101
|
Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. Microbiome Dependent Regulation of T regs and Th17 Cells in Mucosa. Front Immunol 2019; 10:426. [PMID: 30906299 PMCID: PMC6419713 DOI: 10.3389/fimmu.2019.00426] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
Mammals co-exist with resident microbial ecosystem that is composed of an incredible number and diversity of bacteria, viruses and fungi. Owing to direct contact between resident microbes and mucosal surfaces, both parties are in continuous and complex interactions resulting in important functional consequences. These interactions govern immune homeostasis, host response to infection, vaccination and cancer, as well as predisposition to metabolic, inflammatory and neurological disorders. Here, we discuss recent studies on direct and indirect effects of resident microbiota on regulatory T cells (Tregs) and Th17 cells at the cellular and molecular level. We review mechanisms by which commensal microbes influence mucosa in the context of bioactive molecules derived from resident bacteria, immune senescence, chronic inflammation and cancer. Lastly, we discuss potential therapeutic applications of microbiota alterations and microbial derivatives, for improving resilience of mucosal immunity and combating immunopathology.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
102
|
Pang M, Zhu M, Lei X, Xu P, Cheng B. Microbiome Imbalances: An Overlooked Potential Mechanism in Chronic Nonhealing Wounds. INT J LOW EXTR WOUND 2019; 18:31-41. [PMID: 30836811 DOI: 10.1177/1534734619832754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic nonhealing wounds are a severe burden to health care systems worldwide, causing millions of patients to have lengthy hospital stays, high health care costs, periods of unemployment, and reduced quality of life. Moreover, treating chronic nonhealing wounds effectively and reasonably in countries with limited medical resources can be extremely challenging. With many outstanding questions surrounding chronic nonhealing wounds, in this review, we offer changes to the microbiome as a potentially ignored mechanism important in the formation and treatment of chronic wounds. Our analysis helps bring a whole new understanding to wound formation and healing and provides a potential breakthrough in the treatment of chronic nonhealing wounds in the future.
Collapse
Affiliation(s)
- Mengru Pang
- The Graduate School of Southern Medical University, Guangzhou, China
- General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Meishu Zhu
- The Graduate School of Southern Medical University, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoxuan Lei
- The Graduate School of Southern Medical University, Guangzhou, China
- General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Pengcheng Xu
- General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou, China
- General Hospital of Southern Theater Command, PLA, Guangzhou, China
- The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, PLA, Guangzhou, China
| |
Collapse
|
103
|
Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends Microbiol 2019; 27:497-507. [PMID: 30846311 DOI: 10.1016/j.tim.2019.01.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Commensal organisms that constitute the skin microbiota play a pivotal role in the orchestration of cutaneous homeostasis and immune competence. This balance can be promptly offset by the expansion of the opportunistic pathogen Staphylococcus aureus, which is responsible for the majority of bacterial skin infections. S. aureus carriage is also known to be a precondition for its transmission and pathogenesis. Recent reports suggest that skin-dwelling coagulase-negative staphylococci (CoNS) can prime the skin immune system to limit the colonization potential of invaders, and they can directly compete through production of antimicrobial molecules or through signaling antagonism. We review recent advances in these CoNS colonization resistance mechanisms, which may serve to aid development of pharmacologic and probiotic intervention strategies to limit S. aureus skin colonization and disease.
Collapse
|
104
|
Duffy E, Morrin A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
105
|
|
106
|
Coates M, Blanchard S, MacLeod AS. Innate antimicrobial immunity in the skin: A protective barrier against bacteria, viruses, and fungi. PLoS Pathog 2018; 14:e1007353. [PMID: 30522130 PMCID: PMC6283644 DOI: 10.1371/journal.ppat.1007353] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Margaret Coates
- Department of Dermatology, Duke University, Durham, North Carolina, United States of America
| | - Sarah Blanchard
- Department of Dermatology, Duke University, Durham, North Carolina, United States of America
| | - Amanda S. MacLeod
- Department of Dermatology, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
- Pinnell Center for Investigative Dermatology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
107
|
A prostate derived commensal Staphylococcus epidermidis strain prevents and ameliorates induction of chronic prostatitis by UPEC infection. Sci Rep 2018; 8:17420. [PMID: 30479364 PMCID: PMC6258684 DOI: 10.1038/s41598-018-35818-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/10/2018] [Indexed: 11/08/2022] Open
Abstract
Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) is a common syndrome with limited therapies and an unknown etiology. Previously, our laboratory has defined a potential role for pathogenic infection in disease onset. Intra-urethral infection with a uropathogenic Escherichia coli strain isolated from a CP/CPPS patient, CP1, induces prostatic inflammation and tactile allodynia in mice. We have also demonstrated that a prostate specific Staphylococcus epidermidis bacterial isolate, NPI (non-pain inducing), from a healthy subject reduces pain and inflammation in an experimental autoimmune prostatitis (EAP) murine model. Here we focus on the interplay between these human isolates in the context of prostatitis development and resolution. NOD/ShiLtJ mice were inoculated with either NP1 or CP1, or combinations of both. Infection with CP1 induced pelvic tactile allodynia after 7 days, while NPI instillation alone induced no such response. Instillation with NPI 7 days following CP1 infection resolved pelvic tactile allodynia and prophylactic instillation 7 days prior to CPI infection prevented its onset. Prophylactic NPI instillation also prevented CP1 colonization of both prostate and bladder tissues. In vitro analyses revealed that CP1 and NPI do not directly inhibit the growth or invasive potential of one another. Immunological analyses revealed that specific markers associated with CP1-induced pelvic allodynia were decreased upon NPI treatment or repressed by prophylactic colonization. This study demonstrates that a commensal bacterial isolate can inhibit the colonization, pain responses, and immunological activation to uropathogenic bacteria, emphasizing the power of a healthy prostatic microflora in controlling health and disease.
Collapse
|
108
|
Balato A, Cacciapuoti S, Di Caprio R, Marasca C, Masarà A, Raimondo A, Fabbrocini G. Human Microbiome: Composition and Role in Inflammatory Skin Diseases. Arch Immunol Ther Exp (Warsz) 2018; 67:1-18. [PMID: 30302512 DOI: 10.1007/s00005-018-0528-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
This review focuses on recent evidences about human microbiome composition and functions, exploring the potential implication of its impairment in some diffuse and invalidating inflammatory skin diseases, such as atopic dermatitis, psoriasis, hidradenitis suppurativa and acne. We analysed current scientific literature, focusing on the current evidences about gut and skin microbiome composition and the complex dialogue between microbes and the host. Finally, we examined the consequences of this dialogue for health and skin diseases. This review highlights how human microbes interact with different anatomic niches modifying the state of immune activation, skin barrier status, microbe-host and microbe-microbe interactions. It also shows as most of the factors affecting gut and skin microorganisms' activity have demonstrated to be effective also in modulating chronic inflammatory skin diseases. More and more evidences demonstrate that human microbiome plays a key role in human health and diseases. It is to be expected that these new insights will translate into diagnostic, therapeutic and preventive measures in the context of personalized/precision medicine.
Collapse
Affiliation(s)
- Anna Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, NA, Italy
| | - Sara Cacciapuoti
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy.
| | - Roberta Di Caprio
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Claudio Marasca
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Anna Masarà
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Annunziata Raimondo
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| |
Collapse
|
109
|
Vollmer DL, West VA, Lephart ED. Enhancing Skin Health: By Oral Administration of Natural Compounds and Minerals with Implications to the Dermal Microbiome. Int J Mol Sci 2018; 19:E3059. [PMID: 30301271 PMCID: PMC6213755 DOI: 10.3390/ijms19103059] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The history of cosmetics goes back to early Egyptian times for hygiene and health benefits while the history of topical applications that provide a medicinal treatment to combat dermal aging is relatively new. For example, the term cosmeceutical was first coined by Albert Kligman in 1984 to describe topical products that afford both cosmetic and therapeutic benefits. However, beauty comes from the inside. Therefore, for some time scientists have considered how nutrition reflects healthy skin and the aging process. The more recent link between nutrition and skin aging began in earnest around the year 2000 with the demonstrated increase in peer-reviewed scientific journal reports on this topic that included biochemical and molecular mechanisms of action. Thus, the application of: (a) topical administration from outside into the skin and (b) inside by oral consumption of nutritionals to the outer skin layers is now common place and many journal reports exhibit significant improvement for both on a variety of dermal parameters. Therefore, this review covers, where applicable, the history, chemical structure, and sources such as biological and biomedical properties in the skin along with animal and clinical data on the oral applications of: (a) collagen, (b) ceramide, (c) β-carotene, (d) astaxanthin, (e) coenzyme Q10, (f) colostrum, (g) zinc, and (h) selenium in their mode of action or function in improving dermal health by various quantified endpoints. Lastly, the importance of the human skin microbiome is briefly discussed in reference to the genomics, measurement, and factors influencing its expression and how it may alter the immune system, various dermal disorders, and potentially be involved in chemoprevention.
Collapse
Affiliation(s)
- David L Vollmer
- 4Life Research, Scientific Research Division, Sandy, UT 84070, USA.
| | - Virginia A West
- 4Life Research, Scientific Research Division, Sandy, UT 84070, USA.
| | - Edwin D Lephart
- Department of Physiology, Developmental Biology and The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
110
|
Saxena R, Mittal P, Clavaud C, Dhakan DB, Hegde P, Veeranagaiah MM, Saha S, Souverain L, Roy N, Breton L, Misra N, Sharma VK. Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Front Cell Infect Microbiol 2018; 8:346. [PMID: 30338244 PMCID: PMC6180232 DOI: 10.3389/fcimb.2018.00346] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Several scalp microbiome studies from different populations have revealed the association of dandruff with bacterial and fungal dysbiosis. However, the functional role of scalp microbiota in scalp disorders and health remains scarcely explored. Here, we examined the bacterial and fungal diversity of the scalp microbiome and their potential functional role in the healthy and dandruff scalp of 140 Indian women. Propionibacterium acnes and Staphylococcus epidermidis emerged as the core bacterial species, where the former was associated with a healthy scalp and the latter with dandruff scalp. Along with the commonly occurring Malassezia species (M. restricta and M. globosa) on the scalp, a strikingly high association of dandruff with yet uncharacterized Malassezia species was observed in the core mycobiome. Functional analysis showed that the fungal microbiome was enriched in pathways majorly implicated in cell-host adhesion in the dandruff scalp, while the bacterial microbiome showed a conspicuous enrichment of pathways related to the synthesis and metabolism of amino acids, biotin, and other B-vitamins, which are reported as essential nutrients for hair growth. A systematic measurement of scalp clinical and physiological parameters was also carried out, which showed significant correlations with the microbiome and their associated functional pathways. The results point toward a new potential role of bacterial commensals in maintaining the scalp nutrient homoeostasis and highlights an important and yet unknown role of the scalp microbiome, similar to the gut microbiome. This study, therefore, provides new perspectives on the better understanding of the pathophysiology of dandruff.
Collapse
Affiliation(s)
- Rituja Saxena
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Parul Mittal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | - Darshan B Dhakan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | | | | | - Luc Souverain
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Nita Roy
- L'Oréal India Pvt. Ltd., Bengaluru, India
| | - Lionel Breton
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Namita Misra
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France.,L'Oréal India Pvt. Ltd., Bengaluru, India
| | - Vineet K Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
111
|
Erdei L, Bolla BS, Bozó R, Tax G, Urbán E, Kemény L, Szabó K. TNIP1 Regulates Cutibacterium acnes-Induced Innate Immune Functions in Epidermal Keratinocytes. Front Immunol 2018; 9:2155. [PMID: 30319618 PMCID: PMC6165910 DOI: 10.3389/fimmu.2018.02155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
Human skin cells recognize the presence of the skin microbiome through pathogen recognition receptors. Epidermal keratinocytes are known to activate toll-like receptors (TLRs) 2 and 4 in response to the commensal Cutibacterium acnes (C. acnes, formerly known as Propionibacterium acnes) bacterium and subsequently to induce innate immune and inflammatory events. These events may lead to the appearance of macroscopic inflammatory acne lesions in puberty: comedos, papules and, pustules. Healthy skin does not exhibit inflammation or skin lesions, even in the continuous presence of the same microbes. As the molecular mechanism for this duality is still unclear, we aimed to identify factors and mechanisms that control the innate immune response to C. acnes in keratinocytes using a human immortalized keratinocyte cell line, HPV-KER, normal human keratinocytes (NHEK) and an organotypic skin model (OSM). TNIP1, a negative regulator of the NF-κB signaling pathway, was found to be expressed in HPV-KER cells, and its expression was rapidly induced in response to C. acnes treatment, which was confirmed in NHEK cells and OSMs. Expression changes were not dependent on the C. acnes strain. However, we found that the extent of expression was dependent on C. acnes dose. Bacterial-induced changes in TNIP1 expression were regulated by signaling pathways involving NF-κB, p38, MAPKK and JNK. Experimental modification of TNIP1 levels affected constitutive and C. acnes-induced NF-κB promoter activities and subsequent inflammatory cytokine and chemokine mRNA and protein levels. These results suggest an important role for this negative regulator in the control of bacterially induced TLR signaling pathways in keratinocytes. We showed that all-trans retinoic acid (ATRA) induced elevated TNIP1 expression in HPV-KER cells and also in OSMs, where TNIP1 levels increased throughout the epidermis. ATRA also reduced constitutive and bacterium-induced levels of TNFα, CCL5 and TLR2, while simultaneously increasing CXCL8 and TLR4 expression. Based on these findings, we propose that ATRA may exhibit dual effects in acne therapy by both affecting the expression of the negative regulator TNIP1 and attenuating TLR2-induced inflammation. Overall, TNIP1, as a possible regulator of C. acnes-induced innate immune and inflammatory events in keratinocytes, may play important roles in the maintenance of epidermal homeostasis.
Collapse
Affiliation(s)
- Lilla Erdei
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Beáta Szilvia Bolla
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Gábor Tax
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | | |
Collapse
|
112
|
Zhai W, Huang Y, Zhang X, Fei W, Chang Y, Cheng S, Zhou Y, Gao J, Tang X, Zhang X, Yang S. Profile of the skin microbiota in a healthy Chinese population. J Dermatol 2018; 45:1289-1300. [PMID: 30183092 DOI: 10.1111/1346-8138.14594] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Wanfang Zhai
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Yong Huang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Xuelei Zhang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Wenmin Fei
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Yuling Chang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Shasha Cheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Yi Zhou
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Jinping Gao
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Xianfa Tang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital; Anhui Medical University; Hefei China
| |
Collapse
|
113
|
Rademacher F, Simanski M, Hesse B, Dombrowsky G, Vent N, Gläser R, Harder J. Staphylococcus epidermidis Activates Aryl Hydrocarbon Receptor Signaling in Human Keratinocytes: Implications for Cutaneous Defense. J Innate Immun 2018; 11:125-135. [PMID: 30176668 DOI: 10.1159/000492162] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/14/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial challenge of keratinocytes with the abundant skin commensal Staphylococcus epidermidis induces distinct innate immune responses, but the underlying molecular mechanisms are still emerging. We report that the aryl hydrocarbon receptor (AhR) was activated in human primary keratinocytes infected with S. epidermidis, leading to induction of the AhR-responsive gene cytochrome P450 1A1 (CYP1A1). In addition, functional AhR was required for S. epidermidis-mediated induction of IL-1β expression in keratinocytes. AhR-dependent gene induction of IL-1β and CYP1A1 was mediated by factor(s) < 2 kDa secreted by S. epidermidis. Blockade of the AhR in a 3D organotypic skin equivalent infected with S. epidermidis attenuated the S. epidermidis-induced CYP1A1 and IL-1β expression. Moreover, S. epidermidis also induced expression of IL-1α and of the antimicrobial peptide human β-defensin-3 in an AhR-dependent manner in a 3D skin equivalent. An increased outgrowth of S. epidermidis on the surface of skin explants treated with a specific AhR inhibitor further indicate a pivotal role of the AhR in mediating an epidermal defense response. Taken together, our data expand the role of the AhR in innate immunity and support a previously unappreciated contribution for the AhR in cutaneous defense.
Collapse
|
114
|
Seifarth FG, Lax JEM, Harvey J, DiCorleto PE, Husni ME, Chandrasekharan UM, Tytell M. Topical heat shock protein 70 prevents imiquimod-induced psoriasis-like inflammation in mice. Cell Stress Chaperones 2018; 23:1129-1135. [PMID: 29616455 PMCID: PMC6111098 DOI: 10.1007/s12192-018-0895-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with systemic manifestations and potential genetic etiology. The newest treatments utilize antibodies against one of several cytokines known to underlie the inflammatory signaling molecules that produce the skin and systemic symptoms. However, these agents must be regularly injected, and they may compromise the normal responses of the immune system. Furthermore, they do not address the causes of the abnormal immunoregulatory responses of the disease because the etiology is not yet completely understood. In this short-term treatment study, the potential anti-inflammatory activity of an alfalfa-derived Hsp70-containing skin cream (aHsp70) was tested on imiquimod (IMQ)-induced psoriasis-like lesions in wild-type mice. Treatment of the mice with the aHsp70 skin cream simultaneously with the imiquimod application mitigated the induction of psoriatic-like lesions and correlated with altered expression of various skin cytokines.
Collapse
Affiliation(s)
- Federico G Seifarth
- Department of Pediatric Surgery, Cleveland Clinic Children's Hospital, Cleveland, OH, 44195, USA
- Department of Pediatric Surgery, Kalispell Regional Healthcare, 1333 Surgical Services Drive, Kalispell, MT, 59901, USA
| | - Julia E-M Lax
- Department of Pediatric Surgery, Cleveland Clinic Children's Hospital, Cleveland, OH, 44195, USA
- Alfa Biogene International B.V., Eemnesserweg 56, 3741 GB, Baarn, The Netherlands
| | - Jennifer Harvey
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Paul E DiCorleto
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, 44195, USA
- Division of Research and Sponsored Programs, Kent State University, 202G Schwartz Center, Kent, OH, 44240, USA
| | - M Elaine Husni
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Unnikrishnan M Chandrasekharan
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
115
|
Bhaskaran N, Quigley C, Paw C, Butala S, Schneider E, Pandiyan P. Role of Short Chain Fatty Acids in Controlling T regs and Immunopathology During Mucosal Infection. Front Microbiol 2018; 9:1995. [PMID: 30197637 PMCID: PMC6117408 DOI: 10.3389/fmicb.2018.01995] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/08/2018] [Indexed: 01/12/2023] Open
Abstract
Interactions between mucosal tissues and commensal microbes control appropriate host immune responses and inflammation, but very little is known about these interactions. Here we show that the depletion of resident bacteria using antibiotics (Abx) causes oral and gut immunopathology during oropharyngeal candidiasis (OPC) infection. Antibiotic treatment causes reduction in the frequency of Foxp3+ regulatory cells (Tregs) and IL-17A producers, with a concomitant increase in oral tissue pathology. While C. albicans (CA) is usually controlled in the oral cavity, antibiotic treatment led to CA dependent oral and gut inflammation. A combination of short chain fatty acids (SCFA) controlled the pathology in Abx treated mice, correlating to an increase in the frequency of Foxp3+, IL-17A+, and Foxp3+IL-17A+ double positive (Treg17) cells in tongue and oral draining lymph nodes. However, SCFA treatment did not fully reverse the gut inflammation suggesting that resident microbiota have SCFA independent homeostatic mechanisms in gut mucosa. We also found that SCFA potently induce Foxp3 and IL-17A expression in CD4+ T cells, depending on the cytokine milieu in vitro. Depletion of Tregs alone in FDTR mice recapitulated oral inflammation in CA infected mice, showing that Abx mediated reduction of Tregs was involved in infection induced pathology. SCFA did not control inflammation in Treg depleted mice in CA infected FDTR mice, showing that Foxp3+ T cell induction was required for the protective effect mediated by SCFA. Taken together, our data reveal that SCFA derived from resident bacteria play a critical role in controlling immunopathology by regulating T cell cytokines during mucosal infections. This study has broader implications on protective effects of resident microbiota in regulating pathological infections.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Cheriese Quigley
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Clarissa Paw
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Shivani Butala
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
116
|
Alencar-Silva T, Braga MC, Santana GOS, Saldanha-Araujo F, Pogue R, Dias SC, Franco OL, Carvalho JL. Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol Adv 2018; 36:2019-2031. [PMID: 30118811 DOI: 10.1016/j.biotechadv.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides (AMPs) are mostly endogenous, cationic, amphipathic polypeptides, produced by many natural sources. Recently, many biological functions beyond antimicrobial activity have been attributed to AMPs, and some of these have attracted the attention of the cosmetics industry. AMPs have revealed antioxidant, self-renewal and pro-collagen effects, which are desirable in anti-aging cosmetics. Additionally, AMPs may also be customized to act on specific cellular targets. Here, we review the recent literature that highlights the many possibilities presented by AMPs, focusing on the relevance and impact that this potentially novel class of active cosmetic ingredients might have in the near future, creating new market outlooks for the cosmetic industry with these molecules as a viable alternative to conventional cosmetics.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Mariana Carolina Braga
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gustavo Oliveira Silva Santana
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Robert Pogue
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Simoni Campos Dias
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Universidade de Brasília, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasília/DF, 70910-900, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
117
|
Ardon CB, Prens EP, Fuursted K, Ejaz RN, Shailes J, Jenssen H, Jemec GBE. Biofilm production and antibiotic susceptibility of Staphylococcus epidermidis strains from Hidradenitis Suppurativa lesions. J Eur Acad Dermatol Venereol 2018; 33:170-177. [PMID: 30022542 DOI: 10.1111/jdv.15183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND An aberrant interaction between commensal skin bacteria and the host skin immune system is considered important in the pathogenesis of hidradenitis suppurativa (HS). OBJECTIVE In this study, we investigated the antibiotic susceptibility and biofilm-forming capabilities of S. epidermidis strains isolated from HS patients. METHODS Skin biopsies were taken from active HS lesions such as inflammatory nodules and/or sinuses and non-involved skin from 26 patients and cultured under optimal microbiological conditions for 24 h. Planktonic growth, biofilm production, antibiotic susceptibility and biofilm eradication by clindamycin, doxycycline, rifampicin and tetracycline were tested including a laboratory control strain of S. epidermidis for reference. RESULTS Staphylococcus epidermidis was cultured in 16 of 26 HS patients (62%). In total 27 different S. epidermidis isolates were identified; 16 (59%) from non-involved skin and 11 (41%) from HS lesions. All bacterial strains showed planktonic growth. Twenty-four of 27 (89%) isolates were strong biofilm producers in vitro. The biofilm-forming capability varied amongst the strains from non-involved skin and lesional skin. Twenty-four strains had an intermediate to resistant antibiotic susceptibility to clindamycin (89%). Rifampicin was the most effective antibiotic at inhibiting planktonic growth and at eradication of biofilm (P < 0.05). CONCLUSION We observed a slight increase in S. epidermidis virulence, characterized by resistance to commonly used antibiotics, increased biofilm production and resistance to biofilm eradication. In particular, the reduced sensitivity to tetracycline and clindamycin, two standard antibiotics in the treatment of HS, is alarming. Rifampicin, also important in HS treatment, showed the greatest efficacy at eradicating the biofilm at low MIC concentrations.
Collapse
Affiliation(s)
- C B Ardon
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - E P Prens
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - K Fuursted
- Department of Microbiology and Infection Control, Staten Serum Institute, Copenhagen, Denmark
| | - R N Ejaz
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - J Shailes
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - H Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - G B E Jemec
- Department of Dermatology, University Hospital Zealand, Roskilde, Denmark
| |
Collapse
|
118
|
Hwang I, Kim HN, Seong M, Lee SH, Kang M, Yi H, Bae WG, Kwak MK, Jeong HE. Multifunctional Smart Skin Adhesive Patches for Advanced Health Care. Adv Healthc Mater 2018; 7:e1800275. [PMID: 29757494 DOI: 10.1002/adhm.201800275] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Indexed: 12/21/2022]
Abstract
A skin adhesive patch is the most fundamental and widely used medical device for diverse health-care purposes. Conventional skin adhesive patches have been mainly utilized for routine medical purposes such as wound management, fixation of medical devices, and simple drug release. In contrast to traditional skin adhesive patches, recently developed patches incorporate multiple key functions of bulky medical devices into a thin, flexible patch based on emerging nanomaterials and flexible electronic technologies. Consequently, the meaning of the term "skin adhesive patch" becomes broader and smarter compared to the traditional term. This review summarizes recent efforts undertaken in the development of multifunctional advanced skin adhesive patches, and briefly describes future directions and challenges toward the next generation of smart skin adhesive patches for ubiquitous personalized health care.
Collapse
Affiliation(s)
- Insol Hwang
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Hong Nam Kim
- Center for BioMicrosystems; Brain Science Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Sang-Hyeon Lee
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Hoon Yi
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Won Gyu Bae
- School of Electrical Engineering; Soongsil University (SSU); Seoul 06978 Republic of Korea
| | - Moon Kyu Kwak
- Department of Mechanical Engineering; Kyungpook National University; Daegu 41566 Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| |
Collapse
|
119
|
Anichkov NM, Sydikov AA, Chuprov IN, Zaslavsky DV, Nasyrov RA. [Role of intercellular slit-like contacts (connexins) in the pathogenesis of erythroderma]. Arkh Patol 2018; 80:61-64. [PMID: 30059073 DOI: 10.17116/patol201880461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Erythroderma is a skin lesion characterized by redness, swelling, infiltration, and desquamation of greater than 90% of the skin. The etiology of erythroderma is not completely clear and the lesion can be manifestations of various chronic dermatoses, including atopic dermatitis, psoriasis, eczema, and toxicodermia, and be represented by erythrodermic mycosis fungoides. The pathogenesis of erythroderma especially at the genetic level remains little studied. Thus, one disease (erythroderma) can be a manifestation of different dermatoses and have similar clinical and histological signs. This paper gives a review of modern literature on the study of erythroderma in terms of morphology and genetic aspects.
Collapse
Affiliation(s)
- N M Anichkov
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - A A Sydikov
- Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - I N Chuprov
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - D V Zaslavsky
- Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - R A Nasyrov
- Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
120
|
Zhu TH, Zhu TR, Tran KA, Sivamani RK, Shi VY. Epithelial barrier dysfunctions in atopic dermatitis: a skin-gut-lung model linking microbiome alteration and immune dysregulation. Br J Dermatol 2018; 179:570-581. [PMID: 29761483 DOI: 10.1111/bjd.16734] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atopic dermatitis is a systemic disorder characterized by abnormal barrier function across multiple organ sites. Causes of epidermal barrier breakdown are complex and driven by a combination of structural, genetic, environmental and immunological factors. In addition, alteration in microflora diversity can influence disease severity, duration, and response to treatment. Clinically, atopic dermatitis can progress from skin disease to food allergy, allergic rhinitis, and later asthma, a phenomenon commonly known as the atopic march. The mechanism by which atopic dermatitis progresses towards gastrointestinal or airway disease remains to be elucidated. OBJECTIVES This review addresses how epithelial dysfunction linking microbiome alteration and immune dysregulation can predispose to the development of the atopic march. METHODS A literature search was conducted using the PubMed database for relevant articles with the keywords 'atopic dermatitis', 'epithelial barrier', 'skin', 'gut', 'lung', 'microbiome' and 'immune dysregulation'. RESULTS Initial disruption in the skin epidermal barrier permits allergen sensitization and colonization by pathogens. This induces a T helper 2 inflammatory response and a thymic stromal lymphopoietin-mediated pathway that further promotes barrier breakdown at distant sites, including the intestinal and respiratory tract. CONCLUSIONS As there are no immediate cures for food allergy or asthma, early intervention aimed at protecting the skin barrier and effective control of local and systemic inflammation may improve long-term outcomes and reduce allergen sensitization in the airway and gut.
Collapse
Affiliation(s)
- T H Zhu
- University of Southern California Keck School of Medicine, Los Angeles, CA, U.S.A
| | - T R Zhu
- The Warren Alpert Medical School, Brown University, Providence, RI, U.S.A
| | - K A Tran
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - R K Sivamani
- Department of Dermatology, University of California, Davis, Sacramento, CA, U.S.A
| | - V Y Shi
- Division of Dermatology, Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| |
Collapse
|
121
|
Grönroos M, Parajuli A, Laitinen OH, Roslund MI, Vari HK, Hyöty H, Puhakka R, Sinkkonen A. Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. Microbiologyopen 2018; 8:e00645. [PMID: 29808965 PMCID: PMC6436432 DOI: 10.1002/mbo3.645] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Immune‐mediated diseases have increased during the last decades in urban environments. The hygiene hypothesis suggests that increased hygiene level and reduced contacts with natural biodiversity are related to the increase in immune‐mediated diseases. We tested whether short‐time contact with microbiologically diverse nature‐based materials immediately change bacterial diversity on human skin. We tested direct skin contact, as two volunteers rubbed their hands with sixteen soil and plant based materials, and an exposure via fabric packets filled with moss material. Skin swabs were taken before and after both exposures. Next‐generation sequencing showed that exposures increased, at least temporarily, the total diversity of skin microbiota and the diversity of Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria and Alpha‐, Beta‐ and Gammaproteobacteria suggesting that contact with nature‐based materials modify skin microbiome and increase skin microbial diversity. Until now, approaches to cure or prevent immune system disorders using microbe‐based treatments have been limited to use of a few microbial species. We propose that nature‐based materials with high natural diversity, such as the materials tested here, might be more effective in modifying human skin microbiome, and eventually, in reducing immune system disorders. Future studies should investigate how long‐term changes in skin microbiota are achieved and if the exposure induces beneficial changes in the immune system markers.
Collapse
Affiliation(s)
- Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Olli H Laitinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heikki Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
122
|
Noh YH, Lee J, Seo SJ, Myung SC. Promoter DNA methylation contributes to human β-defensin-1 deficiency in atopic dermatitis. Anim Cells Syst (Seoul) 2018; 22:172-177. [PMID: 30460095 PMCID: PMC6138329 DOI: 10.1080/19768354.2018.1458652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by epidermal barrier dysfunction and dysregulation of innate and adaptive immunity. Epigenetic regulation of human β-defensin-1 (HBD-1) might be associated with a variety of defects in the innate immune system during AD pathogenesis. We investigated the possible mechanism of decreased HBD-1 gene expression in AD and demonstrated the restoration of HBD-1 transcription in undifferentiated normal human epidermal keratinocyte cells after treatment with a DNA methyltransferase inhibitor. We also conducted an in vitro methylated reporter assay using a reporter containing 14 CpG sites. Methylation of the 14 CpG sites within the HBD-1 5′ region resulted in an approximately 86% reduction in promoter activity and affected HBD-1 transcriptional regulation. We then compared methylation frequencies at CpG 3 and CpG 4 between non-lesional and lesional epidermis samples of patients with severe AD and between these paired tissues and healthy control epidermis from normal volunteers without AD history. Bisulfite pyrosequencing data showed significantly higher methylation frequencies at the CpG 3 and 4 sites in AD lesional samples than in non-lesional AD skin and normal skin samples (P < 0.05). These results suggest that the DNA methylation signature of HBD-1 is a novel diagnostic/prognostic marker and a promising therapeutic target for the compromised stratum corneum barrier attributed to HBD-1 deficiency.
Collapse
Affiliation(s)
- Yoo-Hun Noh
- Agricultrual Research Center, Dankook University, Yongin, Republic of Korea
| | - Jaehyouk Lee
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seong Joon Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Soon Chul Myung
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
123
|
Chanson M, Watanabe M, O'Shaughnessy EM, Zoso A, Martin PE. Connexin Communication Compartments and Wound Repair in Epithelial Tissue. Int J Mol Sci 2018; 19:ijms19051354. [PMID: 29751558 PMCID: PMC5983803 DOI: 10.3390/ijms19051354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.
Collapse
Affiliation(s)
- Marc Chanson
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | - Erin M O'Shaughnessy
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Alice Zoso
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Patricia E Martin
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
124
|
Commensal bacterial modulation of the host immune response to ameliorate pain in a murine model of chronic prostatitis. Pain 2018; 158:1517-1527. [PMID: 28715352 DOI: 10.1097/j.pain.0000000000000944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human commensal microflora plays an essential role in modulating the immune response to control homeostasis. Staphylococcus epidermidis, a commensal bacterium most commonly associated with the skin exerts such effects locally, modulating local immune responses during inflammation and preventing superinfection by pathogens such as Staphylococcus aureus. Although the prostate is considered by many to be sterile, multiple investigations have shown that small numbers of gram-positive bacterial species such as S. epidermidis can be isolated from the expressed prostatic secretions of both healthy and diseased men. Chronic pelvic pain syndrome is a complex syndrome with symptoms including pain and lower urinary tract dysfunction. It has an unknown etiology and limited effective treatments but is associated with modulation of prostate immune responses. Chronic pelvic pain syndrome can be modeled using murine experimental prostatitis (EAP), where CD4+ve IL17A+ve T cells have been shown to play a critical role in disease orchestration and development of pelvic tactile allodynia. Here, we report that intraurethral instillation of a specific S. epidermidis strain (designated NPI [non-pain inducing]), isolated from the expressed prostatic secretion of a healthy human male, into EAP-treated mice reduced the pelvic tactile allodynia responses and increased CD4+ve IL17A+ve T-cell numbers associated with EAP. Furthermore, a cell wall constituent of NPI, lipoteichoic acid, specifically recapitulates these effects and mediates increased expression of CTLA4-like ligands PDL1 and PDL2 on prostatic CD11b+ve antigen-presenting cells. These results identify a new potential therapeutic role for commensal S. epidermidis NPI lipoteichoic acid in the treatment of prostatitis-associated pain.
Collapse
|
125
|
Sharma S, Chaudhry V, Kumar S, Patil PB. Phylogenomic Based Comparative Studies on Indian and American Commensal Staphylococcus epidermidis Isolates. Front Microbiol 2018. [PMID: 29535698 PMCID: PMC5835047 DOI: 10.3389/fmicb.2018.00333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus epidermidis is a prominent commensal member of human skin microbiome and an emerging nosocomial pathogen, making it a good model organism to provide genomic insights, correlating its transition between commensalism and pathogenicity. While there are numerous studies to understand differences in commensal and pathogenic isolates, systematic efforts to understand variation and evolutionary pattern in multiple strains isolated from healthy individuals are lacking. In the present study, using whole genome sequencing and analysis, we report presence of diverse lineages of S. epidermidis isolates in healthy individuals from two geographically diverse locations of India and North America. Further, there is distinct pattern in the distribution of candidate gene(s) for pathogenicity and commensalism. The pattern is not only reflected in lineages but is also based on geographic origin of the isolates. This is evident by the fact that North American isolates under this study are more genomically dynamic and harbor pathogenicity markers in higher frequency. On the other hand, isolates of Indian origin are less genomically dynamic, harbor less pathogenicity marker genes and possess two unique antimicrobial peptide gene clusters. This study provides a basis to understand the nature of selection pressure in a key human skin commensal bacterium with implications in its management as an opportunistic pathogen.
Collapse
Affiliation(s)
- Shikha Sharma
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Vasvi Chaudhry
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
126
|
Abstract
The skin supports a delicate ecosystem of microbial elements. Although the skin typically acts as a barrier, these microbes interact with the internal body environment and imbalances from the "healthy" state that have been linked to several dermatologic diseases. Understanding the changes in microbial flora in disease states allows for the potential to treat by restoring equilibrium. With the rising popularity of holistic and natural consumerism, prebiotics, probiotics, symbiotic, and other therapies are under study to find alternative treatments to these skin disorders through manipulation or supplementation of the microbiome.
Collapse
Affiliation(s)
- Shenara Musthaq
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Anna Mazuy
- Early Clinical Evaluation Department, Galderma-Nestlé Skin Health R&D, Les Templiers, Sophia Antipolis, France
| | - Jeannette Jakus
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY.
| |
Collapse
|
127
|
Béke G, Dajnoki Z, Kapitány A, Gáspár K, Medgyesi B, Póliska S, Hendrik Z, Péter Z, Törőcsik D, Bíró T, Szegedi A. Immunotopographical Differences of Human Skin. Front Immunol 2018; 9:424. [PMID: 29556238 PMCID: PMC5844973 DOI: 10.3389/fimmu.2018.00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/16/2018] [Indexed: 11/13/2022] Open
Abstract
The immunological barrier of the healthy skin is considered to be unified on the whole body surface—however, recent indirect findings have challenged this dogma since microbial and chemical milieu (e.g., sebum, sweat, and pH) exhibit remarkable differences on topographically distinct skin areas. Therefore, in the present study, we performed whole transcriptomic and subsequent pathway analyses to assess differences between sebaceous gland rich (SGR) and sebaceous gland poor (SGP) regions. Here, we provide the first evidence that different skin regions exhibit a characteristic innate and adaptive immune and barrier milieu as we could detect significantly increased chemokine (CCL2, 3, 19, 20, 23, 24) and antimicrobial peptide (S100A7, A8, A9, lipocalin, β-defensin-2) expression, altered barrier (keratin 17, 79) functions, and a non-inflammatory Th17/IL-17 dominance in SGR skin compared to SGP. Regarding pro-inflammatory molecules (IL-1α, IL-6, IL-8, IL-33, TNF-α), similarly low levels were detected in both regions. Our data may explain the characteristic topographical localization of some immune-mediated and autoimmune skin disorders and we also propose that the term “healthy skin control sample,” widely used in experimental Dermatology, should only be accepted if researchers carefully specify the exact region of the healthy skin (along with the site of the diseased sample).
Collapse
Affiliation(s)
- Gabriella Béke
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Dajnoki
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Kapitány
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztián Gáspár
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Medgyesi
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Péter
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
128
|
Local Burn Injury Promotes Defects in the Epidermal Lipid and Antimicrobial Peptide Barriers in Human Autograft Skin and Burn Margin: Implications for Burn Wound Healing and Graft Survival. J Burn Care Res 2018; 38:e212-e226. [PMID: 27183442 DOI: 10.1097/bcr.0000000000000357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Burn injury increases the risk of morbidity and mortality by promoting severe hemodynamic shock and risk for local or systemic infection. Graft failure due to poor wound healing or infection remains a significant problem for burn subjects. The mechanisms by which local burn injury compromises the epithelial antimicrobial barrier function in the burn margin, containing the elements necessary for healing of the burn site, and in distal unburned skin, which serves as potential donor tissue, are largely unknown. The objective of this study was to establish defects in epidermal barrier function in human donor skin and burn margin, to identify potential mechanisms that may lead to graft failure and/or impaired burn wound healing. In this study, we established that epidermal lipids and respective lipid synthesis enzymes were significantly reduced in both donor skin and burn margin. We further identified diverse changes in the gene expression and protein production of several candidate skin antimicrobial peptides (AMPs) in both donor skin and burn margin. These results also parallel changes in cutaneous AMP activity against common burn wound pathogens, aberrant production of epidermal proteases known to regulate barrier permeability and AMP activity, and greater production of proinflammatory cytokines known to be induced by AMPs. These findings suggest that impaired epidermal lipid and AMP regulation could contribute to graft failure and infectious complications in subjects with burn or other traumatic injury.
Collapse
|
129
|
Månsson E, Sahdo B, Nilsdotter-Augustinsson Å, Särndahl E, Söderquist B. Lower activation of caspase-1 by Staphylococcus epidermidis isolated from prosthetic joint infections compared to commensals. J Bone Jt Infect 2018; 3:10-14. [PMID: 29545990 PMCID: PMC5852842 DOI: 10.7150/jbji.21567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/25/2017] [Indexed: 02/06/2023] Open
Abstract
Nosocomial sequence types of Staphylococcus epidermidis dominate in prosthetic joint infections. We examined caspase-1 activation in human neutrophils after incubation with Staphylococcus epidermidis isolated from prosthetic joint infections and normal skin flora. Active caspase-1 was lower after incubation with isolates from prosthetic joint infections than after incubation with commensal isolates. Both host and isolate dependent differences in active caspase-1 were noted. Our results indicate that there might be a host-dependent incapacity to elicit a strong caspase-1 response towards certain strains of S. epidermidis. Further experiments with a larger number of individuals are warranted.
Collapse
Affiliation(s)
- Emeli Månsson
- School of Medical Sciences.,iRiSC - Inflammatory Response and Infection Susceptibility Centre.,Region Västmanland - Uppsala University, Centre for Clinical Research, Hospital of Västmanland Västerås, SE-721 89 Västerås, Sweden
| | - Berolla Sahdo
- iRiSC - Inflammatory Response and Infection Susceptibility Centre
| | - Åsa Nilsdotter-Augustinsson
- Department of Infectious Diseases, and Department of Clinical and Experimental Medicine, Linköping University, SE-60182 Norrköping, Sweden
| | - Eva Särndahl
- School of Medical Sciences.,iRiSC - Inflammatory Response and Infection Susceptibility Centre
| | - Bo Söderquist
- School of Medical Sciences.,Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
130
|
Vaughn AR, Notay M, Clark AK, Sivamani RK. Skin-gut axis: The relationship between intestinal bacteria and skin health. World J Dermatol 2017; 6:52-58. [DOI: 10.5314/wjd.v6.i4.52] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/07/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome is an emerging area of interest in medicine. Imbalances in the gut microbiome have been linked to a number of disease states such as obesity and type 2 diabetes. The relationship between normally residing intestinal bacteria (the gut microbiota) and their potential role in the pathogenesis of skin diseases is an area of research for which we are only beginning to understand. Small studies have demonstrated underlying changes in the gut microbiome of patients with certain dermatological diseases. Interestingly, studies suggest that probiotics may have a role in the treatment of atopic dermatitis. However, the concept of the “skin-gut axis” is a newly emerging and important avenue of investigation, still lacking in pathobiological explanations. This review will introduce and describe the intestinal microbiome as it relates to skin health in a complex communication network between the immune system, endocrine system, metabolic system, and nervous system.
Collapse
Affiliation(s)
- Alexandra R Vaughn
- Drexel University College of Medicine, Philadelphia, PA 19129, United States
- UC Davis Department of Dermatology, Sacramento, CA 95816, United States
| | - Manisha Notay
- UC Davis Department of Dermatology, Sacramento, CA 95816, United States
| | - Ashley K Clark
- UC Davis Department of Dermatology, Sacramento, CA 95816, United States
| | - Raja K Sivamani
- UC Davis Department of Dermatology, Sacramento, CA 95816, United States
| |
Collapse
|
131
|
Archer NK, Dilolli MN, Miller LS. Pushing the Envelope in Psoriasis: Late Cornified Envelope Proteins Possess Antimicrobial Activity. J Invest Dermatol 2017; 137:2257-2259. [PMID: 29055413 DOI: 10.1016/j.jid.2017.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Deletion of late cornified envelope (LCE) genes LCE3B and LCE3C (LCE3B/C-del) is a psoriasis risk factor linked to the major psoriasis risk gene HLA-C*06. Niehues et al. demonstrate that LCE3B/C-del leads to increased keratinocyte LCE3A expression. They also show that LCE3A/B/C possess antimicrobial activity but do not obviously regulate epidermal barrier integrity. These findings implicate LCE proteins in psoriasis pathogenesis via a new functional role.
Collapse
Affiliation(s)
- Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Migena N Dilolli
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
132
|
|
133
|
Skin Immune Landscape: Inside and Outside the Organism. Mediators Inflamm 2017; 2017:5095293. [PMID: 29180836 PMCID: PMC5664322 DOI: 10.1155/2017/5095293] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
The skin is an essential organ to the human body protecting it from external aggressions and pathogens. Over the years, the skin was proven to have a crucial immunological role, not only being a passive protective barrier but a network of effector cells and molecular mediators that constitute a highly sophisticated compound known as the “skin immune system” (SIS). Studies of skin immune sentinels provided essential insights of a complex and dynamic immunity, which was achieved through interaction between the external and internal cutaneous compartments. In fact, the skin surface is cohabited by microorganisms recognized as skin microbiota that live in complete harmony with the immune sentinels and contribute to the epithelial barrier reinforcement. However, under stress, the symbiotic relationship changes into a dysbiotic one resulting in skin disorders. Hence, the skin microbiota may have either positive or negative influence on the immune system. This review aims at providing basic background information on the cutaneous immune system from major cellular and molecular players and the impact of its microbiota on the well-coordinated immune responses in host defense.
Collapse
|
134
|
Zeng B, Zhao J, Guo W, Zhang S, Hua Y, Tang J, Kong F, Yang X, Fu L, Liao K, Yu X, Chen G, Jin L, Shuai S, Yang J, Si X, Ning R, Mishra S, Li Y. High-Altitude Living Shapes the Skin Microbiome in Humans and Pigs. Front Microbiol 2017; 8:1929. [PMID: 29056930 PMCID: PMC5635199 DOI: 10.3389/fmicb.2017.01929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
While the skin microbiome has been shown to play important roles in health and disease in several species, the effects of altitude on the skin microbiome and how high-altitude skin microbiomes may be associated with health and disease states remains largely unknown. Using 16S rRNA marker gene sequencing, we characterized the skin microbiomes of people from two racial groups (the Tibetans and the Hans) and of three local pig breeds (Tibetan pig, Rongchang pig, and Qingyu pig) at high and low altitudes. The skin microbial communities of low-altitude pigs and humans were distinct from those of high-altitude pigs and humans, with five bacterial taxa (Arthrobacter, Paenibacillus, Carnobacterium, and two unclassified genera in families Cellulomonadaceae and Xanthomonadaceae) consistently enriched in both pigs and humans at high altitude. Alpha diversity was also significantly lower in skin samples collected from individuals living at high altitude compared to individuals at low altitude. Several of the taxa unique to high-altitude humans and pigs are known extremophiles adapted to harsh environments such as those found at high altitude. Altogether our data reveal that altitude has a significant effect on the skin microbiome of pigs and humans.
Collapse
Affiliation(s)
- Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Wei Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yutong Hua
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingsi Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuewu Yang
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Lizhi Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Kun Liao
- Pasturage Station of Tongjiang Agriculture Bureau, Bazhong, China
| | - Xianqiong Yu
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Guohong Chen
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Long Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Surong Shuai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiandong Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Si
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ruihong Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sudhanshu Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
135
|
Meylan P, Lang C, Mermoud S, Johannsen A, Norrenberg S, Hohl D, Vial Y, Prod'hom G, Greub G, Kypriotou M, Christen-Zaech S. Skin Colonization by Staphylococcus aureus Precedes the Clinical Diagnosis of Atopic Dermatitis in Infancy. J Invest Dermatol 2017; 137:2497-2504. [PMID: 28842320 DOI: 10.1016/j.jid.2017.07.834] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/25/2017] [Accepted: 07/13/2017] [Indexed: 11/16/2022]
Abstract
Atopic dermatitis (AD) has a well-established association with skin colonization or infection by Staphylococcus aureus, which can exacerbate the disease. However, a causal relationship between specific changes in skin colonization during the first years of life and AD development still remains unclear. In this prospective birth cohort study, we aimed to characterize the association between skin colonization and AD development in 149 white infants with or without a family history of atopy. We assessed infants clinically and collected axillary and antecubital fossa skin swabs for culture-based analysis at birth and at seven time points over the first 2 years of life. We found that at age 3 months, S. aureus was more prevalent on the skin of infants who developed AD later on. S. aureus prevalence was increased on infants' skin at the time of AD onset and also 2 months before it, when compared with age-matched, unaffected infants. Furthermore, at AD onset, infants testing positive for S. aureus were younger than uncolonized subjects. In conclusion, our results suggest that specific changes in early-life skin colonization may actively contribute to clinical AD onset in infancy.
Collapse
Affiliation(s)
- Patrick Meylan
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Caroline Lang
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sophie Mermoud
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alexandre Johannsen
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sarah Norrenberg
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniel Hohl
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yvan Vial
- Department of Gynecology and Obstetrics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Guy Prod'hom
- Department of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Gilbert Greub
- Department of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Magdalini Kypriotou
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stéphanie Christen-Zaech
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
136
|
Doane MP, Haggerty JM, Kacev D, Papudeshi B, Dinsdale EA. The skin microbiome of the common thresher shark (Alopias vulpinus) has low taxonomic and gene function β-diversity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:357-373. [PMID: 28418094 DOI: 10.1111/1758-2229.12537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
The health of sharks, like all organisms, is linked to their microbiome. At the skin interface, sharks have dermal denticles that protrude above the mucus, which may affect the types of microbes that occur here. We characterized the microbiome from the skin of the common thresher shark (Alopias vulpinus) to investigate the structure and composition of the skin microbiome. On average 618 812 (80.9% ± S.D. 0.44%) reads per metagenomic library contained open reading frames; of those, between 7.6% and 12.8% matched known protein sequences. Genera distinguishing the A. vulpinus microbiome from the water column included, Pseudoalteromonas (12.8% ± 4.7 of sequences), Erythrobacter (5. 3% ± 0.5) and Idiomarina (4.2% ± 1.2) and distinguishing gene pathways included, cobalt, zinc and cadmium resistance (2.2% ± 0.1); iron acquisition (1.2% ± 0.1) and ton/tol transport (1.3% ± 0.08). Taxonomic community overlap (100 - dissimilarity index) was greater in the skin microbiome (77.6), relative to the water column microbiome (70.6) and a reference host-associated microbiome (algae: 71.5). We conclude the A. vulpinus skin microbiome is influenced by filtering processes, including biochemical and biophysical components of the shark skin and result in a structured microbiome.
Collapse
Affiliation(s)
- Michael P Doane
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Dovi Kacev
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Bhavya Papudeshi
- Department of Computer Sciences, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
137
|
García-Gómez E, Miranda-Ozuna JFT, Díaz-Cedillo F, Vázquez-Sánchez EA, Rodríguez-Martínez S, Jan-Roblero J, Cancino-Diaz ME, Cancino-Diaz JC. Staphylococcus epidermidis lipoteichoic acid: exocellular release and ltaS gene expression in clinical and commensal isolates. J Med Microbiol 2017. [PMID: 28639932 DOI: 10.1099/jmm.0.000502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Staphylococcus epidermidis ATCC12228 lipoteichoic acid (LTA) inhibits TNFα production from keratinocytes that are activated with poly I:C. However, this effect has not been proven in clinical or commensal isolates. METHODOLOGY The <10 kDa fractions of S. epidermidis isolates from ocular infections (n=56), healthy skin (n=35) and healthy conjunctiva (n=32) were obtained. TNFα production was determined by elisa in HaCaT keratinocytes stimulated with poly I:C and with the <10 kDa fractions. LTA in the cytoplasmic membrane and in the <10 kDa fractions of the isolates was determined during bacterial growth by flow cytometry, Western blot and electrospray ionization mass spectrometry. The expression levels of ugtP, ltaA and ltaS were evaluated. RESULTS Two populations of isolates were found: a population that inhibited TNFα production (TNFα-inhibitor isolates) and a population that did not inhibit it (TNFα non-inhibitor isolates). The cells from the TNFα-inhibitor isolates had less LTA in the cytoplasmic membrane compared to the cells from the TNFα non-inhibitor isolates (P<0.05). Similarly, LTA was detected in the supernatants of TNFα-inhibitor isolates, and it was absent in TNFα non-inhibitor isolates. High expression levels of the ugtP and ltaA genes in the 1850I (TNFα-inhibitor isolate) and 37HS (TNFα non-inhibitor isolate) isolates were found during bacterial growth. However, the ltaS gene had a low expression level (P<0.05) in the 37HS isolate. CONCLUSION The TNFα-inhibitor isolates release LTA due to high expression of the LTA synthesis genes. By contrast, TNFα non-inhibitor isolates do not release LTA due to low expression level of the ltaS gene.
Collapse
Affiliation(s)
- Elizabeth García-Gómez
- Departments of Microbiology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Col, Santo Tomas, Deleg, Miguel Hidalgo, Mexico City, Mexico.,Unidad de Investigación en Reproducción Humana, CONACyT-Instituto Nacional de Perinatología, Montes Urales 800, Col, Lomas Virreyes Deleg, Miguel Hidalgo, Mexico City, Mexico
| | - Jesús F T Miranda-Ozuna
- Departments of Microbiology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Col, Santo Tomas, Deleg, Miguel Hidalgo, Mexico City, Mexico
| | - Francisco Díaz-Cedillo
- Departments of Organic Chemistry, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Col, Santo Tomas, Deleg, Miguel Hidalgo, Mexico City, Mexico
| | - Ernesto A Vázquez-Sánchez
- Departments of Immunology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Col, Santo Tomas, Deleg, Miguel Hidalgo, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Departments of Immunology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Col, Santo Tomas, Deleg, Miguel Hidalgo, Mexico City, Mexico
| | - Janet Jan-Roblero
- Departments of Microbiology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Col, Santo Tomas, Deleg, Miguel Hidalgo, Mexico City, Mexico
| | - Mario E Cancino-Diaz
- Departments of Immunology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Col, Santo Tomas, Deleg, Miguel Hidalgo, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Departments of Microbiology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Col, Santo Tomas, Deleg, Miguel Hidalgo, Mexico City, Mexico
| |
Collapse
|
138
|
Salava A, Aho V, Lybeck E, Pereira P, Paulin L, Nupponen I, Ranki A, Auvinen P, Andersson S, Lauerma A. Loss of cutaneous microbial diversity during first 3 weeks of life in very low birthweight infants. Exp Dermatol 2017; 26:861-867. [PMID: 28156021 DOI: 10.1111/exd.13312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 12/28/2022]
Abstract
Neonatal sepsis (NS) is a frequent problem in neonatal intensive care, especially in preterm and very low birthweight (VLBW) infants. The objective of the study was to characterize the cutaneous bacterial microbiome in VLBW infants treated in the neonatal intensive care unit (NICU). Non-invasive skin microbiome specimens were taken repeatedly from 12 VLBW infants during treatment in NICU starting on the first day of life. All infants received benzylpenicillin and netilmicin during the first 1-5 postnatal days. Samples were also collected from incubators. High cutaneous microbial diversity was present at birth in 11 of 12 of the infants, but the diversity decreased substantially after the first weeks of life in all infants regardless of their infection status. After the loss of diversity, one Staphylococcus operational taxonomic unit dominated the skin microbiome. Recovery of microbial diversity was seen in six of 12 neonates. The microbiome of incubators showed typical environmental bacterial genera. Maternal antibiotic treatment, the aetiology of the preterm birth or being born by C-section did not appear to affect the diversity of skin microbiota at birth, and no correlation was found between cutaneous microbiome and NS.
Collapse
Affiliation(s)
- Alexander Salava
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Velma Aho
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Emilia Lybeck
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pedro Pereira
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Irmeli Nupponen
- Children's Hospital, University of Helsinki and University Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, University of Helsinki and University Hospital, Helsinki, Finland
| | - Antti Lauerma
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
139
|
Papot C, Massol F, Jollivet D, Tasiemski A. Antagonistic evolution of an antibiotic and its molecular chaperone: how to maintain a vital ectosymbiosis in a highly fluctuating habitat. Sci Rep 2017; 7:1454. [PMID: 28469247 PMCID: PMC5431198 DOI: 10.1038/s41598-017-01626-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/30/2017] [Indexed: 12/25/2022] Open
Abstract
Evolution of antimicrobial peptides (AMPs) has been shown to be driven by recurrent duplications and balancing/positive selection in response to new or altered bacterial pathogens. We use Alvinella pompejana, the most eurythermal animal known on Earth, to decipher the selection patterns acting on AMP in an ecological rather than controlled infection approach. The preproalvinellacin multigenic family presents the uniqueness to encode a molecular chaperone (BRICHOS) together with an AMP (alvinellacin) that controls the vital ectosymbiosis of Alvinella. In stark contrast to what is observed in the context of the Red queen paradigm, we demonstrate that exhibiting a vital and highly conserved ecto-symbiosis in the face of thermal fluctuations has led to a peculiar selective trend promoting the adaptive diversification of the molecular chaperone of the AMP, but not of the AMP itself. Because BRICHOS stabilizes beta-stranded peptides, this polymorphism likely represents an eurythermal adaptation to stabilize the structure of alvinellacin, thus hinting at its efficiency to select and control the epibiosis across the range of temperatures experienced by the worm; Our results fill some knowledge gaps concerning the function of BRICHOS in invertebrates and offer perspectives for studying immune genes in an evolutionary ecological framework.
Collapse
Affiliation(s)
- Claire Papot
- University Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, SPICI group, F-59000, Lille, France
| | - François Massol
- University Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, SPICI group, F-59000, Lille, France
| | - Didier Jollivet
- AD2M, ABICE team, Université Pierre et Marie Curie-CNRS, UMR7144, Station Biologique de Roscoff, 29682, Roscoff, France
| | - Aurélie Tasiemski
- University Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, SPICI group, F-59000, Lille, France.
| |
Collapse
|
140
|
Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability. Appl Environ Microbiol 2017; 83:AEM.00186-17. [PMID: 28213545 DOI: 10.1128/aem.00186-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts.
Collapse
|
141
|
Hong SW, Kim KS, Surh CD. Beyond Hygiene: Commensal Microbiota and Allergic Diseases. Immune Netw 2017; 17:48-59. [PMID: 28261020 PMCID: PMC5334122 DOI: 10.4110/in.2017.17.1.48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Complex communities of microorganisms, termed commensal microbiota, inhabit mucosal surfaces and profoundly influence host physiology as well as occurrence of allergic diseases. Perturbing factors such as the mode of delivery, dietary fibers and antibiotics can influence allergic diseases by altering commensal microbiota in affected tissues as well as in intestine. Here, we review current findings on the relationship between commensal microbiota and allergic diseases, and discuss the underlying mechanisms that contribute to the regulation of allergic responses by commensal microbiota.
Collapse
Affiliation(s)
- Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang University of Science and Technology, Pohang 37673, Korea.; Department of Integrative Biosciences and Biotechnology. Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
142
|
Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, Shafiq F, Kotol PF, Bouslimani A, Melnik AV, Latif H, Kim JN, Lockhart A, Artis K, David G, Taylor P, Streib J, Dorrestein PC, Grier A, Gill SR, Zengler K, Hata TR, Leung DYM, Gallo RL. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 2017; 9:eaah4680. [PMID: 28228596 PMCID: PMC5600545 DOI: 10.1126/scitranslmed.aah4680] [Citation(s) in RCA: 721] [Impact Index Per Article: 90.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/08/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022]
Abstract
The microbiome can promote or disrupt human health by influencing both adaptive and innate immune functions. We tested whether bacteria that normally reside on human skin participate in host defense by killing Staphylococcus aureus, a pathogen commonly found in patients with atopic dermatitis (AD) and an important factor that exacerbates this disease. High-throughput screening for antimicrobial activity against S. aureus was performed on isolates of coagulase-negative Staphylococcus (CoNS) collected from the skin of healthy and AD subjects. CoNS strains with antimicrobial activity were common on the normal population but rare on AD subjects. A low frequency of strains with antimicrobial activity correlated with colonization by S. aureus The antimicrobial activity was identified as previously unknown antimicrobial peptides (AMPs) produced by CoNS species including Staphylococcus epidermidis and Staphylococcus hominis These AMPs were strain-specific, highly potent, selectively killed S. aureus, and synergized with the human AMP LL-37. Application of these CoNS strains to mice confirmed their defense function in vivo relative to application of nonactive strains. Strikingly, reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S. aureus These findings show how commensal skin bacteria protect against pathogens and demonstrate how dysbiosis of the skin microbiome can lead to disease.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Tiffany H Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Saisindhu Narala
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Kimberly A Chun
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Aimee M Two
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Tong Yun
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Paul F Kotol
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92092, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92092, USA
| | - Haythem Latif
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92092, USA
| | - Ji-Nu Kim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92092, USA
| | | | - Keli Artis
- Rho Federal Systems Division Inc., Chapel Hill, NC 27517, USA
| | - Gloria David
- Rho Federal Systems Division Inc., Chapel Hill, NC 27517, USA
| | - Patricia Taylor
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Joanne Streib
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92092, USA
- Departments of Chemistry, Biochemistry and Pharmacology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Alex Grier
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14611, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14611, USA
| | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92092, USA
| | - Tissa R Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA
| | - Donald Y M Leung
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92092, USA.
| |
Collapse
|
143
|
Szabó K, Erdei L, Bolla BS, Tax G, Bíró T, Kemény L. Factors shaping the composition of the cutaneous microbiota. Br J Dermatol 2017; 176:344-351. [PMID: 27518483 DOI: 10.1111/bjd.14967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 12/12/2022]
Abstract
From birth, we are constantly exposed to bacteria, fungi and viruses, some of which are capable of transiently or permanently inhabiting our different body parts as our microbiota. The majority of our microbial interactions occur during and after birth, and several different factors, including age, sex, genetic constitution, environmental conditions and lifestyle, have been suggested to shape the composition of this microbial community. Propionibacterium acnes is one of the most dominant lipophilic microbes of the postadolescent, sebum-rich human skin regions. Currently, the role of this bacterium in the pathogenesis of the most common inflammatory skin disease, acne vulgaris, is a topic of intense scientific debate. Recent results suggest that Westernization strongly increases the dominance of the Propionibacterium genus in human skin compared with natural populations living more traditional lifestyles. According to the disappearing microbiota hypothesis proposed by Martin Blaser, such alterations in the composition of our microbiota are the possible consequences of socioeconomic and lifestyle changes occurring after the industrial revolution. Evanescence of species that are important elements of the human ecosystem might lead to the overgrowth and subsequent dominance of others because of the lack of ecological competition. Such changes can disturb the fine-tuned balance of the human body and, accordingly, our microbes developed through a long co-evolutionary process. These processes might lead to the transformation of a seemingly harmless species into an opportunistic pathogen through bacterial dysbiosis. This might have happened in the case of P. acnes in acne pathogenesis.
Collapse
Affiliation(s)
- K Szabó
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - L Erdei
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - B Sz Bolla
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - G Tax
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - T Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Departments of Physiology and Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - L Kemény
- MTA-SZTE Dermatological Research Group, Szeged, Hungary.,Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| |
Collapse
|
144
|
Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 2017; 115:66-77. [PMID: 28157611 DOI: 10.1016/j.rvsc.2017.01.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Fish are always susceptible to a variety of lethal diseases caused by different types of bacterial, fungal, viral and parasitic agents. The unscientific management practises such as, over feeding, high stock densities and destructive fishing techniques increase the probability of disease symptoms in aquaculture industries. According to Food and Agriculture Association (FAO), each and every year several countries such as China, India, Norway, Indonesia, etc. face a huge loss in aquaculture production due to mainly bacterial and viral diseases. The use of antibiotics is a common practise in fish farming sectors to control the disease outbreak. However, the antibiotics are not long term friend because it creates selective pressure for emergence of drug resistant bacteria. Probiotics are live microorganisms that confer several beneficial effects to host (enhances immunity, helps in digestion, protects from pathogens, improves water quality, promotes growth and reproduction) and can be used as an alternative of antibiotics. In recent year, a wide range of bacteria have reported as potential probiotics candidates in fish farming sectors, however, Lactobacillus sp. and Bacillus sp. gain special attention due to their high antagonistic activities, extracellular enzyme production and availability. In this present review, we have summarized the recent advancement in aquaculture probiotics research and its impact on fish health, nutrition, immunity, reproduction and water quality.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India; Center for Nature Conservation and Biosafety (CNCB Pvt. Ltd.; cncb.co.in), Cuttack, Odisha 754132, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| |
Collapse
|
145
|
Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. Life history and eco-evolutionary dynamics in light of the gut microbiota. OIKOS 2017. [DOI: 10.1111/oik.03900] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emilie Macke
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | | | - François Massol
- Univ. Lille; CNRS UMR 8198 Evo-Eco-Paleo SPICI group Lille France
| | - Martijn Callens
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| |
Collapse
|
146
|
Ferretti P, Farina S, Cristofolini M, Girolomoni G, Tett A, Segata N. Experimental metagenomics and ribosomal profiling of the human skin microbiome. Exp Dermatol 2017; 26:211-219. [DOI: 10.1111/exd.13210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Pamela Ferretti
- Centre for Integrative Biology; University of Trento; Trento Italy
| | | | | | - Giampiero Girolomoni
- Section of Dermatology; Department of Medicine; University of Verona; Verona Italy
| | - Adrian Tett
- Centre for Integrative Biology; University of Trento; Trento Italy
| | - Nicola Segata
- Centre for Integrative Biology; University of Trento; Trento Italy
| |
Collapse
|
147
|
Soares RC, Camargo-Penna PH, de Moraes VCS, De Vecchi R, Clavaud C, Breton L, Braz ASK, Paulino LC. Dysbiotic Bacterial and Fungal Communities Not Restricted to Clinically Affected Skin Sites in Dandruff. Front Cell Infect Microbiol 2016; 6:157. [PMID: 27909689 PMCID: PMC5112237 DOI: 10.3389/fcimb.2016.00157] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
Dandruff is a prevalent chronic inflammatory skin condition of the scalp that has been associated with Malassezia yeasts. However, the microbial role has not been elucidated yet, and the etiology of the disorder remains poorly understood. Using high-throughput 16S rDNA and ITS1 sequencing, we characterized cutaneous bacterial and fungal microbiotas from healthy and dandruff subjects, comparing scalp and forehead (lesional and non-lesional skin sites). Bacterial and fungal communities from dandruff analyzed at genus level differed in comparison with healthy ones, presenting higher diversity and greater intragroup variation. The microbial shift was observed also in non-lesional sites from dandruff subjects, suggesting that dandruff is related to a systemic process that is not restricted to the site exhibiting clinical symptoms. In contrast, Malassezia microbiota analyzed at species level did not differ according to health status. A 2-step OTU assignment using combined databases substantially increased fungal assigned sequences, and revealed the presence of highly prevalent uncharacterized Malassezia organisms (>37% of the reads). Although clinical symptoms of dandruff manifest locally, microbial dysbiosis beyond clinically affected skin sites suggests that subjects undergo systemic alterations, which could be considered for redefining therapeutic approaches.
Collapse
Affiliation(s)
- Renan C Soares
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André, Brazil
| | - Pedro H Camargo-Penna
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André, Brazil
| | - Vanessa C S de Moraes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André, Brazil
| | | | - Cécile Clavaud
- L'Oréal, Research and Innovation Aulnay-sous-Bois, France
| | - Lionel Breton
- L'Oréal, Research and Innovation Aulnay-sous-Bois, France
| | - Antonio S K Braz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André, Brazil
| | - Luciana C Paulino
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André, Brazil
| |
Collapse
|
148
|
Holz C, Benning J, Schaudt M, Heilmann A, Schultchen J, Goelling D, Lang C. Novel bioactive from Lactobacillus brevis DSM17250 to stimulate the growth of Staphylococcus epidermidis: a pilot study. Benef Microbes 2016; 8:121-131. [PMID: 27824277 DOI: 10.3920/bm2016.0073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Commensal skin microbiota plays an important role in both influencing the immune response of the skin and acting as a barrier against colonisation of potentially pathogenic microorganisms and overgrowth of opportunistic pathogens. Staphylococcus epidermidis is a key constituent of the normal microbiota on human skin. It balances the inflammatory response after skin injury and produces antimicrobial molecules that selectively inhibit skin pathogens. Here we describe Lactobacillus brevis DSM17250 that was identified among hundreds of Lactobacillus strains to exhibit an anti-inflammatory effect in human keratinocytes in vitro and specific stimulatory impact on the growth of S. epidermidis. The aqueous cell-free extract of L. brevis DSM17250 was used in an ointment formulation and tested in a randomized placebo-controlled double blinded human pilot study. Healthy volunteers with diagnosed dry skin were treated for four weeks. The study data shows that L. brevis DSM17250 extract induces re-colonisation of the skin by protective commensal microorganisms as judged from selective bacterial cultivation of surface-associated skin microorganism of the lower leg. Furthermore, the 4 week administration of the L. brevis DSM17250 extract significantly improved the transepidermal water loss value (TEWL), reduced the xerosis cutis symptoms and stinging. The data shows that daily application of L. brevis DSM17250 extract in a topical product significantly improves the microbial skin microbiota by promoting the growth of species which possess beneficial regulatory and protective properties such as S. epidermidis. Restoring the natural skin microbiota leads to significantly improved skin barrier function (as transepidermal water loss) and decrease of xeroderma (xerosis cutis) symptoms (as measured by dry skin area and severity index, DASI). We propose that improving and stabilizing the natural skin microbiota by specifically stimulating the growth of S. epidermidis is an important and novel concept to manage skin diseases associated with microbiota dysbiosis.
Collapse
Affiliation(s)
- C Holz
- 1 Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - J Benning
- 1 Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - M Schaudt
- 2 Analyse & Realize GmbH, Waldseeweg 6, 13467 Berlin, Germany.,3 PRA health Sciences, Gottlieb-Daimler-Straβe 10, 68165 Mannheim, Germany
| | - A Heilmann
- 1 Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - J Schultchen
- 1 Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - D Goelling
- 1 Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - C Lang
- 1 Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
149
|
McIntyre MK, Peacock TJ, Akers KS, Burmeister DM. Initial Characterization of the Pig Skin Bacteriome and Its Effect on In Vitro Models of Wound Healing. PLoS One 2016; 11:e0166176. [PMID: 27824921 PMCID: PMC5100914 DOI: 10.1371/journal.pone.0166176] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/24/2016] [Indexed: 02/01/2023] Open
Abstract
Elucidating the roles and composition of the human skin microbiome has revealed a delicate interplay between resident microbes and wound healing. Evolutionarily speaking, normal cutaneous flora likely has been selected for because it potentiates or, at minimum, does not impede wound healing. While pigs are the gold standard model for wound healing studies, the porcine skin microbiome has not been studied in detail. Herein, we performed 16S rDNA sequencing to characterize the pig skin bacteriome at several anatomical locations. Additionally, we used bacterial conditioned-media with in vitro techniques to examine the paracrine effects of bacterial-derived proteins on human keratinocytes (NHEK) and fibroblasts (NHDF). We found that at the phyla level, the pig skin bacteriome is similar to that of humans and largely consists of Firmicutes (55.6%), Bacteroidetes (20.8%), Actinobacteria (13.3%), and Proteobacteria (5.1%) however species-level differences between anatomical locations exist. Studies of bacterial supernatant revealed location-dependent effects on NHDF migration and NHEK apoptosis and growth factor release. These results expand the limited knowledge of the cutaneous bacteriome of healthy swine, and suggest that naturally occurring bacterial flora affects wound healing differentially depending on anatomical location. Ultimately, the pig might be considered the best surrogate for not only wound healing studies but also the cutaneous microbiome. This would not only facilitate investigations into the microbiome’s role in recovery from injury, but also provide microbial targets for enhancing or accelerating wound healing.
Collapse
Affiliation(s)
- Matthew K. McIntyre
- Damage Control Resuscitation, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Trent J. Peacock
- Dental Trauma Research Detachment, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Kevin S. Akers
- Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - David M. Burmeister
- Damage Control Resuscitation, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
150
|
Haas K, Weighardt H, Deenen R, Köhrer K, Clausen B, Zahner S, Boukamp P, Bloch W, Krutmann J, Esser C. Aryl Hydrocarbon Receptor in Keratinocytes Is Essential for Murine Skin Barrier Integrity. J Invest Dermatol 2016; 136:2260-2269. [DOI: 10.1016/j.jid.2016.06.627] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022]
|