101
|
Dashti HS, Vetter C, Lane JM, Smith MC, Wood AR, Weedon MN, Rutter MK, Garaulet M, Scheer FAJL, Saxena R. Assessment of MTNR1B Type 2 Diabetes Genetic Risk Modification by Shift Work and Morningness-Eveningness Preference in the UK Biobank. Diabetes 2020; 69:259-266. [PMID: 31757795 PMCID: PMC6971490 DOI: 10.2337/db19-0606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/18/2019] [Indexed: 02/01/2023]
Abstract
Night shift work, behavioral rhythms, and the common MTNR1B risk single nucleotide polymorphism (SNP), rs10830963, associate with type 2 diabetes; however, whether they exert joint effects to exacerbate type 2 diabetes risk is unknown. Among employed participants of European ancestry in the UK Biobank (N = 189,488), we aimed to test the cross-sectional independent associations and joint interaction effects of these risk factors on odds of type 2 diabetes (n = 5,042 cases) and HbA1c levels (n = 175,156). Current shift work, definite morning or evening preference, and MTNR1B rs10830963 risk allele associated with type 2 diabetes and HbA1c levels. The effect of rs10830963 was not modified by shift work schedules. While marginal evidence of interaction between self-reported morningness-eveningness preference and rs10830963 on risk of type 2 diabetes was seen, this interaction did not persist when analysis was expanded to include all participants regardless of employment status and when accelerometer-derived sleep midpoint was used as an objective measure of morningness-eveningness preference. Our findings suggest that MTNR1B risk allele carriers who carry out shift work or have more extreme morningness-eveningness preference may not have enhanced risk of type 2 diabetes.
Collapse
Affiliation(s)
- Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Céline Vetter
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO
| | - Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Matt C Smith
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, U.K
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, U.K
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, U.K
| | - Martin K Rutter
- Division of Endocrinology, Diabetes and Gastroenterology, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, U.K
- Manchester Diabetes Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - Marta Garaulet
- Department of Physiology, University of Murcia, Murcia, Spain
- Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
102
|
Human Physiology of Genetic Defects Causing Beta-cell Dysfunction. J Mol Biol 2020; 432:1579-1598. [PMID: 31953147 DOI: 10.1016/j.jmb.2019.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
The last decade has revealed hundreds of genetic variants associated with type 2 diabetes, many especially with insulin secretion. However, the evidence for their single or combined effect on beta-cell function relies mostly on genetic association of the variants or genetic risk scores with simple traits, and few have been functionally fully characterized even in cell or animal models. Translating the measured traits into human physiology is not straightforward: none of the various indices for beta-cell function or insulin sensitivity recapitulates the dynamic interplay between glucose sensing, endogenous glucose production, insulin production and secretion, insulin clearance, insulin resistance-to name just a few factors. Because insulin sensitivity is a major determinant of physiological need of insulin, insulin secretion should be evaluated in parallel with insulin sensitivity. On the other hand, multiple physiological or pathogenic processes can either mask or unmask subtle defects in beta-cell function. Even in monogenic diabetes, a clearly pathogenic genetic variant can result in different phenotypic characteristics-or no phenotype at all. In this review, we evaluate the methods available for studying beta-cell function in humans, critically examine the evidence linking some identified variants to a specific beta-cell phenotype, and highlight areas requiring further study.
Collapse
|
103
|
Genome-wide association study of metabolic syndrome in Korean populations. PLoS One 2020; 15:e0227357. [PMID: 31910446 PMCID: PMC6946588 DOI: 10.1371/journal.pone.0227357] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Metabolic syndrome (MetS) which is caused by obesity and insulin resistance, is well known for its predictive capability for the risk of type 2 diabetes mellitus and cardiovascular disease. The development of MetS is associated with multiple genetic factors, environmental factors and lifestyle. We performed a genome-wide association study to identify single-nucleotide polymorphism (SNP) related to MetS in large Korean population based samples of 1,362 subjects with MetS and 6,061 controls using the Axiom® Korean Biobank Array 1.0. We replicated the data in another sample including 502 subjects with MetS and 1,751 controls. After adjusting for age and sex, rs662799 located in the APOA5 gene were significantly associated with MetS. 15 SNPs in GCKR, C2orf16, APOA5, ZPR1, and BUD13 were associated with high triglyceride (TG). 14 SNPs in APOA5, ALDH1A2, LIPC, HERPUD1, and CETP, and 2 SNPs in MTNR1B were associated with low high density lipoprotein cholesterol (HDL-C) and high fasting blood glucose respectively. Among these SNPs, 6 TG SNPs: rs1260326, rs1260333, rs1919127, rs964184, rs2075295 and rs1558861 and 11 HDL-C SNPs: rs4775041, rs10468017, rs1800588, rs72786786, rs173539, rs247616, rs247617, rs3764261, rs4783961, rs708272, and rs7499892 were first discovered in Koreans. Additional research is needed to confirm these 17 novel SNPs in Korean population.
Collapse
|
104
|
de Luis DA, Izaola O, Primo D, Aller R. Dietary-fat effect of the rs10830963 polymorphism in MTNR1B on insulin resistance in response to 3 months weight-loss diets. ENDOCRINOLOGÍA, DIABETES Y NUTRICIÓN (ENGLISH ED.) 2020. [DOI: 10.1016/j.endien.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
105
|
Zhou S, Dai YM, Zeng XF, Chen HZ. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective. Front Endocrinol (Lausanne) 2020; 11:173. [PMID: 32308644 PMCID: PMC7145977 DOI: 10.3389/fendo.2020.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes-induced tissue injuries in target organs such as the kidney, heart, eye, liver, skin, and nervous system contribute significantly to the morbidity and mortality of diabetes. However, whether the lung should be considered a diabetic target organ has been discussed for decades. Accumulating evidence shows that both pulmonary histological changes and functional abnormalities have been observed in diabetic patients, suggesting that the lung is a diabetic target organ. Mechanisms underlying diabetic lung are unclear, however, oxidative stress, systemic inflammation, and premature aging convincingly contribute to them. Circadian system and Sirtuins have been well-documented to play important roles in above mechanisms. Circadian rhythms are intrinsic mammalian biological oscillations with a period of near 24 h driven by the circadian clock system. This system plays an important role in the regulation of energy metabolism, oxidative stress, inflammation, cellular proliferation and senescence, thus impacting metabolism-related diseases, chronic airway diseases and cancers. Sirtuins, a family of adenine dinucleotide (NAD+)-dependent histone deacetylases, have been demonstrated to regulate a series of physiological processes and affect diseases such as obesity, insulin resistance, type 2 diabetes (T2DM), heart disease, cancer, and aging. In this review, we summarize recent advances in the understanding of the roles of the circadian clock and Sirtuins in regulating cellular processes and highlight the potential interactions of the circadian clock and Sirtuins in the context of diabetic lung.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shuang Zhou
| | - Yi-Min Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
106
|
Wood TR, Owens N. Using synthetic datasets to bridge the gap between the promise and reality of basing health-related decisions on common single nucleotide polymorphisms. F1000Res 2019. [DOI: 10.12688/f1000research.21797.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: While the academic genetic literature has clearly shown that common genetic single nucleotide polymorphisms (SNPs), and even large polygenic SNP risk scores, cannot reliably be used to determine risk of disease or to personalize interventions, a significant industry of companies providing SNP-based recommendations still exists. Healthcare practitioners must therefore be able to navigate between the promise and reality of these tools, including being able to interpret the literature that is associated with a given risk or suggested intervention. One significant hurdle to this process is the fact that most population studies of common SNPs only provide average (+/- error) phenotypic or risk descriptions for a given genotype, which hides the true heterogeneity of the population and reduces the ability of an individual to determine how they themselves or their patients might truly be affected. Methods: We generated synthetic datasets generated from descriptive phenotypic data published on common SNPs associated with obesity, elevated fasting blood glucose, and methylation status. Using simple statistical theory and full graphical representation of the generated data, we developed a method by which anybody can better understand phenotypic heterogeneity in a population, as well as the degree to which common SNPs truly drive disease risk. Results: Individual risk SNPs had a <10% likelihood of effecting the associated phenotype (bodyweight, fasting glucose, or homocysteine levels). Example polygenic risk scores including the SNPs most associated with obesity and type 2 diabetes only explained 2% and 5% of the final phenotype, respectively. Conclusions: The data suggest that most disease risk is dominated by the effect of the modern environment, providing further evidence to support the pursuit of lifestyle-based interventions that are likely to be beneficial regardless of genetics.
Collapse
|
107
|
Gloaguen E, Dizier MH, Boissel M, Rocheleau G, Canouil M, Froguel P, Tichet J, Roussel R, Julier C, Balkau B, Mathieu F. General regression model: A "model-free" association test for quantitative traits allowing to test for the underlying genetic model. Ann Hum Genet 2019; 84:280-290. [PMID: 31834638 DOI: 10.1111/ahg.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022]
Abstract
Most genome-wide association studies used genetic-model-based tests assuming an additive mode of inheritance, leading to underpowered association tests in case of departure from additivity. The general regression model (GRM) association test proposed by Fisher and Wilson in 1980 makes no assumption on the genetic model. Interestingly, it also allows formal testing of the underlying genetic model. We conducted a simulation study of quantitative traits to compare the power of the GRM test to the classical linear regression tests, the maximum of the three statistics (MAX), and the allele-based (allelic) tests. Simulations were performed on two samples sizes, using a large panel of genetic models, varying genetic models, minor allele frequencies, and the percentage of explained variance. In case of departure from additivity, the GRM was more powerful than the additive regression tests (power gain reaching 80%) and had similar power when the true model is additive. GRM was also as or more powerful than the MAX or allelic tests. The true simulated model was mostly retained by the GRM test. Application of GRM to HbA1c illustrates its gain in power. To conclude, GRM increases power to detect association for quantitative traits, allows determining the genetic model and is easily applicable.
Collapse
Affiliation(s)
- Emilie Gloaguen
- Inserm UMRS-958, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Hélène Dizier
- Inserm UMR-946, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mathilde Boissel
- Université de Lille, UMR 8199 - EGID, Lille, France.,CNRS, Paris, France.,Institut Pasteur de Lille, Lille, France
| | - Ghislain Rocheleau
- Université de Lille, UMR 8199 - EGID, Lille, France.,CNRS, Paris, France.,Institut Pasteur de Lille, Lille, France
| | - Mickaël Canouil
- Université de Lille, UMR 8199 - EGID, Lille, France.,CNRS, Paris, France.,Institut Pasteur de Lille, Lille, France
| | - Philippe Froguel
- Université de Lille, UMR 8199 - EGID, Lille, France.,CNRS, Paris, France.,Institut Pasteur de Lille, Lille, France.,Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
| | | | - Ronan Roussel
- Inserm U1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France
| | -
- Inserm UMRS-958, Paris, France
| | - Cécile Julier
- Inserm UMRS-958, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Flavie Mathieu
- Mission Associations Recherche & Société - Inserm Siège, DISC, Paris, France.,Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
108
|
Adverse Events Associated with Melatonin for the Treatment of Primary or Secondary Sleep Disorders: A Systematic Review. CNS Drugs 2019; 33:1167-1186. [PMID: 31722088 DOI: 10.1007/s40263-019-00680-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Melatonin is widely available either on prescription for the treatment of sleep disorders or as an over-the-counter dietary supplement. Melatonin has also recently been licensed in the UK for the short-term treatment of jetlag. Little is known about the potential for adverse events (AEs), in particular AEs resulting from long-term use. Concern has been raised over the possible risks of exposure in certain populations including pre-adolescent children and patients with epilepsy or asthma. OBJECTIVES The aim of this systematic review was to assess the evidence for AEs associated with short-term and longer-term melatonin treatment for sleep disorders. METHODS A literature search of the PubMed/Medline database and Google Scholar was conducted to identify randomised, placebo-controlled trials (RCTs) of exogenous melatonin administered for primary or secondary sleep disorders. Studies were included if they reported on both the types and frequencies of AEs. Studies of pre-term infants, studies of < 1 week in duration or involving single doses of melatonin and studies in languages other than English were excluded. Findings from open-label studies that raised concerns relating to AE reports in patients were also examined. Studies were assessed for quality of reporting against the Consolidated Standards of Reporting Trials (CONSORT) checklist and for risk of bias against the Cochrane Collaboration risk-of-bias criteria. RESULTS 37 RCTs met criteria for inclusion. Daily melatonin doses ranged from 0.15 mg to 12 mg. Subjects were monitored for up to 29 weeks, but most studies were of much shorter duration (4 weeks or less). The most frequently reported AEs were daytime sleepiness (1.66%), headache (0.74%), other sleep-related AEs (0.74%), dizziness (0.74%) and hypothermia (0.62%). Very few AEs considered to be serious or of clinical significance were reported. These included agitation, fatigue, mood swings, nightmares, skin irritation and palpitations. Most AEs either resolved spontaneously within a few days with no adjustment in melatonin, or immediately upon withdrawal of treatment. Melatonin was generally regarded as safe and well tolerated. Many studies predated publication of the CONSORT checklist and consequently did not conform closely to the guidelines. Similarly, only eight studies were judged 'good' overall with respect to the Cochrane risk-of-bias criteria. Of the remaining papers, 16 were considered 'fair' and 13 'poor' but publication of almost half of the papers preceded that of the earliest version of the guidelines. CONCLUSION Few, generally mild to moderate, AEs were associated with exogenous melatonin. No AEs that were life threatening or of major clinical significance were identified. The scarcity of evidence from long-term RCTs, however, limits the conclusions regarding the safety of continuous melatonin therapy over extended periods. There are insufficient robust data to allow a meaningful appraisal of concerns that melatonin may result in more clinically significant adverse effects in potentially at-risk populations. Future studies should be designed to comply with appropriate quality standards for RCTs, which most past studies have not.
Collapse
|
109
|
Liu L, Labani N, Cecon E, Jockers R. Melatonin Target Proteins: Too Many or Not Enough? Front Endocrinol (Lausanne) 2019; 10:791. [PMID: 31803142 PMCID: PMC6872631 DOI: 10.3389/fendo.2019.00791] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
The neurohormone N-acetyl-5-methoxytryptamine, better known as melatonin, is a tryptophan derivative with a wide range of biological effects that is present in many organisms. These effects are believed to rely either on the chemical properties of melatonin itself as scavenger of free radicals or on the binding of melatonin to protein targets. More than 15 proteins, including receptors (MT1, MT2, Mel1c, CAND2, ROR, VDR), enzymes (QR2, MMP-9, pepsin, PP2A, PR-10 proteins), pores (mtPTP), transporters (PEPT1/2, Glut1), and other proteins (HBS, CaM, tubulin, calreticuline), have been suggested to interact with melatonin at sub-nanomolar to millimolar melatonin concentrations. In this review we assemble for the first time the available information on proposed melatonin targets and discuss them in a comprehensive manner to evaluate the robustness of these findings in terms of methodology, physiological relevance, and independent replication.
Collapse
Affiliation(s)
- Lei Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Erika Cecon
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
110
|
Espino J, Rodríguez AB, Pariente JA. Melatonin and Oxidative Stress in the Diabetic State: Clinical Implications and Potential Therapeutic Applications. Curr Med Chem 2019; 26:4178-4190. [PMID: 29637854 DOI: 10.2174/0929867325666180410094149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
All living organisms exhibit circadian rhythms, which govern the majority of biological functions, including metabolic processes. Misalignment of these circadian rhythms increases the risk of developing metabolic diseases. Thus, disruption of the circadian system has been proven to affect the onset of type 2 diabetes mellitus (T2DM). In this context, the pineal indoleamine melatonin is a signaling molecule able to entrain circadian rhythms. There is mounting evidence that suggests a link between disturbances in melatonin production and impaired insulin, glucose, lipid metabolism, and antioxidant capacity. Besides, several genetic association studies have causally associated various single nucleotide polymorphysms (SNPs) of the human MT2 receptor with increased risk of developing T2DM. Taken together, these data suggest that endogenous as well as exogenous melatonin may influence diabetes and associated metabolic disturbances not only by regulating insulin secretion but also by providing protection against reactive oxygen species (ROS) since pancreatic β-cells are very susceptible to oxidative stress due to their low antioxidant capacity.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Ana B Rodríguez
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - José A Pariente
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
111
|
Wang T, Wang XT, Lai R, Ling HW, Zhang F, Lu Q, Lv DM, Yin XX. MTNR1B Gene Polymorphisms Are Associated With the Therapeutic Responses to Repaglinide in Chinese Patients With Type 2 Diabetes Mellitus. Front Pharmacol 2019; 10:1318. [PMID: 31787898 PMCID: PMC6855210 DOI: 10.3389/fphar.2019.01318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to investigate whether MTNR1B gene variants influence repaglinide response in Chinese patients with newly diagnosed type 2 diabetes mellitus (T2DM). A total of 300 patients with T2DM and 200 control subjects were enrolled to identify MTNR1B rs10830963 and rs1387153 genotypes by real-time polymerase chain reaction (PCR), with subsequent high-resolution melting (HRM) analysis. Ninety-five patients with newly diagnosed T2DM were randomly selected to undergo 8 weeks of repaglinide treatment (3 mg/day). After 8-week repaglinide monotherapy, patients with at least one G allele of MTNR1B rs10830963 showed a smaller decrease in fasting plasma glucose (FPG) (P = 0.031) and a smaller increase in homeostasis model assessment for beta cell function (HOMA-B) (P = 0.002) levels than those with the CC genotype did. The T allele carriers at rs1387153 exhibited a smaller decrease in FPG (P = 0.007) and smaller increases in postprandial serum insulin (PINS) (P = 0.016) and HOMA-B (P < 0.001) levels compared to individuals with the CC genotype. These data suggest that the MTNR1B rs10830963 and rs1387153 polymorphisms are associated with repaglinide monotherapy efficacy in Chinese patients with T2DM.
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Tong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ran Lai
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hong-Wei Ling
- Department of Endocrinology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dong-Mei Lv
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
112
|
Mok JX, Ooi JH, Ng KY, Koh RY, Chye SM. A new prospective on the role of melatonin in diabetes and its complications. Horm Mol Biol Clin Investig 2019; 40:/j/hmbci.ahead-of-print/hmbci-2019-0036/hmbci-2019-0036.xml. [PMID: 31693492 DOI: 10.1515/hmbci-2019-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023]
Abstract
Melatonin is a hormone secreted by the pineal gland under the control of the circadian rhythm, and is released in the dark and suppressed during the day. In the past decades, melatonin has been considered to be used in the treatment for diabetes mellitus (DM). This is due to a functional inter-relationship between melatonin and insulin. Elevated oxidative stress is a feature found in DM associated with diabetic neuropathy (DN), retinopathy (DR), nephropathy and cardiovascular disease. Reactive oxygen species (ROS) and nitrogen oxidative species (NOS) are usually produced in massive amounts via glucose and lipid peroxidation, and this leads to diabetic complications. At the molecular level, ROS causes damage to the biomolecules and triggers apoptosis. Melatonin, as an antioxidant and a free radical scavenger, ameliorates oxidative stress caused by ROS and NOS. Besides that, melatonin administration is proven to bring other anti-DM effects such as reducing cellular apoptosis and promoting the production of antioxidants.
Collapse
Affiliation(s)
- Jia Xin Mok
- School of Medical Laboratory Science, University of Otago, Dunedin 9054, New Zealand.,University of Otago, Dunedin School of Medicine, Department of Pathology, Medical Laboratory Science, Dunedin 9016, New Zealand
| | - Jack Hau Ooi
- International Medical University, School of Health Science, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- Monash University Malaysia, School of Pharmacy, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- International Medical University, School of Health Science, Kuala Lumpur 57000, Malaysia
| | - Soi Moi Chye
- International Medical University, School of Health Science, Kuala Lumpur 57000, Malaysia.,School of Health Science, Division of Biomedical Science and Biotechnology, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia, Phone: +60-3-27317220, Fax: +06-3-86567229
| |
Collapse
|
113
|
Ji Y, Elkin K, Yip J, Guan L, Han W, Ding Y. From circadian clocks to non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:1107-1112. [PMID: 31645151 DOI: 10.1080/17474124.2019.1684899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Introduction: The circadian rhythm is an integral regulator of various endocrine processes in the body, including sleep-wake cycles, hormonal regulation, and metabolism. In addition to metabolic, genetic, and environmental factors, a dysregulated circadian rhythm resulting from lifestyle changes has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An accumulating body of evidence also supports strong association between NAFLD and metabolic disorder, the pathogenesis of which is related to periodic fluctuations in hormonal homeostasis. It is clear that endocrine and circadian rhythms are tightly interconnected. Generally, the circadian rhythm regulates flux patterns of physiological functions. The present review will discuss the modulation of bodily processes by the circadian rhythm with specific attention to the regulation of NAFLD by leptin and related hormones.Areas covered: PubMed/MEDLINE was searched for articles related to concomitant occurrence of NAFLD and T2DM between January 1995 and September 2019. Areas covered included epidemiological, physiology and pathophysiology aspects.Expert opinion: NAFLD and NASH are increasingly prevalent and may be largely mitigated with effective lifestyle modification and, potentially, circadian rhythm stabilization. Improved knowledge of the specific pathogenesis of NAFLD in addition to enhanced diagnostic screening tools and prediction of future disease burden is imperative.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Yip
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Longfei Guan
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
114
|
Phylogenetic Reclassification of Vertebrate Melatonin Receptors To Include Mel1d. G3-GENES GENOMES GENETICS 2019; 9:3225-3238. [PMID: 31416806 PMCID: PMC6778780 DOI: 10.1534/g3.119.400170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The circadian and seasonal actions of melatonin are mediated by high affinity G-protein coupled receptors (melatonin receptors, MTRs), classified into phylogenetically distinct subtypes based on sequence divergence and pharmacological characteristics. Three vertebrate MTR subtypes are currently described: MT1 (MTNR1A), MT2 (MTNR1B), and Mel1c (MTNR1C / GPR50), which exhibit distinct affinities, tissue distributions and signaling properties. We present phylogenetic and comparative genomic analyses supporting a revised classification of the vertebrate MTR family. We demonstrate four ancestral vertebrate MTRs, including a novel molecule hereafter named Mel1d. We reconstructed the evolution of each vertebrate MTR, detailing genetic losses in addition to gains resulting from whole genome duplication events in teleost fishes. We show that Mel1d was lost separately in mammals and birds and has been previously mistaken for an MT1 paralogue. The genetic and functional diversity of vertebrate MTRs is more complex than appreciated, with implications for our understanding of melatonin actions in different taxa. The significance of our findings, including the existence of Mel1d, are discussed in an evolutionary and functional context accommodating a robust phylogenetic assignment of MTR gene family structure.
Collapse
|
115
|
Rosik J, Szostak B, Machaj F, Pawlik A. The role of genetics and epigenetics in the pathogenesis of gestational diabetes mellitus. Ann Hum Genet 2019; 84:114-124. [DOI: 10.1111/ahg.12356] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jakub Rosik
- Department of Physiology Pomeranian Medical University Szczecin Poland
| | - Bartosz Szostak
- Department of Physiology Pomeranian Medical University Szczecin Poland
| | - Filip Machaj
- Department of Physiology Pomeranian Medical University Szczecin Poland
| | - Andrzej Pawlik
- Department of Physiology Pomeranian Medical University Szczecin Poland
| |
Collapse
|
116
|
Alharbi KK, Al-Sulaiman AM, Shedaid KMB, Al-Shangiti AM, Marie M, Al-Sheikh YA, Ali Khan I. MTNR1B genetic polymorphisms as risk factors for gestational diabetes mellitus: a case-control study in a single tertiary care center. Ann Saudi Med 2019; 39:309-318. [PMID: 31580701 PMCID: PMC6832319 DOI: 10.5144/0256-4947.2019.309] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a metabolic disease in pregnancy that causes carbohydrate intolerance and hyper-glycemia. Genome-wide association studies and meta-analyses have found that the single nucleotide polymorphisms (SNPs) rs1387153 and rs10830963 of the melatonin receptor 1B ( MTNR1B) gene are associated with GDM. No studies on the MTNR1B gene effect on GDM have been performed in Saudis, other Arabs, or other Middle Eastern populations. OBJECTIVES Investigate the association of genotype or allele frequencies of the two SNPs with GDM and with clinical parameters related to GDM. DESIGN Case-control study. SETTINGS Tertiary care center, Riyadh. PATIENTS AND METHODS We recruited 400 pregnant Saudi women ages 18-45 years (200 were diagnosed with GDM, and 200 were healthy controls). Biochemical assays were performed, and rs1387153 and rs10830963 polymorphisms were analyzed by polymerase chain reaction-restriction fragment length polymorphism analysis and real-time polymerase chain reaction with TaqMan genotyping. MAIN OUTCOME MEASURES The association of MTNR1B gene (rs1387153 and rs10830963 polymorphisms) with GDM and with biochemical parameters related to GDM. SAMPLE SIZE 200 GDM cases and 200 non-GDM controls. RESULTS Differences in allele frequencies for GDM vs non-GMD were statistically significant or nearly significant for both SNPs after adjustment for age and body mass index. In a logistic regression analysis, genotype TT was positively associated with post-prandial blood glucose (P=.018), but other associations were not statistically significant. CONCLUSION The odds ratios for the associations between the rs1387153 and rs10830963 SNPs and GDM exceeded 1.5-fold, which is higher than typically reported for diseases with complex genetic background. These effect sizes for GDM suggest pregnancy-specific factors related to the MTNR1B risk genotypes. LIMITATIONS Only two SNPs were studied. CONFLICT OF INTEREST None.
Collapse
Affiliation(s)
- Khalid Khalaf Alharbi
- From the Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | - Mohammed Marie
- From the Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yazeed A Al-Sheikh
- From the Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Imran Ali Khan
- From the Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
117
|
Ingelsson E, McCarthy MI. Human Genetics of Obesity and Type 2 Diabetes Mellitus: Past, Present, and Future. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002090. [PMID: 29899044 DOI: 10.1161/circgen.118.002090] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2D) and obesity already represent 2 of the most prominent risk factors for cardiovascular disease, and are destined to increase in importance given the global changes in lifestyle. Ten years have passed since the first round of genome-wide association studies for T2D and obesity. During this decade, we have witnessed remarkable developments in human genetics. We have graduated from the despair of candidate gene-based studies that generated few consistently replicated genotype-phenotype associations, to the excitement of an exponential harvest of loci robustly associated with medical outcomes through ever larger genome-wide association study meta-analyses. As well as discovering hundreds of loci, genome-wide association studies have provided transformative insights into the genetic architecture of T2D and other complex traits, highlighting the extent of polygenicity and the tiny effect sizes of many common risk alleles. Genome-wide association studies have also provided a critical starting point for discovering new biology relevant to these traits. Expectations are high that these discoveries will foster development of more effective strategies for intervention, through optimization of precision medicine approaches. In this article, we review current knowledge and provide suggestions for the next steps in genetic research for T2D and obesity. We focus on four areas relevant to precision medicine: genetic architecture, pharmacogenetics and other gene-environment interactions, mechanistic inference, and drug development. As we describe, the genetic architecture of complex traits has major implications for the prospects of precision medicine, rendering some anticipated approaches decidedly unrealistic. We highlight obstacles to the translation of human genetic findings into mechanism inference but are optimistic that, as these are overcome, there is untapped potential for novel drugs and more effective strategies for treating and preventing T2D and obesity.
Collapse
Affiliation(s)
- Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (E.I.) .,Stanford Cardiovascular Institute, Stanford University, CA (E.I.)
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics (M.I.M.).,Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, United Kingdom (M.I.M.).,Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, United Kingdom (M.I.M.)
| |
Collapse
|
118
|
Owino S, Buonfiglio DDC, Tchio C, Tosini G. Melatonin Signaling a Key Regulator of Glucose Homeostasis and Energy Metabolism. Front Endocrinol (Lausanne) 2019; 10:488. [PMID: 31379753 PMCID: PMC6651071 DOI: 10.3389/fendo.2019.00488] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/04/2019] [Indexed: 12/29/2022] Open
Abstract
Melatonin, a hormone synthesized by both the pineal gland and retina, functions as an important modulator of a number of physiological functions. In addition to its rather well-established roles in the regulation of circadian rhythms, sleep, and reproduction, melatonin has also been identified as an important regulator of glucose metabolism. Recent genomic studies have also shown that disruption of melatonin receptors signaling may contribute to the pathogenesis of type 2 diabetes, although the exact mechanisms underlying its action remain unclear. Additionally, a large number of animal studies have highlighted a role for melatonin in the regulation of both glucose metabolism and energy balance. This review summarizes the current knowledge on the role that melatonin and its associated receptors play in the regulation of metabolism.
Collapse
Affiliation(s)
- Sharon Owino
- Department of Pharmacology and Toxicology Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, United States
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States
| | - Daniella D. C. Buonfiglio
- Department of Pharmacology and Toxicology Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, United States
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-I, University of São Paulo (USP), São Paulo, Brazil
| | - Cynthia Tchio
- Department of Pharmacology and Toxicology Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| |
Collapse
|
119
|
Goni L, Sun D, Heianza Y, Wang T, Huang T, Martínez JA, Shang X, Bray GA, Smith SR, Sacks FM, Qi L. A circadian rhythm-related MTNR1B genetic variant modulates the effect of weight-loss diets on changes in adiposity and body composition: the POUNDS Lost trial. Eur J Nutr 2019; 58:1381-1389. [PMID: 29516223 PMCID: PMC6128782 DOI: 10.1007/s00394-018-1660-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/05/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE A common variant of the melatonin receptor 1B (MTNR1B) gene has been related to increased signaling of melatonin, a hormone previously associated with body fatness mainly through effects on energy metabolism. We examined whether the MTNR1B variant affects changes of body fatness and composition in response to a dietary weight loss intervention. METHODS The MTNR1B rs10830963 variant was genotyped for 722 overweight and obese individuals, who were randomly assigned to one of four diets varying in macronutrient composition. Anthropometric and body composition measurements (DXA scan) were collected at baseline and at 6 and 24 months of follow-up. RESULTS Statistically significant interactions were observed between the MTNR1B genotype and low-/high-fat diet on changes in weight, body mass index (BMI), waist circumference (WC) and total body fat (p interaction = 0.01, 0.02, 0.002 and 0.04, respectively), at 6 months of dietary intervention. In the low-fat diet group, increasing number of the sleep disruption-related G allele was significantly associated with a decrease in weight (p = 0.004), BMI (p = 0.005) and WC (p = 0.001). In the high-fat diet group, carrying the G allele was positively associated with changes in body fat (p = 0.03). At 2 years, the associations remained statistically significant for changes in body weight (p = 0.02), BMI (p = 0.02) and WC (p = 0.048) in the low-fat diet group, although the gene-diet interaction became less significant. CONCLUSIONS The results suggest that carriers of the G allele of the MTNR1B rs10830963 may have a greater improvement in body adiposity and fat distribution when eating a low-fat diet.
Collapse
Affiliation(s)
- Leticia Goni
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain
- Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Tiange Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Tao Huang
- Epidemiology Domain, Saw Swee Hock School of Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain
- Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
- Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Xiaoyun Shang
- Children's Hospital New Orleans, New Orleans, LA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Steven R Smith
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
120
|
Abstract
In mammals, genetic influences of circadian rhythms occur at many levels. A set of core "clock genes" have been identified that form a feedback loop of gene transcription and translation. The core genetic clockwork generates circadian rhythms in cells throughout the body. Polymorphisms in both core clock genes and interacting genes contribute to individual differences in the expression and properties of circadian rhythms. The circadian clock profoundly influences the patterns of gene expression and cellular functions, providing a mechanistic basis for the impact of the genetic circadian system on normal physiological processes as well as the development of diseases.
Collapse
Affiliation(s)
- Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
| | - Kazuhiro Shimomura
- Center for Sleep and Circadian Biology; Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, 420 East Superior Street, Chicago, IL 60611, USA
| | - Peng Jiang
- Center for Sleep and Circadian Biology; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
121
|
Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol 2019; 13:411-424. [PMID: 30874451 PMCID: PMC6533073 DOI: 10.1080/17474124.2019.1595588] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian rhythms regulate much of gastrointestinal physiology including cell proliferation, motility, digestion, absorption, and electrolyte balance. Disruption of circadian rhythms can have adverse consequences including the promotion of and/or exacerbation of a wide variety of gastrointestinal disorders and diseases. Areas covered: In this review, we evaluate some of the many gastrointestinal functions that are regulated by circadian rhythms and how dysregulation of these functions may contribute to disease. This review also discusses some common gastrointestinal disorders that are known to be influenced by circadian rhythms as well as speculation about the mechanisms by which circadian rhythm disruption promotes dysfunction and disease pathogenesis. We discuss how knowledge of circadian rhythms and the advent of chrono-nutrition, chrono-pharmacology, and chrono-therapeutics might influence clinical practice. Expert opinion: As our knowledge of circadian biology increases, it may be possible to incorporate strategies that take advantage of circadian rhythms and chronotherapy to prevent and/or treat disease.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
122
|
de Luis DA, Izaola O, Primo D, Aller R. Dietary-fat effect of the rs10830963 polymorphism in MTNR1B on insulin resistance in response to 3 months weight-loss diets. ACTA ACUST UNITED AC 2019; 67:43-52. [PMID: 30981681 DOI: 10.1016/j.endinu.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS The risk allele (G) of rs10830963 in the melatonin receptor 1 B (MTNR1B) gene presents an association with obesity. We study the effect of this SNP on cardiovascular risk factors and weight loss secondary to 2hypocaloric diets. METHODS 361 obese subjects were randomly allocated during 3 months (Diet M - high monounsaturated fat hypocaloric diet vs. Diet P - high polyunsaturated fat hypocaloric diet). Anthropometric parameters, fasting blood glucose, C-reactive protein (CRP), insulin concentration, insulin resistance (HOMA-IR), lipid profile and adipocytokines levels were measured. Genotype of MTNR1B gene polymorphism (rs10830963) was evaluated. RESULTS All anthropometric parameters, systolic blood pressure and leptin levels decreased in all subjects after both diets. This improvement of anthropometric parameters was higher in non G allele carriers than G allele carriers. After dietary intervention with Diet M, (CC vs. CG + GG); total cholesterol (delta: -10.4 ± 2.1mg/dl vs. -6.4 ± 1.2mg/dl: P <.05), LDL-cholesterol (delta:-7.1 ± 0.9mg/dl vs. -2.8 ± 0.8mg/dl: P <.05), insulin (delta:-3.0 ± 0.8 UI/L vs. -2.0 ± 1.0 UI/L: P<.05) and HOMA-IR (delta:-3.4 ± 1.0 units vs. -2.9 ± 0.9 units: P<.05) improved in no G allele carriers. After Diet P, in the group of subjects without G allele CC, insulin levels (delta: -2.9 ± 1.0 UI/L vs. -0.6 ± 0.2 UI/L: P <.05) and HOMA-IR (delta (CC vs. CG + GG): -0.8 ± 0.2 units vs. -0.4 ± 0.3 units: P <.05) decreased, too. CONCLUSIONS Our study detected a relationship of rs10830963 MTNR1B SNP with body weight loss and insulin resistance modification induced by 2different hypocaloric. Only monounsaturated enriched hypocaloric diet and in no-G allele carriers showed a significant effect on lipoproteins.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España.
| | - Olatz Izaola
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| | - David Primo
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| | - Rocio Aller
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| |
Collapse
|
123
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
124
|
Hébert HL, Shepherd B, Milburn K, Veluchamy A, Meng W, Carr F, Donnelly LA, Tavendale R, Leese G, Colhoun HM, Dow E, Morris AD, Doney AS, Lang CC, Pearson ER, Smith BH, Palmer CNA. Cohort Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS). Int J Epidemiol 2019; 47:380-381j. [PMID: 29025058 PMCID: PMC5913637 DOI: 10.1093/ije/dyx140] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
| | | | - Keith Milburn
- Health Informatics Centre Services, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Abirami Veluchamy
- Division of Population Health Sciences.,Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | - Fiona Carr
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | - Roger Tavendale
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Graham Leese
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Helen M Colhoun
- Division of Population Health Sciences.,Institute of Genetics & Molecular Medicine
| | - Ellie Dow
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | | | - Chim C Lang
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Ewan R Pearson
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | | |
Collapse
|
125
|
Haljas K, Hakaste L, Lahti J, Isomaa B, Groop L, Tuomi T, Räikkönen K. The associations of daylight and melatonin receptor 1B gene rs10830963 variant with glycemic traits: the prospective PPP-Botnia study. Ann Med 2019; 51:58-67. [PMID: 30592226 PMCID: PMC7857441 DOI: 10.1080/07853890.2018.1564357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Seasonal variation in glucose metabolism might be driven by changes in daylight. Melatonin entrains circadian regulation and is directly associated with daylight. The relationship between melatonin receptor 1B gene variants with glycemic traits and type 2 diabetes is well established. We studied if daylight length was associated with glycemic traits and if it modified the relationship between melatonin receptor 1B gene rs10830963 variant and glycemic traits. MATERIALS A population-based sample of 3422 18-78-year-old individuals without diabetes underwent an oral glucose tolerance test twice, an average 6.8 years (SD = 0.9) apart and were genotyped for rs10830963. Daylight data was obtained from the Finnish Meteorological Institute. RESULTS Cross-sectionally, more daylight was associated with lower fasting glucose, but worse insulin sensitivity and secretion at follow-up. Longitudinally, individuals studied on lighter days at follow-up than at baseline showed higher glucose values during the oral glucose tolerance test and lower Corrected Insulin Response at follow-up. GG genotype carriers in the rs10830963 became more insulin resistant during follow-up if daylight length was shorter at follow-up than at baseline. CONCLUSIONS Our study shows that individual glycemic profiles may vary according to daylight, MTNR1B genotype and their interaction. Future studies may consider taking daylight length into account. Key messages In Western Finland, the amount daylight follows an extensive annual variation ranging from 4 h 44 min to 20 h 17 min, making it ideal to study the associations between daylight and glycemic traits. Moreover, this allows researchers to explore if the relationship between the melatonin receptor 1B gene rs10830963 variant and glycemic traits is modified by the amount of daylight both cross-sectionally and longitudinally. This study shows that individuals, who participated in the study on lighter days at the follow-up than at the baseline, displayed to a greater extent worse glycemic profiles across the follow-up. Novel findings from the current study show that in the longitudinal analyses, each addition of the minor G allele of the melatonin receptor 1B gene rs10830963 was associated with worsening of fasting glucose values and insulin secretion across the 6.8-year follow-up. Importantly, this study shows that in those with the rs10830963 GG genotype, insulin sensitivity deteriorated the most significantly across the 6.8-year follow-up if the daylight length on the oral glucose tolerance testing date at the follow-up was shorter than at the baseline. Taken together, the current findings suggest that the amount of daylight may affect glycemic traits, especially fasting glucose and insulin secretion even though the effect size is small. The association can very according to the rs10830963 risk variant. Further research is needed to elucidate the mechanisms behind these associations.
Collapse
Affiliation(s)
- Kadri Haljas
- a Department of Psychology and Logopedics , University of Helsinki , Helsinki , Finland
| | - Liisa Hakaste
- b Department of Endocrinology, Abdominal Centre , Helsinki University Hospital , Helsinki , Finland.,c Folkhälsan Research Center , Helsinki , Finland
| | - Jari Lahti
- a Department of Psychology and Logopedics , University of Helsinki , Helsinki , Finland.,d Helsinki Collegium for Advanced Studies , University of Helsinki , Helsinki , Finland
| | - Bo Isomaa
- c Folkhälsan Research Center , Helsinki , Finland.,e Department of Social Services and Health Care , Jakobstad , Finland
| | - Leif Groop
- f Finnish Institute for Molecular Medicine, University of Helsinki , Helsinki , Finland.,g Department of Clinical Sciences, Diabetes and Endocrinology , Lund University , Malmö , Sweden
| | - Tiinamaija Tuomi
- b Department of Endocrinology, Abdominal Centre , Helsinki University Hospital , Helsinki , Finland.,c Folkhälsan Research Center , Helsinki , Finland.,f Finnish Institute for Molecular Medicine, University of Helsinki , Helsinki , Finland
| | - Katri Räikkönen
- a Department of Psychology and Logopedics , University of Helsinki , Helsinki , Finland
| |
Collapse
|
126
|
Abstract
Despite considerable advances in the past few years, obesity and type 2 diabetes mellitus (T2DM) remain two major challenges for public health systems globally. In the past 9 years, genome-wide association studies (GWAS) have established a major role for genetic variation within the MTNR1B locus in regulating fasting plasma levels of glucose and in affecting the risk of T2DM. This discovery generated a major interest in the melatonergic system, in particular the melatonin MT2 receptor (which is encoded by MTNR1B). In this Review, we discuss the effect of melatonin and its receptors on glucose homeostasis, obesity and T2DM. Preclinical and clinical post-GWAS evidence of frequent and rare variants of the MTNR1B locus confirmed its importance in regulating glucose homeostasis and T2DM risk with minor effects on obesity. However, these studies did not solve the question of whether melatonin is beneficial or detrimental, an issue that will be discussed in the context of the peculiarities of the melatonergic system. Melatonin receptors might have therapeutic potential as they belong to the highly druggable G protein-coupled receptor superfamily. Clarifying the precise role of melatonin and its receptors on glucose homeostasis is urgent, as melatonin is widely used for other indications, either as a prescribed medication or as a supplement without medical prescription, in many countries in Europe and in the USA.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.
- CNRS UMR 8104, Paris, France.
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
127
|
Li H, Zhang Y, Liu S, Li F, Wang B, Wang J, Cao L, Xia T, Yao Q, Chen H, Zhang Y, Zhu X, Li Y, Li G, Wang J, Li X, Ni S. Melatonin Enhances Proliferation and Modulates Differentiation of Neural Stem Cells Via Autophagy in Hyperglycemia. Stem Cells 2019; 37:504-515. [PMID: 30644149 DOI: 10.1002/stem.2968] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Dysfunction of neural stem cells (NSCs) has been linked to fetal neuropathy, one of the most devastating complications of gestational diabetes. Several studies have demonstrated that melatonin (Mel) exerted neuroprotective actions in various stresses. However, the role of autophagy and the involvement of Mel in NSCs in hyperglycemia (HG) have not yet been fully established. Here, we found that HG increased autophagy and autophagic flux of NSCs as evidenced by increasing LC3B II/I ratio, Beclin-1 expression, and autophagosomes. Moreover, Mel enhanced NSCs proliferation and self-renewal in HG with decreasing autophagy and activated mTOR signaling. Consistently, inhibition of autophagy by 3-Methyladenine (3-Ma) could assist Mel effects above, and induction of autophagy by Rapamycin (Rapa) could diminish Mel effects. Remarkably, HG induced premature differentiation of NSCs into neurons (Map2 positive cells) and astrocytes (GFAP positive cells). Furthermore, Mel diminished HG-induced premature differentiation and assisted NSCs in HG differentiation as that in normal condition. Coincidentally, inhibiting of NSCs autophagy by 3-Ma assisted Mel to modulate differentiation. However, increasing NSCs autophagy by Rapa disturbed the Mel effects and retarded NSCs differentiation. These findings suggested that Mel supplementation could contribute to mimicking normal NSCs proliferation and differentiation in fetal central nervous system by inhibiting autophagy in the context of gestational diabetes. Stem Cells 2019;37:504-515.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yanmin Zhang
- Brain Science Research Institute, Shandong University, Jinan, People's Republic of China.,Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Basic Medical Sciences, Jinan, People's Republic of China
| | - Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Basic Medical Sciences, Jinan, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Fengpeng Li
- Department of Neurosurgery, Yinan County People's Hospital, Linyi, People's Republic of China
| | - Benlin Wang
- Department of Neurosurgery, PLA No. 970 Hospital, Yantai, Shandong, People's Republic of China
| | - Jianjie Wang
- Shandong University School of Medicine, Jinan, People's Republic of China
| | - Lanfang Cao
- Department of Infection Management, The Second People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Tongliang Xia
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qingyu Yao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, People's Republic of China
| | - Haijun Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaodong Zhu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Yang Li
- Shandong University School of Medicine, Jinan, People's Republic of China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| | - Jian Wang
- Brain Science Research Institute, Shandong University, Jinan, People's Republic of China.,KG Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
128
|
Beaumont RN, Warrington NM, Cavadino A, Tyrrell J, Nodzenski M, Horikoshi M, Geller F, Myhre R, Richmond RC, Paternoster L, Bradfield JP, Kreiner-Møller E, Huikari V, Metrustry S, Lunetta KL, Painter JN, Hottenga JJ, Allard C, Barton SJ, Espinosa A, Marsh JA, Potter C, Zhang G, Ang W, Berry DJ, Bouchard L, Das S, Hakonarson H, Heikkinen J, Helgeland Ø, Hocher B, Hofman A, Inskip HM, Jones SE, Kogevinas M, Lind PA, Marullo L, Medland SE, Murray A, Murray JC, Njølstad PR, Nohr EA, Reichetzeder C, Ring SM, Ruth KS, Santa-Marina L, Scholtens DM, Sebert S, Sengpiel V, Tuke MA, Vaudel M, Weedon MN, Willemsen G, Wood AR, Yaghootkar H, Muglia LJ, Bartels M, Relton CL, Pennell CE, Chatzi L, Estivill X, Holloway JW, Boomsma DI, Montgomery GW, Murabito JM, Spector TD, Power C, Järvelin MR, Bisgaard H, Grant SFA, Sørensen TIA, Jaddoe VW, Jacobsson B, Melbye M, McCarthy MI, Hattersley AT, Hayes MG, Frayling TM, Hivert MF, Felix JF, Hyppönen E, Lowe WL, Evans DM, Lawlor DA, Feenstra B, Freathy RM. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet 2019; 27:742-756. [PMID: 29309628 PMCID: PMC5886200 DOI: 10.1093/hmg/ddx429] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother–child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10−8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
Collapse
Affiliation(s)
- Robin N Beaumont
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Nicole M Warrington
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Alana Cavadino
- Centre for Environmental and Preventive Medicine, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jessica Tyrrell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK.,European Centre for Environment and Human Health, University of Exeter, The Knowledge Spa, Truro TR1 3HD, UK
| | - Michael Nodzenski
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Momoko Horikoshi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ronny Myhre
- Division of Epidemiology, Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Rebecca C Richmond
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Jonathan P Bradfield
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eskil Kreiner-Møller
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Denmark
| | - Ville Huikari
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Sarah Metrustry
- Department of Twin Research, King's College London, St. Thomas' Hospital, London, UK
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,Framingham Heart Study, Framingham, MA, USA
| | - Jodie N Painter
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Jouke-Jan Hottenga
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheila J Barton
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Ana Espinosa
- Pompeu Fabra University (UPF), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Julie A Marsh
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Catherine Potter
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ge Zhang
- Human Genetics Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, OH, USA.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Wei Ang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Diane J Berry
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada.,Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Shikta Das
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jani Heikkinen
- FIMM Institute for Molecular Medicine Finland, Helsinki University, Helsinki FI-00014, Finland
| | - Øyvind Helgeland
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Berthold Hocher
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Hazel M Inskip
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Samuel E Jones
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Manolis Kogevinas
- Pompeu Fabra University (UPF), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Letizia Marullo
- Genetic Section, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Anna Murray
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Pål R Njølstad
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen 5021, Norway
| | - Ellen A Nohr
- Research Unit of Obstetrics & Gynecology, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.,Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Susan M Ring
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Katherine S Ruth
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Loreto Santa-Marina
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Subdirección de Salud Pública y Adicciones de Gipuzkoa, Donostia/San Sebastián, Spain.,Instituto de Investigación Sanitaria BIODONOSTIA, Donostia/San Sebastián, Spain
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sylvain Sebert
- Institute of Health Sciences, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Medical Research Council-Health Protection Agency Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, UK
| | - Verena Sengpiel
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Sahgrenska University Hospital, Gothenburg, Sweden
| | - Marcus A Tuke
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Marc Vaudel
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Gonneke Willemsen
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Andrew R Wood
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Hanieh Yaghootkar
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Louis J Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, OH, USA.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Meike Bartels
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Leda Chatzi
- Department of Social Medicine, University of Crete, Crete, Greece
| | - Xavier Estivill
- Pompeu Fabra University (UPF), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Dorret I Boomsma
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Joanne M Murabito
- Framingham Heart Study, Framingham, MA, USA.,Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Tim D Spector
- Department of Twin Research, King's College London, St. Thomas' Hospital, London, UK
| | - Christine Power
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Marjo-Ritta Järvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Medical Research Council-Health Protection Agency Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, UK.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, FI-90220 Oulu, 90029 OYS, Finland.,Department of Children and Young People and Families, National Institute for Health and Welfare, FI-90101 Oulu, Finland
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Denmark
| | - Struan F A Grant
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorkild I A Sørensen
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Bo Jacobsson
- Division of Epidemiology, Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, Sahgrenska University Hospital, Gothenburg, Sweden
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Timothy M Frayling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA.,Diabetes Center, Massachussetts General Hospital, Boston, MA, USA.,Department of Medicine, Universite de Sherbrooke, QC, Canada
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Elina Hyppönen
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Centre for School of Population Health Research, School of Health Sciences, and Sansom Institute, University of South Australia, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David M Evans
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Debbie A Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
129
|
Johnson MP, Keyho R, Blackburn NB, Laston S, Kumar S, Peralta J, Thapa SS, Towne B, Subedi J, Blangero J, Williams-Blangero S. Glycated Serum Protein Genetics and Pleiotropy with Cardiometabolic Risk Factors. J Diabetes Res 2019; 2019:2310235. [PMID: 31089471 PMCID: PMC6476113 DOI: 10.1155/2019/2310235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 01/12/2019] [Indexed: 01/08/2023] Open
Abstract
Measurements of fasting glucose (FG) or glycated hemoglobin A1c (HbA1c) are two clinically approved approaches commonly used to determine glycemia, both of which are influenced by genetic factors. Obtaining accurate measurements of FG or HbA1c is not without its challenges, though. Measuring glycated serum protein (GSP) offers an alternative approach for assessing glycemia. The aim of this study was to estimate the heritability of GSP and GSP expressed as a percentage of total serum albumin (%GA) using a variance component approach and localize genomic regions (QTLs) that harbor genes likely to influence GSP and %GA trait variation in a large extended multigenerational pedigree from Jiri, Nepal (n = 1,800). We also performed quantitative bivariate analyses to assess the relationship between GSP or %GA and several cardiometabolic traits. Additive genetic effects significantly influence variation in GSP and %GA levels (p values: 1.15 × 10-5 and 3.39 × 10-5, respectively). We localized a significant (LOD score = 3.18) and novel GSP QTL on chromosome 11q, which has been previously linked to type 2 diabetes. Two common (MAF > 0.4) SNPs within the chromosome 11 QTL were associated with GSP (adjusted pvalue < 5.87 × 10-5): an intronic variant (rs10790184) in the DSCAML1 gene and a 3'UTR variant (rs8258) in the CEP164 gene. Significant positive correlations were observed between GSP or %GA and blood pressure, and lipid traits (p values: 0.0062 to 1.78 × 10-9). A significant negative correlation was observed between %GA and HDL cholesterol (p = 1.12 × 10-5). GSP is influenced by genetic factors and can be used to assess glycemia and diabetes risk. Thus, GSP measurements can facilitate glycemic studies when accurate FG and/or HbA1c measurements are difficult to obtain. GSP can also be measured from frozen blood (serum) samples, which allows the prospect of retrospective glycemic studies using archived samples.
Collapse
Affiliation(s)
- Matthew P. Johnson
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Ryan Keyho
- The University of Texas at Austin, Austin, Texas 78705, USA
| | - Nicholas B. Blackburn
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Sandra Laston
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Juan Peralta
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia
| | - Suman S. Thapa
- Tilganga Institute of Ophthalmology, Gaushala, Bagmati Bridge, P.O. Box 561, Kathmandu, Nepal
| | - Bradford Towne
- Department of Population Health and Public Health Sciences, Boonshoft School of Medicine, Wright State University, Kettering, Ohio 45435, USA
| | - Janardan Subedi
- Department of Sociology and Gerontology, College of Arts and Science, Miami University, Oxford, Ohio 45056, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| |
Collapse
|
130
|
Rondanelli M, Peroni G, Gasparri C, Infantino V, Nichetti M, Cuzzoni G, Spadaccini D, Perna S. Is a Combination of Melatonin and Amino Acids Useful to Sarcopenic Elderly Patients? A Randomized Trial. Geriatrics (Basel) 2018; 4:geriatrics4010004. [PMID: 31023972 PMCID: PMC6473373 DOI: 10.3390/geriatrics4010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effectiveness of a 4-week intervention of melatonin and essential aminoacid supplementation on body composition, protein metabolism, strength and inflammation in 159 elderly sarcopenic patients (42/117, men/women), assigned to four groups: isocaloric placebo (P, n = 44), melatonin (M, 1 mg/daily, n = 42), essential amino acids (eAA 4 g/daily, n = 40) or eAA plus melatonin (eAAM, 4 g eAA and 1 mg melatonin/daily, n = 30). Data from body composition (dual X-ray absortiometry (DXA)), strength (handgrip test) and biochemical parameters for the assessment of protein metabolism (albumin) and inflammation (CRP) were collected at baseline and after the 4-week intervention. Compared with P and M, supplementation with eAA plus M increased total fat-free mass (vs. P: +2190 g; p < 0.01; vs. M: +2107 g; p < 0.05). M alone lowered albumin levels (vs. P: −0.39 g; p < 0.01; vs. eAA: −0.47 g; p < 0.01). This data on albumin was confirmed by within-group analysis (M −0.44g; p < 0.001; eAAM: −0.34 p < 0.05). M and eAA seemed to lower the percentage of gynoid fat (p < 0.05) and android fat (p < 0.01). No significant changes in inflammation or strength were reported. A 4-week intervention with eAA plus M together may be effective in enhancing fat-free-mass compared to M and P but not versus eAA. M alone demonstrates a negative effect on albumin level.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy.
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | - Gabriella Peroni
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | - Clara Gasparri
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy.
| | - Mara Nichetti
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | | | - Daniele Spadaccini
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P.O. Box 32038, Kingdom of Bahrain.
| |
Collapse
|
131
|
Haljas K, Lahti J, Tuomi T, Isomaa B, Eriksson JG, Groop L, Räikkönen K. Melatonin receptor 1B gene rs10830963 polymorphism, depressive symptoms and glycaemic traits. Ann Med 2018; 50:704-712. [PMID: 30089436 DOI: 10.1080/07853890.2018.1509118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The association between depression and type 2 diabetes is bidirectional. Underlying biological determinants remain elusive. We examined whether a common melatonin receptor 1B gene diabetes risk variant rs10830963 influenced the associations between depressive symptoms and glycaemic traits. MATERIALS The Prevalence, Prediction and Prevention of Diabetes-Botnia Study participants (n = 4,455) with no diabetes who underwent an oral glucose tolerance test were genotyped for rs10830963 and completed the Mental Health Inventory on depressive symptoms. RESULTS The rs10830963 did not influence significantly the associations between depressive symptoms and glycaemic traits. Yet, the addition of each copy of the minor G allele of the rs1080963 and higher depressive symptoms were both, independent of each other, associated significantly with higher glucose response (glucose area under the curve), higher insulin resistance (Insulin Sensitivity Index) and lower insulin secretion (Disposition Index). Depressive symptoms, but not rs1080963, were also significantly associated with higher fasting insulin, insulin area under the curve and insulin resistance (Homeostasis Model Assessment, Homeostasis Model Assessment-2); rs1080963, but not depressive symptoms, was significantly associated with higher fasting glucose and lower Corrected Insulin Response. CONCLUSIONS Our study shows that the diabetes risk variant rs10830963 does not contribute to the known comorbidity between depression and type 2 diabetes. Key messages The association between depression and type 2 diabetes is bidirectional. We tested whether a common variant rs10830963 in the gene encoding Melatonin Receptor 1B influences the known association between depressive symptoms and glycaemic traits in a population-based sample from Western Finland. The MTNR1B genetic diabetes risk variant rs10830963 does not contribute to the known comorbidity between depression and type 2 diabetes. Depressive symptoms and rs10830963 are associated with a worse glycaemic profile independently of each other.
Collapse
Affiliation(s)
- Kadri Haljas
- a Department of Psychology and Logopedics , University of Helsinki , Helsinki , Finland
| | - Jari Lahti
- a Department of Psychology and Logopedics , University of Helsinki , Helsinki , Finland.,b Helsinki Collegium for Advanced Studies , University of Helsinki , Helsinki , Finland
| | - Tiinamaija Tuomi
- c Department of Endocrinology , Helsinki University Hospital , Helsinki , Finland.,d Folkhälsan Research Center , Helsinki , Finland.,e Finnish Institute for Molecular Medicine , University of Helsinki , Helsinki , Finland
| | - Bo Isomaa
- d Folkhälsan Research Center , Helsinki , Finland.,f Department of Social Services and Health Care , Jakobstad , Finland
| | - Johan G Eriksson
- d Folkhälsan Research Center , Helsinki , Finland.,g National Institute for Health and Welfare , Helsinki , Finland.,h Department of General Practice and Primary Health Care , University of Helsinki and Helsinki University Hospital Helsinki , Helsinki , Finland
| | - Leif Groop
- e Finnish Institute for Molecular Medicine , University of Helsinki , Helsinki , Finland.,i Lund University Diabetes Centre, Department of Clinical Sciences , Lund University , Malmö , Sweden
| | - Katri Räikkönen
- a Department of Psychology and Logopedics , University of Helsinki , Helsinki , Finland
| |
Collapse
|
132
|
Role of the Circadian Clock in the Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2018; 63:3187-3206. [PMID: 30121811 DOI: 10.1007/s10620-018-5242-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in industrialized nations and is strongly associated with the metabolic syndrome. The prevalence of NAFLD continues to rise along with the epidemic of the metabolic syndrome. Metabolic homeostasis is linked to the circadian clock (rhythm), with multiple signaling pathways in organs regulated by circadian clock genes, and recent studies of circadian clock gene functions suggest that disruption of the circadian rhythm is associated with significant morbidity and mortality, including the metabolic syndrome. In the industrialized world, various human behaviors and activities such as work and eating patterns, jet lag, and sleep deprivation interfere with the circadian rhythm, leading to perturbations in metabolism and development of the metabolic syndrome. In this review, we discuss how disruption of the circadian rhythm is associated with various metabolic conditions that comprise the metabolic syndrome and NAFLD.
Collapse
|
133
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
134
|
Mahanna-Gabrielli E, Miano TA, Augoustides JG, Kim C, Bavaria JE, Kofke WA. Does the melatonin receptor 1B gene polymorphism have a role in postoperative delirium? PLoS One 2018; 13:e0207941. [PMID: 30481216 PMCID: PMC6258533 DOI: 10.1371/journal.pone.0207941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Patients undergoing cardiac surgery are at high risk for postoperative delirium, which is associated with longer hospital and intensive care lengths of stays, increased morbidity and mortality. Because sleep disturbances are common in delirium, melatonin has been an area of interest in the treatment of delirium. The rs10830963 single nucleotide polymorphism of the melatonin receptor 1B gene can cause pathological dysfunction of this receptor and is associated with delayed morning offset of melatonin. We hypothesized patients undergoing aortic cardiac surgery who have the risk genotype of a melatonin receptor 1B polymorphism would have a higher incidence of postoperative delirium. METHODS Ninety-eight patients undergoing aortic root or valve surgery underwent analysis for melatonin receptor 1B single nucleotide polymorphism, rs10830963. Using a validated method, CHART-DEL, all charts were retrospectively reviewed and scored for the presence of delirium while blinded to the results of the melatonin receptor 1B gene polymorphism. RESULTS Genotyping for melatonin receptor 1B polymorphism was acceptable in 76 subjects of European descent of which 18 (23.7%) had delirium. Four of seven subjects with the risk genotype had delirium versus only 20.3% of subjects without the risk genotype. This carried an odds ratio of 5.2 (1.0, 26.1), p = 0.050. CONCLUSION This observation suggests a role of the risk genotype of a melatonin receptor 1B polymorphism in the development of postoperative delirium. These hypotheses generating results warrant further prospective studies in a larger cohort group with delirium, circadian rhythm and melatonin assessments.
Collapse
Affiliation(s)
- Elizabeth Mahanna-Gabrielli
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Todd A. Miano
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John G. Augoustides
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Cecilia Kim
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joseph E. Bavaria
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - W. Andrew Kofke
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
135
|
Firneisz G, Rosta K, Al-Aissa Z, Hadarits O, Harreiter J, Nádasdi Á, Bancher-Todesca D, Németh L, Igaz P, Rigó J, Sziller I, Kautzky-Willer A, Somogyi A. The MTNR1B rs10830963 Variant in Interaction with Pre-Pregnancy BMI is a Pharmacogenetic Marker for the Initiation of Antenatal Insulin Therapy in Gestational Diabetes Mellitus. Int J Mol Sci 2018; 19:E3734. [PMID: 30477160 PMCID: PMC6321391 DOI: 10.3390/ijms19123734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 11/26/2022] Open
Abstract
The rs10830963 variant of the Melatonin Receptor 1B (MTNR1B) gene is associated with the development of gestational diabetes mellitus (GDM). We hypothesized that carrying the rs10830963/G risk allele had effect on antenatal insulin therapy (AIT) initiation in GDM in a body mass index (BMI)-dependent manner. Design: In this post hoc analysis the MTNR1B rs10830963 genotype and the clinical data of 211 Caucasian GDM patients were assessed. As a first step, a pre-pregnancy BMI threshold was determined where the effect of MTNR1B rs10830963/G allele carrying on AIT initiation was the most significant using logistic regression. Maternal age adjusted real-life odds ratios (OR) values were calculated. The chi-square test was also used to calculate the p value and 10.000 bootstrap simulations were performed in each case to re-assess the statistical power and the OR. Carrying the MTNR1B rs10830963/G allele increased the odds of AIT initiation (OR = 5.2, p = 0.02 [χ² test], statistical power = 0.53) in GDM patients with pre-pregnancy BMI ≥ 29 kg/m². The statistical power reached 0.77, when the pre-pregnancy BMI cutoff of 27 kg/m² was used and the genetic effect on AIT initiation was still significant, but only using the logistic regression model. Carrying the MTNR1B rs10830963/G risk allele-in interaction with pre-pregnancy BMI-is likely be considered as a candidate pharmacogenetic marker of antenatal insulin therapy initiation and should be further assessed in precision medicine trials in GDM.
Collapse
Affiliation(s)
- Gábor Firneisz
- 2nd Department of Internal Medicine, Semmelweis University, H-1088 Budapest, Hungary.
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences⁻Semmelweis University, H-1088 Budapest, Hungary.
| | - Klara Rosta
- Department of Obstetrics and Gynecology, Medical University of Vienna, A-1090 Vienna, Austria.
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary.
| | - Zahra Al-Aissa
- 2nd Department of Internal Medicine, Semmelweis University, H-1088 Budapest, Hungary.
| | - Orsolya Hadarits
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary.
| | - Jürgen Harreiter
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Ákos Nádasdi
- 2nd Department of Internal Medicine, Semmelweis University, H-1088 Budapest, Hungary.
| | - Dagmar Bancher-Todesca
- Department of Obstetrics and Gynecology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - László Németh
- Department of Probability Theory and Statistics, Eötvös Loránd University, H-1088 Budapest, Hungary.
| | - Péter Igaz
- 2nd Department of Internal Medicine, Semmelweis University, H-1088 Budapest, Hungary.
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences⁻Semmelweis University, H-1088 Budapest, Hungary.
| | - János Rigó
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary.
| | - István Sziller
- Department of Obstetrics and Gynecology, Szent Imre Teaching Hospital, H-1088 Budapest, Hungary.
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Anikó Somogyi
- 2nd Department of Internal Medicine, Semmelweis University, H-1088 Budapest, Hungary.
| |
Collapse
|
136
|
Association of Native American ancestry and common variants in ACE, ADIPOR2, MTNR1B, GCK, TCF7L2 and FTO genes with glycemic traits in Colombian population. Gene 2018; 677:198-210. [DOI: 10.1016/j.gene.2018.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
|
137
|
Silzer TK, Phillips NR. Etiology of type 2 diabetes and Alzheimer's disease: Exploring the mitochondria. Mitochondrion 2018; 43:16-24. [DOI: 10.1016/j.mito.2018.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
|
138
|
Molecular Biomarkers for Gestational Diabetes Mellitus. Int J Mol Sci 2018; 19:ijms19102926. [PMID: 30261627 PMCID: PMC6213110 DOI: 10.3390/ijms19102926] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/20/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health problem worldwide. The condition is associated with perinatal complications and an increased risk for future metabolic disease in both mothers and their offspring. In recent years, molecular biomarkers received considerable interest as screening tools for GDM. The purpose of this review is to provide an overview of the current status of single-nucleotide polymorphisms (SNPs), DNA methylation, and microRNAs as biomarkers for GDM. PubMed, Scopus, and Web of Science were searched for articles published between January 1990 and August 2018. The search terms included “gestational diabetes mellitus”, “blood”, “single-nucleotide polymorphism (SNP)”, “DNA methylation”, and “microRNAs”, including corresponding synonyms and associated terms for each word. This review updates current knowledge of the candidacy of these molecular biomarkers for GDM with recommendations for future research avenues.
Collapse
|
139
|
Zibolka J, Bazwinsky-Wutschke I, Mühlbauer E, Peschke E. Distribution and density of melatonin receptors in human main pancreatic islet cell types. J Pineal Res 2018; 65:e12480. [PMID: 29464840 DOI: 10.1111/jpi.12480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
Recent investigations of our group established that melatonin modulates hormone secretion of pancreatic islets via melatonin receptor types MT1 and MT2. Expression of MT1 and MT2 has been shown in mouse, rat, and human pancreatic islets as well as in the β-, α-, and δ-cell lines INS-1, αTC1.9, and QGP-1. In view of these earlier investigations, this study was performed to analyze in detail the distribution and density of melatonin receptors on the main islet cell types in human pancreatic tissue obtained from nondiabetic and type 2 diabetic patients. Immunohistochemical analysis established the presence of MT1 and MT2 in β-, α-, and δ-cells, but notably, with differences in receptor density. In general, the lowest MT1 and MT2 receptor density was measured in α-cells compared to the 2 other cell types. In type 2 diabetic islets, MT1 and MT2 receptor density was increased in δ-cells compared to normoglycemic controls. In human islets in batch culture of a nondiabetic donor, an increase of somatostatin secretion was observed under melatonin treatment while in islets of a type 2 diabetic donor, an inhibitory influence could be observed, especially in the presence of 5.5 mmol/L glucose. These data suggest the following: i) cell-type-specific density of MT1 and MT2 receptors in human pancreatic islets, which should be considered in context of the hormone secretion of islets, ii) the influence of diabetes on density of MT1 and MT2 as well as iii) the differential impact of melatonin on somatostatin secretion of nondiabetic and type 2 diabetic islets.
Collapse
Affiliation(s)
- Juliane Zibolka
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivonne Bazwinsky-Wutschke
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | |
Collapse
|
140
|
Sulli G, Manoogian ENC, Taub PR, Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci 2018; 39:812-827. [PMID: 30060890 DOI: 10.1016/j.tips.2018.07.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/09/2022]
Abstract
Daily rhythms in behavior, physiology, and metabolism are an integral part of homeostasis. These rhythms emerge from interactions between endogenous circadian clocks and ambient light-dark cycles, sleep-activity cycles, and eating-fasting cycles. Nearly the entire primate genome shows daily rhythms in expression in tissue- and locus-specific manners. These molecular rhythms modulate several key aspects of cellular and tissue function with profound implications in public health, disease prevention, and disease management. In modern societies light at night disrupts circadian rhythms, leading to further disruption of sleep-activity and eating-fasting cycles. While acute circadian disruption may cause transient discomfort or exacerbate chronic diseases, chronic circadian disruption can enhance risks for numerous diseases. The molecular understanding of circadian rhythms is opening new therapeutic frontiers placing the circadian clock in a central role. Here, we review recent advancements on how to enhance our circadian clock through behavioral interventions, timing of drug administration, and pharmacological targeting of circadian clock components that are already providing new preventive and therapeutic strategies for several diseases, including metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | | |
Collapse
|
141
|
Onaolapo AY, Onaolapo OJ. Circadian dysrhythmia-linked diabetes mellitus: Examining melatonin’s roles in prophylaxis and management. World J Diabetes 2018; 9:99-114. [PMID: 30079146 PMCID: PMC6068738 DOI: 10.4239/wjd.v9.i7.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic, life-threatening metabolic disorder that occurs worldwide. Despite an increase in the knowledge of the risk factors that are associated with diabetes mellitus, its worldwide prevalence has continued to rise; thus, necessitating more research into its aetiology. Recent researches are beginning to link a dysregulation of the circadian rhythm to impairment of intermediary metabolism; with evidences that circadian rhythm dysfunction might play an important role in the aetiology, course or prognosis of some cases of diabetes mellitus. These evidences thereby suggest possible relationships between the circadian rhythm regulator melatonin, and diabetes mellitus. In this review, we discuss the roles of the circadian rhythm in the regulation of the metabolism of carbohydrates and other macronutrients; with emphasis on the importance of melatonin and the impacts of its deficiency on carbohydrate homeostasis. Also, the possibility of using melatonin and its analogs for the “prophylaxis” or management of diabetes mellitus is also considered.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho 210211, Oyo State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo 230263, Osun State, Nigeria
| |
Collapse
|
142
|
Bianchi MT. Sleep devices: wearables and nearables, informational and interventional, consumer and clinical. Metabolism 2018; 84:99-108. [PMID: 29080814 DOI: 10.1016/j.metabol.2017.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
Abstract
The field of sleep is in many ways ideally positioned to take full advantage of advancements in technology and analytics that is fueling the mobile health movement. Combining hardware and software advances with increasingly available big datasets that contain scored data obtained under gold standard sleep laboratory conditions completes the trifecta of this perfect storm. This review highlights recent developments in consumer and clinical devices for sleep, emphasizing the need for validation at multiple levels, with the ultimate goal of using personalized data and advanced algorithms to provide actionable information that will improve sleep health.
Collapse
Affiliation(s)
- Matt T Bianchi
- Neurology Department, Massachusetts General Hospital, Wang 720, Boston, MA 02114, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, United States.
| |
Collapse
|
143
|
Langenberg C, Lotta LA. Genomic insights into the causes of type 2 diabetes. Lancet 2018; 391:2463-2474. [PMID: 29916387 DOI: 10.1016/s0140-6736(18)31132-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023]
Abstract
Genome-wide association studies have implicated around 250 genomic regions in predisposition to type 2 diabetes, with evidence for causal variants and genes emerging for several of these regions. Understanding of the underlying mechanisms, including the interplay between β-cell failure, insulin sensitivity, appetite regulation, and adipose storage has been facilitated by the integration of multidimensional data for diabetes-related intermediate phenotypes, detailed genomic annotations, functional experiments, and now multiomic molecular features. Studies in diverse ethnic groups and examples from population isolates have shown the value and need for a broad genomic approach to this global disease. Transethnic discovery efforts and large-scale biobanks in diverse populations and ancestries could help to address some of the Eurocentric bias. Despite rapid progress in the discovery of the highly polygenic architecture of type 2 diabetes, dominated by common alleles with small, cumulative effects on disease risk, these insights have been of little clinical use in terms of disease prediction or prevention, and have made only small contributions to subtype classification or stratified approaches to treatment. Successful development of academia-industry partnerships for exome or genome sequencing in large biobanks could help to deliver economies of scale, with implications for the future of genomics-focused research.
Collapse
Affiliation(s)
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
144
|
Nisa H, Qi KHT, Leng J, Zhou T, Liu H, Li W, Wang L, Li N, Hu G, Qi L. The Circadian Rhythm-Related MTNR1B Genotype, Gestational Weight Gain, and Postpartum Glycemic Changes. J Clin Endocrinol Metab 2018; 103:2284-2290. [PMID: 29590381 PMCID: PMC6276711 DOI: 10.1210/jc.2018-00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/19/2018] [Indexed: 11/19/2022]
Abstract
Context Disturbed circadian rhythms and sleep quality during pregnancy have been related to gestational weight gain and gestational diabetes mellitus (GDM), which affect postpartum glucose metabolism and future risk of type 2 diabetes. Objective We assessed whether the circadian rhythm-related melatonin receptor 1B (MTNR1B) genotype was associated with 1 to 5 years of postpartum glycemic changes among women with a history of GDM and whether gestational weight gain modified such associations. Design, Settings, and Participants The established circadian rhythm-associated MTNR1B genetic variant (rs10830963) was genotyped in 1025 Chinese women with a history of GDM. Body weight and glycemic traits, during and after pregnancy, were longitudinally collected. Main Outcome Measures The main outcome measure was postpartum glycemic changes. Results We found that women carrying different MTNR1B genotypes showed distinct postpartum changes in 2-hour oral glucose tolerance test: 0.36, 0.20, and -0.19 mM per additional copy of the shorter sleep duration-related G allele in women with inadequate, adequate, and excessive gestational weight gain, respectively (for interaction, P = 0.028). The corresponding changes in fasting glucose were 0.14, 0.13, and 0.01 mM, although the modification effect of gestational weight gain on the genetic association was marginally significant (for interaction, P = 0.067). Conclusions Our findings suggest that gestational weight gain may modify the circadian rhythm-related MTNR1B genetic variant on long-term glycemic changes, highlighting the significance of gestational weight management in diabetes prevention among women with GDM.
Collapse
Affiliation(s)
- Hoirun Nisa
- Department of Epidemiology, School of Public Health and Tropical Medicine,
Tulane University, New Orleans, Louisiana
- Department of Public Health, Faculty of Health Sciences, State Islamic
University, Jakarta, Indonesia
| | | | - Junhong Leng
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine,
Tulane University, New Orleans, Louisiana
| | - Huikun Liu
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Weiqin Li
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Leishen Wang
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Nan Li
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Gang Hu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine,
Tulane University, New Orleans, Louisiana
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston,
Massachusetts
| |
Collapse
|
145
|
Engelbrechtsen L, Gybel-Brask D, Mahendran Y, Crusell M, Hansen TH, Schnurr TM, Hogdall E, Skibsted L, Hansen T, Vestergaard H. Birth weight variants are associated with variable fetal intrauterine growth from 20 weeks of gestation. Sci Rep 2018; 8:8376. [PMID: 29849051 PMCID: PMC5976727 DOI: 10.1038/s41598-018-26752-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Fetal intrauterine growth is influenced by complex interactions between the maternal genes, environment and fetal genes. The aim of this study was to assess the effect of GWAS-identified genetic variants associated with birth weight on intrauterine fetal growth in 665 children. Fetal growth was estimated by two-dimensional ultrasound scans at 20, 25 and 32 weeks of gestation and growth trajectories were modeled using mixed linear regression. A genetic risk score (GRS) of birth weight-raising variants was associated with intrauterine growth showing an attenuating effect on the unconditional daily reduction in proportional weight gain of 8.92 × 10-6 percentage points/allele/day (p = 2.0 × 10-4), corresponding to a mean difference of 410 g at 40 weeks of gestation between a child with lowest and highest GRS. Eight variants were independently associated with intrauterine growth throughout the pregnancy, while four variants were associated with fetal growth in the periods 20-25 or 25-32 weeks of gestation, indicating that some variants may act in specific time windows during pregnancy. Four of the intrauterine growth variants were associated with type 2 diabetes, hypertension or BMI in the UK Biobank, which may provide basis for further understanding of the link between intrauterine growth and later risk of metabolic disease.
Collapse
Affiliation(s)
- L Engelbrechtsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - D Gybel-Brask
- Department of Gynecology and Obstetrics, Section of Fetal Medicine, Roskilde University Hospital, Roskilde, Denmark
| | - Y Mahendran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - M Crusell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
| | - T H Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
| | - T M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - E Hogdall
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - L Skibsted
- Department of Gynecology and Obstetrics, Section of Fetal Medicine, Roskilde University Hospital, Roskilde, Denmark
| | - T Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
| | - H Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark.
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
146
|
Genetic risk score of common genetic variants for impaired fasting glucose and newly diagnosed type 2 diabetes influences oxidative stress. Sci Rep 2018; 8:7828. [PMID: 29777116 PMCID: PMC5959868 DOI: 10.1038/s41598-018-26106-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
We tested the hypothesis that the cumulative effects of common genetic variants related to elevated fasting glucose are collectively associated with oxidative stress. Using 25 single nucleotide polymorphisms (SNPs), a weighted genetic risk score (wGRS) was constructed by summing nine risk alleles based on nominal significance and a consistent effect direction in 1,395 controls and 718 patients with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes. All the participants were divided into the following three groups: low-wGRS, middle-wGRS, and high-wGRS groups. Among the nine SNPs, five SNPs were significantly associated with IFG and type 2 diabetes in this Korean population. wGRS was significantly associated with increased IFG and newly diagnosed type 2 diabetes (p = 6.83 × 10−14, odds ratio = 1.839) after adjusting for confounding factors. Among the IFG and type 2 diabetes patients, the fasting serum glucose and HbA1c levels were significantly higher in the high-wGRS group than in the other groups. The urinary 8-epi-PGF2α and malondialdehyde concentrations were significantly higher in the high-wGRS group than in the other groups. Moreover, general population-level instrumental variable estimation (using wGRS as an instrument) strengthened the causal effect regarding the largely adverse influence of high levels of fasting serum glucose on markers of oxidative stress in the Korean population. Thus, the combination of common genetic variants with small effects on IFG and newly diagnosed type 2 diabetes are significantly associated with oxidative stress.
Collapse
|
147
|
Lee J, Ma K, Moulik M, Yechoor V. Untimely oxidative stress in β-cells leads to diabetes - Role of circadian clock in β-cell function. Free Radic Biol Med 2018; 119:69-74. [PMID: 29458148 PMCID: PMC5910243 DOI: 10.1016/j.freeradbiomed.2018.02.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Diabetes results from a loss of β-cell function. With the number of people with diabetes reaching epidemic proportions globally, understanding mechanisms that are contributing to this increasing prevalence is critical. One such factor has been circadian disruption, with shift-work, light pollution, jet-lag, increased screen time, all acting as potential contributory factors. Though circadian disruption has been epidemiologically associated with diabetes and other metabolic disorders for many decades, it is only recently that there has been a better understanding of the underlying molecular mechanisms. Experimental circadian disruption, via manipulation of environmental or genetic factors using gene-deletion mouse models, has demonstrated the importance of circadian rhythms in whole body metabolism. Genetic disruption of core clock genes, specifically in the β-cells in mice, have, now demonstrated the importance of the intrinsic β-cell clock in regulating function. Recent work has also shown the interaction of the circadian clock and enhancers in β-cells, indicating a highly integrated regulation of transcription and cellular function by the circadian clock. Disruption of either the whole body or only the β-cell clock leads to significant impairment of mitochondrial function, uncoupling, impaired vesicular transport, oxidative stress in β-cells and finally impaired glucose-stimulated insulin secretion and diabetes. In this review, we explore the role of the circadian clock in mitigating oxidative stress and preserving β-cell function.
Collapse
Affiliation(s)
- J Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, 200 Lothrop, BST-1058W, Pittsburgh, PA 15261, United States
| | - K Ma
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - M Moulik
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, PA, United States
| | - V Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, 200 Lothrop, BST-1058W, Pittsburgh, PA 15261, United States.
| |
Collapse
|
148
|
Yang J, Chen S, Abecasis G. Improved score statistics for meta-analysis in single-variant and gene-level association studies. Genet Epidemiol 2018; 42:333-343. [PMID: 29696691 DOI: 10.1002/gepi.22123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 01/09/2023]
Abstract
Meta-analysis is now an essential tool for genetic association studies, allowing them to combine large studies and greatly accelerating the pace of genetic discovery. Although the standard meta-analysis methods perform equivalently as the more cumbersome joint analysis under ideal settings, they result in substantial power loss under unbalanced settings with various case-control ratios. Here, we investigate the power loss problem by the standard meta-analysis methods for unbalanced studies, and further propose novel meta-analysis methods performing equivalently to the joint analysis under both balanced and unbalanced settings. We derive improved meta-score-statistics that can accurately approximate the joint-score-statistics with combined individual-level data, for both linear and logistic regression models, with and without covariates. In addition, we propose a novel approach to adjust for population stratification by correcting for known population structures through minor allele frequencies. In the simulated gene-level association studies under unbalanced settings, our method recovered up to 85% power loss caused by the standard methods. We further showed the power gain of our methods in gene-level tests with 26 unbalanced studies of age-related macular degeneration . In addition, we took the meta-analysis of three unbalanced studies of type 2 diabetes as an example to discuss the challenges of meta-analyzing multi-ethnic samples. In summary, our improved meta-score-statistics with corrections for population stratification can be used to construct both single-variant and gene-level association studies, providing a useful framework for ensuring well-powered, convenient, cross-study analyses.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America.,Department of Human Genetics, Center for Computational and Quantitative Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sai Chen
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Gonçalo Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | | |
Collapse
|
149
|
Vaishya S, Sarwade RD, Seshadri V. MicroRNA, Proteins, and Metabolites as Novel Biomarkers for Prediabetes, Diabetes, and Related Complications. Front Endocrinol (Lausanne) 2018; 9:180. [PMID: 29740397 PMCID: PMC5925339 DOI: 10.3389/fendo.2018.00180] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is no more a lifestyle disease of developed countries. It has emerged as a major health problem worldwide including developing countries. However, how diabetes could be detected at an early stage (prediabetes) to prevent the progression of disease is still unclear. Currently used biomarkers like glycated hemoglobin and assessment of blood glucose level have their own limitations. These classical markers can be detected when the disease is already established. Prognosis of disease at early stages and prediction of population at a higher risk require identification of specific markers that are sensitive enough to be detected at early stages of disease. Biomarkers which could predict the risk of disease in people will be useful for developing preventive/proactive therapies to those individuals who are at a higher risk of developing the disease. Recent studies suggested that the expression of biomolecules including microRNAs, proteins, and metabolites specifically change during the progression of T2DM and related complications, suggestive of disease pathology. Owing to their omnipresence in body fluids and their association with onset, progression, and pathogenesis of T2DM, these biomolecules can be potential biomarker for prognosis, diagnosis, and management of disease. In this article, we summarize biomolecules that could be potential biomarkers and their signature changes associated with T2DM and related complications during disease pathogenesis.
Collapse
Affiliation(s)
| | - Rucha D. Sarwade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
150
|
Jung S. Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes. Exp Mol Med 2018; 50:1-13. [PMID: 29674722 PMCID: PMC5938056 DOI: 10.1038/s12276-018-0066-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/28/2018] [Indexed: 12/29/2022] Open
Abstract
Obesity and type 2 diabetes (T2D) are two major conditions that are related to metabolic disorders and affect a large population. Although there have been significant efforts to identify their therapeutic targets, few benefits have come from comprehensive molecular profiling. This limited availability of comprehensive molecular profiling of obesity and T2D may be due to multiple challenges, as these conditions involve multiple organs and collecting tissue samples from subjects is more difficult in obesity and T2D than in other diseases, where surgical treatments are popular choices. While there is no repository of comprehensive molecular profiling data for obesity and T2D, multiple existing data resources can be utilized to cover various aspects of these conditions. This review presents studies with available genomic data resources for obesity and T2D and discusses genome-wide association studies (GWAS), a knockout (KO)-based phenotyping study, and gene expression profiles. These studies, based on their assessed coverage and characteristics, can provide insights into how such data can be utilized to identify therapeutic targets for obesity and T2D.
Collapse
Affiliation(s)
- Sungwon Jung
- Department of Genome Medicine and Science, Gachon University School of Medicine, Incheon, Republic of Korea. .,Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|