101
|
Gosalbes MJ, Jimenéz-Hernandéz N, Moreno E, Artacho A, Pons X, Ruíz-Pérez S, Navia B, Estrada V, Manzano M, Talavera-Rodriguez A, Madrid N, Vallejo A, Luna L, Pérez-Molina JA, Moreno S, Serrano-Villar S. Interactions among the mycobiome, bacteriome, inflammation, and diet in people living with HIV. Gut Microbes 2022; 14:2089002. [PMID: 35748016 PMCID: PMC9235884 DOI: 10.1080/19490976.2022.2089002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the intestinal microbiome seems a major driver of persistent immune defects in people with HIV (PWH), little is known about its fungal component, the mycobiome. We assessed the inter-kingdom mycobiome-bacteriome interactions, the impact of diet, and the association with the innate and adaptive immunity in PWH on antiretroviral therapy. We included 24 PWH individuals and 12 healthy controls. We sequenced the Internal Transcribed Spacer 2 amplicons, determined amplicon sequence variants, measured biomarkers of the innate and adaptive immunity in blood and relations with diet. Compared to healthy controls, PWH subjects exhibited a distinct and richer mycobiome and an enrichment for Debaryomyces hansenii, Candida albicans, and Candida parapsilosis. In PWH, Candida and Pichia species were strongly correlated with several bacterial genera, including Faecalibacterium genus. Regarding the links between the mycobiome and systemic immunology, we found a positive correlation between Candida species and the levels of proinflammatory cytokines (sTNF-R2 and IL-17), interleukin 22 (a cytokine implicated in the regulation of mucosal immunity), and CD8+ T cell counts. This suggests an important role of the yeasts in systemic innate and adaptive immune responses. Finally, we identified inter-kingdom interactions implicated in fiber degradation, short-chain fatty acid production, and lipid metabolism, and an effect of vegetable and fiber intake on the mycobiome. Therefore, despite the great differences in abundance and diversity between the bacterial and fungal communities of the gut, we defined the changes associated with HIV, determined several different inter-kingdom associations, and found links between the mycobiome, nutrient metabolism, and systemic immunity.
Collapse
Affiliation(s)
- María José Gosalbes
- CIBER de Epidemiología y Salud Pública, Madrid, Spain,Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain,CONTACT María José Gosalbes Genomics and Health Area, FISABIO-Salud Pública46020Valencia, Spain
| | - Nuria Jimenéz-Hernandéz
- CIBER de Epidemiología y Salud Pública, Madrid, Spain,Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Elena Moreno
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Alejandro Artacho
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Xavier Pons
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Sonia Ruíz-Pérez
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Beatriz Navia
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, Madrid, Spain
| | - Vicente Estrada
- CIBER de Enfermedades Infecciosas, Madrid, Spain,HIV Unit, Hospital Clínico San Carlos, Madrid, Spain
| | - Mónica Manzano
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Talavera-Rodriguez
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Nadia Madrid
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Alejandro Vallejo
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - José A. Pérez-Molina
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain,Sergio Serrano-Villar Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
102
|
Johnson SD, Fox HS, Buch S, Byrareddy SN. Chronic Opioid Administration is Associated with Prevotella-dominated Dysbiosis in SIVmac251 Infected, cART-treated Macaques. J Neuroimmune Pharmacol 2022; 17:3-14. [PMID: 33788119 PMCID: PMC9969301 DOI: 10.1007/s11481-021-09993-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
People living with the human immunodeficiency virus (HIV) have an elevated risk of opioid misuse due to both prescriptions for HIV-associated chronic pain and because injection drug use remains a primary mode of HIV transmission. HIV pathogenesis is characterized by chronic immune activation and microbial dysbiosis, and translocation across the gut barrier exacerbating inflammation. Despite the high rate of co-occurrence, little is known about the microbiome during chronic opioid use in the context of HIV and combination antiretroviral therapy (cART). We recently demonstrated the reduction of the CD4 + T-cell reservoir in lymphoid tissues but increased in microglia/macrophage reservoirs in CNS by using morphine-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques with viremia suppressed by cART. To understand whether morphine may perturb the gut-brain axis, fecal samples were collected at necropsy, DNA isolated, and 16S rRNA sequenced and changes of the microbiome analyzed. We found that morphine treatment led to dysbiosis, primarily characterized by expansion of Bacteroidetes, particularly Prevotellaceae, at the expense of Firmicutes and other members of healthy microbial communities resulting in a lower α-diversity. Of the many genera in Prevotellaceae, the differences between the saline and morphine group were primarily due to a higher relative abundance of Prevotella_9, the taxa most similar to Prevotella copri, an inflammatory pathobiont in the human microbiome. These findings reinforce previous research showing that opioid abuse is associated with dysbiosis, therefore, warranting additional future research to elucidate the complex interaction between the host and opioid abuse during HIV and SIV infection.
Collapse
Affiliation(s)
- Samuel D Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
103
|
Dillon SM, Mickens KL, Thompson TA, Cooper EH, Nesladek S, Christians AJ, Castleman M, Guo K, Wood C, Frank DN, Kechris K, Santiago ML, Wilson CC. Granzyme B + CD4 T cells accumulate in the colon during chronic HIV-1 infection. Gut Microbes 2022; 14:2045852. [PMID: 35258402 PMCID: PMC8920224 DOI: 10.1080/19490976.2022.2045852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic HIV-1 infection results in the sustained disruption of gut homeostasis culminating in alterations in microbial communities (dysbiosis) and increased microbial translocation. Major questions remain on how interactions between translocating microbes and gut immune cells impact HIV-1-associated gut pathogenesis. We previously reported that in vitro exposure of human gut cells to enteric commensal bacteria upregulated the serine protease and cytotoxic marker Granzyme B (GZB) in CD4 T cells, and GZB expression was further increased in HIV-1-infected CD4 T cells. To determine if these in vitro findings extend in vivo, we evaluated the frequencies of GZB+ CD4 T cells in colon biopsies and peripheral blood of untreated, chronically infected people with HIV-1 (PWH). Colon and blood GZB+ CD4 T cells were found at significantly higher frequencies in PWH. Colon, but not blood, GZB+ CD4 T cell frequencies were associated with gut and systemic T cell activation and Prevotella species abundance. In vitro, commensal bacteria upregulated GZB more readily in gut versus blood or tonsil-derived CD4 T cells, particularly in inflammatory T helper 17 cells. Bacteria-induced GZB expression in gut CD4 T cells required the presence of accessory cells, the IL-2 pathway and in part, MHC Class II. Overall, we demonstrate that GZB+ CD4 T cells are prevalent in the colon during chronic HIV-1 infection and may emerge following interactions with translocated bacteria in an IL-2 and MHC Class II-dependent manner. Associations between GZB+ CD4 T cells, dysbiosis and T cell activation suggest that GZB+ CD4 T cells may contribute to gut HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaylee L. Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tezha A. Thompson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Emily H. Cooper
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Sabrina Nesladek
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Moriah Castleman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA,contact Cara C. Wilson Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
104
|
Tamanai-Shacoori Z, Le Gall-David S, Moussouni F, Sweidan A, Polard E, Bousarghin L, Jolivet-Gougeon A. SARS-CoV-2 and Prevotella spp.: friend or foe? A systematic literature review. J Med Microbiol 2022; 71. [PMID: 35511246 DOI: 10.1099/jmm.0.001520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During this global pandemic of the COVID-19 disease, a lot of information has arisen in the media and online without scientific validation, and among these is the possibility that this disease could be aggravated by a secondary bacterial infection such as Prevotella, as well as the interest or not in using azithromycin, a potentially active antimicrobial agent. The aim of this study was to carry out a systematic literature review, to prove or disprove these allegations by scientific arguments. The search included Medline, PubMed, and Pubtator Central databases for English-language articles published 1999-2021. After removing duplicates, a total of final eligible studies (n=149) were selected. There were more articles showing an increase of Prevotella abundance in the presence of viral infection like that related to Human Immunodeficiency Virus (HIV), Papillomavirus (HPV), Herpesviridae and respiratory virus, highlighting differences according to methodologies and patient groups. The arguments for or against the use of azithromycin are stated in light of the results of the literature, showing the role of intercurrent factors, such as age, drug consumption, the presence of cancer or periodontal diseases. However, clinical trials are lacking to prove the direct link between the presence of Prevotella spp. and a worsening of COVID-19, mainly those using azithromycin alone in this indication.
Collapse
Affiliation(s)
- Zohreh Tamanai-Shacoori
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Sandrine Le Gall-David
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Fouzia Moussouni
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Alaa Sweidan
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Elisabeth Polard
- Teaching Hospital Rennes, Service de Pharmacovigilance, F-35033 Rennes, France
| | - Latifa Bousarghin
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Anne Jolivet-Gougeon
- Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| |
Collapse
|
105
|
Butyrate administration is not sufficient to improve immune reconstitution in antiretroviral-treated SIV-infected macaques. Sci Rep 2022; 12:7491. [PMID: 35523797 PMCID: PMC9076870 DOI: 10.1038/s41598-022-11122-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Defective gastrointestinal barrier function and, in turn, microbial translocation have been identified as significant contributors to persistent inflammation in antiretroviral (ARV)-treated people living with HIV. Metabolic supplementation of short-chain fatty acids (SCFAs), generally produced by the commensal microbiome, may improve these outcomes. Butyrate is a SCFA that is essential for the development and maintenance of intestinal immunity and has a known role in supporting epithelial integrity. Herein we assessed whether supplementation with the dietary supplement sodium butyrate would improve immune reconstitution and reduce inflammation in ARV-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques. We demonstrate that butyrate supplementation does not significantly improve immune reconstitution, with no differences observed in systemic CD4+ T-cell frequencies, T-cell functionality or immune activation, microbial translocation, or transcriptional regulation. Our findings demonstrate that oral administration of sodium butyrate is insufficient to reduce persistent inflammation and microbial translocation in ARV-treated, SIV-infected macaques, suggesting that this therapeutic may not reduce co-morbidities and co-mortalities in treated people living with HIV.
Collapse
|
106
|
Kholodnaia A, So-Armah K, Cheng D, Gnatienko N, Patts G, Samet JH, Freiberg M, Lioznov D. Impact of illicit opioid use on markers of monocyte activation and systemic inflammation in people living with HIV. PLoS One 2022; 17:e0265504. [PMID: 35511802 PMCID: PMC9070930 DOI: 10.1371/journal.pone.0265504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION We hypothesize that illicit opioid use increases bacterial translocation from the gut, which intensifies systemic inflammation. OBJECTIVE To investigate the association between opioid use and plasma soluble CD14 [sCD14], interleukin-6 [IL-6] and D-dimer in people living with HIV (PLWH). METHODS We analyzed data from the Russia ARCH study-an observational cohort of 351 ART-naive PLWH in St. Petersburg, Russia. Plasma levels of sCD14 (primary outcome), IL-6 and D-dimer (secondary outcomes) were evaluated at baseline, 12, and 24 months. Participants were categorized into three groups based on illicit opioid use: current, prior, and never opioid use. Linear mixed effects models were used to evaluate associations. RESULTS Compared to never opioid use, sCD14 levels were significantly higher for participants with current opioid use (AMD = 197.8 ng/ml [11.4, 384.2], p = 0.04). IL-6 levels were also higher for participants with current vs. never opioid use (ARM = 2.10 [1.56, 2.83], p <0.001). D-dimer levels were higher for current (ARM = 1.95 [1.43, 2.64], p <0.001) and prior (ARM = 1.57 [1.17, 2.09], p = 0.004) compared to never opioid use. CONCLUSIONS Among PLWH, current opioid use compared to never use is associated with increased monocyte activation and systemic inflammation.
Collapse
Affiliation(s)
- Anastasia Kholodnaia
- Department of Infectious Diseases and Epidemiology, Academician I.P. Pavlov First St. Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Kaku So-Armah
- Department of Medicine, Section of General Internal Medicine, Boston University School of Medicine/Boston Medical Center, Clinical Addiction Research and Education (CARE) Unit, Boston, MA, United States of America
| | - Debbie Cheng
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
| | - Natalia Gnatienko
- Department of Medicine, Section of General Internal Medicine, Boston Medical Center, Clinical Addiction Research and Education (CARE) Unit, Boston, MA, United States of America
| | - Gregory Patts
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, United States of America
| | - Jeffrey H. Samet
- Department of Medicine, Section of General Internal Medicine, Boston University School of Medicine/Boston Medical Center, Clinical Addiction Research and Education (CARE) Unit, Boston, MA, United States of America
- Department of Community Health Sciences, Boston University School of Public Health, Boston, MA, United States of America
| | - Matthew Freiberg
- Vanderbilt Center for Clinical Cardiovascular Trials Evaluation (V-C3REATE), Vanderbilt University Medical Center, Cardiovascular Division, Nashville, TN, United States of America
| | - Dmitry Lioznov
- Department of Infectious Diseases and Epidemiology, Academician I.P. Pavlov First St. Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russian Federation
| |
Collapse
|
107
|
Ferrari B, Da Silva AC, Liu KH, Saidakova EV, Korolevskaya LB, Shmagel KV, Shive C, Pacheco Sanchez G, Retuerto M, Sharma AA, Ghneim K, Noel-Romas L, Rodriguez B, Ghannoum MA, Hunt PP, Deeks SG, Burgener AD, Jones DP, Dobre MA, Marconi VC, Sekaly RP, Younes SA. Gut-derived bacterial toxins impair memory CD4+ T cell mitochondrial function in HIV-1 infection. J Clin Invest 2022; 132:e149571. [PMID: 35316209 PMCID: PMC9057623 DOI: 10.1172/jci149571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
People living with HIV (PLWH) who are immune nonresponders (INRs) are at greater risk of comorbidity and mortality than are immune responders (IRs) who restore their CD4+ T cell count after antiretroviral therapy (ART). INRs have low CD4+ T cell counts (<350 c/μL), heightened systemic inflammation, and increased CD4+ T cell cycling (Ki67+). Here, we report the findings that memory CD4+ T cells and plasma samples of INRs from several cohorts are enriched in gut-derived bacterial solutes p-cresol sulfate (PCS) and indoxyl sulfate (IS) that both negatively correlated with CD4+ T cell counts. In vitro PCS or IS blocked CD4+ T cell proliferation, induced apoptosis, and diminished the expression of mitochondrial proteins. Electron microscopy imaging revealed perturbations of mitochondrial networks similar to those found in INRs following incubation of healthy memory CD4+ T cells with PCS. Using bacterial 16S rDNA, INR stool samples were found enriched in proteolytic bacterial genera that metabolize tyrosine and phenylalanine to produce PCS. We propose that toxic solutes from the gut bacterial flora may impair CD4+ T cell recovery during ART and may contribute to CD4+ T cell lymphopenia characteristic of INRs.
Collapse
Affiliation(s)
- Brian Ferrari
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Amanda Cabral Da Silva
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Ken H. Liu
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Evgeniya V. Saidakova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| | - Larisa B. Korolevskaya
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | - Konstantin V. Shmagel
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | - Carey Shive
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Gabriela Pacheco Sanchez
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Mauricio Retuerto
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | | | - Khader Ghneim
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| | - Laura Noel-Romas
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Benigno Rodriguez
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mahmoud A. Ghannoum
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Peter P. Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Adam D. Burgener
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mirela A. Dobre
- Department of Medicine (Nephrology), Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Vincent C. Marconi
- Division of Infectious Diseases, Department of Global Health, and Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Souheil-Antoine Younes
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| |
Collapse
|
108
|
Mizutani T, Ishizaka A, Koga M, Tsutsumi T, Yotsuyanagi H. Role of Microbiota in Viral Infections and Pathological Progression. Viruses 2022; 14:950. [PMID: 35632692 PMCID: PMC9144409 DOI: 10.3390/v14050950] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Viral infections are influenced by various microorganisms in the environment surrounding the target tissue, and the correlation between the type and balance of commensal microbiota is the key to establishment of the infection and pathogenicity. Some commensal microorganisms are known to resist or promote viral infection, while others are involved in pathogenicity. It is also becoming evident that the profile of the commensal microbiota under normal conditions influences the progression of viral diseases. Thus, to understand the pathogenesis underlying viral infections, it is important to elucidate the interactions among viruses, target tissues, and the surrounding environment, including the commensal microbiota, which should have different relationships with each virus. In this review, we outline the role of microorganisms in viral infections. Particularly, we focus on gaining an in-depth understanding of the correlations among viral infections, target tissues, and the surrounding environment, including the commensal microbiota and the gut virome, and discussing the impact of changes in the microbiota (dysbiosis) on the pathological progression of viral infections.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
109
|
Socioeconomic disparities and household crowding in association with the fecal microbiome of school-age children. NPJ Biofilms Microbiomes 2022; 8:10. [PMID: 35241676 PMCID: PMC8894399 DOI: 10.1038/s41522-022-00271-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
The development of the gut microbiome occurs mainly during the first years of life; however, little is known on the role of environmental and socioeconomic exposures, particularly within the household, in shaping the microbial ecology through childhood. We characterized differences in the gut microbiome of school-age healthy children, in association with socioeconomic disparities and household crowding. Stool samples were analyzed from 176 Israeli Arab children aged six to nine years from three villages of different socioeconomic status (SES). Sociodemographic data were collected through interviews with the mothers. We used 16 S rRNA gene sequencing to characterize the gut microbiome, including an inferred analysis of metabolic pathways. Differential analysis was performed using the analysis of the composition of microbiomes (ANCOM), with adjustment for covariates. An analysis of inferred metagenome functions was performed implementing PICRUSt2. Gut microbiome composition differed across the villages, with the largest difference attributed to socioeconomic disparities, with household crowding index being a significant explanatory variable. Living in a low SES village and high household crowding were associated with increased bacterial richness and compositional differences, including an over-representation of Prevotella copri and depleted Bifidobacterium. Secondary bile acid synthesis, d-glutamine and d-glutamate metabolism and Biotin metabolism were decreased in the lower SES village. In summary, residential SES is a strong determinant of the gut microbiome in healthy school-age children, mediated by household crowding and characterized by increased bacterial richness and substantial taxonomic and metabolic differences. Further research is necessary to explore possible implications of SES-related microbiome differences on children's health and development.
Collapse
|
110
|
Su B, Kong D, Yang X, Zhang T, Kuang YQ. Mucosal-associated invariant T cells: a cryptic coordinator in HIV-infected immune reconstitution. J Med Virol 2022; 94:3043-3053. [PMID: 35243649 DOI: 10.1002/jmv.27696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection causes considerable morbidity and mortality worldwide. Although antiretroviral therapy (ART) has largely transformed HIV infection from a fatal disease to a chronic condition, approximately 10%~40% of HIV-infected individuals who receive effective ART and sustain long-term viral suppression still cannot achieve optimal immune reconstitution. These patients are called immunological non-responders, a state associated with poor clinical prognosis. Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved unconventional T cell subset defined by expression of semi-invariant αβ T cell receptor (TCR), which recognizes metabolites derived from the riboflavin biosynthetic pathway presented on major histocompatibility complex (MHC)-related protein-1 (MR1). MAIT cells, which are considered to act as a bridge between innate and adaptive immunity, produce a wide range of cytokines and cytotoxic molecules upon activation through TCR-dependent and TCR-independent mechanisms, which is of major importance in defense against a variety of pathogens. In addition, MAIT cells are involved in autoimmune and immune-mediated diseases. The number of MAIT cells is dramatically and irreversibly decreased in the early stage of HIV infection and is not fully restored even after long-term suppressive ART. In light of the important role of MAIT cells in mucosal immunity and because microbial translocation is inversely associated with CD4+ T cell counts, we propose that MAIT cells participate in the maintenance of intestinal barrier integrity and microbial homeostasis, thus further affecting immune reconstitution in HIV-infected individuals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
111
|
Wells J, Bai J, Tsementzi D, Jhaney CI, Foster A, Watkins Bruner D, Gillespie T, Li Y, Hu YJ. Exploring the Anal Microbiome in HIV Positive and High-Risk HIV Negative Women. AIDS Res Hum Retroviruses 2022; 38:228-236. [PMID: 35044233 PMCID: PMC8968844 DOI: 10.1089/aid.2020.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This exploratory study sought to characterize the anal microbiome and explore associations among the anal microbiome, risk factors for anal cancer, and clinical factors. A pilot sample of 50 HIV infected and high-risk HIV negative women were recruited from the former Women's Interagency HIV Study. Microbiome characterization by 16S rRNA gene sequencing and datasets were analyzed using QIIME 2™. Composition of the anal microbiome and its associations with anal cancer risk factors and clinical factors were analyzed using linear decomposition model and permutational multivariate analysis of variance. Composition of the anal microbiome among HIV positive and high-risk negative women was dominated by Bacteroides, Prevotella, and Campylobacter. The overall taxonomic composition and microbial diversity of the anal microbiome did not significantly differ by HIV status. However, the abundance of Ruminococcus 1 belonging to the Rumincoccaceae family was associated with HIV status (q = .05). No anal cancer risk factors were associated with the anal microbiome composition. Clinical factors marginally associated with the anal microbiome composition included body mass index (BMI; p = .05) and hepatitis C virus (HCV; p = .05). Although HIV and risk factors for anal cancer were not associated with the composition of the anal microbiome in this pilot sample, other clinical factors such as BMI and HCV, may be worth further investigation in a larger study. Future research can build on these findings to explore the role of the microbiome and HIV comorbidities in women.
Collapse
Affiliation(s)
- Jessica Wells
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Address correspondence to: Jessica Wells, Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Room 230, Atlanta, GA 30322-1007, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Despina Tsementzi
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Camber Ileen Jhaney
- Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Antonina Foster
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Watkins Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Theresa Gillespie
- Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
112
|
Targeting the Gut Microbiota of Vertically HIV-Infected Children to Decrease Inflammation and Immunoactivation: A Pilot Clinical Trial. Nutrients 2022; 14:nu14050992. [PMID: 35267967 PMCID: PMC8912579 DOI: 10.3390/nu14050992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
Aims: Children with HIV exhibit chronic inflammation and immune dysfunction despite antiretroviral therapy (ART). Strategies targeting persistent inflammation are needed to improve health in people living with HIV. The gut microbiota likely interacts with the immune system, but the clinical implications of modulating the dysbiosis by nutritional supplementation are unclear. Methods: Pilot, double-blind, randomized placebo-controlled trial in which 24 HIV-infected on ART were randomized to supplementation with a daily mixture of symbiotics, omega-3/6 fatty acids and amino acids, or placebo four weeks, in combination with ART. We analyzed inflammatory markers and T-cell activation changes and their correlations with shifts in fecal microbiota. Results: Twenty-four HIV-infected children were recruited and randomized to receive a symbiotic nutritional supplement or placebo. Mean age was 12 ± 3.9 years, 62.5% were female. All were on ART and had HIV RNA < 50/mL. We did not detect changes in inflammatory (IL-6, IL-7, IP-10), microbial translocation (sCD14), mucosal integrity markers (IFABP, zonulin) or the kynurenine to tryptophan ratio, or changes in markers of the adaptive immune response in relation to the intervention. However, we found correlations between several key bacteria and the assessed inflammatory and immunological parameters, supporting a role of the microbiota in immune modulation in children with HIV. Conclusions: In this exploratory study, a four-week nutritional supplementation had no significant effects in terms of decreasing inflammation, microbial translocation, or T-cell activation in HIV-infected children. However, the correlations found support the interaction between gut microbiota and the immune system.
Collapse
|
113
|
Amador-Lara F, Andrade-Villanueva JF, Vega-Magaña N, Peña-Rodríguez M, Alvarez-Zavala M, Sanchez-Reyes K, Toscano-Piña M, Peregrina-Lucano AA, Del Toro-Arreola S, González-Hernández LA, Bueno-Topete MR. Gut microbiota from Mexican patients with metabolic syndrome and HIV infection: an inflammatory profile. J Appl Microbiol 2022; 132:3839-3852. [PMID: 35218591 DOI: 10.1111/jam.15505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
AIM A remarkable increase in metabolic syndrome (MetS) has occurred in HIV-infected subjects. Gut dysbiosis is involved in the pathogenesis of metabolic disorders. Therefore, the aim is to explore the profile of the gut microbiota in Mexican population with HIV infection and MetS. METHODS AND RESULTS Thirty HIV-infected patients with MetS compared to a group of 30 patients without MetS, treated with integrase inhibitors and undetectable viral load were included in the study. Stool samples were analysed by 16S rRNA next-generation sequencing. High sensitivity C-reactive protein >3mg l-1 and higher scores in cardiometabolic indices were associated with MetS. The group with MetS was characterized by a decrease in α-diversity, higher abundance of Enterobacteriaceae and Prevotella, as well as a dramatic decrease in bacteria producing short-chain fatty acids. Prevotella negatively correlated with Akkermansia, Lactobacillus, and Anaerostipes. Interestingly, the group without MetS presented higher abundance of Faecalibacterium, Ruminococcus, Anaerofilum, Oscillospira and Anaerostipes. Functional pathways related to energy metabolism and inflammation were increased in the group with MetS. CONCLUSIONS HIV-infected patients with MetS present a strong inflammatory microbiota profile; therefore, future strategies to balance intestinal dysbiosis should be implemented. SIGNIFICANCE AND IMPACT OF STUDY Dysbiosis in MetS HIV-infected patients is a promising therapeutic target.
Collapse
Affiliation(s)
- Fernando Amador-Lara
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México.,Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México
| | - Jaime F Andrade-Villanueva
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México.,Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México
| | - Natali Vega-Magaña
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes (LaDEER), Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, México.,Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, México
| | - Marcela Peña-Rodríguez
- Instituto de Investigación en Enfermedades Crónico-Degenerativas (IECD), Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, México
| | - Monserrat Alvarez-Zavala
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México.,Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México
| | - Karina Sanchez-Reyes
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México.,Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México
| | - Marcela Toscano-Piña
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México
| | - Alejandro A Peregrina-Lucano
- Departamento de Farmacobiología; Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, C.P. 44430, Guadalajara, Jalisco, México
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico-Degenerativas (IECD), Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, México
| | - Luz A González-Hernández
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México.,Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital #278, colonia el Retiro, CP 44280, Guadalajara, Jalisco, México
| | - Miriam R Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico-Degenerativas (IECD), Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, México
| |
Collapse
|
114
|
Abbas-Egbariya H, Haberman Y, Braun T, Hadar R, Denson L, Gal-Mor O, Amir A. Meta-analysis defines predominant shared microbial responses in various diseases and a specific inflammatory bowel disease signal. Genome Biol 2022; 23:61. [PMID: 35197084 PMCID: PMC8867743 DOI: 10.1186/s13059-022-02637-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gut microbial alteration is implicated in inflammatory bowel disease but is noted in other diseases. Systematic comparison to define similarities and specificities is hampered since most studies focus on a single disease. RESULTS We develop a pipeline to compare between disease cohorts starting from the raw V4 16S amplicon sequence variants. Including 12,838 subjects, from 59 disease cohorts, we demonstrate a predominant shared signature across diseases, indicating a common bacterial response to different diseases. We show that classifiers trained on one disease cohort predict relatively well other diseases due to this shared signal, and hence, caution should be taken when using such classifiers in real-world scenarios, where diseases are intermixed. Based on this common signature across a large array of diseases, we develop a universal dysbiosis index that successfully differentiates between cases and controls across various diseases and can be used for prioritizing fecal donors and samples with lower disease probability. Finally, we identify a set of IBD-specific bacteria, which can direct mechanistic studies and design of IBD-specific microbial interventions. CONCLUSIONS A robust non-specific general response of the gut microbiome is detected in a large array of diseases. Disease classifiers may confuse between different diseases due to this shared microbial response. Our universal dysbiosis index can be used as a tool to prioritize fecal samples and donors. Finally, the IBD-specific taxa may indicate a more direct association to gut inflammation and disease pathogenesis, and those can be further used as biomarkers and as future targets for interventions.
Collapse
Affiliation(s)
- Haya Abbas-Egbariya
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Tzipi Braun
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| | - Lee Denson
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, and the Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
115
|
Russo E, Nannini G, Sterrantino G, Kiros ST, Di Pilato V, Coppi M, Baldi S, Niccolai E, Ricci F, Ramazzotti M, Pallecchi M, Lagi F, Rossolini GM, Bartoloni A, Bartolucci G, Amedei A. Effects of viremia and CD4 recovery on gut "microbiome-immunity" axis in treatment-naïve HIV-1-infected patients undergoing antiretroviral therapy. World J Gastroenterol 2022; 28:635-652. [PMID: 35317423 PMCID: PMC8900548 DOI: 10.3748/wjg.v28.i6.635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) infection is characterized by persistent systemic inflammation and immune activation, even in patients receiving effective antiretroviral therapy (ART). Converging data from many cross-sectional studies suggest that gut microbiota (GM) changes can occur throughout including human immunodeficiency virus (HIV) infection, treated by ART; however, the results are contrasting. For the first time, we compared the fecal microbial composition, serum and fecal microbial metabolites, and serum cytokine profile of treatment-naïve patients before starting ART and after reaching virological suppression, after 24 wk of ART therapy. In addition, we compared the microbiota composition, microbial metabolites, and cytokine profile of patients with CD4/CD8 ratio < 1 (immunological non-responders [INRs]) and CD4/CD8 > 1 (immunological responders [IRs]), after 24 wk of ART therapy. AIM To compare for the first time the fecal microbial composition, serum and fecal microbial metabolites, and serum cytokine profile of treatment-naïve patients before starting ART and after reaching virological suppression (HIV RNA < 50 copies/mL) after 24 wk of ART. METHODS We enrolled 12 treatment-naïve HIV-infected patients receiving ART (mainly based on integrase inhibitors). Fecal microbiota composition was assessed through next generation sequencing. In addition, a comprehensive analysis of a blood broad-spectrum cytokine panel was performed through a multiplex approach. At the same time, serum free fatty acid (FFA) and fecal short chain fatty acid levels were obtained through gas chromatography-mass spectrometry. RESULTS We first compared microbiota signatures, FFA levels, and cytokine profile before starting ART and after reaching virological suppression. Modest alterations were observed in microbiota composition, in particular in the viral suppression condition, we detected an increase of Ruminococcus and Succinivibrio and a decrease of Intestinibacter. Moreover, in the same condition, we also observed augmented levels of serum propionic and butyric acids. Contemporarily, a reduction of serum IP-10 and an increase of IL-8 levels were detected in the viral suppression condition. In addition, the same components were compared between IRs and INRs. Concerning the microflora population, we detected a reduction of Faecalibacterium and an increase of Alistipes in INRs. Simultaneously, fecal isobutyric, isovaleric, and 2-methylbutyric acids were also increased in INRs. CONCLUSION Our results provided an additional perspective about the impact of HIV infection, ART, and immune recovery on the "microbiome-immunity axis" at the metabolism level. These factors can act as indicators of the active processes occurring in the gastrointestinal tract. Individuals with HIV-1 infection, before ART and after reaching virological suppression with 24 wk of ART, displayed a microbiota with unchanged overall bacterial diversity; moreover, their systemic inflammatory status seems not to be completely restored. In addition, we confirmed the role of the GM metabolites in immune reconstitution.
Collapse
Affiliation(s)
- Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gaetana Sterrantino
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Seble Tekle Kiros
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Marco Coppi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Federica Ricci
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Marco Pallecchi
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Filippo Lagi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gian Maria Rossolini
- Microbiology and Virology Unit, Florence Careggi University Hospital, University of Florence, Florence 50134, Italy
| | - Alessandro Bartoloni
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50019, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
116
|
Mingjun Z, Fei M, Zhousong X, Wei X, Jian X, Yuanxue Y, Youfeng S, Zhongping C, Yiqin L, Xiaohong Z, Ying C, Zhenbing W, Zehu D, Lanjuan L. 16S rDNA sequencing analyzes differences in intestinal flora of human immunodeficiency virus (HIV) patients and association with immune activation. Bioengineered 2022; 13:4085-4099. [PMID: 35129067 PMCID: PMC8974104 DOI: 10.1080/21655979.2021.2019174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To clarify the influence of HIV on the intestinal flora and the interrelationship with CD4 T cells, the present study collected stool specimens from 33 HIV patients and 28 healthy subjects to compare the differences in the intestinal flora and CD4 T cells in a 16S rDNA-sequencing approach. ELISA was used to detect the expressions of interleukin 2 (IL-2), IL-8, and tumor necrosis factor-α (TNF-α). Meanwhile, correlation analysis with the different bacterial populations in each group was carried out. The results revealed that Alpha diversity indices of the intestinal flora of HIV patients were markedly lower than that of the healthy group (p < 0.05). The top five bacterial species in the HIV group were Bacteroides (23.453%), Prevotella (19.237%), Fusobacterium (12.408%), Lachnospira (3.811%), and Escherichia-Shigella (3.126%). Spearman correlation analysis results indicated that Fusobacterium_mortiferum, Fusobacterium, and Gammaproteobacteria were positively correlated with TNF-α (p < 0.05), whereas Ruminococcaceae, Bacteroidales was negatively correlated with TNF-α (p < 0.05). Additionally, Agathobacter was positively correlated with contents of IL-2 and IL-8 (p < 0.05), whereas Prevotellaceae, and Prevotella were negatively correlated with IL-8 content (p < 0.05). Furthermore, the top five strains in the CD4 high group (≥350/mm3) included Bacteroides (23.286%), Prevotella (21.943%), Fusobacterium (10.479%), Lachnospira (4.465%), and un_f_Lachnospiraceae (2.786%). Taken together, the present study identified that Fusobacterium and Escherichia-Shigella were specific and highly abundant in the HIV group and a correlation between the different bacterial flora and the contents of IL-2, IL-8, and TNF-α was revealed.
Collapse
Affiliation(s)
- Zhang Mingjun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Mo Fei
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Xu Zhousong
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Xu Wei
- Department of Laboratory Medicine, Hangzhou Shulan Hospital, Zhejiang University, Hangzhou, China.,Department of Laboratory Medicine, Hangzhou Tongchuang Medical Laboratory Co. LTD, Hangzhou, China
| | - Xu Jian
- Department of Laboratory Medicine, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Yi Yuanxue
- Department of Laboratory Medicine, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China.,Department of Laboratory Medicine, Chongqing D.A. Medical Laboratory, Chongqing, China
| | - Shen Youfeng
- Department of Laboratory Medicine, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China.,Department of Laboratory Medicine, Chongqing D.A. Medical Laboratory, Chongqing, China
| | - Chen Zhongping
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Long Yiqin
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Zhao Xiaohong
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Cheng Ying
- Department of Laboratory Medicine, Hangzhou Shulan Hospital, Zhejiang University, Hangzhou, China
| | - Wang Zhenbing
- Department of Laboratory Medicine, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China.,Department of Laboratory Medicine, Chongqing D.A. Medical Laboratory, Chongqing, China
| | - Deng Zehu
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Li Lanjuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
117
|
Younes SA. Mitochondrial Exhaustion of Memory CD4 T-Cells in Treated HIV-1 Infection. IMMUNOMETABOLISM 2022; 4:e220013. [PMID: 35633761 PMCID: PMC9140223 DOI: 10.20900/immunometab20220013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
People living with HIV (PLWH) who are immune non-responders (INR) to therapy are unable to restore their CD4 T-cell count and remain at great risk of morbidity and mortality. Here the mitochondrial defects that characterize memory CD4 T-cells in INR and causes of this mitochondrial exhaustion are reviewed. This review also describes the various reagents used to induce the expression of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis, which can restore mitochondria fitness and CD4 T-cell proliferation in INR. Due to sustained heightened inflammation in INR, the mitochondrial network is unable to be rejuvenated and requires attenuation of mediators of inflammation to rescue mitochondria and CD4 T-cell counts in INR.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine, Emory University, Atlanta 30322, USA
| |
Collapse
|
118
|
|
119
|
Zhu M, Liu S, Zhao C, Shi J, Li C, Ling S, Cheng J, Dong W, Xu J. Alterations in the gut microbiota of AIDS patients with pneumocystis pneumonia and correlations with the lung microbiota. Front Cell Infect Microbiol 2022; 12:1033427. [PMID: 36339339 PMCID: PMC9634167 DOI: 10.3389/fcimb.2022.1033427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Due to the inability to be cultured in vitro, the biological characteristics and pathogenicity of Pneumocystis jirovecii remain unclear. Intestinal microflora disorder is related to the occurrence and development of various pulmonary diseases. This work explores the pathogenesis of pneumocystis pneumonia (PCP) in acquired immune deficiency syndrome (AIDS) patients from a microbiome perspective, to provide better strategies for the diagnosis, treatment, and prevention of PCP. METHODS Subjects were divided into three groups: human immunodeficiency virus (HIV)-infected patients combined with PCP, HIV-infected patients without PCP, and HIV-negative. Stool and bronchoalveolar lavage fluid (BALF) samples were collected, total DNA was extracted, and 16S rRNA high-throughput sequencing was performed using an Illumina MiSeq platform. PICRUSt and BugBase were used to predict microflora functions, and correlation analysis of intestinal and lung bacterial flora was conducted. RESULTS Compared with the HIV- group, prevotella and another 21 genera in the intestinal microbiome were statistically different in the HIV+ group; 25 genera including Escherichia-Shigella from HIV+PCP+ group were statistically different from HIV+PCP- group. The abundance of Genera such as Porphyromonas was positively or negatively correlated with CD16/CD56+ (μL). Compared with the HIV- group, identification efficiency based on area under the curve (AUC) >0.7 for the HIV+ group identified seven genera in the gut microbiota, including Enterococcus (total AUC = 0.9519). Compared with the HIV+PCP- group, there were no bacteria with AUC >0.7 in the lung or intestine of the HIV+PCP+ group. The number of shared bacteria between BALF and fecal samples was eight species in the HIV- group, 109 species in PCP- patients, and 228 species in PCP+ patients, according to Venn diagram analysis. Changes in various clinical indicators and blood parameters were also closely related to the increase or decrease in the abundance of intestinal and pulmonary bacteria, respectively. CONCLUSIONS HIV infection and PCP significantly altered the species composition of lung and intestinal microbiomes, HIV infection also significantly affected intestinal microbiome gene functions, and PCP exacerbated the changes. The classification model can be used to distinguish HIV+ from HIV- patients, but the efficiency of bacterial classification was poor between PCP+ and PCP- groups. The microbiomes in the lung and gut were correlated to some extent, providing evidence for the existence of a lung-gut axis, revealing a potential therapeutic target in patients with HIV and PCP.
Collapse
Affiliation(s)
- Mingli Zhu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sai Liu
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenfei Zhao
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinchuan Shi
- Department of Infectious Diseases, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaodan Li
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shisheng Ling
- Research and Development Department, Assure Tech Institute of Medical Device, Hangzhou, China
| | - Jianghao Cheng
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenkun Dong
- Research and Development Department, Assure Tech Institute of Medical Device, Hangzhou, China
- *Correspondence: Wenkun Dong, ; Jiru Xu,
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenkun Dong, ; Jiru Xu,
| |
Collapse
|
120
|
Strati F, Lattanzi G, Amoroso C, Facciotti F. Microbiota-targeted therapies in inflammation resolution. Semin Immunol 2022; 59:101599. [PMID: 35304068 DOI: 10.1016/j.smim.2022.101599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies are deeply investigated as a means to restore health or prevent disease. This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the most recent strategies in manipulating individual patient's microbiota for the management and prevention of inflammatory conditions.
Collapse
Affiliation(s)
- Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
121
|
Chen Y, Lin H, Cole M, Morris A, Martinson J, Mckay H, Mimiaga M, Margolick J, Fitch A, Methe B, Srinivas VR, Peddada S, Rinaldo CR. Signature changes in gut microbiome are associated with increased susceptibility to HIV-1 infection in MSM. MICROBIOME 2021; 9:237. [PMID: 34879869 PMCID: PMC8656045 DOI: 10.1186/s40168-021-01168-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Men who have sex with men (MSM) have been disproportionately affected by HIV-1 since the beginning of the AIDS pandemic, particularly in the USA and Europe. Compared to men who have sex with women (MSW), MSM have a distinct fecal microbiome regardless of HIV-1 infection. However, it is unclear whether the MSM-associated gut microbiome affects the susceptibility and progression of HIV-1 infection. We studied fecal microbiome profiles, short-chain fatty acids, and blood plasma inflammatory cytokines of 109 HIV-1 seroconverters (SC) from the early, 1984-1985 phase of the HIV-1 pandemic in the Multicenter AIDS Cohort Study (MACS) before and after HIV-1 infection compared to 156 HIV-1-negative MACS MSM (negative controls [NC]). RESULTS We found that family Succinivibrionaceae, S24-7, Mogibacteriaceae, Coriobacteriaceae, and Erysipelotrichaceae were significantly higher (p<0.05), whereas Odoribacteraceae, Verucomicrobiaceae, Bacteroidaceae, Barnesiellaceae, and Rikenellaceae were significantly lower (p<0.05), in SC before HIV-1 infection compared to NC. At the species level, Prevotella stercorea, Eubacterium biforme, and Collinsella aerofaciens were significantly higher (p<0.05), and Eubacterium dolichum, Desulfovibrio D168, Alistipes onderdonkii, Ruminococcus torques, Bacteroides fragilis, Bacteroides caccae, Alistipes putredinis, Akkermansia muciniphila, Bacteroides uniformis, and Bacteroides ovatus were significantly lower (p<0.05) in SC before HIV-1 infection compared to NC. After HIV-1 infection, family Prevotellaceae and Victivallaceae and species Bacteroides fragilis and Eubacterium cylindroides were significantly higher (p<0.05) in SC who developed AIDS within 5 years compared to the SC who were AIDS free for more than 10 years without antiretroviral therapy (ART). In addition, family Victivallaceae and species Prevotella stercorea, Coprococcus eutactus, and Butyrivibrio crossotus were significantly higher (p<0.05) and Gemmiger formicilis and Blautia obeum were significantly lower (p<0.05) after HIV-1 infection in SC who developed AIDS within 5-10 years compared to the SC who were AIDS-free for more than 10 years without ART. Furthermore, plasma inflammatory cytokine levels of sCD14, sCD163, interleukin 6, and lipopolysaccharide binding protein were significantly higher in SC with p<0.05 before HIV-1 infection compared to NC. CONCLUSIONS Our results suggest that pathogenic changes in the gut microbiome were present in MSM several months prior to infection with HIV-1 in the early phase of the AIDS pandemic in the USA. This was associated with increased inflammatory biomarkers in the blood and risk for development of AIDS. Video abstract.
Collapse
Affiliation(s)
- Yue Chen
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Huang Lin
- Current address: Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD USA
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Mariah Cole
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
- Present address: Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Heather Mckay
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Matthew Mimiaga
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles, Los Angeles, CA USA
| | - Joseph Margolick
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Adam Fitch
- Present address: Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Barbara Methe
- Present address: Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Vatsala Rangachar Srinivas
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Shyamal Peddada
- Current address: Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD USA
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| |
Collapse
|
122
|
Lopera TJ, Lujan JA, Zurek E, Zapata W, Hernandez JC, Toro MA, Alzate JF, Taborda NA, Rugeles MT, Aguilar-Jimenez W. A specific structure and high richness characterize intestinal microbiota of HIV-exposed seronegative individuals. PLoS One 2021; 16:e0260729. [PMID: 34855852 PMCID: PMC8638974 DOI: 10.1371/journal.pone.0260729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Intestinal microbiota facilitates food breakdown for energy metabolism and influences the immune response, maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. However, it is unclear whether microbiota dysbiosis is the cause or the effect of immune alterations and disease progression or if it could modulate the risk of acquiring the HIV infection. We characterize the intestinal microbiota and determine its association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood were collected. The microbiota composition of HESN showed a significantly higher alpha (p = 0.040) and beta diversity (p = 0.006) compared to HC, but no differences were found compared to HIV+. A lower Treg percentage was observed in HESN (1.77%) than HC (2.98%) and HIV+ (4.02%), with enrichment of the genus Butyrivibrio (p = 0.029) being characteristic of this profile. Moreover, we found that Megasphaera (p = 0.017) and Victivallis (p = 0.0029) also are enriched in the microbiota composition in HESN compared to HC and HIV+ subjects. Interestingly, an increase in Succinivibrio and Prevotella, and a reduction in Bacteroides genus, which is typical of HIV-infected individuals, were observed in both HESN and HIV+, compared to HC. Thus, HESNs have a microbiota profile, similar to that observed in HIV+, most likely because HESN are cohabiting with their HIV+ partners.
Collapse
Affiliation(s)
- Tulio J. Lopera
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jorge A. Lujan
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Eduardo Zurek
- Department of System Engineering, Universidad del Norte, Barranquilla, Colombia
| | - Wildeman Zapata
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
- Facultad de Medicina, Grupo Infettare, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Juan C. Hernandez
- Facultad de Medicina, Grupo Infettare, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Miguel A. Toro
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica -CNSG, Sede de Investigación Universitaria -SIU, Universidad de Antioquia UdeA, Medellin, Colombia
- Facultad de Medicina, Grupo de Parasitología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica -CNSG, Sede de Investigación Universitaria -SIU, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Natalia A. Taborda
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
- Facultad de Ciencias de la Salud, Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T. Rugeles
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wbeimar Aguilar-Jimenez
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
123
|
Cavallari EN, Ceccarelli G, Santinelli L, Innocenti GP, De Girolamo G, Borrazzo C, Spagnolello O, Scagnolari C, Arcieri S, Ciardi A, Pierangeli A, Mastroianni CM, d’Ettorre G. Clinical Effects of Oral Bacteriotherapy on Anal HPV Infection and Related Dysplasia in HIV-Positive MSM: Results from the "HPVinHIV" Trial. Biomedicines 2021; 9:biomedicines9111738. [PMID: 34829967 PMCID: PMC8615833 DOI: 10.3390/biomedicines9111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background. Anal HPV infection, anal dysplasia and, ultimately, anal cancer are particularly common in HIV-infected men who have sex with men. Treatment of anal dysplasia, aiming to prevent evolution to squamous cell carcinoma of the anus, is currently limited to direct ablation and/or application of topical therapy. The aim of the present study is to investigate the effect of oral bacteriotherapy (Vivomixx® in EU, Visbiome® in USA) on anal HPV infection and HPV-related dysplasia of the anal canal in HIV-infected men who have sex with men. Methods. In this randomized, placebo-controlled, quadruple-blinded trial (NCT04099433), HIV-positive men who have sex with men with anal HPV infection and HPV-related dysplasia were randomized to receive oral bacteriotherapy or placebo for 6 months. Anal HPV test, anal cytology and high resolution anoscopy with biopsies of anal lesions were performed at baseline and at the end of the study. Safety and tolerability of oral bacteriotherapy were also evaluated. Interim analysis results were presented. Results. 20 participants concluded the study procedures to date. No serious adverse events were reported. In respect to participants randomized to placebo, individuals in the experimental arm showed higher rate of anal dysplasia regression (p = 0.002), lower rate of onset of new anal dysplasia (p = 0.023) and lower rates of worsening of persistent lesions (p = 0.004). Clearance of anal HPV infection was more frequently observed in the bacteriotherapy group (p = 0.067). Conclusion. Being an interim analysis, we limit ourselves to report the preliminary results of the current study. We refer the conclusions relating to the possible effectiveness of the intervention to the analysis of the definitive data.
Collapse
Affiliation(s)
- Eugenio Nelson Cavallari
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
- Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
- Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Correspondence:
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
| | - Giuseppe Pietro Innocenti
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
| | - Gabriella De Girolamo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
- Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Cristian Borrazzo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
| | - Ornella Spagnolello
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
| | - Carolina Scagnolari
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (C.S.); (A.P.)
| | - Stefano Arcieri
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Antonio Ciardi
- Department of Radiology, Oncology and Human Pathology, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Alessandra Pierangeli
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (C.S.); (A.P.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
- Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (E.N.C.); (L.S.); (G.P.I.); (G.D.G.); (C.B.); (O.S.); (C.M.M.); (G.d.)
- Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| |
Collapse
|
124
|
Abstract
Viral infections represent a major health problem worldwide. Due to the wide variety of etiological agents and their increasing resistance to anti-virals and antibiotics treatments, new strategies for effective therapies need to be developed. Scientific evidence suggests that probiotics may have prophylactic and therapeutic effects in viral diseases. Indeed, these microorganisms interact harmoniously with the intestinal microbiota and protect the integrity of the intestinal barrier as well as modulate the host immune system. Currently, clinical trials with probiotics have been documented in respiratory tract infections, infections caused by human immunodeficiency viruses, herpes, human papillomavirus and hepatic encephalopathy. However, the benefits documented so far are difficult to extrapolate, due to the strain-dependent effect. In addition, the dose of the microorganism used as well as host characteristics are other parameters that should be consider when advocating the use of probiotics to treat viral infections. This review addresses the scientific evidence of the efficacy of probiotics in clinical strains perspective in viral infectious diseases in the last 10 years.
Collapse
|
125
|
Vestad B, Nyman TA, Hove-Skovsgaard M, Stensland M, Hoel H, Trøseid AMS, Aspelin T, Aass HCD, Puhka M, Hov JR, Nielsen SD, Øvstebø R, Trøseid M. Plasma extracellular vesicles in people living with HIV and type 2 diabetes are related to microbial translocation and cardiovascular risk. Sci Rep 2021; 11:21936. [PMID: 34754007 PMCID: PMC8578564 DOI: 10.1038/s41598-021-01334-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotoxemia and increased cardiovascular risk. We investigated the potential role of plasma extracellular vesicles (EVs) in relation to these processes. Plasma EVs were isolated by size exclusion chromatography in fasting individuals with HIV and T2D (n = 16), T2D only (n = 14), HIV only (n = 20) or healthy controls (n = 19), and characterized by transmission electron microscopy, western blot, nanoparticle tracking analysis and quantitative proteomics. The findings were compared to gut microbiota alterations, lipopolysaccharide levels and cardiovascular risk profile. Individuals with concomitant HIV and T2D had higher plasma EV concentration, which correlated closely with plasma lipopolysaccharides, triglycerides and Framingham score, but not with gut microbiota alterations. Proteomic analyses identified 558 human proteins, largely related to cardiometabolic disease genes and upstream regulation of inflammatory pathways, including IL-6 and IL-1β, as well as 30 bacterial proteins, mostly from lipopolysaccharide-producing Proteobacteria. Our study supports that EVs are related to microbial translocation processes in individuals with HIV and T2D. Their proteomic content suggests a contributing role in low-grade inflammation and cardiovascular risk development. The present approach for exploring gut-host crosstalk can potentially identify novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Beate Vestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Malene Hove-Skovsgaard
- Department of Infectious Diseases, University Hospital of Copenhagen Rigshospitalet, Copenhagen, Denmark
| | - Maria Stensland
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Medical Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anne-Marie Siebke Trøseid
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Trude Aspelin
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Hans Christian D Aass
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, EV and HiPrep Cores, University of Helsinki, Helsinki, Finland
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research Center and Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, University Hospital of Copenhagen Rigshospitalet, Copenhagen, Denmark
| | - Reidun Øvstebø
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
126
|
Abstract
Purpose of Review Observations of differing bacterial, intestinal microbiomes in people living with HIV have propelled interest in contributions of the microbiome to HIV disease. Non-human primate (NHP) models of HIV infection provide a controlled setting for assessing contributions of the microbiome by standardizing environmental confounders. We provide an overview of the findings of microbiome contributions to aspects of HIV disease derived from these animal models. Recent Findings Observations of differing bacterial, intestinal microbiomes are inconsistently observed in the NHP model following SIV infection. Differences in lentiviral susceptibility and vaccine efficacy have been attributed to variations in the intestinal microbiome; however, by-and-large, these differences have not been experimentally assessed. Summary Although compelling associations exist, clearly defined contributions of the microbiome to HIV and SIV disease are lacking. The empirical use of comprehensive multi-omics assessments and longitudinal and interventional study designs in NHP models is necessary to define this contribution more clearly.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA.
| |
Collapse
|
127
|
Park SY, Faraci G, Nanda S, Ter-Saakyan S, Love TMT, Mack WJ, Dubé MP, Lee HY. Gut microbiome in people living with HIV is associated with impaired thiamine and folate syntheses. Microb Pathog 2021; 160:105209. [PMID: 34563611 PMCID: PMC8530907 DOI: 10.1016/j.micpath.2021.105209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
People living with HIV have a high incidence of cardiovascular and neurological diseases as comorbid disorders that are commonly linked to inflammation. While microbial translocation can augment inflammation during HIV infection, functional microbiome shifts that may increase pro-inflammatory responses have not been fully characterized. In addition, defining HIV-induced microbiome changes has been complicated by high variability among individuals. Here we conducted functional annotation of previously-published 16S ribosomal RNA gene sequences of 305 HIV positive and 249 negative individuals, with adjustment for geographic region, sex, sexual behavior, and age. Metagenome profiles were inferred from these individuals' 16S data. HIV infection was associated with impaired microbial vitamin B synthesis; around half of the gene families in thiamine and folate biosynthesis pathways were significantly less abundant in the HIV positive group than the negative control. These results are consistent with the high prevalence of thiamine and folate deficiencies in HIV infections. These HIV-induced microbiota shifts have the potential to influence cardiovascular and neurocognitive diseases, given the documented associations between B-vitamin deficiencies, inflammation, and these diseases. We also observed that most essential amino acid biosynthesis pathways were downregulated in the microbiome of HIV-infected individuals. Microbial vitamin B and amino acid synthesis pathways were not significantly recovered by antiretroviral treatment when we compared 262 ART positive and 184 ART negative individuals. Our meta-analysis provides a new outlook for understanding vitamin B and amino acid deficiencies in HIV patients, suggesting that interventions for reversing HIV-induced microbiome shifts may aid in lessening the burdens of HIV comorbidities.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gina Faraci
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sayan Nanda
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sonia Ter-Saakyan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael P Dubé
- Department of Medicine and Division of Infectious Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
128
|
Li S, Su B, He QS, Wu H, Zhang T. Alterations in the oral microbiome in HIV infection: causes, effects and potential interventions. Chin Med J (Engl) 2021; 134:2788-2798. [PMID: 34670249 PMCID: PMC8667981 DOI: 10.1097/cm9.0000000000001825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
ABSTRACT A massive depletion of CD4+ T lymphocytes has been described in early and acute human immunodeficiency virus (HIV) infection, leading to an imbalance between the human microbiome and immune responses. In recent years, a growing interest in the alterations in gut microbiota in HIV infection has led to many studies; however, only few studies have been conducted to explore the importance of oral microbiome in HIV-infected individuals. Evidence has indicated the dysbiosis of oral microbiota in people living with HIV (PLWH). Potential mechanisms might be related to the immunodeficiency in the oral cavity of HIV-infected individuals, including changes in secretory components such as reduced levels of enzymes and proteins in saliva and altered cellular components involved in the reduction and dysfunction of innate and adaptive immune cells. As a result, disrupted oral immunity in HIV-infected individuals leads to an imbalance between the oral microbiome and local immune responses, which may contribute to the development of HIV-related diseases and HIV-associated non-acquired immunodeficiency syndrome comorbidities. Although the introduction of antiretroviral therapy (ART) has led to a significant decrease in occurrence of the opportunistic oral infections in HIV-infected individuals, the dysbiosis in oral microbiome persists. Furthermore, several studies with the aim to investigate the ability of probiotics to regulate the dysbiosis of oral microbiota in HIV-infected individuals are ongoing. However, the effects of ART and probiotics on oral microbiome in HIV-infected individuals remain unclear. In this article, we review the composition of the oral microbiome in healthy and HIV-infected individuals and the possible effect of oral microbiome on HIV-associated oral diseases. We also discuss how ART and probiotics influence the oral microbiome in HIV infection. We believe that a deeper understanding of composition and function of the oral microbiome is critical for the development of effective preventive and therapeutic strategies for HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qiu-Shui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku 20520, Finland
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
129
|
Nguyen QT, Ishizaki A, Bi X, Matsuda K, Nguyen LV, Pham HV, Phan CTT, Phung TTB, Ngo TTT, Nguyen AV, Khu DTK, Ichimura H. Alterations in children's sub-dominant gut microbiota by HIV infection and anti-retroviral therapy. PLoS One 2021; 16:e0258226. [PMID: 34634074 PMCID: PMC8504761 DOI: 10.1371/journal.pone.0258226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022] Open
Abstract
Objective We investigated the impact of human immunodeficiency virus (HIV) infection and anti-retroviral therapy (ART) on the gut microbiota of children. Design This cross-sectional study investigated the gut microbiota of children with and without HIV. Methods We collected fecal samples from 59 children with HIV (29 treated with ART [ART(+)] and 30 without ART [HIV(+)]) and 20 children without HIV [HIV(–)] in Vietnam. We performed quantitative RT-PCR to detect 14 representative intestinal bacteria targeting 16S/23S rRNA molecules. We also collected the blood samples for immunological analyses. Results In spearman’s correlation analyses, no significant correlation between the number of dominant bacteria and age was found among children in the HIV(−) group. However, the number of sub-dominant bacteria, including Streptococcus, Enterococcus, and Enterobacteriaceae, positively correlated with age in the HIV(−) group, but not in the HIV(+) group. In the HIV(+) group, Clostridium coccoides group positively associated with the CD4+ cell count and its subsets. In the ART(+) group, Staphylococcus and C. perfringens positively correlated with CD4+ cells and their subsets and negatively with activated CD8+ cells. C. coccoides group and Bacteroides fragilis group were associated with regulatory T-cell counts. In multiple linear regression analyses, ART duration was independently associated with the number of C. perfringens, and Th17 cell count with the number of Staphylococcus in the ART(+) group. Conclusions HIV infection and ART may influence sub-dominant gut bacteria, directly or indirectly, in association with immune status in children with HIV.
Collapse
Affiliation(s)
- Quynh Thi Nguyen
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Azumi Ishizaki
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Xiuqiong Bi
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | - An Van Nguyen
- Vietnam National Children’s Hospital, Hanoi, Viet Nam
| | | | - Hiroshi Ichimura
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
130
|
Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021; 12:676669. [PMID: 34616391 PMCID: PMC8488204 DOI: 10.3389/fimmu.2021.676669] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, School of Dental Medicine at Rutgers, Newark, NJ, United States.,Department of Epidemiology, School of Public Health at Rutgers, Newark, NJ, United States
| | - Cristiana Cairo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
131
|
Ellis RJ, Iudicello JE, Heaton RK, Isnard S, Lin J, Routy JP, Gianella S, Hoenigl M, Knight R. Markers of Gut Barrier Function and Microbial Translocation Associate with Lower Gut Microbial Diversity in People with HIV. Viruses 2021; 13:1891. [PMID: 34696320 PMCID: PMC8537977 DOI: 10.3390/v13101891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
People with human immunodeficiency virus (HIV) (PWH) have reduced gut barrier integrity ("leaky gut") that permits diffusion of microbial antigens (microbial translocation) such as lipopolysaccharide (LPS) into the circulation, stimulating inflammation. A potential source of this disturbance, in addition to gut lymphoid tissue CD4+ T-cell depletion, is the interaction between the gut barrier and gut microbes themselves. We evaluated the relationship of gut barrier integrity, as indexed by plasma occludin levels (higher levels corresponding to greater loss of occludin from the gut barrier), to gut microbial diversity. PWH and people without HIV (PWoH) participants were recruited from community sources and provided stool, and 16S rRNA amplicon sequencing was used to characterize the gut microbiome. Microbial diversity was indexed by Faith's phylogenetic diversity (PD). Participants were 50 PWH and 52 PWoH individuals, mean ± SD age 45.6 ± 14.5 years, 28 (27.5%) women, 50 (49.0%) non-white race/ethnicity. PWH had higher gut microbial diversity (Faith's PD 14.2 ± 4.06 versus 11.7 ± 3.27; p = 0.0007), but occludin levels were not different (1.84 ± 0.311 versus 1.85 ± 0.274; p = 0.843). Lower gut microbial diversity was associated with higher plasma occludin levels in PWH (r = -0.251; p = 0.0111), but not in PWoH. A multivariable model demonstrated an interaction (p = 0.0459) such that the correlation between Faith's PD and plasma occludin held only for PWH (r = -0.434; p = 0.0017), but not for PWoH individuals (r = -0.0227; p = 0.873). The pattern was similar for Shannon alpha diversity. Antiretroviral treatment and viral suppression status were not associated with gut microbial diversity (ps > 0.10). Plasma occludin levels were not significantly related to age, sex or ethnicity, nor to current or nadir CD4 or plasma viral load. Higher occludin levels were associated with higher plasma sCD14 and LPS, both markers of microbial translocation. Together, the findings suggest that damage to the gut epithelial barrier is an important mediator of microbial translocation and inflammation in PWH, and that reduced gut microbiome diversity may have an important role.
Collapse
Affiliation(s)
- Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, CA 92093, USA
| | - Jennifer E. Iudicello
- Department of Psychiatry, University of California, San Diego, CA 92093, USA; (J.E.I.); (R.K.H.)
| | - Robert K. Heaton
- Department of Psychiatry, University of California, San Diego, CA 92093, USA; (J.E.I.); (R.K.H.)
| | - Stéphane Isnard
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (S.I.); (J.L.); (J.-P.R.)
| | - John Lin
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (S.I.); (J.L.); (J.-P.R.)
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (S.I.); (J.L.); (J.-P.R.)
| | - Sara Gianella
- Department of Medicine, University of California, San Diego, CA 92093, USA; (S.G.); (M.H.)
| | - Martin Hoenigl
- Department of Medicine, University of California, San Diego, CA 92093, USA; (S.G.); (M.H.)
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
132
|
Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 2021; 19:585-599. [PMID: 34050328 PMCID: PMC11290707 DOI: 10.1038/s41579-021-00559-y] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The genus Prevotella includes more than 50 characterized species that occur in varied natural habitats, although most Prevotella spp. are associated with humans. In the human microbiome, Prevotella spp. are highly abundant in various body sites, where they are key players in the balance between health and disease. Host factors related to diet, lifestyle and geography are fundamental in affecting the diversity and prevalence of Prevotella species and strains in the human microbiome. These factors, along with the ecological relationship of Prevotella with other members of the microbiome, likely determine the extent of the contribution of Prevotella to human metabolism and health. Here we review the diversity, prevalence and potential connection of Prevotella spp. in the human host, highlighting how genomic methods and analysis have improved and should further help in framing their ecological role. We also provide suggestions for future research to improve understanding of the possible functions of Prevotella spp. and the effects of the Western lifestyle and diet on the host-Prevotella symbiotic relationship in the context of maintaining human health.
Collapse
Affiliation(s)
- Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
133
|
Tanes C, Walker EM, Slisarenko N, Gerrets GL, Grasperge BF, Qin X, Jazwinski SM, Bushman FD, Bittinger K, Rout N. Gut Microbiome Changes Associated with Epithelial Barrier Damage and Systemic Inflammation during Antiretroviral Therapy of Chronic SIV Infection. Viruses 2021; 13:1567. [PMID: 34452432 PMCID: PMC8402875 DOI: 10.3390/v13081567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Gut dysbiosis is a common feature associated with the chronic inflammation of HIV infection. Toward understanding the interplay of chronic treated HIV infection, dysbiosis, and systemic inflammation, we investigated longitudinal fecal microbiome changes and plasma inflammatory markers in the nonhuman primate model. Following simian immunodeficiency virus (SIV) infection in rhesus macaques, significant changes were observed in several members of the phylum Firmicutes along with an increase in Bacteroidetes. Viral suppression with antiretroviral therapy (ART) resulted in an early but partial recovery of compositional changes and butyrate producing genes in the gut microbiome. Over the course of chronic SIV infection and long-term ART, however, the specific loss of Faecalibacterium prausnitzii and Treponema succinifaciens significantly correlated with an increase in plasma inflammatory cytokines including IL-6, G-CSF, I-TAC, and MIG. Further, the loss of T. succinifaciens correlated with an increase in circulating biomarkers of gut epithelial barrier damage (IFABP) and microbial translocation (LBP and sCD14). As F. prausnitzii and T. succinifaciens are major short-chain fatty acid producing bacteria, their sustained loss during chronic SV-ART may contribute to gut inflammation and metabolic alterations despite effective long-term control of viremia. A better understanding of the correlations between the anti-inflammatory bacterial community and healthy gut barrier functions in the setting of long-term ART may have a major impact on the clinical management of inflammatory comorbidities in HIV-infected individuals.
Collapse
Affiliation(s)
- Ceylan Tanes
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Edith M. Walker
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Giovanni L. Gerrets
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
134
|
Yuan X, Chang C, Chen X, Li K. Emerging trends and focus of human gastrointestinal microbiome research from 2010-2021: a visualized study. J Transl Med 2021; 19:327. [PMID: 34332587 PMCID: PMC8325541 DOI: 10.1186/s12967-021-03009-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gastrointestinal microbiome is an important component of the human body and is closely related to human health and disease. This study describes the hotspots of the human gastrointestinal microbiome research and its evolution in the past decade, evaluates the scientific cooperation network, and finally predicts the field's future development trend using bibliometric analysis and a visualized study. METHODS We searched the original articles from January 2010 to February 2021 in the Scopus database using the term "gastrointestinal microbiome" and its synonyms. CiteSpace was used to construct country and author co-occurrence map; conduct journal, citation cocitation analysis, and reference co-citation knowledge map; and form a keywords co-occurrence map, a clustering knowledge map, timeline view of keywords, and burst term map. RESULT A total of 4444 documents published from January 2010 to February 2021 were analysed. In approximately the past decade, the number of articles on the human gastrointestinal microbiome has increased rapidly, and the research topics focus on different populations, research methods, and detection methods. All countries and regions in the world, led by the US, are studying the human gastrointestinal microbiome, and many research teams with close cooperation have been formed. The research has been published extensively in microbiology journals and clinical medicine journals, and the highly cited articles mainly describe the relationship between gastrointestinal microorganisms and human health and disease. Regarding the research emphasis, researchers' exploration of the human gastrointestinal microbiome (2011-2013) was at a relatively macro and superficial stage and sought to determine how the gastrointestinal microbiome relates to humans. From 2014 to 2017, increasingly more studies were conducted to determine the interaction between human gastrointestinal flora and various organs and systems. In addition, researchers (2018-2021) focused on the gastrointestinal microbial community and the diversity of certain types of microbes. CONCLUSION Over time, the scope of the research on the clinical uses of the gastrointestinal microbiome gradually increased, and the contents were gradually deepened and developed towards a more precise level. The study of the human gastrointestinal microbiome is an ongoing research hotspot and contributes to human health.
Collapse
Affiliation(s)
- Xingzhu Yuan
- West China School of Nursing/ West China Hospital, Sichuan University, No.8 Teaching Building, Chengdu City, 610041, Sichuan province, China
| | - Chengting Chang
- West China School of Nursing/ West China Hospital, Sichuan University, No.8 Teaching Building, Chengdu City, 610041, Sichuan province, China
| | - Xinrong Chen
- West China School of Nursing/ West China Hospital, Sichuan University, No.8 Teaching Building, Chengdu City, 610041, Sichuan province, China
| | - Ka Li
- West China School of Nursing/ West China Hospital, Sichuan University, No.8 Teaching Building, Chengdu City, 610041, Sichuan province, China.
| |
Collapse
|
135
|
Lazzaro A, Innocenti GP, Santinelli L, Pinacchio C, De Girolamo G, Vassalini P, Fanello G, Mastroianni CM, Ceccarelli G, d’Ettorre G. Antiretroviral Therapy Dampens Mucosal CD4 + T Lamina Propria Lymphocytes Immune Activation in Long-Term Treated People Living with HIV-1. Microorganisms 2021; 9:microorganisms9081624. [PMID: 34442703 PMCID: PMC8402205 DOI: 10.3390/microorganisms9081624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
HIV infection is characterized by a severe deterioration of an immune cell-mediated response due to a progressive loss of CD4+ T cells from gastrointestinal tract, with a preferential loss of IL-17 producing Th cells (Th17), a specific CD4+ T cells subset specialized in maintaining mucosal integrity and antimicrobial inflammatory responses. To address the effectiveness of antiretroviral therapy (ART) in reducing chronic immunological dysfunction and immune activation of intestinal mucosa, we conducted a cross-sectional observational study comparing total IFN-γ-expressing (Th1) and IL-17-expressing (Th17) frequencies of CD4+ T lamina propria lymphocytes (LPLs) and their immune activation status between 11 male ART-naïve and 11 male long-term ART-treated people living with HIV-1 (PLWH) who underwent colonoscopy and retrograde ileoscopy for biopsies collection. Flow cytometry for surface and intracellular staining was performed. Long-term ART-treated PLWH showed lower levels of CD38+ and/or HLA-DR+ LPLs compared to ART-naïve PLWH. Frequencies of Th1 and Th17 LPLs did not differ between the two groups. Despite ART failing to restore the Th1 and Th17 levels within the gut mucosa, it is effective in increasing overall CD4+ T LPLs frequencies and reducing mucosal immune activation.
Collapse
Affiliation(s)
- Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
- Correspondence: (A.L.); (G.P.I.)
| | - Giuseppe Pietro Innocenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
- Correspondence: (A.L.); (G.P.I.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gabriella De Girolamo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gianfranco Fanello
- Department of Emergency Surgery-Emergency Endoscopic Unit, Sapienza University of Rome, Policlinico Umberto I, 00185 Roma, Italy;
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| |
Collapse
|
136
|
Lapidot Y, Reshef L, Goldsmith R, Na’amnih W, Kassem E, Ornoy A, Gophna U, Muhsen K. The Associations between Diet and Socioeconomic Disparities and the Intestinal Microbiome in Preadolescence. Nutrients 2021; 13:2645. [PMID: 34444813 PMCID: PMC8398108 DOI: 10.3390/nu13082645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The intestinal microbiome continues to shift and develop throughout youth and could play a pivotal role in health and wellbeing throughout adulthood. Environmental and interpersonal determinants are strong mediators of the intestinal microbiome during the rapid growth period of preadolescence. We aim to delineate associations between the gut microbiome composition, body mass index (BMI), dietary intake and socioeconomic status (SES) in a cohort of ethnically homogenous preadolescents. This cohort included 139 Arab children aged 10-12 years, from varying socioeconomic strata. Dietary intake was assessed using the 24-h recall method. The intestinal microbiome was analyzed using 16S rRNA gene amplicon sequencing. Microbial composition was associated with SES, showing an overrepresentation of Prevotella and Eubacterium in children with lower SES. Higher BMI was associated with lower microbial diversity and altered taxonomic composition, including higher levels of Collinsella, especially among participants from lower SES. Intake of polyunsaturated fatty acids was the strongest predictor of bacterial alterations, including an independent association with Lachnobacterium and Lactobacillus. This study demonstrates that the intestinal microbiome in preadolescents is associated with socioeconomic determinants, BMI and dietary intake, specifically with higher consumption of polyunsaturated fatty acids. Thus, tailored interventions during these crucial years have the potential to improve health disparities throughout the lifespan.
Collapse
Affiliation(s)
- Yelena Lapidot
- Department of Epidemiology and Preventive Medicine, School of Public Health, The Sackler Faculty, Tel Aviv University, Ramat Aviv, Tel Aviv 6139001, Israel; (Y.L.); (W.N.)
| | - Leah Reshef
- The Shmunis School of Biomedicine and Cancer Research Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel; (L.R.); (U.G.)
| | | | - Wasef Na’amnih
- Department of Epidemiology and Preventive Medicine, School of Public Health, The Sackler Faculty, Tel Aviv University, Ramat Aviv, Tel Aviv 6139001, Israel; (Y.L.); (W.N.)
| | - Eias Kassem
- Department of Pediatrics, Hillel Yaffe Medical Center, Hadera 3810101, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel;
- Laboratory of Teratology, Department of Medical Neurobiology, The Hebrew University Hadassah Medical School, Jerusalem 9112002, Israel
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel; (L.R.); (U.G.)
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, The Sackler Faculty, Tel Aviv University, Ramat Aviv, Tel Aviv 6139001, Israel; (Y.L.); (W.N.)
| |
Collapse
|
137
|
Kibbie JJ, Dillon SM, Thompson TA, Purba CM, McCarter MD, Wilson CC. Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling. Immunobiology 2021; 226:152126. [PMID: 34365090 DOI: 10.1016/j.imbio.2021.152126] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 07/06/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022]
Abstract
An important function of the gut microbiome is the fermentation of non-digestible dietary fibers into short chain fatty acids (SCFAs). The three primary SCFAs: acetate, propionate, and butyrate, are key mediators of metabolism and immune cell function in the gut mucosa. We previously demonstrated that butyrate at high concentrations decreased human gut lamina propria (LP) CD4 T cell activation in response to enteric bacteria exposure in vitro. However, to date, the mechanism by which butyrate alters human gut LP CD4 T cell activation remains unknown. In this current study, we sought to better understand how exposure to SCFAs across a concentration range impacted human gut LP CD4 T cell function and activation. LP CD4 T cells were directly activated with T cell receptor (TCR) beads in vitro in the presence of a physiologic concentration range of each of the primary SCFAs. Exposure to butyrate potently inhibited CD4 T cell activation, proliferation, and cytokine (IFNγ, IL-17) production in a concentration dependent manner. Butyrate decreased the proliferation and cytokine production of T helper (Th) 1, Th17 and Th22 cells, with differences noted in the sensitivity of LP versus peripheral blood Th cells to butyrate's effects. Higher concentrations of propionate and acetate relative to butyrate were required to inhibit CD4 T cell activation and proliferation. Butyrate directly increased the acetylation of both unstimulated and TCR-stimulated CD4 T cells, and apicidin, a Class I histone deacetylase inhibitor, phenocopied butyrate's effects on CD4 T cell proliferation and activation. GPR43 agonism phenocopied butyrate's effect on CD4 T cell proliferation whereas a GPR109a agonist did not. Our findings indicate that butyrate decreases in vitro human gut LP CD4 T cell activation, proliferation, and inflammatory cytokine production more potently than other SCFAs, likely through butyrate's ability to increase histone acetylation, and potentially via signaling through GPR43. These findings have relevance in furthering our understanding of how perturbations of the gut microbiome alter local immune responses in the gut mucosa.
Collapse
Affiliation(s)
- Jon J Kibbie
- Department of Medicine, Division of Infectious Disease, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA; Department of Immunology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie M Dillon
- Department of Medicine, Division of Infectious Disease, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Tezha A Thompson
- Department of Medicine, Division of Infectious Disease, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Christine M Purba
- Department of Medicine, Division of Infectious Disease, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Martin D McCarter
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Cara C Wilson
- Department of Medicine, Division of Infectious Disease, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
138
|
Nijmeijer BM, Langedijk CJM, Geijtenbeek TBH. Mucosal Dendritic Cell Subsets Control HIV-1's Viral Fitness. Annu Rev Virol 2021; 7:385-402. [PMID: 32991263 DOI: 10.1146/annurev-virology-020520-025625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cell (DC) subsets are abundantly present in genital and intestinal mucosal tissue and are among the first innate immune cells that encounter human immunodeficiency virus type 1 (HIV-1) after sexual contact. Although DCs have specific characteristics that greatly enhance HIV-1 transmission, it is becoming evident that most DC subsets also have virus restriction mechanisms that exert selective pressure on the viruses during sexual transmission. In this review we discuss the current concepts of the immediate events following viral exposure at genital mucosal sites that lead to selection of specific HIV-1 variants called transmitted founder (TF) viruses. We highlight the importance of the TF HIV-1 phenotype and the role of different DC subsets in establishing infection. Understanding the biology of HIV-1 transmission will contribute to the design of novel treatment strategies preventing HIV-1 dissemination.
Collapse
Affiliation(s)
- Bernadien M Nijmeijer
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Catharina J M Langedijk
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
139
|
Li S, Zhu J, Su B, Wei H, Chen F, Liu H, Wei J, Yang X, Zhang Q, Xia W, Wu H, He Q, Zhang T. Alteration in Oral Microbiome Among Men Who Have Sex With Men With Acute and Chronic HIV Infection on Antiretroviral Therapy. Front Cell Infect Microbiol 2021; 11:695515. [PMID: 34336719 PMCID: PMC8317457 DOI: 10.3389/fcimb.2021.695515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the antiretroviral therapy (ART), human immunodeficiency virus (HIV)-related oral disease remains a common problem for people living with HIV (PLWH). Evidence suggests that impairment of immune function in HIV infection might lead to the conversion of commensal bacteria to microorganisms with increased pathogenicity. However, limited information is available about alteration in oral microbiome in PLWH on ART. We performed a longitudinal comparative study on men who have sex with men (MSM) with acute HIV infection (n=15), MSM with chronic HIV infection (n=15), and HIV-uninfected MSM controls (n=15). Throat swabs were collected when these subjects were recruited (W0) and 12 weeks after ART treatment (W12) from the patients. Genomic DNAs were extracted and 16S rRNA gene sequencing was performed. Microbiome diversity was significantly decreased in patients with acute and chronic HIV infections compared with those in controls at the sampling time of W0 and the significant difference remained at W12. An increased abundance of unidentified Prevotellaceae was found in patients with acute and chronic HIV infections. Moreover, increased abundances of Prevotella in subjects with acute HIV infection and Streptococcus in subjects with chronic HIV infection were observed. In contrast, greater abundance in Lactobacillus, Rothia, Lautropia, and Bacteroides was found in controls. After effective ART, Bradyrhizobium was enriched in both acute and chronic HIV infections, whereas in controls, Lactobacillus, Rothia, Clostridia, Actinobacteria, and Ruminococcaceae were enriched. In addition, we found that lower CD4+ T-cell counts (<200 cells/mm3) were associated with lower relative abundances of Haemophilus, Actinomyces, unidentified Ruminococcaceae, and Rothia. This study has shown alteration in oral microbiome resulting from HIV infection and ART. The results obtained warrant further studies in a large number of subjects with different ethnics. It might contribute to improved oral health in HIV-infected individuals.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huanhuan Wei
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Fei Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Hongshan Liu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiuyue Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku, Finland
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
140
|
Nganou-Makamdop K, Talla A, Sharma AA, Darko S, Ransier A, Laboune F, Chipman JG, Beilman GJ, Hoskuldsson T, Fourati S, Schmidt TE, Arumugam S, Lima NS, Moon D, Callisto S, Schoephoerster J, Tomalka J, Mugyenyi P, Ssali F, Muloma P, Ssengendo P, Leda AR, Cheu RK, Flynn JK, Morou A, Brunet-Ratnasingham E, Rodriguez B, Lederman MM, Kaufmann DE, Klatt NR, Kityo C, Brenchley JM, Schacker TW, Sekaly RP, Douek DC. Translocated microbiome composition determines immunological outcome in treated HIV infection. Cell 2021; 184:3899-3914.e16. [PMID: 34237254 DOI: 10.1016/j.cell.2021.05.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The impact of the microbiome on HIV disease is widely acknowledged although the mechanisms downstream of fluctuations in microbial composition remain speculative. We detected rapid, dynamic changes in translocated microbial constituents during two years after cART initiation. An unbiased systems biology approach revealed two distinct pathways driven by changes in the abundance ratio of Serratia to other bacterial genera. Increased CD4 T cell numbers over the first year were associated with high Serratia abundance, pro-inflammatory innate cytokines, and metabolites that drive Th17 gene expression signatures and restoration of mucosal integrity. Subsequently, decreased Serratia abundance and downregulation of innate cytokines allowed re-establishment of systemic T cell homeostasis promoting restoration of Th1 and Th2 gene expression signatures. Analyses of three other geographically distinct cohorts of treated HIV infection established a more generalized principle that changes in diversity and composition of translocated microbial species influence systemic inflammation and consequently CD4 T cell recovery.
Collapse
Affiliation(s)
- Krystelle Nganou-Makamdop
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Clinical and Molecular Virology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Aarthi Talla
- Department of Pathology, Case Western Reserve University, Cleveland, OH 10900, USA; Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Ashish Arunkumar Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 10900, USA; Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey G Chipman
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gregory J Beilman
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Torfi Hoskuldsson
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH 10900, USA; Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Thomas E Schmidt
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sahaana Arumugam
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noemia S Lima
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Damee Moon
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel Callisto
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jeffery Tomalka
- Department of Pathology, Case Western Reserve University, Cleveland, OH 10900, USA; Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | - Ana R Leda
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL 33124, USA
| | - Ryan K Cheu
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL 33124, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID/NIH, Bethesda, MD 20892, USA
| | - Antigoni Morou
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, QC H3C 3J7, Canada; Université de Montréal, Montreal, QC H3C 3J7, Canada; Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Elsa Brunet-Ratnasingham
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, QC H3C 3J7, Canada; Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Benigno Rodriguez
- Case Western Reserve University School of Medicine, Cleveland, OH 10900, USA
| | - Michael M Lederman
- Case Western Reserve University School of Medicine, Cleveland, OH 10900, USA
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, QC H3C 3J7, Canada; Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nichole R Klatt
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL 33124, USA
| | - Cissy Kityo
- Joint Clinical Research Center, Kampala, Uganda
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID/NIH, Bethesda, MD 20892, USA
| | - Timothy W Schacker
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Rafick P Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH 10900, USA; Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
141
|
Dillon SM, Abdo MH, Wilson MP, Liu J, Jankowski CM, Robertson CE, Tuncil Y, Hamaker B, Frank DN, MaWhinney S, Wilson CC, Erlandson KM. A Unique Gut Microbiome-Physical Function Axis Exists in Older People with HIV: An Exploratory Study. AIDS Res Hum Retroviruses 2021; 37:542-550. [PMID: 33787299 PMCID: PMC8260890 DOI: 10.1089/aid.2020.0283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments in physical function and increased systemic levels of inflammation have been observed in middle-aged and older persons with HIV (PWH). We previously demonstrated that in older persons, associations between gut microbiota and inflammation differed by HIV serostatus. To determine whether relationships between the gut microbiome and physical function measurements would also be distinct between older persons with and without HIV, we reanalyzed existing gut microbiome and short chain fatty acid (SCFA) data in conjunction with previously collected measurements of physical function and body composition from the same cohorts of older (51-74 years), nonfrail PWH receiving effective antiretroviral therapy (N = 14) and age-balanced uninfected controls (N = 22). Associations between relative abundance (RA) of the most abundant bacterial taxa or stool SCFA levels with physical function and body composition were tested using HIV-adjusted linear regression models. In older PWH, but not in controls, greater RA of Alistipes, Escherichia, Prevotella, Megasphaera, and Subdoligranulum were associated with reduced lower extremity muscle function, decreased lean mass, or lower Short Physical Performance Battery (SPPB) scores. Conversely, greater RA of Dorea, Coprococcus, and Phascolarctobacterium in older PWH were associated with better muscle function, lean mass, and SPPB scores. Higher levels of the SCFA butyrate associated with increased grip strength in both PWH and controls. Our findings indicate that in older PWH, both negative and positive associations exist between stool microbiota abundance and physical function. Different relationships were observed in older uninfected persons, suggesting features of a unique gut-physical function axis in PWH.
Collapse
Affiliation(s)
- Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mona H. Abdo
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Melissa P. Wilson
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Jay Liu
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Catherine M. Jankowski
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Charles E. Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus Tuncil
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samantha MaWhinney
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristine M. Erlandson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
142
|
Royston L, Isnard S, Lin J, Routy JP. Cytomegalovirus as an Uninvited Guest in the Response to Vaccines in People Living with HIV. Viruses 2021; 13:v13071266. [PMID: 34209711 PMCID: PMC8309982 DOI: 10.3390/v13071266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
In stark contrast to the rapid development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective human immunodeficiency virus (HIV) vaccine is still lacking. Furthermore, despite virologic suppression and CD4 T-cell count normalization with antiretroviral therapy (ART), people living with HIV (PLWH) still exhibit increased morbidity and mortality compared to the general population. Such differences in health outcomes are related to higher risk behaviors, but also to HIV-related immune activation and viral coinfections. Among these coinfections, cytomegalovirus (CMV) latent infection is a well-known inducer of long-term immune dysregulation. Cytomegalovirus contributes to the persistent immune activation in PLWH receiving ART by directly skewing immune response toward itself, and by increasing immune activation through modification of the gut microbiota and microbial translocation. In addition, through induction of immunosenescence, CMV has been associated with a decreased response to infections and vaccines. This review provides a comprehensive overview of the influence of CMV on the immune system, the mechanisms underlying a reduced response to vaccines, and discuss new therapeutic advances targeting CMV that could be used to improve vaccine response in PLWH.
Collapse
Affiliation(s)
- Léna Royston
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Canadian Institutes of Health Research, Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Canadian Institutes of Health Research, Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
143
|
Wolday D, Ndungu FM, Gómez-Pérez GP, de Wit TFR. Chronic Immune Activation and CD4 + T Cell Lymphopenia in Healthy African Individuals: Perspectives for SARS-CoV-2 Vaccine Efficacy. Front Immunol 2021; 12:693269. [PMID: 34220854 PMCID: PMC8249933 DOI: 10.3389/fimmu.2021.693269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic immune activation has been considered as the driving force for CD4+ T cell depletion in people infected with HIV-1. Interestingly, the normal immune profile of adult HIV-negative individuals living in Africa also exhibit chronic immune activation, reminiscent of that observed in HIV-1 infected individuals. It is characterized by increased levels of soluble immune activation markers, such as the cytokines interleukin (IL)-4, IL-10, TNF-α, and cellular activation markers including HLA-DR, CD-38, CCR5, coupled with reduced naïve and increased memory cells in CD4+ and CD8+ subsets. In addition, it is accompanied by low CD4+ T cell counts when compared to Europeans. There is also evidence that mononuclear cells from African infants secrete less innate cytokines than South and North Americans and Europeans in vitro. Chronic immune activation in Africans is linked to environmental factors such as parasitic infections and could be responsible for previously observed immune hypo-responsiveness to infections and vaccines. It is unclear whether the immunogenicity and effectiveness of anti-SARS-CoV-2 vaccines will also be reduced by similar mechanisms. A review of studies investigating this phenomenon is urgently required as they should inform the design and delivery for vaccines to be used in African populations.
Collapse
Affiliation(s)
- Dawit Wolday
- Department of Medicine, Mekelle University College of Health Sciences, Mekelle, Ethiopia
| | - Francis M. Ndungu
- Department of Global Health, Kenyan Medical Research Institute (KEMRI) – Wellcome Research Programme, Nairobi, Kenya
| | - Gloria P. Gómez-Pérez
- Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University, Amsterdam, Netherlands
| | - Tobias F. Rinke de Wit
- Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University, Amsterdam, Netherlands
- Joep-Lange Institute, Amsterdam, Netherlands
| |
Collapse
|
144
|
Profiling of Intestinal Microbiota in Patients Infected with Respiratory Influenza A and B Viruses. Pathogens 2021; 10:pathogens10060761. [PMID: 34204203 PMCID: PMC8233933 DOI: 10.3390/pathogens10060761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Little is known about the association between respiratory viral infections and their impact on intestinal microbiota. Here, we compared the effect of influenza types, A and B, and influenza shedding in patients’ stools on the gut microbiota diversity and composition. Deep sequencing analysis was performed for the V4 region of the 16S rRNA gene. Fecal samples were collected from 38 adults with active respiratory influenza infection and 11 age-matched healthy controls. Influenza infection resulted in variations in intestinal bacterial community composition rather than in overall diversity. Overall, infected patients experienced an increased abundance of Bacteroidetes and a corresponding decrease in Firmicutes. Differential abundance testing illustrated that differences in gut microbiota composition were influenza type-dependent, identifying ten differentially abundant operational taxonomic units (OTUs) between influenza A- and influenza B-infected patients. Notably, virus shedding in fecal samples of some patients had significantly reduced gut bacterial diversity (p = 0.023). Further taxonomic analysis revealed that the abundance of Bacteroides fragilis was significantly higher among shedders compared to non-shedders (p = 0.037). These results provide fundamental evidence of the direct effect of influenza infection on gut microbiota diversity, as reported in patients shedding the virus.
Collapse
|
145
|
Castleman MJ, Dillon SM, Thompson TA, Santiago ML, McCarter MD, Barker E, Wilson CC. Gut Bacteria Induce Granzyme B Expression in Human Colonic ILC3s In Vitro in an IL-15-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 206:3043-3052. [PMID: 34117105 DOI: 10.4049/jimmunol.2000239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) in the gut mucosa have long been thought to be noncytotoxic lymphocytes that are critical for homeostasis of intestinal epithelial cells through secretion of IL-22. Recent work using human tonsillar cells demonstrated that ILC3s exposed to exogenous inflammatory cytokines for a long period of time acquired expression of granzyme B, suggesting that under pathological conditions ILC3s may become cytotoxic. We hypothesized that inflammation associated with bacterial exposure might trigger granzyme B expression in gut ILC3s. To test this, we exposed human colon lamina propria mononuclear cells to a panel of enteric bacteria. We found that the Gram-negative commensal and pathogenic bacteria induced granzyme B expression in a subset of ILC3s that were distinct from IL-22-producing ILC3s. A fraction of granzyme B+ ILC3s coexpressed the cytolytic protein perforin. Granzyme B expression was mediated, in part, by IL-15 produced upon exposure to bacteria. ILC3s coexpressing all three IL-15R subunits (IL15Rα/β/γ) increased following bacterial stimulation, potentially allowing for cis presentation of IL-15 during bacterial exposure. Additionally, a large frequency of colonic myeloid dendritic cells expressed IL-15Rα, implicating myeloid dendritic cells in trans presentation of IL-15 to ILC3s. Tonsillar ILC3s minimally expressed granzyme B when exposed to the same bacteria or to rIL-15. Overall, these data establish the novel, to our knowledge, finding that human colonic ILC3s can express granzyme B in response to a subset of enteric bacteria through a process mediated by IL-15. These observations raise new questions about the multifunctional role of human gut ILC3s.
Collapse
Affiliation(s)
- Moriah J Castleman
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephanie M Dillon
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tezha A Thompson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mario L Santiago
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL
| | - Cara C Wilson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO;
| |
Collapse
|
146
|
Rectal microbiota diversity in Kenyan MSM is inversely associated with frequency of receptive anal sex, independent of HIV status. AIDS 2021; 35:1091-1101. [PMID: 33534201 DOI: 10.1097/qad.0000000000002829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Both HIV infection and identifying as MSM have been linked to altered rectal microbiota composition, but few studies have studied sexual behavioural associations with rectal microbiota within MSM. In addition, most rectal microbiota studies in MSM have been limited geographically to Europe and North America, and replication of findings in lower and middle-income countries is lacking. DESIGN A cross-sectional study. METHODS We enrolled MSM from Nairobi, Kenya, and determined their HIV/sexually transmitted infection status. Rectal specimens were obtained for 16s rRNA sequencing of the rectal microbiota, and sexual behaviour was characterized using a standardized questionnaire. Microbiome differences were modelled using nonparametric statistics, Bray-Curtis ecological distance metrics and analyses of differential taxa abundance. Multivariable linear regression was used to model HIV status and recent sexual activity as predictors of alpha diversity, controlling for a range of covariates. RESULTS Alpha diversity was consistently lower in Kenyan HIV-infected MSM (n = 80), including those on antiretroviral therapy (ART) compared with HIV-uninfected MSM. A statistical trend was observed for clustering of HIV status by Prevotella or Bacteroides dominance (P = 0.13). Several taxa were enriched in HIV-positive men, including Roseburia, Lachnospira, Streptococcus and Granulicatella. Receptive anal sex with several types of sexual partners (paying, regular, casual) was associated with lower Chao1 and Simpson diversity, independent of HIV status, while HIV infection was associated lower Chao1 (P = 0.030) but not Simpson diversity (P = 0.49). CONCLUSION Both HIV infection and sexual behaviour were associated with rectal microflora alpha diversity, in particular richness, but not Prevotella spp. dominance, in Kenyan MSM. Associations were more robust for sexual behaviour.
Collapse
|
147
|
Mak G, Zaunders JJ, Bailey M, Seddiki N, Rogers G, Leong L, Phan TG, Kelleher AD, Koelsch KK, Boyd MA, Danta M. Preservation of Gastrointestinal Mucosal Barrier Function and Microbiome in Patients With Controlled HIV Infection. Front Immunol 2021; 12:688886. [PMID: 34135912 PMCID: PMC8203413 DOI: 10.3389/fimmu.2021.688886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Background Despite successful ART in people living with HIV infection (PLHIV) they experience increased morbidity and mortality compared with HIV-negative controls. A dominant paradigm is that gut-associated lymphatic tissue (GALT) destruction at the time of primary HIV infection leads to loss of gut integrity, pathological microbial translocation across the compromised gastrointestinal barrier and, consequently, systemic inflammation. We aimed to identify and measure specific changes in the gastrointestinal barrier that might allow bacterial translocation, and their persistence despite initiation of antiretroviral therapy (ART). Method We conducted a cross-sectional study of the gastrointestinal (GIT) barrier in PLHIV and HIV-uninfected controls (HUC). The GIT barrier was assessed as follows: in vivo mucosal imaging using confocal endomicroscopy (CEM); the immunophenotype of GIT and circulating lymphocytes; the gut microbiome; and plasma inflammation markers Tumour Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6); and the microbial translocation marker sCD14. Results A cohort of PLHIV who initiated ART early, during primary HIV infection (PHI), n=5), and late (chronic HIV infection (CHI), n=7) infection were evaluated for the differential effects of the stage of ART initiation on the GIT barrier compared with HUC (n=6). We observed a significant decrease in the CD4 T-cell count of CHI patients in the left colon (p=0.03) and a trend to a decrease in the terminal ileum (p=0.13). We did not find evidence of increased epithelial permeability by CEM. No significant differences were found in microbial translocation or inflammatory markers in plasma. In gut biopsies, CD8 T-cells, including resident intraepithelial CD103+ cells, did not show any significant elevation of activation in PLHIV, compared to HUC. The majority of residual circulating activated CD38+HLA-DR+ CD8 T-cells did not exhibit gut-homing integrins α4ß7, suggesting that they did not originate in GALT. A significant reduction in the evenness of species distribution in the microbiome of CHI subjects (p=0.016) was observed, with significantly higher relative abundance of the genus Spirochaeta in PHI subjects (p=0.042). Conclusion These data suggest that substantial, non-specific increases in epithelial permeability may not be the most important mechanism of HIV-associated immune activation in well-controlled HIV-positive patients on antiretroviral therapy. Changes in gut microbiota warrant further study.
Collapse
Affiliation(s)
- Gerald Mak
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia
| | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | | | - Nabila Seddiki
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Paris, France
| | - Geraint Rogers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Faculty of Science, Flinders University, Adelaide, SA, Australia
| | - Lex Leong
- Microbiology and Infectious Diseases, South Australia (SA) Pathology, Adelaide, SA, Australia
| | - Tri Giang Phan
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia.,Immunology Division Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | - Mark A Boyd
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark Danta
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia.,Department of Gastroenterology, St. Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
148
|
Parbie PK, Mizutani T, Ishizaka A, Kawana-Tachikawa A, Runtuwene LR, Seki S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Uematsu S, Imoto S, Kimura Y, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Dysbiotic Fecal Microbiome in HIV-1 Infected Individuals in Ghana. Front Cell Infect Microbiol 2021; 11:646467. [PMID: 34084754 PMCID: PMC8168436 DOI: 10.3389/fcimb.2021.646467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infected individuals under antiretroviral therapy can control viremia but often develop non-AIDS diseases such as cardiovascular and metabolic disorders. Gut microbiome dysbiosis has been indicated to be associated with progression of these diseases. Analyses of gut/fecal microbiome in individual regions are important for our understanding of pathogenesis in HIV-1 infections. However, data on gut/fecal microbiome has not yet been accumulated in West Africa. In the present study, we examined fecal microbiome compositions in HIV-1 infected adults in Ghana, where approximately two-thirds of infected adults are females. In a cross-sectional case-control study, age- and gender-matched HIV-1 infected adults (HIV+; n = 55) and seronegative controls (HIV-; n = 55) were enrolled. Alpha diversity of fecal microbiome in HIV+ was significantly reduced compared to HIV- and associated with CD4 counts. HIV+ showed reduction in varieties of bacteria including Faecalibacterium, the most abundant in seronegative controls, but enrichment of Proteobacteria. Ghanaian HIV+ exhibited enrichment of Dorea and Blautia; bacteria groups whose depletion has been reported in HIV-1 infected individuals in several other cohorts. Furthermore, HIV+ in our cohort exhibited a depletion of Prevotella, a genus whose enrichment has recently been shown in men having sex with men (MSM) regardless of HIV-1 status. The present study revealed the characteristics of dysbiotic fecal microbiome in HIV-1 infected adults in Ghana, a representative of West African populations.
Collapse
Affiliation(s)
- Prince Kofi Parbie
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Dennis Kushitor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Badu Ofori
- Department of Internal Medicine, Regional Hospital Koforidua, Ghana Health Service, Koforidua, Ghana
| | - Satoshi Uematsu
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yasumasa Kimura
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
149
|
Ray S, Narayanan A, Giske CG, Neogi U, Sönnerborg A, Nowak P. Altered Gut Microbiome under Antiretroviral Therapy: Impact of Efavirenz and Zidovudine. ACS Infect Dis 2021; 7:1104-1115. [PMID: 33346662 PMCID: PMC8154435 DOI: 10.1021/acsinfecdis.0c00536] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Millions
of individuals currently living with HIV globally are
receiving antiretroviral therapy (ART) that suppresses viral replication
and improves host immune responses. The involvement of gut microbiome
during HIV infection has been studied, exposing correlation with immune
status and inflammation. However, the direct effect of ART on gut
commensals of HIV-infected individuals has been mostly overlooked
in microbiome studies. We used 16S rRNA sequencing (Illumina MiSeq)
for determining the microbiota composition of stool samples from 16
viremic patients before and one year after ART. We also tested the
direct effect of 15 antiretrovirals against four gut microbes, namely, Escherichia coli, Enterococcus faecalis, Bacteroides, and Prevotella to assess their in vitro antibacterial effect. 16S rRNA analysis of fecal samples showed
that effective ART for one year does not restore the microbiome diversity
in HIV-infected patients. A significant reduction in α-diversity
was observed in patients under non-nucleoside reverse transcriptase
inhibitors; (NNRTI; 2 NRTI+NNRTI; NRTIs are nucleoside reverse transcriptase
inhibitors) as compared to ritonavir-boosted protease inhibitors (PI/r;
2 NRTI+PI/r). Prevotella (P = 0.00001) showed a significantly decreased abundance in patients
after ART (n = 16). We also found the direct effect
of antivirals on gut microbes, where zidovudine (ZDV) and efavirenz
(EFV) showed in vitro antimicrobial activity against Bacteroides fragilis and Prevotella. EFV also inhibited the growth of E. faecalis. Therefore, we observed that ART does not reverse the HIV-induced
gut microbiome dysbiosis and might aggravate those microbiota alterations
due to the antibacterial effect of certain antiretrovirals (like EFV,
ZDV). Our results imply that restructuring the microbiota could be
a potential therapeutic target in HIV-1 patients under ART.
Collapse
Affiliation(s)
- Shilpa Ray
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå 901 87, Sweden
| | - Aswathy Narayanan
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
| | - Christian G. Giske
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Solna, Stockholm 171 76,Sweden
| | - Ujjwal Neogi
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
| | - Anders Sönnerborg
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| | - Piotr Nowak
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå 901 87, Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| |
Collapse
|
150
|
Gut Microbiota Diversity in HIV-Infected Patients on Successful Antiretroviral Treatment is Linked to Sexual Preferences but not CD4 Nadir. Arch Immunol Ther Exp (Warsz) 2021; 69:14. [PMID: 33983543 DOI: 10.1007/s00005-021-00616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
The effects of HIV infection and antiretroviral therapy (ART) on the gut microbiome are poorly understood and the literature data are inconsistent. The aim of this study was to assess the alpha and beta diversity of the fecal microbiota in HIV-infected patients on successful antiretroviral therapy with regard to sexual preferences and CD4 nadir. Thirty-six HIV-infected ART-treated patients with HIV viremia below 20 copies/ml and CD4 > 500 cells/μl were divided into two subgroups based on CD4 nadir. The composition of the intestinal microbiota was assessed by 16SrRNA sequencing (MiSeq Illumina). The alpha and beta diversity were analyzed according to CD4 nadir count and sexual preference. Several alpha diversity indexes were significantly higher in the MSM group than in heterosexual patients. The alpha diversity did not differ significantly between patients with CD4 nadir > 500 cells/μl and CD4 nadir < 200 cells/μl. Beta diversity was also associated with sexual preference. A significant difference in Weighted Unifrac was observed between all MSM and all non-MSM participants (p = 0.001). The MSM group was more diverse and demonstrated greater distances in Weighted Unifrac than the non-MSM group. The relative abundance of the Prevotella enterotype was higher in the MSM than the non-MSM group. Sexual preferences demonstrated a stronger influence on alpha and beta diversity in HIV-infected patients following successful antiretroviral treatment than HIV infection itself. The observed lack of association between CD4 nadir and alpha and beta diversity may be caused by the restoration of the faecal microbiota following antiretroviral treatment.
Collapse
|