101
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
102
|
Zimmerman SM, Lin PN, Souroullas GP. Non-canonical functions of EZH2 in cancer. Front Oncol 2023; 13:1233953. [PMID: 37664059 PMCID: PMC10473085 DOI: 10.3389/fonc.2023.1233953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Mutations in chromatin modifying genes frequently occur in many kinds of cancer. Most mechanistic studies focus on their canonical functions, while therapeutic approaches target their enzymatic activity. Recent studies, however, demonstrate that non-canonical functions of chromatin modifiers may be equally important and therapeutically actionable in different types of cancer. One epigenetic regulator that demonstrates such a dual role in cancer is the histone methyltransferase EZH2. EZH2 is a core component of the polycomb repressive complex 2 (PRC2), which plays a crucial role in cell identity, differentiation, proliferation, stemness and plasticity. While much of the regulatory functions and oncogenic activity of EZH2 have been attributed to its canonical, enzymatic activity of methylating lysine 27 on histone 3 (H3K27me3), a repressive chromatin mark, recent studies suggest that non-canonical functions that are independent of H3K27me3 also contribute towards the oncogenic activity of EZH2. Contrary to PRC2's canonical repressive activity, mediated by H3K27me3, outside of the complex EZH2 can directly interact with transcription factors and oncogenes to activate gene expression. A more focused investigation into these non-canonical interactions of EZH2 and other epigenetic/chromatin regulators may uncover new and more effective therapeutic strategies. Here, we summarize major findings on the non-canonical functions of EZH2 and how they are related to different aspects of carcinogenesis.
Collapse
Affiliation(s)
- Sarah M. Zimmerman
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Phyo Nay Lin
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - George P. Souroullas
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
103
|
Grolleau E, Candiracci J, Lescuyer G, Barthelemy D, Benzerdjeb N, Haon C, Geiguer F, Raffin M, Hardat N, Balandier J, Rabeuf R, Chalabreysse L, Wozny AS, Rommelaere G, Rodriguez-Lafrasse C, Subtil F, Couraud S, Herzog M, Payen-Gay L. Circulating H3K27 Methylated Nucleosome Plasma Concentration: Synergistic Information with Circulating Tumor DNA Molecular Profiling. Biomolecules 2023; 13:1255. [PMID: 37627320 PMCID: PMC10452235 DOI: 10.3390/biom13081255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The molecular profiling of circulating tumor DNA (ctDNA) is a helpful tool not only in cancer treatment, but also in the early detection of relapse. However, the clinical interpretation of a ctDNA negative result remains challenging. The characterization of circulating nucleosomes (carrying cell-free DNA) and associated epigenetic modifications (playing a key role in the tumorigenesis of different cancers) may provide useful information for patient management, by supporting the contributive value of ctDNA molecular profiling. Significantly elevated concentrations of H3K27Me3 nucleosomes were found in plasmas at the diagnosis, and during the follow-up, of NSCLC patients, compared to healthy donors (p-value < 0.0001). By combining the H3K27Me3 level and the ctDNA molecular profile, we found that 25.5% of the patients had H3K27Me3 levels above the cut off, and no somatic alteration was detected at diagnosis. This strongly supports the presence of non-mutated ctDNA in the corresponding plasma. During the patient follow-up, a high H3K27Me3-nucleosome level was found in 15.1% of the sample, despite no somatic mutations being detected, allowing the identification of disease progression from 43.1% to 58.2% over molecular profiling alone. Measuring H3K27Me3-nucleosome levels in combination with ctDNA molecular profiling may improve confidence in the negative molecular result for cfDNA in lung cancer at diagnosis, and may also be a promising biomarker for molecular residual disease (MRD) monitoring, during and/or after treatment.
Collapse
Affiliation(s)
- Emmanuel Grolleau
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Pulmonology Department, Lyon Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Julie Candiracci
- Belgian Volition SRL, Parc Scientifique Créalys, 5032 Isnes, Belgium
| | - Gaelle Lescuyer
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - David Barthelemy
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Nazim Benzerdjeb
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Pathology Department, Claude Bernard University Lyon I, Hospices Civils de Lyon, 69677 Bron, France
| | - Christine Haon
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Florence Geiguer
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Margaux Raffin
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Nathalie Hardat
- Belgian Volition SRL, Parc Scientifique Créalys, 5032 Isnes, Belgium
| | - Julie Balandier
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Rémi Rabeuf
- Belgian Volition SRL, Parc Scientifique Créalys, 5032 Isnes, Belgium
| | - Lara Chalabreysse
- Pathology Department, Claude Bernard University Lyon I, Hospices Civils de Lyon, 69677 Bron, France
| | - Anne-Sophie Wozny
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
- Cellular and Molecular Radiobiology Laboratory UMR CNRS5822/IP2I, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
| | | | - Claire Rodriguez-Lafrasse
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
- Cellular and Molecular Radiobiology Laboratory UMR CNRS5822/IP2I, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
| | - Fabien Subtil
- Statistic Department, Hospices Civils de Lyon, 69008 Lyon, France
- LBBE, Claude Bernard University Lyon I, UMR 5558, CNRS, 69100 Villeurbanne, France
| | - Sébastien Couraud
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Pulmonology Department, Lyon Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Marielle Herzog
- Belgian Volition SRL, Parc Scientifique Créalys, 5032 Isnes, Belgium
| | - Lea Payen-Gay
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| |
Collapse
|
104
|
Wang SH, Liu L, Bao KY, Zhang YF, Wang WW, Du S, Jia NE, Suo S, Cai J, Guo JF, Lv G. EZH2 Contributes to Anoikis Resistance and Promotes Epithelial Ovarian Cancer Peritoneal Metastasis by Regulating m6A. Curr Med Sci 2023; 43:794-802. [PMID: 37498408 DOI: 10.1007/s11596-023-2719-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/18/2022] [Indexed: 07/28/2023]
Abstract
OBJECTIVE Histone modification has a significant effect on gene expression. Enhancer of zeste homolog 2 (EZH2) contributes to the epigenetic silencing of target chromatin through its roles as a histone-lysine N-methyltransferase enzyme. The development of anoikis resistance in tumor cells is considered to be a critical step in the metastatic process of primary malignant tumors. The purpose of this study was to investigate the effect and mechanism of anoikis resistance in ovarian adenocarcinoma peritoneal metastasis. METHODS In addition to examining EZH2 protein expression in ovarian cancer omental metastatic tissues, we established a model of ovarian cancer cell anoikis and a xenograft tumor model in nude mice. Anoikis resistance and ovarian cancer progression were tested after EZH2 and N6-methyladenosine (m6A) levels were modified. RESULTS EZH2 expression was significantly higher in ovarian cancer omental metastatic tissues than in normal ovarian tissues. Reducing the level of EZH2 decreased the level of m6A and ovarian cancer cell anoikis resistance in vitro and inhibited ovarian cancer progression in vivo. M6a regulation altered the effect of EZH2 on anoikis resistance. CONCLUSION Our results indicate that EZH2 contributes to anoikis resistance and promotes ovarian adenocarcinoma abdominal metastasis by m6A modification. Our findings imply the potential of the clinical application of m6A and EZH2 for patients with ovarian cancer.
Collapse
Affiliation(s)
- Shao-Hai Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke-Yong Bao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, 028000, China
| | - Yi-Fan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Wen Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Na-Er Jia
- Department of Obstetrics and Gynecology, Bozhou Branch of Union Hospital, Bozhou, 833400, China
- Department of Obstetrics and Gynecology, Bozhou People's Hospital, Bozhou, 833400, China
| | - Suo Suo
- Department of Obstetrics and Gynecology, Bozhou Branch of Union Hospital, Bozhou, 833400, China
- Department of Obstetrics and Gynecology, Bozhou People's Hospital, Bozhou, 833400, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian-Feng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Gang Lv
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
105
|
Mao Q, Wu P, Li H, Fu X, Gao X, Yang L. CRISPR/Cas9‑mediated EZH2 knockout suppresses the proliferation and migration of triple‑negative breast cancer cells. Oncol Lett 2023; 26:343. [PMID: 37427349 PMCID: PMC10326815 DOI: 10.3892/ol.2023.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of BC characterized by extensive intratumoral heterogeneity. Compared with other types of BC, TNBC is more prone to invasion and metastasis. The aim of the present study was to determine whether adenovirus-mediated clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system is capable of effectively targeting enhancer of zeste homolog 2 (EZH2) in TNBC cells and lay an experimental basis for the investigation of the CRISPR/Cas9 system as a gene therapy for BC. In the present study, EZH2 was knocked out in MDA-MB-231 cells using the CRISPR/Cas9 gene editing tool to create EZH2-knockout (KO) group (EZH2-KO group). Moreover, the GFP knockout group (control group), and a blank group (Blank group), were employed. The success of vector construction and EZH2-KO were verified by T7 endonuclease I (T7EI) restriction enzyme digestion, mRNA detection and western blotting. Changes in proliferation and migration ability of MDA-MB-231 cells following gene editing were detected by MTT, wound healing, Transwell and in vivo tumor biology assays. As indicated by the results of mRNA and protein detection, the mRNA and protein expression of EZH2 were significantly downregulated in the EZH2-KO group. The difference in EZH2 mRNA and protein between the EZH2-KO and the two control groups was statistically significant. MTT, wound healing and transwell assay suggested that the proliferation and migration ability of MDA-MB-231 cells in the EZH2-KO group were significantly decreased after EZH2 knockout. In vivo, the tumor growth rate in the EZH2-KO group was significantly lower than that in the control groups. In brief, the present study revealed that the biological functions of tumor cells were inhibited after EZH2 knockout in MDA-MB-231 cells. The aforementioned findings suggested that EZH2 can have a key role in the development of TNBC.
Collapse
Affiliation(s)
- Qiqi Mao
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Peibin Wu
- Faculty of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Haochen Li
- Department of Healthcare, Tianjin International Travel Healthcare Center (Tianjin Customs Port Outpatient Department), Tianjin 300000, P.R. China
| | - Xiaolan Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Xuechen Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Lei Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
106
|
Boldrini L, Bardi M. WSB1 Involvement in Prostate Cancer Progression. Genes (Basel) 2023; 14:1558. [PMID: 37628609 PMCID: PMC10454498 DOI: 10.3390/genes14081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer (PC) is polygenic disease involving many genes, and more importantly a host of gene-gene interactions, including transcriptional factors. The WSB1 gene is a transcriptional target of numerous oncoproteins, and its dysregulation can contribute to tumor progression by abnormal activation of targeted oncogenes. Using data from the Cancer Genome Atlas, we tested the possible involvement of WSB1 in PC progression. A multi-dimensional scaling (MDS) model was applied to clarify the association of WSB1 expression with other key genes, such as c-myc, ERG, Enhancer of Zeste 1 and 2 (EHZ1 and EZH2), WNT10a, and WNT 10b. An increased WSB1 expression was associated with higher PC grades and with a worse prognosis. It was also positively related to EZH1, EZH2, WNT10a, and WNT10b. Moreover, MDS showed the central role of WSB1 in influencing the other target genes by its central location on the map. Our study is the first to show a link between WSB1 expression and other genes involved in PC progression, suggesting a novel role for WSB1 in PC progression. This network between WSB1 and EZH2 through WNT/β-catenin may have an important role in PC progression, as suggested by the association between high WSB1 expression and unfavorable prognosis in our analysis.
Collapse
Affiliation(s)
- Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Massimo Bardi
- Department of Psychology & Behavioral Neuroscience, Randolph-Macon College, Ashland, VA 23005, USA
| |
Collapse
|
107
|
Sirohi VK, Medrano TI, Kannan A, Bagchi IC, Cooke PS. Uterine-specific Ezh2 deletion enhances stromal cell senescence and impairs placentation, resulting in pregnancy loss. iScience 2023; 26:107028. [PMID: 37360688 PMCID: PMC10285549 DOI: 10.1016/j.isci.2023.107028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Maternal uterine remodeling facilitates embryo implantation, stromal cell decidualization and placentation, and perturbation of these processes may cause pregnancy loss. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that epigenetically represses gene transcription; loss of uterine EZH2 affects endometrial physiology and induces infertility. We utilized a uterine Ezh2 conditional knockout (cKO) mouse to determine EZH2's role in pregnancy progression. Despite normal fertilization and implantation, embryo resorption occurred mid-gestation in Ezh2cKO mice, accompanied by compromised decidualization and placentation. Western blot analysis revealed Ezh2-deficient stromal cells have reduced amounts of the histone methylation mark H3K27me3, causing upregulation of senescence markers p21 and p16 and indicating that enhanced stromal cell senescence likely impairs decidualization. Placentas from Ezh2cKO dams on gestation day (GD) 12 show architectural defects, including mislocalization of spongiotrophoblasts and reduced vascularization. In summary, uterine Ezh2 loss impairs decidualization, increases decidual senescence, and alters trophoblast differentiation, leading to pregnancy loss.
Collapse
Affiliation(s)
- Vijay K. Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I. Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
108
|
Dardis GJ, Wang J, Simon JM, Wang GG, Baldwin AS. An EZH2-NF-κB regulatory axis drives expression of pro-oncogenic gene signatures in triple negative breast cancer. iScience 2023; 26:107115. [PMID: 37416481 PMCID: PMC10319845 DOI: 10.1016/j.isci.2023.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The histone methyltransferase EZH2 has been studied most extensively in the context of PRC2-dependent gene repression. Accumulating evidence indicates non-canonical functions for EZH2 in cancer contexts including promoting paradoxical gene expression through interactions with transcription factors, including NF-κB in triple negative breast cancer (TNBC). We profile EZH2 and NF-κB factor co-localization and positive gene regulation genome-wide, and define a subset of NF-κB targets and genes associated with oncogenic functions in TNBC that is enriched in patient datasets. We demonstrate interaction between EZH2 and RelA requiring the recently identified transactivation domain (TAD) which mediates EZH2 recruitment to, and activation of certain NF-κB-dependent genes, and supports downstream migration and stemness phenotypes in TNBC cells. Interestingly, EZH2-NF-κB positive regulation of genes and stemness does not require PRC2. This study provides new insight into pro-oncogenic regulatory functions for EZH2 in breast cancer through PRC2-independent, and NF-κB-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Gabrielle J. Dardis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
109
|
Jensen M, Chandrasekaran V, García-Bonete MJ, Li S, Anindya AL, Andersson K, Erlandsson MC, Oparina NY, Burmann BM, Brath U, Panchenko AR, Bokarewa I. M, Katona G. Survivin prevents the polycomb repressor complex 2 from methylating histone 3 lysine 27. iScience 2023; 26:106976. [PMID: 37534134 PMCID: PMC10391610 DOI: 10.1016/j.isci.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 08/04/2023] Open
Abstract
This study investigates the role of survivin in epigenetic control of gene transcription through interaction with the polycomb repressive complex 2 (PRC2). PRC2 is responsible for silencing gene expression by trimethylating lysine 27 on histone 3. We observed differential expression of PRC2 subunits in CD4+ T cells with varying levels of survivin expression, and ChIP-seq results indicated that survivin colocalizes with PRC2 along DNA. Inhibition of survivin resulted in a significant increase in H3K27 trimethylation, implying that survivin prevents PRC2 from functioning. Peptide microarray showed that survivin interacts with peptides from PRC2 subunits, and machine learning revealed that amino acid composition contains relevant information for predicting survivin interaction. NMR and BLI experiments supported the interaction of survivin with PRC2 subunit EZH2. Finally, protein-protein docking revealed that the survivin-EZH2 interaction interface overlaps with catalytic residues of EZH2, potentially inhibiting its H3K27 methylation activity. These findings suggest that survivin inhibits PRC2 function.
Collapse
Affiliation(s)
- Maja Jensen
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Venkataragavan Chandrasekaran
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| | - María-José García-Bonete
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Atsarina Larasati Anindya
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Karin Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| | - Nina Y. Oparina
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ulrika Brath
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Anna R. Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Maria Bokarewa I.
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gröna stråket 16, 41346 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| |
Collapse
|
110
|
Li JJ, Vasciaveo A, Karagiannis D, Sun Z, Chen X, Socciarelli F, Frankenstein Z, Zou M, Pannellini T, Chen Y, Gardner K, Robinson BD, de Bono J, Abate-Shen C, Rubin MA, Loda M, Sawyers CL, Califano A, Lu C, Shen MM. NSD2 maintains lineage plasticity and castration-resistance in neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549585. [PMID: 37502956 PMCID: PMC10370123 DOI: 10.1101/2023.07.18.549585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.
Collapse
|
111
|
Long Y, Wang Y, Qu M, Zhang D, Zhang X, Zhang J. Combined inhibition of EZH2 and the autotaxin-LPA-LPA2 axis exerts synergistic antitumor effects on colon cancer cells. Cancer Lett 2023; 566:216226. [PMID: 37230222 DOI: 10.1016/j.canlet.2023.216226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Autotaxin (ATX), also known as ENPP2, is the key enzyme in lysophosphatidic acid (LPA) production. LPA acts on its receptors on the cell membrane to promote cell proliferation and migration, and thus, the ATX-LPA axis plays a critical role in tumorigenesis. Clinical data analysis indicated that in colon cancer, there is a strong negative correlation between the expression of ATX and EZH2, the enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2). Here, we demonstrated that ATX expression was epigenetically silenced by PRC2, which was recruited by MTF2 and catalyzed H3K27me3 modification in the ATX promoter region. EZH2 inhibition is a promising strategy for cancer treatment, and ATX expression is induced in colon cancer cells by EZH2 inhibitors. With both EZH2 and ATX as targets, their combined inhibition exerted synergistic antitumor effects on colon cancer cells. In addition, LPA receptor 2 (LPA2) deficiency significantly enhanced the sensitivity to EZH2 inhibitors in colon cancer cells. In summary, our study identified ATX as a novel PRC2 target gene and found that cotargeting EZH2 and the ATX-LPA-LPA2 axis may be a potential combination therapy strategy for colon cancer.
Collapse
Affiliation(s)
- Yang Long
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuqin Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Mengxia Qu
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Di Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaotian Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Junjie Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
112
|
Li Y, Gao Z, Wang Y, Pang B, Zhang B, Hu R, Wang Y, Liu C, Zhang X, Yang J, Mei M, Wang Y, Zhou X, Li M, Ren Y. Lysine methylation promotes NFAT5 activation and determines temozolomide efficacy in glioblastoma. Nat Commun 2023; 14:4062. [PMID: 37429858 DOI: 10.1038/s41467-023-39845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Temozolomide (TMZ) therapy offers minimal clinical benefits in patients with glioblastoma multiforme (GBM) with high EGFR activity, underscoring the need for effective combination therapy. Here, we show that tonicity-responsive enhancer binding protein (NFAT5) lysine methylation, is a determinant of TMZ response. Mechanistically, EGFR activation induces phosphorylated EZH2 (Ser21) binding and triggers NFAT5 methylation at K668. Methylation prevents NFAT5 cytoplasm interaction with E3 ligase TRAF6, thus blocks NFAT5 lysosomal degradation and cytosol localization restriction, which was mediated by TRAF6 induced K63-linked ubiquitination, resulting in NFAT5 protein stabilization, nuclear accumulation and activation. Methylated NFAT5 leads to the upregulation of MGMT, a transcriptional target of NFAT5, which is responsible for unfavorable TMZ response. Inhibition of NFAT5 K668 methylation improved TMZ efficacy in orthotopic xenografts and patient-derived xenografts (PDX) models. Notably, NFAT5 K668 methylation levels are elevated in TMZ-refractory specimens and confer poor prognosis. Our findings suggest targeting NFAT5 methylation is a promising therapeutic strategy to improve TMZ response in tumors with EGFR activation.
Collapse
Affiliation(s)
- Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuhong Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bo Pang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Binbin Zhang
- Department of Neuro-oncology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ruxin Hu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuqing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yongzhi Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
113
|
Steadman K, You S, Srinivas DV, Mouakkad L, Yan Y, Kim M, Venugopal SV, Tanaka H, Freeman MR. Autonomous action and cooperativity between the ONECUT2 transcription factor and its 3' untranslated region. Front Cell Dev Biol 2023; 11:1206259. [PMID: 37484909 PMCID: PMC10356556 DOI: 10.3389/fcell.2023.1206259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
The transcription factor ONECUT2 (OC2) is a master transcriptional regulator operating in metastatic castration-resistant prostate cancer that suppresses androgen receptor activity and promotes neural differentiation and tumor cell survival. OC2 mRNA possesses an unusually long (14,575 nt), evolutionarily conserved 3' untranslated region (3' UTR) with many microRNA binding sites, including up to 26 miR-9 sites. This is notable because miR-9 targets many of the same genes regulated by the OC2 protein. Paradoxically, OC2 expression is high in tissues with high miR-9 expression. The length and complex secondary structure of OC2 mRNA suggests that it is a potent master competing endogenous RNA (ceRNA) capable of sequestering miRNAs. Here, we describe a novel role for OC2 3' UTR in lethal prostate cancer consistent with a function as a ceRNA. A plausible ceRNA network in OC2-driven tumors was constructed computationally and then confirmed in prostate cancer cell lines. Genes regulated by OC2 3' UTR exhibited high overlap (up to 45%) with genes driven by the overexpression of the OC2 protein in the absence of 3' UTR, indicating a cooperative functional relationship between the OC2 protein and its 3' UTR. These overlapping networks suggest an evolutionarily conserved mechanism to reinforce OC2 transcription by protection of OC2-regulated mRNAs from miRNA suppression. Both the protein and 3' UTR showed increased polycomb-repressive complex activity. The expression of OC2 3' UTR mRNA alone (without protein) dramatically increased the metastatic potential by in vitro assays. Additionally, OC2 3' UTR increased the expression of Aldo-Keto reductase and UDP-glucuronyl transferase family genes responsible for altering the androgen synthesis pathway. ONECUT2 represents the first-described dual-modality transcript that operates as both a key transcription factor driving castration-resistant prostate cancer and a master ceRNA that promotes and protects the same transcriptional network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael R. Freeman
- Division of Cancer Biology and Therapeutics, Biomedical Sciences and Pathology and Laboratory Medicine, Department of Urology, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
| |
Collapse
|
114
|
Gautam N, Kaur M, Kashyap S. Meta-analysis of Genetic polymorphism of Enhancer of Zeste Homolog2 gene in cancer susceptibility. J Cancer Res Ther 2023; 19:1079-1092. [PMID: 37787267 DOI: 10.4103/jcrt.jcrt_1112_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The alteration in the expression of enhancer of zeste homolog-2 (EZH2) gene is very well known in the progression, severity, and aggressiveness of cancer. Hence, it is important to study the genomic variation of the EZH2 gene. Previously, many association-based studies investigated the association between rs2302427C>G and cancer susceptibility. However, the result had been inconsistent. Therefore, our meta-analysis aimed to identify the association between EZH2 rs2302427 and cancer risk. A systematic literature search was done for databases PubMed, Google Scholar, Science Direct, and Cochrane library up to September 2020 and statistical analysis was performed by RevMan v 5.3. A total of six studies comprised 1876 cases and 2555 controls were included in the current meta-analysis. The pooled analysis showed that overall, there is significant association of rs2302427 C>G change with reduced cancer risk (odds ratio = 0.60, 95% confidence interval [0.35-1.03], P = 0.07) but non-significantly. Further, the subgroup analysis also revealed that there is no significant difference between the Asian and European population, and both exhibit the protective nature of rs2302427 with cancer. The present meta-analysis indicated that EZH2 rs2302427 has an association with cancer in reducing the risk but for the Indian population studies are required as the Indian population comprises various sub-population genetically isolated for long.
Collapse
Affiliation(s)
- Nisha Gautam
- Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | - Mandeep Kaur
- Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | - Surender Kashyap
- Atal Medical and Research University, Mandi, Himachal Pradesh, India
| |
Collapse
|
115
|
Bai YK, Sun J, Wang YS, Zheng N, Xu QL, Wang Y. The clinicopathological and prognostic significances of EZH2 expression in urological cancers: A meta‑analysis and bioinformatics analysis. Oncol Lett 2023; 26:315. [PMID: 37346412 PMCID: PMC10280112 DOI: 10.3892/ol.2023.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
The Drosophila zeste enhancer homolog 2 gene (enhancer of zeste homolog 2; EZH2) is an important member of the polycomb group (PcG) gene family, which maintains the homologous gene via chromosome modification during embryonic development. EZH2 is overexpressed in various tumors, is closely related to tumor formation and growth, and has a malignant phenotype that promotes tumor cell proliferation, proliferation and metastasis. In the present study, a meta- and bioinformatic analysis was performed using data from multiple online databases until August 30, 2022. EZH2 upregulation was found in kidney, bladder and prostate cancers. EZH2 expression was negatively related to TNM staging and pathological grade in kidney and prostate cancers (P<0.05), as well as invasion depth and pathological grade in bladder cancer. According to the KM-plotter database, EZH2 expression was inversely associated with poor overall survival in patients with kidney clear cell renal cell carcinoma (RCC) and papillary RCC and with favorable survival in bladder cancer. EZH2 expression was negatively related to relapse-free survival in kidney papillary RCC and bladder cancer but positively associated with kidney clear cell RCC. According to GEPIA and UALCAN databases, EZH2 expression was higher in tumor tissue than normal tissue. The TIMER database showed that EZH2 was closely associated with the proportion of seven immune cell infiltrates in kidney, bladder, and prostate cancers. High EZH2 expression may be a potential marker of tumorigenesis and metastasis in patients with urological cancers.
Collapse
Affiliation(s)
- Yang-Kai Bai
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Jing Sun
- Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, P.R. China
| | - Ye-Song Wang
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Nan Zheng
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Qing-Le Xu
- Department of Urology, Hebei Provincial People's Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yang Wang
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| |
Collapse
|
116
|
Zhang W, Nie Q, Zhang X, Huang L, Pang G, Chu J, Yuan X. miR-26a-5p restoration via EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer. Expert Opin Ther Targets 2023; 27:1285-1297. [PMID: 38155599 DOI: 10.1080/14728222.2023.2293750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is involved in the activation of several oncogenic pathways in prostate cancer. However, its upstream trans-signaling pathway remains largely unknown. This work proposes a mechanistic explanation of IL-6's upstream effectors in prostate carcinogenesis. RESEARCH DESIGN & METHODS Samples were harvested to validate the expression of EZH2, miR-26a-5p, and IL-6. Moreover, the protein and its phosphorylation of STAT3 (signal transducer and transcription activator 3) were assessed in prostate cancer cells. We explored the effects of these effectors on malignant phenotypes in vitro and tumor growth in vivo using functional assays. Bioinformatics analysis, dual-luciferase reporter gene assays, and chromatin immunoprecipitation (ChIP) assays were used to determine their binding relationships. RESULTS Overexpression of EZH2 and IL-6, and under expression of miR-26a-5p was observed in prostate cancer. Silencing IL-6 repressed STAT3 to suppress the malignant phenotypes of prostate cancer cells. Mechanistically, EZH2 inhibited miR-26a-5p expression by promoting H3K27 histone methylation, and miR-26a-5p restricted the malignant phenotypes of prostate cancer by targeting IL-6. Ectopic EZH2 expression reduced xenograft growth by inhibiting miR-26a-5p and activating the IL-6/STAT3 axis. CONCLUSION EZH2 May potentially be involved in regulating its expression by recruiting H3K27me3 to the miR-26a-5p promoter region, which could further impact the IL6/STAT3 pathway.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Qiwei Nie
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Xuling Zhang
- Department of Nursing, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, China
| | - Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Guofu Pang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Jing Chu
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
- Department of Urology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Xiaoxu Yuan
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
117
|
Maselli FM, Giuliani F, Laface C, Perrone M, Melaccio A, De Santis P, Santoro AN, Guarini C, Iaia ML, Fedele P. Immunotherapy in Prostate Cancer: State of Art and New Therapeutic Perspectives. Curr Oncol 2023; 30:5769-5794. [PMID: 37366915 DOI: 10.3390/curroncol30060432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Prostate cancer (PC) is the most common type of tumor in men. In the early stage of the disease, it is sensitive to androgen deprivation therapy. In patients with metastatic castration-sensitive prostate cancer (mHSPC), chemotherapy and second-generation androgen receptor therapy have led to increased survival. However, despite advances in the management of mHSPC, castration resistance is unavoidable and many patients develop metastatic castration-resistant disease (mCRPC). In the past few decades, immunotherapy has dramatically changed the oncology landscape and has increased the survival rate of many types of cancer. However, immunotherapy in prostate cancer has not yet given the revolutionary results it has in other types of tumors. Research into new treatments is very important for patients with mCRPC because of its poor prognosis. In this review, we focus on the reasons for the apparent intrinsic resistance of prostate cancer to immunotherapy, the possibilities for overcoming this resistance, and the clinical evidence and new therapeutic perspectives regarding immunotherapy in prostate cancer with a look toward the future.
Collapse
Affiliation(s)
| | | | - Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Assunta Melaccio
- Medical Oncology, San Paolo Hospital, ASL Bari, 70123 Bari, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
118
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
119
|
Kravitz CJ, Yan Q, Nguyen DX. Epigenetic markers and therapeutic targets for metastasis. Cancer Metastasis Rev 2023; 42:427-443. [PMID: 37286865 PMCID: PMC10595046 DOI: 10.1007/s10555-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.
Collapse
Affiliation(s)
- Carolyn J Kravitz
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
120
|
Ribeiro ML, Sánchez Vinces S, Mondragon L, Roué G. Epigenetic targets in B- and T-cell lymphomas: latest developments. Ther Adv Hematol 2023; 14:20406207231173485. [PMID: 37273421 PMCID: PMC10236259 DOI: 10.1177/20406207231173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Non-Hodgkin's lymphomas (NHLs) comprise a diverse group of diseases, either of mature B-cell or of T-cell derivation, characterized by heterogeneous molecular features and clinical manifestations. While most of the patients are responsive to standard chemotherapy, immunotherapy, radiation and/or stem cell transplantation, relapsed and/or refractory cases still have a dismal outcome. Deep sequencing analysis have pointed out that epigenetic dysregulations, including mutations in epigenetic enzymes, such as chromatin modifiers and DNA methyltransferases (DNMTs), are prevalent in both B- cell and T-cell lymphomas. Accordingly, over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of these entities, and a few specific inhibitors have already been approved for clinical use. Here we summarize the main epigenetic alterations described in B- and T-NHL, that further supported the clinical development of a selected set of epidrugs in determined diseases, including inhibitors of DNMTs, histone deacetylases (HDACs), and extra-terminal domain proteins (bromodomain and extra-terminal motif; BETs). Finally, we highlight the most promising future directions of research in this area, explaining how bioinformatics approaches can help to identify new epigenetic targets in B- and T-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, Badalona, Spain
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Salvador Sánchez Vinces
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Laura Mondragon
- T Cell Lymphoma Group, Josep Carreras Leukaemia
Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles s/n, 08916
Badalona, Barcelona, Spain
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles
s/n, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
121
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
122
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
123
|
Hansen AF, Høiem TS, Selnaes KM, Bofin AM, Størkersen Ø, Bertilsson H, Wright AJ, Giskeødegård GF, Bathen TF, Rye MB, Tessem MB. Prediction of recurrence from metabolites and expression of TOP2A and EZH2 in prostate cancer patients treated with radiotherapy. NMR IN BIOMEDICINE 2023; 36:e4694. [PMID: 35032074 DOI: 10.1002/nbm.4694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The dual upregulation of TOP2A and EZH2 gene expression has been proposed as a biomarker for recurrence in prostate cancer patients to be treated with radical prostatectomy. A low tissue level of the metabolite citrate has additionally been connected to aggressive disease and recurrence in this patient group. However, for radiotherapy prostate cancer patients, few prognostic biomarkers have been suggested. The main aim of this study was to use an integrated tissue analysis to evaluate metabolites and expression of TOP2A and EZH2 as predictors for recurrence among radiotherapy patients. METHODS From 90 prostate cancer patients (56 received neoadjuvant hormonal treatment), 172 transrectal ultrasound-guided (TRUS) biopsies were collected prior to radiotherapy. Metabolic profiles were acquired from fresh frozen TRUS biopsies using high resolution-magic angle spinning MRS. Histopathology and immunohistochemistry staining for TOP2A and EZH2 were performed on TRUS biopsies containing cancer cells (n = 65) from 46 patients, where 24 of these patients (n = 31 samples) received hormonal treatment. Eleven radical prostatectomy cohorts of a total of 2059 patients were used for validation in a meta-analysis. RESULTS Among radiotherapy patients with up to 11 years of follow-up, a low level of citrate was found to predict recurrence, p = 0.001 (C-index = 0.74). Citrate had a higher predictive ability compared with individual clinical variables, highlighting its strength as a potential biomarker for recurrence. The dual upregulation of TOP2A and EZH2 was suggested as a biomarker for recurrence, particularly for patients not receiving neoadjuvant hormonal treatment, p = 0.001 (C-index = 0.84). While citrate was a statistically significant biomarker independent of hormonal treatment status, the current study indicated a potential of glutamine, glutamate and choline as biomarkers for recurrence among patients receiving neoadjuvant hormonal treatment, and glucose among patients not receiving neoadjuvant hormonal treatment. CONCLUSION Using an integrated approach, our study shows the potential of citrate and the dual upregulation of TOP2A and EZH2 as biomarkers for recurrence among radiotherapy patients.
Collapse
Affiliation(s)
- Ailin Falkmo Hansen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Therese Stork Høiem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirsten Margrete Selnaes
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anna Mary Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Øystein Størkersen
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Helena Bertilsson
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Guro Fanneløb Giskeødegård
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
124
|
Liu J, Lin WP, Su W, Wu ZZ, Yang QC, Wang S, Sun TG, Huang CF, Wang XL, Sun ZJ. Sunitinib attenuates reactive MDSCs enhancing anti-tumor immunity in HNSCC. Int Immunopharmacol 2023; 119:110243. [PMID: 37137265 DOI: 10.1016/j.intimp.2023.110243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is implicated in promoting HNSCC malignant progression. However, EZH2 inhibitors, when used alone, increase the number of myeloid-derived suppressor cells (MDSCs), which are responsible for enhancing tumor stemness and promoting tumor immune escape. We aimed to determine whether combining tazemetostat (an EZH2 inhibitor) and sunitinib (a MDSC inhibitor) can improve the response rate to an immune-checkpoint-blocking (ICB) therapy. We evaluated the efficacy of the above treatment strategies by bioinformatics analysis and animal experiments. EZH2 overexpression and abundant MDSCs in patients with HNSCC are associated with tumor progression. Tazemetostat treatment alone had limited inhibitory effect on HNSCC progression in the mouse models, accompanied by a surge in the number of MDSCs in the tumor microenvironment. Conversely, the combined use of tazemetostat and sunitinib reduced the number of MDSCs and regulatory T cell populations, promoting intratumoral infiltration of T cells and inhibiting of T cell exhausting, regulating of wnt/β-catenin signaling pathway and tumor stemness, promoting the intratumoral PD-L1 expression and improved the response rate to anti-PD-1 therapy. The combined use of EZH2 and MDSC inhibitors effectively reverses HNSCC-specific immunotherapeutic resistance and is a promising strategy for overcoming resistance to ICB therapy.
Collapse
Affiliation(s)
- Jie Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Wen-Ping Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Wen Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Ting-Guan Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xiao-Long Wang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
125
|
de Mello DC, Saito KC, Cristovão MM, Kimura ET, Fuziwara CS. Modulation of EZH2 Activity Induces an Antitumoral Effect and Cell Redifferentiation in Anaplastic Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24097872. [PMID: 37175580 PMCID: PMC10178714 DOI: 10.3390/ijms24097872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare and lethal form of thyroid cancer that requires urgent investigation of new molecular targets involved in its aggressive biology. In this context, the overactivation of Polycomb Repressive Complex 2/EZH2, which induces chromatin compaction, is frequently observed in aggressive solid tumors, making the EZH2 methyltransferase a potential target for treatment. However, the deregulation of chromatin accessibility is yet not fully investigated in thyroid cancer. In this study, EZH2 expression was modulated by CRISPR/Cas9-mediated gene editing and pharmacologically inhibited with EZH2 inhibitor EPZ6438 alone or in combination with the MAPK inhibitor U0126. The results showed that CRISPR/Cas9-induced EZH2 gene editing reduced cell growth, migration and invasion in vitro and resulted in a 90% reduction in tumor growth when EZH2-edited cells were injected into an immunocompromised mouse model. Immunohistochemistry analysis of the tumors revealed reduced tumor cell proliferation and less recruitment of cancer-associated fibroblasts in the EZH2-edited tumors compared to the control tumors. Moreover, EZH2 inhibition induced thyroid-differentiation genes' expression and mesenchymal-to-epithelial transition (MET) in ATC cells. Thus, this study shows that targeting EZH2 could be a promising neoadjuvant treatment for ATC, as it promotes antitumoral effects in vitro and in vivo and induces cell differentiation.
Collapse
Affiliation(s)
- Diego Claro de Mello
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Kelly Cristina Saito
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Marcella Maringolo Cristovão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
126
|
Roy P, Singh KP. Epigenetic mechanism of therapeutic resistance and potential of epigenetic therapeutics in chemorefractory prostate cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:173-210. [PMID: 37657858 DOI: 10.1016/bs.ircmb.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Prostate cancer is the second leading cause of cancer death among men in the United States. Depending upon the histopathological subtypes of prostate cancers, various therapeutic options, such as androgen deprivation therapy (ADT), androgen receptor signaling inhibitors (ARSI), immunotherapy, and chemotherapy, are available to treat prostate cancer. While these therapeutics are effective in the initial stages during treatments, the tumors subsequently develop resistance to these therapies. Despite all the progress made so far, therapeutic resistance remains a major challenge in the treatment of prostate cancer. Although various mechanisms have been reported for the resistance development in prostate cancer, altered expression of genes either directly or indirectly involved in drug response pathways is a common event. In addition to the genetic basis of gene regulation such as mutations and gene amplifications, epigenetic alterations involved in the aberrant expression of genes have frequently been shown to be associated not only with cancer initiation and progression but also with therapeutic resistance development. There are several review articles compiling reports on genetic mechanisms involved in therapeutic resistance in prostate cancer. However, epigenetic mechanisms for the therapeutic resistance development in prostate cancer have not yet been summarized in a review article. Therefore, the objective of this article is to compile various reports and provide a comprehensive review of the epigenetic aberrations, and aberrant expression of genes by epigenetic mechanisms involved in CRPCs and therapeutic resistance development in prostate cancer. Additionally, the potential of epigenetic-based therapeutics in the treatment of chemorefractory prostate cancer as evidenced by clinical trials has also been discussed.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
127
|
Zhang S, Shen T, Zeng Y. Epigenetic Modifications in Prostate Cancer Metastasis and Microenvironment. Cancers (Basel) 2023; 15:cancers15082243. [PMID: 37190171 DOI: 10.3390/cancers15082243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gradual evolution of prostate tissue from benign tumor to malignant lesion or distant metastasis is driven by intracellular epigenetic changes and the tumor microenvironment remodeling. With the continuous study of epigenetic modifications, these tumor-driving forces are being discovered and are providing new treatments for cancer. Here we introduce the classification of epigenetic modification and highlight the role of epigenetic modification in tumor remodeling and communication of the tumor microenvironment.
Collapse
Affiliation(s)
- Shouyi Zhang
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Shen
- Department of Urology, Second Affiliated Hospital of Shenyang Medical College, No. 20 Beijiu Road, Heping District, Shenyang 110001, China
| | - Yu Zeng
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
128
|
Wang L, Tang J. SWI/SNF complexes and cancers. Gene 2023; 870:147420. [PMID: 37031881 DOI: 10.1016/j.gene.2023.147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Epigenetics refers to the study of genetic changes that can affect gene expression without altering the underlying DNA sequence, including DNA methylation, histone modification, chromatin remodelling, X chromosome inactivation and non-coding RNA regulation. Of these, DNA methylation, histone modification and chromatin remodelling constitute the three classical modes of epigenetic regulation. These three mechanisms alter gene transcription by adjusting chromatin accessibility, thereby affecting cell and tissue phenotypes in the absence of DNA sequence changes. In the presence of ATP hydrolases, chromatin remodelling alters the structure of chromatin and thus changes the transcription level of DNA-guided RNA. To date, four types of ATP-dependent chromatin remodelling complexes have been identified in humans, namely SWI/SNF, ISWI, INO80 and NURD/MI2/CHD. SWI/SNF mutations are prevalent in a wide variety of cancerous tissues and cancer-derived cell lines as discovered by next-generation sequencing technologies.. SWI/SNF can bind to nucleosomes and use the energy of ATP to disrupt DNA and histone interactions, sliding or ejecting histones, altering nucleosome structure, and changing transcriptional and regulatory mechanisms. Furthermore, mutations in the SWI/SNF complex have been observed in approximately 20% of all cancers. Together, these findings suggest that mutations targeting the SWI/SNF complex may have a positive impact on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Liyuan Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Oncology and Hematology, Jinan 250000, Shandong Province, China
| | - Jinglong Tang
- Adicon Medical Laboratory Center, Molecular Genetic Diagnosis Center, Pathological Diagnosis Center, Jinan 250014, Shandong Province, China.
| |
Collapse
|
129
|
Ragavi R, Muthukumaran P, Nandagopal S, Ahirwar DK, Tomo S, Misra S, Guerriero G, Shukla KK. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol 2023:S1078-1439(23)00090-X. [PMID: 37032230 DOI: 10.1016/j.urolonc.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. The etiology of most cases of CaP is not understood completely, which makes it imperative to search for the molecular basis of CaP and markers for early diagnosis. Epigenetic modifications, including changes in DNA methylation patterns, histone modifications, miRNAs, and lncRNAs are key drivers of prostate tumorigenesis. These epigenetic defects might be due to deregulated expression of the epigenetic machinery, affecting the expression of several important genes like GSTP1, RASSF1, CDKN2, RARRES1, IGFBP3, RARB, TMPRSS2-ERG, ITGB4, AOX1, HHEX, WT1, HSPE, PLAU, FOXA1, ASC, GPX3, EZH2, LSD1, etc. In this review, we highlighted the most important epigenetic gene alterations and their variations as a diagnostic marker and target for therapeutic intervention of CaP in the future. Characterization of epigenetic changes involved in CaP is obscure and adequate validation studies are still required to corroborate the present results that would be the impending future of transforming basic research settings into clinical practice.
Collapse
Affiliation(s)
- Ravindran Ragavi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Atal Bihari Vajpayee Medical University, Lucknow Uttar Pradesh, India
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
130
|
Congregado Ruiz B, Rivero Belenchón I, Lendínez Cano G, Medina López RA. Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy. Biomedicines 2023; 11:biomedicines11041105. [PMID: 37189723 DOI: 10.3390/biomedicines11041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of "hinge" treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis.
Collapse
Affiliation(s)
- Belén Congregado Ruiz
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inés Rivero Belenchón
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Lendínez Cano
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
131
|
Schade AE, Kuzmickas R, Rodriguez CL, Mattioli K, Enos M, Gardner A, Cichowski K. Combating castration-resistant prostate cancer by co-targeting the epigenetic regulators EZH2 and HDAC. PLoS Biol 2023; 21:e3002038. [PMID: 37104245 PMCID: PMC10138213 DOI: 10.1371/journal.pbio.3002038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/16/2023] [Indexed: 04/28/2023] Open
Abstract
While screening and early detection have reduced mortality from prostate cancer, castration-resistant disease (CRPC) is still incurable. Here, we report that combined EZH2/HDAC inhibitors potently kill CRPCs and cause dramatic tumor regression in aggressive human and mouse CRPC models. Notably, EZH2 and HDAC both transmit transcriptional repressive signals: regulating histone H3 methylation and histone deacetylation, respectively. Accordingly, we show that suppression of both EZH2 and HDAC are required to derepress/induce a subset of EZH2 targets, by promoting the sequential demethylation and acetylation of histone H3. Moreover, we find that the induction of one of these targets, ATF3, which is a broad stress response gene, is critical for the therapeutic response. Importantly, in human tumors, low ATF3 levels are associated with decreased survival. Moreover, EZH2- and ATF3-mediated transcriptional programs inversely correlate and are most highly/lowly expressed in advanced disease. Together, these studies identify a promising therapeutic strategy for CRPC and suggest that these two major epigenetic regulators buffer prostate cancers from a lethal response to cellular stresses, thereby conferring a tractable therapeutic vulnerability.
Collapse
Affiliation(s)
- Amy E. Schade
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ryan Kuzmickas
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carrie L. Rodriguez
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kaia Mattioli
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Miriam Enos
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alycia Gardner
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Karen Cichowski
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
132
|
Entezari M, Taheriazam A, Paskeh MDA, Sabouni E, Zandieh MA, Aboutalebi M, Kakavand A, Rezaei S, Hejazi ES, Saebfar H, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. The pharmacological and biological importance of EZH2 signaling in lung cancer. Biomed Pharmacother 2023; 160:114313. [PMID: 36738498 DOI: 10.1016/j.biopha.2023.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, university of milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
133
|
Yu Y, MohamedAl-Sharani H, Zhang B. EZH2-mediated SLC7A11 upregulation via miR-125b-5p represses ferroptosis of TSCC. Oral Dis 2023; 29:880-891. [PMID: 34614259 DOI: 10.1111/odi.14040] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Tongue squamous cell carcinoma is one of the most common carcinomas in oral cancer with a high morbidity and mortality. Ferroptosis is a novel type of cell death involved in various diseases including cancers. Additionally, Enhancer of Zeste homolog 2 (EZH2) is significantly associated with a poor prognosis in esophageal squamous cell carcinoma patients but its role in TSCC is unclear. MATERIALS AND METHODS In this study, we tried to investigate the possible mechanism of EZH2 involved in the ferroptosis of TSCC. Expression of EZH2 and SLC7A11 was determined by RT-qPCR. CCK-8 assays were performed to quantify the cell death rate of TSCC cells. Malondialdehyde (MDA) assays were performed to quantify the lipid accumulation. Western blot was performed to analyze the expression level of SLC7A11. We used dual-luciferase reporter assays to determine the association between EZH2 and miR-125b-5p promoter, and miR-125b-5p and the SLC7A11 3' untranslated region (UTR). RESULT Overexpression of EZH2 and SLC7A11 inhibits erastin-induced ferroptosis in TSCC cells. MiR-125b-5p regulates ferroptosis in TSCC cells by targeting SLC7A11. EZH2 inhibits the ferroptosis of TSCC cells by inhibiting miR-125b-5p and enhancing SLC7A11. CONCLUSION EZH2 inhibits erastin-induced ferroptosis in TSCC cells via miR-125b-5p/SLC7A11 axis.
Collapse
Affiliation(s)
- Yue Yu
- Oral and Maxillofacial Surgery Ward, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | | | - Bin Zhang
- Oral and Maxillofacial Surgery Ward, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
134
|
Arroyo-Berdugo Y, Sendino M, Greaves D, Nojszewska N, Idilli O, So CW, Di Silvio L, Quartey-Papafio R, Farzaneh F, Rodriguez JA, Calle Y. High Throughput Fluorescence-Based In Vitro Experimental Platform for the Identification of Effective Therapies to Overcome Tumour Microenvironment-Mediated Drug Resistance in AML. Cancers (Basel) 2023; 15:1988. [PMID: 37046649 PMCID: PMC10093176 DOI: 10.3390/cancers15071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the bone marrow (BM) microenvironment play a critical role during AML progression and resistance to drug treatments. Therefore, the identification of novel therapies requires drug-screening methods using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have developed a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells for the accurate assessment of proliferation, viability, and signaling in both cell types. This model identified several efficacious compounds that overcome BM stroma-mediated drug resistance against daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330. In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new experimental model and analysis provide a more precise screening method for developing improved therapeutics targeting AML cells within the cytoprotective BM microenvironment.
Collapse
Affiliation(s)
- Yoana Arroyo-Berdugo
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - David Greaves
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Natalia Nojszewska
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Orest Idilli
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Chi Wai So
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Lucy Di Silvio
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | | | - Farzin Farzaneh
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Yolanda Calle
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| |
Collapse
|
135
|
Kaur P, Verma S, Kushwaha PP, Gupta S. EZH2 and NF-κB: A context-dependent crosstalk and transcriptional regulation in cancer. Cancer Lett 2023; 560:216143. [PMID: 36958695 DOI: 10.1016/j.canlet.2023.216143] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Epigenetic modifications regulate critical biological processes that play a pivotal role in the pathogenesis of cancer. Enhancer of Zeste Homolog 2 (EZH2), a subunit of the Polycomb-Repressive Complex 2, catalyzes trimethylation of histone H3 on Lys 27 (H3K27) involved in gene silencing. EZH2 is amplified in human cancers and has roles in regulating several cellular processes, including survival, proliferation, invasion, and self-renewal. Though EZH2 is responsible for gene silencing through its canonical role, it also regulates the transcription of several genes promoting carcinogenesis via its non-canonical role. Constitutive activation of Nuclear Factor-kappaB (NF-κB) plays a crucial role in the development and progression of human malignancies. NF-κB is essential for regulating innate and adaptive immune responses and is one of the most important molecules that increases survival during carcinogenesis. Given the evidence that increased survival and proliferation are essential for tumor development and their association with epigenetic modifications, it seems plausible that EZH2 and NF-κB crosstalk may promote cancer progression. In this review, we expand on how EZH2 and NF-κB regulate cellular responses during cancer and their crosstalk of the canonical and non-canonical roles in a context-dependent manner.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA
| | - Prem Prakash Kushwaha
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44016, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44016, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, 44016, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44016, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
136
|
Kuser-Abali G, Zhang Y, Szeto P, Zhao P, Masoumi-Moghaddam S, Fedele CG, Leece I, Huang C, Cheung JG, Ameratunga M, Noguchi F, Andrews MC, Wong NC, Schittenhelm RB, Shackleton M. UHRF1/UBE2L6/UBR4-mediated ubiquitination regulates EZH2 abundance and thereby melanocytic differentiation phenotypes in melanoma. Oncogene 2023; 42:1360-1373. [PMID: 36906655 PMCID: PMC10121471 DOI: 10.1038/s41388-023-02631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Cellular heterogeneity in cancer is linked to disease progression and therapy response, although mechanisms regulating distinct cellular states within tumors are not well understood. We identified melanin pigment content as a major source of cellular heterogeneity in melanoma and compared RNAseq data from high-pigmented (HPCs) and low-pigmented melanoma cells (LPCs), suggesting EZH2 as a master regulator of these states. EZH2 protein was found to be upregulated in LPCs and inversely correlated with melanin deposition in pigmented patient melanomas. Surprisingly, conventional EZH2 methyltransferase inhibitors, GSK126 and EPZ6438, had no effect on LPC survival, clonogenicity and pigmentation, despite fully inhibiting methyltransferase activity. In contrast, EZH2 silencing by siRNA or degradation by DZNep or MS1943 inhibited growth of LPCs and induced HPCs. As the proteasomal inhibitor MG132 induced EZH2 protein in HPCs, we evaluated ubiquitin pathway proteins in HPC vs LPCs. Biochemical assays and animal studies demonstrated that in LPCs, the E2-conjugating enzyme UBE2L6 depletes EZH2 protein in cooperation with UBR4, an E3 ligase, via ubiquitination at EZH2's K381 residue, and is downregulated in LPCs by UHRF1-mediated CpG methylation. Targeting UHRF1/UBE2L6/UBR4-mediated regulation of EZH2 offers potential for modulating the activity of this oncoprotein in contexts in which conventional EZH2 methyltransferase inhibitors are ineffective.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Youfang Zhang
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Pacman Szeto
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Peinan Zhao
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | | | - Isobel Leece
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jen G Cheung
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Malaka Ameratunga
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Fumihito Noguchi
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Miles C Andrews
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Nicholas C Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mark Shackleton
- Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Alfred Health, Melbourne, VIC, Australia.
| |
Collapse
|
137
|
Evaluation of Tazemetostat as a Therapeutically Relevant Substance in Biliary Tract Cancer. Cancers (Basel) 2023; 15:cancers15051569. [PMID: 36900361 PMCID: PMC10000745 DOI: 10.3390/cancers15051569] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Biliary tract cancer (BTC) is a gastrointestinal malignancy associated with a poor survival rate. Current therapies encompass palliative and chemotherapeutic treatment as well as radiation therapy, which results in a median survival of only one year due to standard therapeutic ineffectiveness or resistance. Tazemetostat is an FDA-approved inhibitor of enhancer of Zeste homolog 2 (EZH2), a methyltransferase involved in BTC tumorigenesis via trimethylation of histone 3 at lysine 27 (H3K27me3), an epigenetic mark associated with silencing of tumor suppressor genes. Up to now, there are no data available regarding tazemetostat as a possible treatment option against BTC. Therefore, the aim of our study is a first-time investigation of tazemetostat as a potential anti-BTC substance in vitro. In this study, we demonstrate that tazemetostat affects cell viability and the clonogenic growth of BTC cells in a cell line-dependent manner. Furthermore, we found a strong epigenetic effect at low concentrations of tazemetostat, which was independent of the cytotoxic effect. We also observed in one BTC cell line that tazemetostat increases the mRNA levels and protein expression of the tumor suppressor gene Fructose-1,6-bisphosphatase 1 (FBP1). Interestingly, the observed cytotoxic and epigenetic effects were independent of the mutation status of EZH2. To conclude, our study shows that tazemetostat is a potential anti-tumorigenic substance in BTC with a strong epigenetic effect.
Collapse
|
138
|
Ardalan Khales S, Forghanifard MM, Abbaszadegan MR, Hosseini SE. EZH2 deregulates BMP, Hedgehog, and Hippo cell signaling pathways in esophageal squamous cell carcinoma. Adv Med Sci 2023; 68:21-30. [PMID: 36403545 DOI: 10.1016/j.advms.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Cell signaling pathways play central roles in cellular stemness state, and aberrant activation of these cascades is attributed to the severity of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to determine the potential impact of enhancer of zeste homolog 2 (EZH2) gene on different cell signaling pathways including bone morphogenesis protein (BMP), Hedgehog, and Hippo in ESCC, and to illuminate EZH2-mediated gene regulatory networks in this aggressive malignancy. MATERIALS AND METHODS EZH2 silencing was performed in two ESCC lines, KYSE-30 and YM-1, followed by gene expression analysis of BMP, Hedgehog, and Hippo signaling using RT-qPCR. EZH2 enforced expression was induced in both cell lines and gene expression of the pathways was evaluated in parallel. The contribution of EZH2 in epithelial-mesenchymal transition (EMT) and cell migration were also evaluated. RESULTS EZH2 downregulation decreased expression of the vital components of the Hedgehog and Hippo signaling, while EZH2 upregulation significantly increased its levels in both ESCC cell lines. The expression of BMP target genes was either reduced in EZH2-expressing cells or increased in EZH2-silencing cells. Enforced expression of EZH2 stimulated downregulation of epithelial markers and upregulation of mesenchymal markers in KYSE-30 and YM-1 cells. Significant downregulation of mesenchymal markers was detected following the silencing of EZH2 in the cells. Knocking down EZH2 decreased migration, while enforced expression of EZH2 increased migration in both ESCC lines. CONCLUSIONS These results may support the promoting role of EZH2 in ESCC tumorigenesis through the recruitment of important cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Seyed Ebrahim Hosseini
- Department of Biology, Faculty of Sciences, Zand Institute of Higher Education, Shiraz, Iran
| |
Collapse
|
139
|
Yu X, Wang J, Gong W, Ma A, Shen Y, Zhang C, Liu X, Cai L, Liu J, Wang GG, Jin J. Dissecting and targeting noncanonical functions of EZH2 in multiple myeloma via an EZH2 degrader. Oncogene 2023; 42:994-1009. [PMID: 36747009 PMCID: PMC10040430 DOI: 10.1038/s41388-023-02618-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy with poor prognosis. Enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of polycomb repressive complex 2 (PRC2), which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) for transcriptional repression. EZH2 have been implicated in numerous hematological malignancies, including MM. However, noncanonical functions of EZH2 in MM tumorigenesis are not well understood. Here, we uncovered a noncanonical function of EZH2 in MM malignancy. In addition to the PRC2-mediated and H3K27me3-dependent canonical function, EZH2 interacts with cMyc and co-localizes with gene activation-related markers, promoting MM tumorigenesis in a PRC2- and H3K27me3-independent manner. Both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes can be effectively depleted in MM cells by MS177, an EZH2 degrader we reported previously, leading to profound activation of EZH2-PRC2-associated genes and simultaneous suppression of EZH2-cMyc oncogenic nodes. The MS177-induced degradation of both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes also reactivated immune response genes in MM cells. Phenotypically, targeting of EZH2's both canonical and noncanonical functions by MS177 effectively suppressed the proliferation of MM cells both in vitro and in vivo. Collectively, this study uncovers a new noncanonical function of EZH2 in MM tumorigenesis and provides a novel therapeutic strategy, pharmacological degradation of EZH2, for treating EZH2-dependent MM.
Collapse
Affiliation(s)
- Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chengwei Zhang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
140
|
Huang N, Liao P, Zuo Y, Zhang L, Jiang R. Design, Synthesis, and Biological Evaluation of a Potent Dual EZH2-BRD4 Inhibitor for the Treatment of Some Solid Tumors. J Med Chem 2023; 66:2646-2662. [PMID: 36774555 DOI: 10.1021/acs.jmedchem.2c01607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) mediates the trimethylation of histone 3 lysine 27 (H3K27) to promote gene silencing. Inhibition of EZH2 is a viable strategy for cancer treatment; however, only a small subset of hematological malignancies are sensitive to small-molecule EZH2 inhibitors. EZH2 inhibitors cause H3K27 acetylation in most solid tumors, leading to drug resistance. Bromodomain-containing protein 4 (BRD4) inhibitors were reported to enhance the sensitivity of solid tumors to EZH2 inhibitors. Thus, we designed and evaluated a series of dual EZH2-BRD4 inhibitors. ZLD-2, the most promising compound, exhibited potent inhibitory activity against EZH2 and BRD4. Compared to the EZH2 inhibitor GSK126, ZLD-2 displayed potent antiproliferation activity against breast, lung, bladder, and pancreatic cancer cells. In vivo, ZLD-2 exhibited antitumor activity in a BxPC-3 mouse xenograft model, whereas GSK126 promoted tumor growth. Thus, ZLD-2 may be a lead compound for treating solid tumors.
Collapse
Affiliation(s)
- Niannian Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Lidan Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
141
|
Guo Y, Cui S, Chen Y, Guo S, Chen D. Ubiquitin specific peptidases and prostate cancer. PeerJ 2023; 11:e14799. [PMID: 36811009 PMCID: PMC9939025 DOI: 10.7717/peerj.14799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/04/2023] [Indexed: 02/18/2023] Open
Abstract
Protein ubiquitination is an important post-translational modification mechanism, which regulates protein stability and activity. The ubiquitination of proteins can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific proteases (USPs), the largest DUB subfamily, can regulate cellular functions by removing ubiquitin(s) from the target proteins. Prostate cancer (PCa) is the second leading type of cancer and the most common cause of cancer-related deaths in men worldwide. Numerous studies have demonstrated that the development of PCa is highly correlated with USPs. The expression of USPs is either high or low in PCa cells, thereby regulating the downstream signaling pathways and causing the development or suppression of PCa. This review summarized the functional roles of USPs in the development PCa and explored their potential applications as therapeutic targets for PCa.
Collapse
Affiliation(s)
- Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
142
|
Yi Y, Li Y, Chen K, Cao Q. Unveiling the non-canonical functions of EZH2 in prostate cancer. Oncotarget 2023; 14:127-128. [PMID: 36780304 PMCID: PMC9924823 DOI: 10.18632/oncotarget.28357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 02/13/2023] Open
Affiliation(s)
| | | | | | - Qi Cao
- Correspondence to:Qi Cao, Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA email:
| |
Collapse
|
143
|
miRNA let-7a inhibits invasion, migration, anchorage-independent growth by suppressing EZH2 and promotes mesenchymal to epithelial transition in MDAMB-231. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
144
|
Early Cell Cultures from Prostate Cancer Tissue Express Tissue Specific Epithelial and Cancer Markers. Int J Mol Sci 2023; 24:ijms24032830. [PMID: 36769153 PMCID: PMC9917781 DOI: 10.3390/ijms24032830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is a widespread oncological disease that proceeds in the indolent form in most patients. However, in some cases, the indolent form can transform into aggressive metastatic incurable cancer. The most important task of PCa diagnostics is to search for early markers that can be used for predicting the transition of indolent cancer into its aggressive form. Currently, there are two effective preclinical models to study PCa pathogenesis: patients derived xenografts (PDXs) and patients derived organoids (PDOs). Both models have limitations that restrict their use in research. In this work, we investigated the ability of the primary 2D prostate cell cultures (PCCs) from PCa patients to express epithelial and cancer markers. Early PCCs were formed by epithelial cells that were progressively replaced with the fibroblast-like cells. Early PCCs contained tissue-specific stem cells that could grow in a 3D culture and form PDOs similar to those produced from the prostate tissue. Early PCCs and PDOs derived from the tissues of PCa patients expressed prostate basal and luminal epithelial markers, as well as cancer markers AMACR, TMPRSS2-ERG, and EZH2, the latter being a promising candidate to mark the transition from the indolent to aggressive PCa. We also identified various TMPRSS2-ERG fusion transcripts in PCCs and PDOs, including new chimeric variants resulting from the intra- and interchromosomal translocations. The results suggest that early PCCs derived from cancerous and normal prostate tissues sustain the phenotype of prostate cells and can be used as a preclinical model to study the pathogenesis of PCa.
Collapse
|
145
|
Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol 2023; 25:323-336. [PMID: 36732631 DOI: 10.1038/s41556-022-01069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2022] [Indexed: 02/04/2023]
Abstract
Nuclear localization of HIPPO-YAP fusion proteins has been implicated in supratentorial ependymoma development. Here, unexpectedly, we find that liquid-liquid phase separation, rather than nuclear localization, of recurrent patient-derived YAP fusions, YAP-MAMLD1 and C11ORF95-YAP, underlies ependymoma tumourigenesis from neural progenitor cells. Mutagenesis and chimaera assays demonstrate that an intrinsically disordered region promotes oligomerization of the YAP fusions into nuclear, puncta-like, membrane-less condensates. Oligomerization and nuclear condensates induced by YAP fusion with a coiled-coil domain of transcriptional activator GCN4 also promote ependymoma formation. YAP-MAMLD1 concentrates transcription factors and co-activators, including BRD4, MED1 and TEAD, in condensates while excluding transcriptional repressive PRC2, and induces long-range enhancer-promoter interactions that promote transcription and oncogenic programmes. Blocking condensate-mediated transcriptional co-activator activity inhibits tumourigenesis, indicating a critical role of liquid phase separation for YAP fusion oncogenic activity in ependymoma. YAP fusions containing the intrinsically disordered region features are common in human tumours, suggesting that nuclear condensates could be targeted to treat YAP-fusion-induced cancers.
Collapse
|
146
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
147
|
Pu Y, Wu W, Xiang H, Chen Y, Xu H. CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy. NANO TODAY 2023; 48:101734. [DOI: 10.1016/j.nantod.2022.101734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
148
|
Segura‐Moreno YY, Sanabria‐Salas MC, Mesa‐López De Mesa JA, Varela‐Ramirez R, Acosta‐Vega NL, Serrano ML. Determination of ERG(+), EZH2, NKX3.1, and SPINK-1 subtypes to evaluate their association with clonal origin and disease progression in multifocal prostate cancer. Cancer Rep (Hoboken) 2023; 6:e1728. [PMID: 36199157 PMCID: PMC9940006 DOI: 10.1002/cnr2.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The prognostic relevance of prostate cancer (PCa) molecular subtypes remains controversial, given the presence of multiple foci with the possibility of different subtypes in the same patient. AIM To determine the clonal origin of heterogeneity in PCa and its association with disease progression, SPOP, ERG(+), EZH2, NKX3.1, and SPINK-1 subtypes were analyzed. METHODS A total of 103 samples from 20 PCa patients were analyzed; foci of adjacent non-tumor prostate tissue, HGPIN, GL3, GL4, GL5, and LN were examined to determine the presence of the TMPRSS2-ERG fusion and ERG, EZH2, NKX3.1, and SPINK-1 expression levels, using RT-PCR. Mutations in exons 6 and 7 of the SPOP gene were determined by sequencing. The presence of subtypes and molecular patterns were identified by combining all subtypes analyzed. To establish the clonal origin of multifocal PCa, molecular concordance between different foci of the same patient was determined. Association of these subtypes with histopathological groups and time to biochemical recurrence (BCR) was assessed. RESULTS No mutation was found in SPOP in any sample. The ERG(+) subtype was the most frequent. The molecular pattern containing all four PCa subtypes was only detected in 3 samples (4%), all LN, but it was the most frequent (40%) in patients. Molecular discordance was the predominant status (55%) when all analyzed molecular characteristics were considered. It was possible to find all subtypes, starting as a preneoplastic lesion, and all but one LN molecular subtype were ERG(+) and NKX3.1 subtypes. Only the expression of the NKX3.1 gene was significantly different among the histopathological groups. No association was found between BCR time in patients and molecular subtypes or molecular concordance or between clinicopathological characteristics and molecular subtypes of ERG, EZH2, and SPINK-1. CONCLUSION The predominance of molecular discordance in prostatic foci per patient, which reflects the multifocal origin of PCa foci, highlights the importance of analyzing multiple samples to establish the prognostic and therapeutic relevance of molecular subtypes in a patient. All the subtypes analyzed here are of early onset, starting from preneoplastic lesions. NKX3.1 gene expression is the only molecular characteristic that shows a progression pattern by sample.
Collapse
Affiliation(s)
- Yenifer Yamile Segura‐Moreno
- Cancer Biology Research GroupInstituto Nacional de CancerologíaBogotáColombia
- Department of ChemistryUniversidad Nacional de Colombia, Ciudad UniversitariaBogotáColombia
| | | | | | - Rodolfo Varela‐Ramirez
- Department of UrologyInstituto Nacional de CancerologíaBogotáColombia
- Department of UrologyUniversidad Nacional de ColombiaBogotáColombia
| | | | - Martha Lucía Serrano
- Cancer Biology Research GroupInstituto Nacional de CancerologíaBogotáColombia
- Department of ChemistryUniversidad Nacional de Colombia, Ciudad UniversitariaBogotáColombia
| |
Collapse
|
149
|
Resistance to BRAF Inhibitors: EZH2 and Its Downstream Targets as Potential Therapeutic Options in Melanoma. Int J Mol Sci 2023; 24:ijms24031963. [PMID: 36768289 PMCID: PMC9916477 DOI: 10.3390/ijms24031963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Activating BRAF mutations occurs in 50-60% of malignant melanomas. Although initially treatable, the development of resistance to BRAF-targeted therapies (BRAFi) is a major challenge and limits their efficacy. We have previously shown that the BRAFV600E signaling pathway mediates the expression of EZH2, an epigenetic regulator related to melanoma progression and worse overall survival. Therefore, we wondered whether inhibition of EZH2 would be a way to overcome resistance to vemurafenib. We found that the addition of an EZH2 inhibitor to vemurafenib improved the response of melanoma cells resistant to BRAFi with regard to decreased viability, cell-cycle arrest and increased apoptosis. By next-generation sequencing, we revealed that the combined inhibition of BRAF and EZH2 dramatically suppresses pathways of mitosis and cell cycle. This effect was linked to the downregulation of Polo-kinase 1 (PLK1), a key regulator of cell cycle and proliferation. Subsequently, when we inhibited PLK1, we found decreased cell viability of melanoma cells resistant to BRAFi. When we inhibited both BRAF and PLK1, we achieved an improved response of BRAFi-resistant melanoma cells, which was comparable to the combined inhibition of BRAF and EZH2. These results thus reveal that targeting EZH2 or its downstream targets, such as PLK1, in combination with BRAF inhibitors are potential novel therapeutic options in melanomas with BRAF mutations.
Collapse
|
150
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|