manifested as mitochondrial atrophy and increased mitochondrial membrane density. Biochemically, ferroptosis is characterized by the depletion of glutathione (GSH), the inactivation of glutathione peroxidase 4 (GPX4), and an increase in lipid peroxides (LPO)and divalent iron ions. Ferroptosis is associated with various diseases, but the relationship with diabetic retinopathy(DR) is less studied. DR is one of the complications of diabetes mellitus and has a severe impact on visual function. The pathology of DR is complex, and the current treatment is unsatisfactory. Therefore, exploring pathogenesis is helpful for the clinical treatment of DR. This paper reviews the pathological mechanism of ferroptosis and DR in recent years and the involvement of ferroptosis in the pathology of DR. In addition, we propose problems that need to be addressed in this research field. It is expected to provide new ideas for treating DR by analyzing the role of ferroptosis in DR.
Collapse
Affiliation(s)
- Wei He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lu Chang
- Department of Ophthalmology, Kunming Aier Eye Hospital, Kunming, China
| | - Xinlu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yan Mei
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
109
|
Dhaouadi N, Vitto VAM, Pinton P, Galluzzi L, Marchi S. Ca 2+ signaling and cell death. Cell Calcium 2023; 113:102759. [PMID: 37210868 DOI: 10.1016/j.ceca.2023.102759] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Multiple forms of regulated cell death (RCD) have been characterized, each of which originates from the activation of a dedicated molecular machinery. RCD can occur in purely physiological settings or upon failing cellular adaptation to stress. Ca2+ions have been shown to physically interact with - and hence regulate - various components of the RCD machinery. Moreover, intracellular Ca2+ accumulation can promote organellar dysfunction to degree that can be overtly cytotoxic or sensitize cells to RCD elicited by other stressors. Here, we provide an overview of the main links between Ca2+and different forms of RCD, including apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- Nada Dhaouadi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy; GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
110
|
Hou Y, Shi J, Guo Y, Shi G. DNMT1 regulates polarization of macrophage-induced intervertebral disc degeneration by modulating SIRT6 expression and promoting pyroptosis in vivo. Aging (Albany NY) 2023; 15:204729. [PMID: 37199639 DOI: 10.18632/aging.204729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a complex phenomenon and a multifactorial degenerative disease that creates a heavy economic burden on health systems globally. Currently, there is no specific treatment proven to be effective in reversing and delaying the progression of IDD. METHOD This study consisted of animal and cell culture experiments. The role of DNA methyltransferase 1 (DNMT1) on regulating the M1/M2 macrophages polarization and pyroptosis, as well as its effect on Sirtuin 6 (SIRT6) expression in an IDD rat model and in tert-butyl hydroperoxide (TBHP)-treated nucleus pulposus cells (NPCs) were explored. Rat models were constructed, followed by transfection with lentiviral vector to inhibit DNMT1 or overexpress SIRT6. The NPCs were treated with THP-1-cells conditioned medium, and their pyroptosis, apoptosis, and viability were evaluated. Western blot, histological and immunohistochemistry staining, ELISA, PCR, and flow cytometry were all used to evaluate the role of DNMT1/ SIRT6 on macrophage polarization. RESULTS Silencing DNMT1 inhibited apoptosis, the expression of related inflammatory mediators (e.g., iNOS) and inflammatory cytokines (e.g., IL6 and TNF-α). Moreover, silencing DNMT1 significantly inhibited the expression of pyroptosis markers IL- 1β, IL-6, and IL-18 and decreased the NLRP3, ASC, and caspase-1 expression. On the other hand, M2 macrophage specific markers CD163, Arg-1, and MR were overexpressed upon silencing DNMT1 or SIRT6 overexpression. At the same time, silencing DNMT1 exerted a regulatory effect on increasing the SIRT6 expression. CONCLUSIONS DNMT1 may be a promising potential target for IDD treatment due to its ability to ameliorate the progression of the disease.
Collapse
Affiliation(s)
- Yang Hou
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiangang Shi
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yongfei Guo
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guodong Shi
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
111
|
Entezari M, Yousef Abad GG, Sedghi B, Ettehadi R, Asadi S, Beiranvand R, Haratian N, Karimian SS, Jebali A, Khorrami R, Zandieh MA, Saebfar H, Hushmandi K, Salimimoghadam S, Rashidi M, Taheriazam A, Hashemi M, Ertas YN. Gold nanostructure-mediated delivery of anticancer agents: Biomedical applications, reversing drug resistance, and stimuli-responsive nanocarriers. ENVIRONMENTAL RESEARCH 2023; 225:115673. [PMID: 36906270 DOI: 10.1016/j.envres.2023.115673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Sedghi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhaneh Ettehadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shafagh Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Razieh Beiranvand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Haratian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
112
|
Cui X, Liu C, Dong P, Liu C, Bai Y. The combination therapy of isomucronulatol 7-O-beta-glucoside (IMG) and CEP-9722 targeting ferroptosis-related biomarkers in non-small cell lung cancer (NSCLC). BMC Pulm Med 2023; 23:162. [PMID: 37165402 PMCID: PMC10173508 DOI: 10.1186/s12890-023-02445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND NSCLC is a malignant tumor with a high incidence. Ferroptosis presents an essential function in regulating carcinogenesis and tumor progression. However, the ferroptosis-associated prognostic model based on single-cell sequencing of NSCLC remains unexplored. Our study aims to establish a potential predictive model for NSCLC patients and provide available targeted drugs for clinical treatment. METHODS The data on NSCLC patients were collected from TCGA and GEO databases to analyze their gene expression profiles. ConsensusCluster was adopted to divide the patients into different groups based on ferroptosis-related genes. Then, the univariable Cox and LASSO analyses were applied to data analysis and model establishment. Single-cell analysis was used to explore the risk score genes in different cell populations and states. The protein levels of these genes were also investigated through the HPA database. Drug sensitivity was evaluated in CellMiner database. CCK8 and colony formation assays were performed to validate potential drugs' effects on lung cancer cell lines. RESULTS A ferroptosis-related prognostic model involving 14 genes in NSCLC patients was established. The risk score model was developed in training set GSE31210 and validated in the test set TCGA. The low-risk score group showed a better prognosis than the high-risk score group. The single-cell analysis revealed that the risk score genes were mainly derived from lung tumor cells. Most risk score genes were more highly expressed in tumor tissue than in normal tissue, according to the HPA database. Besides, these genes were associated with 106 drugs in CellMiner database. Finally, the drug effects on NSCLC cell growth were evaluated by cck8 and colony formation. CONCLUSIONS We identified an effective ferroptosis-related prognostic model based on single-cell sequencing. The potential prediction model is devoted to exploring clinical therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Xiaofei Cui
- Department of EICU, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Chang Liu
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, 110044, Liaoning, China
| | - Penghua Dong
- Dalian Medical University, Dalian, Liaoning, China
| | - Chao Liu
- Dalian Medical University, Dalian, Liaoning, China
| | - Yu Bai
- Department of Thoracic Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| |
Collapse
|
113
|
Chen H, Yin L, Yang J, Ren N, Chen J, Lu Q, Huang Y, Feng Y, Wang W, Wang S, Liu Y, Song Y, Li Y, Jin J, Tan W, Lin D. Genetic polymorphisms in genes regulating cell death and prognosis of patients with rectal cancer receiving postoperative chemoradiotherapy. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0711. [PMID: 37144561 PMCID: PMC10157810 DOI: 10.20892/j.issn.2095-3941.2022.0711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
OBJECTIVE The identification of biomarkers for predicting chemoradiotherapy efficacy is essential to optimize personalized treatment. This study determined the effects of genetic variations in genes involved in apoptosis, pyroptosis, and ferroptosis on the prognosis of patients with locally advanced rectal cancer receiving postoperative chemoradiotherapy (CRT). METHODS The Sequenom MassARRAY was used to detect 217 genetic variations in 40 genes from 300 patients with rectal cancer who received postoperative CRT. The associations between genetic variations and overall survival (OS) were evaluated using hazard ratios (HRs) and 95% confidence intervals (CIs) computed using a Cox proportional regression model. Functional experiments were performed to determine the functions of the arachidonate 5-lipoxygenase (ALOX5) gene and the ALOX5 rs702365 variant. RESULTS We detected 16 genetic polymorphisms in CASP3, CASP7, TRAILR2, GSDME, CASP4, HO-1, ALOX5, GPX4, and NRF2 that were significantly associated with OS in the additive model (P < 0.05). There was a substantial cumulative effect of three genetic polymorphisms (CASP4 rs571407, ALOX5 rs2242332, and HO-1 rs17883419) on OS. Genetic variations in the CASP4 and ALOX5 gene haplotypes were associated with a higher OS. We demonstrated, for the first time, that rs702365 [G] > [C] represses ALOX5 transcription and corollary experiments suggested that ALOX5 may promote colon cancer cell growth by mediating an inflammatory response. CONCLUSIONS Polymorphisms in genes regulating cell death may play essential roles in the prognosis of patients with rectal cancer who are treated with postoperative CRT and may serve as potential genetic biomarkers for individualized treatment.
Collapse
Affiliation(s)
- Hongxia Chen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Luxi Yin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ningxin Ren
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jinna Chen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qixuan Lu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Huang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanru Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weihu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yueping Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongwen Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| |
Collapse
|
114
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, et alVitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Show More Authors] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
115
|
Rabitha R, Shivani S, Showket Y, Sudhandiran G. Ferroptosis regulates key signaling pathways in gastrointestinal tumors: Underlying mechanisms and therapeutic strategies. World J Gastroenterol 2023; 29:2433-2451. [PMID: 37179581 PMCID: PMC10167906 DOI: 10.3748/wjg.v29.i16.2433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ferroptosis is an emerging novel form of non-apoptotic, regulated cell death that is heavily dependent on iron and characterized by rupture in plasma membrane. Ferroptosis is distinct from other regulated cell death modalities at the biochemical, morphological, and molecular levels. The ferroptotic signature includes high membrane density, cytoplasmic swelling, condensed mitochondrial membrane, and outer mitochondrial rupture with associated features of accumulation of reactive oxygen species and lipid peroxidation. The selenoenzyme glutathione peroxidase 4, a key regulator of ferroptosis, greatly reduces the lipid overload and protects the cell membrane against oxidative damage. Ferroptosis exerts a momentous role in regulating cancer signaling pathways and serves as a therapeutic target in cancers. Dysregulated ferroptosis orchestrates gastrointestinal (GI) cancer signaling pathways leading to GI tumors such as colonic cancer, pancreatic cancer, and hepatocellular carcinoma. Crosstalk exists between ferroptosis and other cell death modalities. While apoptosis and autophagy play a detrimental role in tumor progression, depending upon the factors associated with tumor microenvironment, ferroptosis plays a decisive role in either promoting tumor growth or suppressing it. Several transcription factors, such as TP53, activating transcription factors 3 and 4, are involved in influencing ferroptosis. Importantly, several molecular mediators of ferroptosis, such as p53, nuclear factor erythroid 2-related factor 2/heme oxygenase-1, hypoxia inducible factor 1, and sirtuins, coordinate with ferroptosis in GI cancers. In this review, we elaborated on key molecular mechanisms of ferroptosis and the signaling pathways that connect ferroptosis to GI tumors.
Collapse
Affiliation(s)
- Ravichandiran Rabitha
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Sethuraman Shivani
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Yahya Showket
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Ganapasam Sudhandiran
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
116
|
Bandyopadhyay A, Ghosh SK. Apoptosis-inducing factor-like protein-mediated stress and metronidazole-responsive programmed cell death pathway in Entamoeba histolytica. Mol Microbiol 2023; 119:640-658. [PMID: 37037799 DOI: 10.1111/mmi.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Apoptosis-inducing factor (AIF) is the major component of the caspase-independent cell death pathway that is considered to be evolutionarily ancient. Apoptosis is generally evolved with multicellularity as a prerequisite for the elimination of aged, stressed, or infected cells promoting the survival of the organism. Our study reports the presence of a putative AIF-like protein in Entamoeba histolytica, a caspase-deficient primitive protozoan, strengthening the concept of occurrence of apoptosis in unicellular organisms as well. The putative cytoplasmic EhAIF migrates to the nucleus on receiving stresses that precede its binding with DNA, following chromatin degradation and chromatin condensation as evident from both in vitro and in vivo experiments. Down-regulating the EhAIF expression attenuates the apoptotic features of insulted cells and increases the survival potency in terms of cell viability and vitality of the trophozoites, whereas over-expression of the EhAIF effectively enhances the phenomena. Interestingly, metronidazole, the most widely used drug for amoebiasis treatment, is also potent to elicit similar AIF-mediated cell death responses like other stresses indicating the AIF-mediated cell death could be the probable mechanism of trophozoite-death by metronidazole treatment. The occurrence of apoptosis in a unicellular organism is an interesting phenomenon that might signify the altruistic death that overall improves the population health.
Collapse
Affiliation(s)
| | - Sudip Kumar Ghosh
- Department of Biotechnology, IIT Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
117
|
Purnama CA, Meiliana A, Barliana MI, Lestari K. Update of cellular responses to the efferocytosis of necroptosis and pyroptosis. Cell Div 2023; 18:5. [PMID: 37032375 PMCID: PMC10084608 DOI: 10.1186/s13008-023-00087-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023] Open
Abstract
Cell death is a basic physiological process that occurs in all living organisms. A few key players in these mechanisms, as well as various forms of cell death programming, have been identified. Apoptotic cell phagocytosis, also known as apoptotic cell clearance, is a well-established process regulated by a number of molecular components, including 'find-me', 'eat-me' and engulfment signals. Efferocytosis, or the rapid phagocytic clearance of cell death, is a critical mechanism for tissue homeostasis. Despite having similar mechanism to phagocytic clearance of infections, efferocytosis differs from phagocytosis in that it induces a tissue-healing response and is immunologically inert. However, as field of cell death has rapid expanded, much attention has recently been drawn to the efferocytosis of additional necrotic-like cell types, such as necroptosis and pyroptosis. Unlike apoptosis, this method of cell suicide allows the release of immunogenic cellular material and causes inflammation. Regardless of the cause of cell death, the clearance of dead cells is a necessary function to avoid uncontrolled synthesis of pro-inflammatory molecules and inflammatory disorder. We compare and contrast apoptosis, necroptosis and pyroptosis, as well as the various molecular mechanisms of efferocytosis in each type of cell death, and investigate how these may have functional effects on different intracellular organelles and signalling networks. Understanding how efferocytic cells react to necroptotic and pyroptotic cell uptake can help us understand how to modulate these cell death processes for therapeutic purposes.
Collapse
Affiliation(s)
- Chandra Agung Purnama
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Prodia Clinical Laboratory, Jl. Supratman No. 43, Bandung, 40114, Indonesia
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Prodia Clinical Laboratory, Jl. Supratman No. 43, Bandung, 40114, Indonesia
- Prodia Education and Research Institute, Jl. Kramat Raya No 150, Jakarta, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia.
- Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia.
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
118
|
Rai U, Senapati D, Arora MK. Insights on the role of anti-inflammatory and immunosuppressive agents in the amelioration of diabetes. Diabetol Int 2023; 14:134-144. [PMID: 37090130 PMCID: PMC10113422 DOI: 10.1007/s13340-022-00607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Diabetes is a major health problem worldwide. It is a chronic metabolic disorder that produces overt hyperglycemic condition that occurs either when the pancreas does not produce enough insulin due to excessive destruction of pancreatic β-cells (type 1 diabetes) or due to development of insulin resistance (type 2 diabetes). An autoimmune condition known as type 1 diabetes (T1D) results in the targeted immune death of β-cells that produce insulin. The only available treatment for T1D at the moment is the lifelong use of insulin. Multiple islet autoantibody positivity is used to diagnose T1D. There are four standard autoantibodies observed whose presence shows the development of T1D: antibodies against insulin, glutamic acid decarboxylase (GAD65), zinc T8 transporter (ZnT8), and tyrosine phosphatase-like protein (ICA512). In type 2 diabetes (T2D), an inflammatory response precipitates as a consequence of the immune response to high blood glucose level along with the presence of inflammation mediators produced by macrophages and adipocytes in fat tissue. The slow and chronic inflammatory condition of adipose tissue produces insulin resistance leading to increased stress on pancreatic β-cells to produce more insulin to compensate for the insulin resistance. Thus, this stress condition exacerbates the apoptosis of β-cells leading to insufficient production of insulin, resulting in hyperglycemia which signifies late stage T2D. Therefore, the therapeutic utilization of immunosuppressive agents may be a better alternative over the use of insulin and oral hypoglycemic agents for the treatment of T1D and T2D, respectively. This review enlightens the immune intervention for the prevention and amelioration of T1D and T2D in humans with main focus on the antigen-specific immune suppressive therapy.
Collapse
Affiliation(s)
- Uddipak Rai
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| | - Dhirodatta Senapati
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| | - Mandeep Kumar Arora
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| |
Collapse
|
119
|
Fan J, Jiang T, He D. Emerging insights into the role of ferroptosis in the pathogenesis of autoimmune diseases. Front Immunol 2023; 14:1120519. [PMID: 37063835 PMCID: PMC10097931 DOI: 10.3389/fimmu.2023.1120519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Ferroptosis, a novel type of regulated cell death mediated by iron-dependent lipid oxidation, was discovered a decade ago. Significant progress has been made in our knowledge of ferroptosis and immune dysfunction. This review covers recent advancements in the interaction of ferroptosis and the immune system, with an emphasis on autoimmune diseases. The critical regulators of ferroptosis are summarized in the context of reactive oxygen species biology, lipid metabolism, and iron homeostasis. The molecular crosstalk between ferroptosis and different immune cells is also highlighted. Future research is expected to yield new insights into the mechanisms governing ferroptosis and its potential therapeutic benefits in autoimmune diseases.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Dongyi He,
| |
Collapse
|
120
|
Cai J, Ye Z, Hu Y, Ye L, Gao L, Wang Y, Sun Q, Tong S, Zhang S, Wu L, Yang J, Chen Q. Fatostatin induces ferroptosis through inhibition of the AKT/mTORC1/GPX4 signaling pathway in glioblastoma. Cell Death Dis 2023; 14:211. [PMID: 36966152 PMCID: PMC10039896 DOI: 10.1038/s41419-023-05738-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal primary malignant central nervous system tumor in adults. Although there are multiple treatments, the median survival of GBM patients is unsatisfactory, which has prompted us to continuously investigate new therapeutic strategies, including new drugs and drug delivery approaches. Ferroptosis, a kind of regulated cell death (RCD), has been shown to be dysregulated in various tumors, including GBM. Fatostatin, a specific inhibitor of sterol regulatory element binding proteins (SREBPs), is involved in lipid and cholesterol synthesis and has antitumor effects in a variety of tumors. However, the effect of fatostatin has not been explored in the field of ferroptosis or GBM. In our study, through transcriptome sequencing, in vivo experiments, and in vitro experiments, we found that fatostatin induces ferroptosis by inhibiting the AKT/mTORC1/GPX4 signaling pathway in glioblastoma. In addition, fatostatin inhibits cell proliferation and the EMT process through the AKT/mTORC1 signaling pathway. We also designed a p28-functionalized PLGA nanoparticle loaded with fatostatin, which could better cross the blood-brain barrier (BBB) and be targeted to GBM. Our research identified the unprecedented effects of fatostatin in GBM and presented a novel drug-targeted delivery vehicle capable of penetrating the BBB in GBM.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| |
Collapse
|
121
|
Fernandes PD, Magalhães FD, Pereira RF, Pinto AM. Metal-Organic Frameworks Applications in Synergistic Cancer Photo-Immunotherapy. Polymers (Basel) 2023; 15:polym15061490. [PMID: 36987269 PMCID: PMC10053741 DOI: 10.3390/polym15061490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Conventional cancer therapies, such as radiotherapy and chemotherapy, can have long-term side effects. Phototherapy has significant potential as a non-invasive alternative treatment with excellent selectivity. Nevertheless, its applicability is restricted by the availability of effective photosensitizers and photothermal agents, and its low efficacy when it comes to avoiding metastasis and tumor recurrence. Immunotherapy can promote systemic antitumoral immune responses, acting against metastasis and recurrence; however, it lacks the selectivity displayed by phototherapy, sometimes leading to adverse immune events. The use of metal-organic frameworks (MOFs) in the biomedical field has grown significantly in recent years. Due to their distinct properties, including their porous structure, large surface area, and inherent photo-responsive properties, MOFs can be particularly useful in the fields of cancer phototherapy and immunotherapy. MOF nanoplatforms have successfully demonstrated their ability to address several drawbacks associated with cancer phototherapy and immunotherapy, enabling an effective and low-side-effect combinatorial synergistical treatment for cancer. In the coming years, new advancements in MOFs, particularly regarding the development of highly stable multi-function MOF nanocomposites, may revolutionize the field of oncology.
Collapse
Affiliation(s)
- Pedro D. Fernandes
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
122
|
Bialves TS, Bastos Junior CLQ, Cordeiro MF, Boyle RT. Snake venom, a potential treatment for melanoma. A systematic review. Int J Biol Macromol 2023; 231:123367. [PMID: 36690229 DOI: 10.1016/j.ijbiomac.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma. The present study aimed to carry out a systematic review identifying snake venom proteins and peptides described in the literature with antitumor, antimetastatic, or antiangiogenic effects on melanoma and determine the mechanisms of action that lead to these anti-tumor effects. Snake venoms contain proteins and peptides which are antiaggregant, antimetastatic, and antiangiogenic. The in vivo results are encouraging, considering the reduction of metastases and tumor size after treatment. In addition to these results, it was reported that these venom compounds could act in combination with chemotherapeutics (Acurhagin-C; Macrovipecetin), sensitizing and preparing tumor cells for treatment. There is a consensus that snake venom is a promising strategy for the improvement of antimelanoma therapies, but it has been little explored in the current context, combined with inhibitors, immunotherapy or tumor microenvironment, for example. We suggest Lebein as a candidate for combination therapy with BRAF inhibitors.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Claudio L Q Bastos Junior
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina - UNOESC, Rua Roberto Trompovski 224, Joaçaba, Santa Catarina, CEP 89600-000, Brazil.
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| |
Collapse
|
123
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
124
|
Zhang H, Wang A, Li G, Zhai Q, Huang Z, Wang X, Cao Z, Liu L, Liu G, Chen B, Zhu K, Xu Y, Xu Y. Osteoporotic bone loss from excess iron accumulation is driven by NOX4-triggered ferroptosis in osteoblasts. Free Radic Biol Med 2023; 198:123-136. [PMID: 36738798 DOI: 10.1016/j.freeradbiomed.2023.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Excess iron accumulation is a risk factor for osteopenia and osteoporosis, and ferroptosis is becoming well understood as iron-dependent form of cell death resulting from lipid peroxide accumulation. However, any pathological impacts of ferroptosis on osteoporosis remain unknown. Here, we show that ferroptosis is involved in excess-iron-induced bone loss and demonstrate that osteoporotic mice and humans have elevated skeletal accumulation of the NADPH oxidase 4 (NOX4) enzyme. Mechanistically, we found that the NOX4 locus contains iron-response element-like (IRE-like) sequences that are normally bound (and repressed) by the iron regulatory protein 1 (IRP1) protein. Binding with iron induces dissociation of IRP1 from the IRE-like sequences and thereby activates NOX4 transcription. Elevated NOX4 increases lipid peroxide accumulation and causes obvious dysregulation of mitochondrial morphology and function in osteoblasts. Excitingly, the osteoporotic bone loss which we initially observed in an excessive-iron accumulating mouse line (Hepc1-/-) was blocked upon treatment with the ferroptosis-inhibitor ferrostatin-1 (Ferr-1) and with the iron chelator deferoxamine (DFO), suggesting a potential therapeutic strategy for preventing osteoporotic bone loss based on disruption of ferroptosis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Aifei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou, 215004, China
| | - Guangfei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qiaocheng Zhai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zihou Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou, 215004, China
| | - Lulin Liu
- Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou, 215004, China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215004, China
| | - Bin Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Keyu Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou, 215004, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
125
|
Abstract
Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
126
|
Yu C, Chen P, Miao L, Di G. The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury. Int J Mol Sci 2023; 24:3067. [PMID: 36834481 PMCID: PMC9959699 DOI: 10.3390/ijms24043067] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies.
Collapse
Affiliation(s)
- Chaoqun Yu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
127
|
Kashefizadeh A, Kazemizadeh H. Immunogenic cell death (ICD)-inducers in non-small-cell lung carcinoma (NSCLC): current knowledge and future perspective. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:316-322. [PMID: 36180811 DOI: 10.1007/s12094-022-02949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/05/2022] [Indexed: 01/27/2023]
Abstract
The prevalence of non-small-cell lung cancer (NSCLC) is rising every year all around the world. The interaction between cancer cells and the tumor microenvironment (TME) is a crucial factor in determining the development of human neoplasms. Organellar and cellular stress are induced during immunogenic cell death (ICD), a particularly functional response pattern. ICD is a separate but poorly characterized entity caused by various cancer treatments. The induction of ICD has the potential to change TME and the recruitment of tumor-infiltrating lymphocytes (TILs), and the coupling of ICD-inducers and other therapeutic approaches can have a synergistic role in boosting anticancer impacts. The purpose of this study is to review the studies in the field of NSCLC using ICD-inducers as a treatment strategy or as a combination therapy. This review provide for researches a better view of what has been done so far and the challenges they face in the future.
Collapse
Affiliation(s)
- Alireza Kashefizadeh
- Department of Pulmonology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemizadeh
- Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
128
|
Iron-based and BRD 4-downregulated strategy for amplified ferroptosis based on pH-sensitive/NIR-II-boosted nano-matchbox. Acta Pharm Sin B 2023; 13:863-878. [PMID: 36873167 PMCID: PMC9979193 DOI: 10.1016/j.apsb.2022.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis (FPT), a novel form of programmed cell death, is characterized by overwhelming iron/reactive oxygen species (ROS)-dependent accumulation of lipid peroxidation (LPO). However, the insufficiency of endogenous iron and ROS level limited the FPT therapeutic efficacy to a large extent. To overcome this obstacle, the bromodomain-containing protein 4 (BRD4)-inhibitor (+)-JQ1 (JQ1) and iron-supplement ferric ammonium citrate (FAC)-loaded gold nanorods (GNRs) are encapsulated into the zeolitic imidazolate framework-8 (ZIF-8) to form matchbox-like GNRs@JF/ZIF-8 for the amplified FPT therapy. The existence of matchbox (ZIF-8) is stable in physiologically neutral conditions but degradable in acidic environment, which could prevent the loaded agents from prematurely reacting. Moreover, GNRs as the drug-carriers induce the photothermal therapy (PTT) effect under the irradiation of near-infrared II (NIR-II) light owing to the absorption by localized surface plasmon resonance (LSPR), while the hyperthermia also boosts the JQ1 and FAC releasing in the tumor microenvironment (TME). On one hand, the FAC-induced Fenton/Fenton-like reactions in TME can simultaneously generate iron (Fe3+/Fe2+) and ROS to initiate the FPT treatment by LPO elevation. On the other hand, JQ1 as a small molecule inhibitor of BRD4 protein can amplify FPT through downregulating the expression of glutathione peroxidase 4 (GPX4), thus inhibiting the ROS elimination and leading to the LPO accumulation. Both in vitro and in vivo studies reveal that this pH-sensitive nano-matchbox achieves obvious suppression of tumor growth with good biosafety and biocompatibility. As a result, our study points out a PTT combined iron-based/BRD4-downregulated strategy for amplified ferrotherapy which also opens the door of future exploitation of ferrotherapy systems.
Collapse
|
129
|
Aziz MN, Nguyen L, Chang Y, Gout D, Pan Z, Lovely CJ. Novel thiazolidines of potential anti-proliferation properties against esophageal squamous cell carcinoma via ERK pathway. Eur J Med Chem 2023; 246:114909. [PMID: 36508971 DOI: 10.1016/j.ejmech.2022.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
The discovery of a new class of extracellular-signal-regulated kinase (ERK) inhibitors has been achieved via developing novel 2-imino-5-arylidene-thiazolidine analogues. A novel synthetic method employing a solid support-mediated reaction was used to construct the targeted thiazolidines through a cascade reaction with good yields. The chemical and physical stability of the new thiazolidine library has successfully been achieved by blocking the labile C5-position to aerobic oxidation. A cell viability study was performed using esophageal squamous cell carcinoma cell lines (KYSE-30 and KYSE-150) and non-tumorous esophageal epithelial cell lines (HET-1A and NES-G4T) through utilization of an MTT assay, revealing that (Z)-5-((Z)-4-bromobenzylidene)-N-(4-methoxy-2-nitrophenyl)-4,4-dimethylthiazolidin-2-imine (6g) was the best compound among the synthesized library in terms of selectivity. DAPI staining experiments were performed to visualize the morphological changes and to investigate the apoptotic activity. Moreover, western blots were used to probe the mechanism/pathway behind the observed activity/selectivity of thiazolidine 6g which established selective inhibition of phosphorylation in the ERK pathway. Molecular modeling techniques have been utilized to confirm the observed activity. A molecular docking study revealed similar binding interactions between the synthesized thiazolidines and reported co-crystalized inhibitors with ERK proteins. Thus, the present study provides a starting point for the development of interesting bioactive 2-imino-5-arylidene-thiazolidines.
Collapse
Affiliation(s)
- Marian N Aziz
- Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, TX, 76019, USA; Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Linh Nguyen
- Dept. of Biology, College of Science, University of Texas at Arlington, TX, 76019, USA; Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Yan Chang
- Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA; Bone and Muscle Research Center, University of Texas at Arlington, TX, 76019, USA
| | - Delphine Gout
- Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, TX, 76019, USA
| | - Zui Pan
- Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA; Bone and Muscle Research Center, University of Texas at Arlington, TX, 76019, USA
| | - Carl J Lovely
- Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, TX, 76019, USA.
| |
Collapse
|
130
|
Wu Y, Sun Y, Wang X, Zhu C. The Regulated Cell Death and Potential Interventions in Preterm Infants after Intracerebral Hemorrhage. Curr Neuropharmacol 2023; 21:1488-1503. [PMID: 36397619 PMCID: PMC10472811 DOI: 10.2174/1570159x21666221117155209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Intracerebral hemorrhage (ICH) in preterm infants is one of the major co-morbidities of preterm birth and is associated with long-term neurodevelopmental deficits. There are currently no widely accepted treatments to prevent ICH or therapies for the neurological sequelae. With studies broadening the scope of cell death, the newly defined concept of regulated cell death has enriched our understanding of the underlying mechanisms of secondary brain injury after ICH and has suggested potential interventions in preterm infants. In this review, we will summarize the current evidence for regulated cell death pathways in preterm infants after ICH, including apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy, and PANoptosis as well as several potential intervention strategies that may protect the immature brain from secondary injury after ICH through regulating regulated cell death.
Collapse
Affiliation(s)
- Yanan Wu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
131
|
Scarpellini C, Ramos Llorca A, Lanthier C, Klejborowska G, Augustyns K. The Potential Role of Regulated Cell Death in Dry Eye Diseases and Ocular Surface Dysfunction. Int J Mol Sci 2023; 24:731. [PMID: 36614174 PMCID: PMC9820812 DOI: 10.3390/ijms24010731] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The research on new treatments for dry eye diseases (DED) has exponentially grown over the past decades. The increased prevalence of dry eye conditions, particularly in the younger population, has received much attention. Therefore, it is of utmost importance to identify novel therapeutical targets. Regulated cell death (RCD) is an essential process to control the biological homeostasis of tissues and organisms. The identification of different mechanisms of RCD stimulated the research on their involvement in different human pathologies. Whereas apoptosis has been widely studied in DED and included in the DED vicious cycle, the role of RCD still needs to be completely elucidated. In this review, we will explore the potential roles of different types of RCD in DED and ocular surface dysfunction. Starting from the evidence of oxidative stress and inflammation in dry eye pathology, we will analyse the potential therapeutic applications of the following principal RCD mechanisms: ferroptosis, necroptosis, and pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2160 Antwerp, Belgium
| |
Collapse
|
132
|
Dong JY, Yin HL, Hao H, Liu Y. Research Progress on Autophagy Regulation by Active Ingredients of Traditional Chinese Medicine in the Treatment of Acute Lung Injury. J Inflamm Res 2023; 16:1671-1691. [PMID: 37092134 PMCID: PMC10120836 DOI: 10.2147/jir.s398203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
Autophagy is a highly conserved process that maintains cell stability in eukaryotes, participates in the turnover of intracellular substances to maintain cell function, helps to resist pathogen invasion, and improves cell tolerance to environmental changes. Autophagy has been observed in many diseases, and the symptoms of these diseases are significantly improved by regulating autophagy. Autophagy is also involved in the development of lung diseases. Studies have shown that autophagy may play a beneficial or harmful role in acute lung injury (ALI), and ALI has been treated with traditional Chinese medicine designed to promote or inhibit autophagy. In this paper, the molecular mechanism and common pathways regulating autophagy and the relationship between autophagy and ALI are introduced, and the active ingredients of traditional Chinese medicine that improve ALI symptoms by regulating autophagy are summarized.
Collapse
Affiliation(s)
- Jin-yan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Hong-Lin Yin
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Correspondence: Hao Hao; Yang Liu, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China, Tel +86-13583119291; +86-13864018185, Email ;
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
133
|
Rezapoor S, Ahmadi A, Shahbazian H, Cheki M. The effects of medical linear accelerator X-rays on human peripheral blood lymphocytes in the presence of glucosamine. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:65. [PMID: 36576604 DOI: 10.1007/s12032-022-01936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Glucosamine is widely prescribed as a dietary supplement used to treat arthritis. In this study, the radioprotective ability of glucosamine was evaluated against radiation-induced genotoxicity and cytotoxicity in human peripheral blood lymphocytes. Blood samples were collected from five healthy male donors and were divided into four groups. Isolated lymphocytes and blood samples were treated with 10 µM of glucosamine for 2 h before exposure to 2 Gy radiation. The radioprotective potential of glucosamine was assessed by micronucleus assay, reactive oxygen species (ROS) level analysis, and flow cytometry. Irradiation significantly increased the micronuclei frequency as compared to the control group. Contrary to that pretreatment with glucosamine before irradiation significantly reduced the frequency of micronuclei. Furthermore, pretreatment with glucosamine significantly prevented the percentage of apoptotic lymphocytes. Also, glucosamine pretreatment significantly reduced the production of ROS in irradiated lymphocytes. This study shows glucosamine to be a potent radioprotector against radiation that induces DNA damage and apoptosis in human lymphocytes. Several additional in vivo and in vitro studies are needed before glucosamine can be considered as a radioprotective candidate in patients undergoing radiation therapy.
Collapse
Affiliation(s)
- Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48175866, Iran
| | - Hojatollah Shahbazian
- Department of Radiotherapy and Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Cheki
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
134
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
135
|
Hugan Buzure Induces Autophagy and Apoptosis in Hepatocellular Carcinoma by Inhibiting PI3K/Akt/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022. [DOI: 10.1155/2022/1618491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study explored the effects of Hugan Buzure (HBR) on cell apoptosis and autophagy in hepatocellular carcinoma (HCC) and the molecular mechanisms of the PI3K/Akt/mTOR signaling pathway. HepG2 and Huh7 cell viability was detected by the tetramethylazolium salt colorimetric (MTT) method. Cell proliferation was measured using the colony formation method. Hoechst 33258 staining and flow cytometry were employed to detect apoptosis. In addition, immunofluorescence was carried out to evaluate the expression of LC3. Western blot was performed to detect the expression of Bcl-2, Bax, Caspase-3, LC3, Beclin1, p62 (SQSTM1), and PI3K/Akt/mTOR signal pathway-related proteins in HCC cells. This work verified that HBR reduced HepG2 and Huh7 cell proliferation in a concentration-dependent manner. Treatment with HBR caused an obvious improvement of the apoptosis rate, accompanied by the increase in Bax/Bcl2, Caspase3, LC3II, and Beclin1 levels, respectively. Furthermore, HBR downregulated the expression of p62, p-PI3K, p-Akt, and p-mTOR proteins. HBR combined with HCQ enhanced HBR-induced apoptosis. In conclusion, HBR induced autophagy and apoptosis through PI3K/Akt/mTOR signaling pathway, leading to HCC cell death. This research preliminarily suggested the potential role of HBR in the treatment of HCC.
Collapse
|
136
|
de Almeida DRQ, Dos Santos AF, Wailemann RAM, Terra LF, Gomes VM, Arini GS, Bertoldi ERM, Reis EM, Baptista MS, Labriola L. Necroptosis activation is associated with greater methylene blue-photodynamic therapy-induced cytotoxicity in human pancreatic ductal adenocarcinoma cells. Photochem Photobiol Sci 2022; 22:729-744. [PMID: 36495407 DOI: 10.1007/s43630-022-00347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinomas (PDAC) are the fourth leading cause of death due to neoplasms. In view of the urgent need of effective treatments for PDAC, photodynamic therapy (PDT) appears as a promising alternative. However, its efficacy against PDAC and the mechanisms involved in cell death induction remain unclear. In this study, we set out to evaluate PDT's cytotoxicity using methylene blue (MB) as a photosensitizer (PS) (MB-PDT) and to evaluate the contribution of necroptosis in its effect in human PDAC cells. Our results demonstrated that MB-PDT induced significant death of different human PDAC models presenting two different susceptibility profiles. This effect was independent of MB uptake or its subcellular localization. We found that the ability of triggering necroptosis was determinant to increase the treatment efficiency. Analysis of single cell RNA-seq data from normal and neoplastic human pancreatic tissues showed that specific necroptosis proteins RIPK1, RIPK3 and MLKL presented significant higher expression levels in cells displaying a transformed phenotype providing further support to the use of approaches that activate necroptosis, like MB-PDT, as useful adjunct to surgery of PDAC to tackle the problem of microscopic residual disease as well as to minimize the chance of local and metastatic recurrence.
Collapse
Affiliation(s)
- Daria R Q de Almeida
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Ancély F Dos Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Rosangela A M Wailemann
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Letícia F Terra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Vinícius M Gomes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Gabriel S Arini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Ester R M Bertoldi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Eduardo M Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| | - Leticia Labriola
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
137
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
138
|
Endoplasmic Reticulum Stress Signaling and Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232315186. [PMID: 36499512 PMCID: PMC9740965 DOI: 10.3390/ijms232315186] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Besides protein processing, the endoplasmic reticulum (ER) has several other functions such as lipid synthesis, the transfer of molecules to other cellular compartments, and the regulation of Ca2+ homeostasis. Before leaving the organelle, proteins must be folded and post-translationally modified. Protein folding and revision require molecular chaperones and a favorable ER environment. When in stressful situations, ER luminal conditions or chaperone capacity are altered, and the cell activates signaling cascades to restore a favorable folding environment triggering the so-called unfolded protein response (UPR) that can lead to autophagy to preserve cell integrity. However, when the UPR is disrupted or insufficient, cell death occurs. This review examines the links between UPR signaling, cell-protective responses, and death following ER stress with a particular focus on those mechanisms that operate in neurons.
Collapse
|
139
|
Abdelghany L, Kawabata T, Goto S, Jingu K, Li TS. Nicaraven induces programmed cell death by distinct mechanisms according to the expression levels of Bcl-2 and poly (ADP-ribose) glycohydrolase in cancer cells. Transl Oncol 2022; 26:101548. [PMID: 36206675 PMCID: PMC9535466 DOI: 10.1016/j.tranon.2022.101548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The PARP-1 expression level and poly (ADP-ribosyl)ation activity in cancer markedly affect the therapeutic outcome. Nicaraven, a free radical scavenger has been found to inhibit PARP, but the effect on cancer cells is still unclear. In this study, we investigated the potential role and molecular mechanism of nicaraven on cancer cells. Using U937 lymphoma cells and HCT-8 colorectal cancer cells, we found that nicaraven moderately reduced the cell viability of both cells in a dose-dependent manner. Interestingly, nicaraven significantly induced apoptosis of U937 cells that are dominantly expressing Bcl-2 but induced PAR-dependent cell death (parthanatos) of HCT-8 cells that are highly expressing poly (ADP-ribose) glycohydrolase (PARG). Based on our data, nicaraven seems to induce programmed cell death through distinct mechanisms, according to the expression levels of Bcl-2 and PARG in cancer cells.
Collapse
Affiliation(s)
- Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
140
|
Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Iron Brain Menace: The Involvement of Ferroptosis in Parkinson Disease. Cells 2022; 11:3829. [PMID: 36497089 PMCID: PMC9735800 DOI: 10.3390/cells11233829] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson disease (PD) is the second-most common neurodegenerative disease. The characteristic pathology of progressive dopaminergic neuronal loss in people with PD is associated with iron accumulation and is suggested to be driven in part by the novel cell death pathway, ferroptosis. A unique modality of cell death, ferroptosis is mediated by iron-dependent phospholipid peroxidation. The mechanisms of ferroptosis inhibitors enhance antioxidative capacity to counter the oxidative stress from lipid peroxidation, such as through the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis and the coenzyme Q10 (CoQ10)/FSP1 pathway. Another means to reduce ferroptosis is with iron chelators. To date, there is no disease-modifying therapy to cure or slow PD progression, and a recent topic of research seeks to intervene with the development of PD via regulation of ferroptosis. In this review, we provide a discussion of different cell death pathways, the molecular mechanisms of ferroptosis, the role of ferroptosis in blood-brain barrier damage, updates on PD studies in ferroptosis, and the latest progress of pharmacological agents targeting ferroptosis for the intervention of PD in clinical trials.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Pao Chien Hospital, Pingtung 90064, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
141
|
Yin L, Li X, Hou J. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:336-347. [DOI: 10.1016/j.jdsr.2022.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
|
142
|
Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med 2022; 54:1695-1704. [PMID: 36224345 PMCID: PMC9636380 DOI: 10.1038/s12276-022-00868-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Receptor-interacting protein kinase-3 (RIPK3, or RIP3) is an essential protein in the "programmed" and "regulated" cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, and the findings of many reports have suggested that necroptosis is highly significant in health and human disease. This significance is largely because necroptosis is distinguished from other modes of cell death, especially apoptosis, in that it is highly proinflammatory given that cell membrane integrity is lost, triggering the activation of the immune system and inflammation. Here, we discuss the roles of RIPK3 in cell signaling, along with its role in necroptosis and various pathways that trigger RIPK3 activation and cell death. Lastly, we consider pathological situations in which RIPK3/necroptosis may play a role.
Collapse
|
143
|
Zhou Y, Hu F, Cui Y, Wu H, Hu S, Wei W. Bibliometric analysis of research on immunogenic cell death in cancer. Front Pharmacol 2022; 13:1029020. [PMID: 36278159 PMCID: PMC9582244 DOI: 10.3389/fphar.2022.1029020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Immunotherapy is changing the way we treat cancer. Immunogenic cell death (ICD) has received considerable attention in the treatments of various cancer types, due to the long-lasting antitumor responses elicited in human body. However, to date, no relevant bibliometric research has been reported. Methods: Publications related to ICD in cancer research were collected from the Web of Science Core Collection. Using CiteSpace, VOSviewer and an online platform, the analyses of co-author, co-citation, and co-occurrence of terms retrieved from literatures were carried out. Results: A total of 1,577 publications were included in this study. The global research literatures on ICD in cancer research have been increasing from 2005 to 2021. China, the United States and France dominated in this area and had close collaborations with many countries. Six of the top 10 most contributive institutions were from France. When it comes to author analysis, Kroemer G, Zitvogel L, Kepp O, Garg AD and Galluzzi L were in both the top 10 most productive authors and top 10 most co-cited authors lists. The co-occurring author keywords could be grouped into three clusters: “biomarkers of ICD”, “nanoparticles” and “combination therapy”. In terms of promising hotspots, keywords (author keywords and KeyWords Plus) with recent citation bursts could be summarized into two aspects: “tumor microenvironment” and “nanoparticles”. Conclusion: Increased attention has been paid to ICD in cancer treatment. However, there are still many unresolved domains in the field of ICD, such as clinical application and molecular mechanisms of this cell death process. ICD-inducing modalities combined with nanotechnology could potentiate the current immunotherapies, and will be hotspots for future research.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fen Hu
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- Institute of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
| | - Yang Cui
- Department of Neurosurgery, Hebei Yanda Hospital, Langfang, China
| | - Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shunan Hu
- Department of Neurosurgery, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- *Correspondence: Shunan Hu, ; Wei Wei,
| | - Wei Wei
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- Institute of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- *Correspondence: Shunan Hu, ; Wei Wei,
| |
Collapse
|
144
|
Relationships of Ferroptosis and Pyroptosis-Related Genes with Clinical Prognosis and Tumor Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3713929. [PMID: 36246400 PMCID: PMC9557253 DOI: 10.1155/2022/3713929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Ferroptosis and pyroptosis are two new programmed cell death (PCD) modes discovered in recent years. However, the potential value of ferroptosis and pyroptosis-related genes (FPRGs) in prognosis prediction and the tumor immune microenvironment of head and neck squamous cell carcinoma (HNSCC) is still unclear. We obtained 21 significant FPRGs based on the training dataset (TCGA- HNSC) using the univariate Cox and differential expression analysis. The TCGA- HNSC (n = 502) dataset was clustered into two group (clusters A and B) based on the 21 significant FPRGs. 1467 differentially expressed genes (DEGs) between cluster A and B were put into univariate Cox and Least absolute shrinkage and selection operator (LASSO) analysis to build a risk model. The predictive capability of the risk model was successfully confirmed by internal validation, external validation, and clinical sample validation. To improve the clinical applicability, a nomogram model combined risk score and clinical information were constructed. Moreover, the patients with lower risk score were characterized by increased immune response and tumor mutation burden (TMB), while the patients with higher risk score were characterized by increased TP53 mutation rate. In conclusion, our comprehensive analysis of the FPRGs revealed their significant role in prognosis prediction and the tumor immune microenvironment. The risk model containing 9 FPRGs could be a potential prognostic markers and effective immunotherapy targets for HNSCC.
Collapse
|
145
|
Long L, Guo H, Chen X, Liu Y, Wang R, Zheng X, Huang X, Zhou Q, Wang Y. Advancement in understanding the role of ferroptosis in rheumatoid arthritis. Front Physiol 2022; 13:1036515. [PMID: 36267583 PMCID: PMC9576928 DOI: 10.3389/fphys.2022.1036515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic disease of unknown etiology. The primary manifestation of RA is inflammatory synovitis, which eventually leads to deformity and functional loss. Ferroptosis is a non-apoptosis form of cell death that depends on intracellular iron accumulation. This leads to an increase in reactive oxygen species (ROS) induced-lipid peroxidation. The underlying mechanisms of ferroptosis are System Xc- and Glutathione metabolism, regulation of glutathione peroxidase 4 activity, and ROS generation. Recent studies have shown an association between the pathogenesis of RA and ferroptosis, suggesting the involvement of ferroptosis in the onset and progression of RA. In this review, we have focused on the mechanism of ferroptosis and its association with RA pathogenesis. Further, we discuss the status of therapeutics targeting ferroptosis in the treatment of patients with RA. Targeting ferroptosis could be a potential therapeutic approach for RA treatment.
Collapse
Affiliation(s)
- Li Long
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Hongmei Guo
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xixi Chen
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yan Liu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Zunyi Medical University, Zunyi, China
| | - Ruyi Wang
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Xiaomei Zheng
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yi Wang, ; Xiaobo Huang, ; Qiao Zhou,
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yi Wang, ; Xiaobo Huang, ; Qiao Zhou,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yi Wang, ; Xiaobo Huang, ; Qiao Zhou,
| |
Collapse
|
146
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
147
|
Zhang G, Dong D, Wan X, Zhang Y. Cardiomyocyte death in sepsis: Mechanisms and regulation (Review). Mol Med Rep 2022; 26:257. [PMID: 35703348 PMCID: PMC9218731 DOI: 10.3892/mmr.2022.12773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑induced cardiac dysfunction is one of the most common types of organ dysfunction in sepsis; its pathogenesis is highly complex and not yet fully understood. Cardiomyocytes serve a key role in the pathophysiology of cardiac function; due to the limited ability of cardiomyocytes to regenerate, their loss contributes to decreased cardiac function. The activation of inflammatory signalling pathways affects cardiomyocyte function and modes of cardiomyocyte death in sepsis. Prevention of cardiomyocyte death is an important therapeutic strategy for sepsis‑induced cardiac dysfunction. Thus, understanding the signalling pathways that activate cardiomyocyte death and cross‑regulation between death modes are key to finding therapeutic targets. The present review focused on advances in understanding of sepsis‑induced cardiomyocyte death pathways, including apoptosis, necroptosis, mitochondria‑mediated necrosis, pyroptosis, ferroptosis and autophagy. The present review summarizes the effect of inflammatory activation on cardiomyocyte death mechanisms, the diversity of regulatory mechanisms and cross‑regulation between death modes and the effect on cardiac function in sepsis to provide a theoretical basis for treatment of sepsis‑induced cardiac dysfunction.
Collapse
Affiliation(s)
- Geping Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dan Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yongli Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
148
|
A Promising Method for the Determination of Cell Viability: The Membrane Potential Cell Viability Assay. Cells 2022; 11:cells11152314. [PMID: 35954159 PMCID: PMC9367465 DOI: 10.3390/cells11152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Determining the viability of cells is fraught with many uncertainties. It is often difficult to determine whether a cell is still alive, approaching the point of no return, or dead. Today, there are many methods for determining cell viability. Most rely on an indirect determination of cell death (metabolism, molecular transport, and leakage, to name a few). In contrast, we have developed a promising novel method for a “direct” determination of cell viability. The potential method assesses cell membrane integrity (which is essential for all viable cells) by measuring the electrical potential of the cell membrane. To test the assay, we chose two different cell types, blood macrophages (TLT) and breast cancer epithelial cells (MCF 7). We exposed them to seven different toxic scenarios (arsenic (V), UV light, hydrogen peroxide, nutrient starvation, Tetrabromobisphenol A, fatty acids, and 5-fluorouracil) to induce different cell death pathways. Under controlled test conditions, the assay showed good accuracy when comparing the toxicity assessment with well-established methods. Moreover, the method showed compatibility with live cell imaging. Although we know that further studies are needed to confirm the performance of the assay in other situations, the results obtained are promising for their wider application in the future.
Collapse
|
149
|
Liang Z, Miao Y, Teng X, Xiao L, Guo Q, Xue H, Tian D, Jin S, Wu Y. Hydrogen Sulfide Inhibits Ferroptosis in Cardiomyocytes to Protect Cardiac Function in Aging Rats. Front Mol Biosci 2022; 9:947778. [PMID: 35936785 PMCID: PMC9355033 DOI: 10.3389/fmolb.2022.947778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Aging contributes significantly to cardiovascular diseases and cardiac dysfunction. To explore the reasons for the decline in cardiac function in the elderly, we collected clinical data and blood samples from 231 individuals. Our results indicated that aging was accompanied by a decline in cardiac function and remodeling of the left ventricle, and cardiac function was negatively correlated with age. Serum hydrogen sulfide (H2S) decreased, while serum malondialdehyde (MDA) and iron increased with aging in healthy individuals. A rat model of aging and iron overload was constructed for in vivo research. In the animal model, we found that the expression of endogenous H2S-producing enzymes decreased, and endogenous H2S levels decreased, while oxidative stress levels rose. The regulation of iron metabolism and the maintenance of iron homeostasis declined. The accumulation of MDA and iron led to ferroptotic cell death and subsequent myocardial injury and deterioration. A high-iron diet accelerated the aging process and death in rats. The decline of cardiac function in aging rats and iron-overload rats may be caused by cardiomyocyte ferroptosis. Exogenous H2S enhanced the expression of endogenous H2S synthase, promoted endogenous H2S production, regulated iron metabolism, and reduced oxidative stress levels. The protective effects of H2S on cardiac function in aging rats and iron-overload rats may be partly due to the inhibition of cardiomyocyte ferroptosis. We demonstrated that cardiac dysfunction associated with aging was closely related to decreased endogenous H2S levels and cardiomyocyte ferroptosis. H2S-regulated iron metabolism reduced oxidative stress levels in cardiomyocytes, inhibited cardiomyocyte ferroptosis, and protected cardiac function in aging rats.
Collapse
Affiliation(s)
- Zihui Liang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Miao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Sheng Jin, ; Yuming Wu,
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
- *Correspondence: Sheng Jin, ; Yuming Wu,
| |
Collapse
|
150
|
Rego A, Ribeiro A, Côrte-Real M, Chaves SR. Monitoring yeast regulated cell death: trespassing the point of no return to loss of plasma membrane integrity. Apoptosis 2022; 27:778-786. [PMID: 35796799 DOI: 10.1007/s10495-022-01748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
Acetic acid and hydrogen peroxide are the most common stimuli to induce apoptosis in yeast. The initial phase of this cell death process is characterized by the maintenance of plasma membrane integrity in cells that had already lost their viability. As loss of plasma membrane integrity is typically assessed by staining with propidium iodide (PI) after exposure of cells to a stimulus and cell viability is determined 48 h after plating, the percentage of cells with compromised plasma membrane integrity and c.f.u. counts often do not correlate. Herein, we developed a simple method to explore at what point after an apoptotic stimulus and plating cells do non-viable cells die as result of plasma membrane disruption, i.e., when cells surpass the point-of-no-return and undergo a secondary necrosis. The method consisted in washing cells and re-suspending them in stimulus-free medium after acetic acid and hydrogen peroxide treatments, to mimic transfer to plating, and then assessing plasma membrane integrity through PI staining. We show that, after the stimuli are removed, cells that had lost proliferative capacity but still maintained plasma membrane integrity continue the cell death process and later lose plasma membrane integrity when progressing to secondary necrosis. After exposure to hydrogen peroxide, cells undergo secondary necrosis preceded by Nhp6Ap-GFP cytosolic localization, in contrast to acetic acid exposure, where Nhp6Ap-GFP cytosolic localization mainly occurs simultaneously with an earlier emergence of secondary necrosis. In conclusion, the developed method allows monitoring the irreversible loss of plasma membrane integrity of dying apoptotic cells after the point-of-no-return is trespassed, and better characterize the process of secondary necrosis after apoptosis.
Collapse
Affiliation(s)
- António Rego
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| | - António Ribeiro
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal.
| | - Susana Rodrigues Chaves
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| |
Collapse
|