101
|
Abstract
Peripheral artery disease-atherosclerosis of the abdominal aorta and lower extremity vascular bed-is a complex disease with both environmental and genetic determinants. Unmitigated disease is associated with major functional decline and can lead to chronic limb-threatening ischemia, amputation, and increased mortality. Over the last 10 years, major advances have been made in identifying the genetic basis of this common, complex disease. In this review, we provide an overview of the primary types of genetic analyses performed for peripheral artery disease, including heritability and linkage studies, and more recently biobank-based genome-wide association studies. Looking forward, we highlight areas of future study including efforts to identify causal peripheral artery disease genes, rare variant and structural variant analyses using whole-exome and whole-genome sequencing data, and the need to include individuals of diverse genetic ancestries.
Collapse
Affiliation(s)
- Derek Klarin
- Malcolm Randall VA Medical Center, Gainesville, FL (D.K.).,Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville (D.K.).,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (D.K.).,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (D.K.)
| | - Philip S Tsao
- VA Palo Alto Health Care System, CA (P.S.T.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (P.S.T.)
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (S.M.D.).,Department of Surgery, Perlman School of Medicine, University of Pennsylvania, Philadelphia (S.M.D.)
| |
Collapse
|
102
|
Luca CT, Crisan S, Cozma D, Negru A, Lazar MA, Vacarescu C, Trofenciuc M, Rachieru C, Craciun LM, Gaita D, Petrescu L, Mischie A, Iurciuc S. Arterial Hypertension: Individual Therapeutic Approaches-From DNA Sequencing to Gender Differentiation and New Therapeutic Targets. Pharmaceutics 2021; 13:pharmaceutics13060856. [PMID: 34207606 PMCID: PMC8229802 DOI: 10.3390/pharmaceutics13060856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this paper is to provide an accurate overview regarding the current recommended approach for antihypertensive treatment. The importance of DNA sequencing in understanding the complex implication of genetics in hypertension could represent an important step in understanding antihypertensive treatment as well as in developing new medical strategies. Despite a pool of data from studies regarding cardiovascular risk factors emphasizing a worse prognosis for female patients rather than male patients, there are also results indicating that women are more likely to be predisposed to the use of antihypertensive medication and less likely to develop uncontrolled hypertension. Moreover, lower systolic blood pressure values are associated with increased cardiovascular risk in women compared to men. The prevalence, awareness and, most importantly, treatment of hypertension is variable in male and female patients, since the mechanisms responsible for this pathology may be different and closely related to gender factors such as the renin–angiotensin system, sympathetic nervous activity, endothelin-1, sex hormones, aldosterone, and the immune system. Thus, gender-related antihypertensive treatment individualization may be a valuable tool in improving female patients’ prognosis.
Collapse
Affiliation(s)
- Constantin-Tudor Luca
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Crisan
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (S.C.); (M.T.)
| | - Dragos Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Alina Negru
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mihai-Andrei Lazar
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Vacarescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mihai Trofenciuc
- Department of Cardiology, “Vasile Goldis” Western University of Arad, Bulevardul Revoluției 94, 310025 Arad, Romania
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (S.C.); (M.T.)
| | - Ciprian Rachieru
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Internal Medicine Department, County Emergency Hospital, 5 Gheorghe Dima Street, 300079 Timisoara, Romania
- Advanced Research Center in Cardiovascular Pathology and Hemostaseology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura Maria Craciun
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
| | - Dan Gaita
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lucian Petrescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Alexandru Mischie
- Invasive Cardiology Unit, Centre Hospitalier de Montluçon, 03100 Montluçon, France;
| | - Stela Iurciuc
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Angiogenesis Research Center, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
103
|
Understanding Factors That Cause Tinnitus: A Mendelian Randomization Study in the UK Biobank. Ear Hear 2021; 43:70-80. [PMID: 34108397 DOI: 10.1097/aud.0000000000001074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the causal role of established risk factors and associated conditions to tinnitus and tinnitus severity in the UK Biobank. DESIGN The prospective cohort study with large dataset of >500,000 individuals. The analytical sample of 129,731 individuals in the UK Biobank of European descent. Participants were recruited from National Health Service registries, baseline age range between 37 and 73 years, response rate to baseline survey 6%. Participants were asked subjective questions about tinnitus and its severity. Previously observed associations (n = 23) were confirmed in the UK Biobank using logistic and ordinal regression models. Two-sample Mendelian randomization approaches were then used to test causal relationships between the 23 predictors and tinnitus and tinnitus severity. The main outcome measures were observational and genetic association between key demographics and determinants and two tinnitus outcomes (current tinnitus and tinnitus severity). RESULTS Prevalence of tinnitus was 20% and severe tinnitus 3.8%. The observational results are consistent with the previous literature, with hearing loss, older age, male gender, high BMI, higher deprivation, higher blood pressure, smoking history, as well as numerous comorbidities being associated with higher odds of current tinnitus. Mendelian randomization results showed causal correlations with tinnitus. Current tinnitus was predicted by genetically instrumented hearing loss (odds ratio [OR]: 8.65 [95% confidence interval (CI): 6.12 to 12.23]), major depression (OR: 1.26 [95% CI: 1.06 to 1.50]), neuroticism (OR: 1.48 [95% CI: 1.28 to 1.71]), and higher systolic blood pressure (OR: 1.01 [95% CI:1.00 to 1.02]). Lower odds of tinnitus were associated with longer duration in education (OR: 0.74 [95% CI: 0.63 to 0.88]), higher caffeine intake (OR: 0.89 [95% CI: 0.83 to 0.95]) and being a morning person (OR: 0.94 [95% CI: 0.90 to 0.98]). Tinnitus severity was predicted by a higher genetic liability to neuroticism (OR: 1.15 [95% CI: 1.06 to 1.26]) and schizophrenia (OR: 1.02 [95% CI: 1.00 to 1.04]). CONCLUSIONS Tinnitus data from the UK Biobank confirm established associated factors in the literature. Genetic analysis determined causal relationships with several factors that expand the understanding of the etiology of tinnitus and can direct future pathways of clinical care and research.
Collapse
|
104
|
Donlon TA, Chen R, Masaki KH, Willcox DC, Allsopp RC, Willcox BJ, Morris BJ. Association of growth hormone receptor gene variant with longevity in men is due to amelioration of increased mortality risk from hypertension. Aging (Albany NY) 2021; 13:14745-14767. [PMID: 34074802 PMCID: PMC8221335 DOI: 10.18632/aging.203133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
The single nucleotide polymorphism (SNP) rs4130113 of the growth hormone receptor gene (GHR) is associated with longevity. Here we explored whether longevity-associated genotypes protect against mortality in all individuals, or only in individuals with aging-related diseases. Rs4130113 genotypes were tested for association with mortality in 3,557 elderly American men of Japanese ancestry. At baseline (1991–1993), 1,000 had diabetes, 730 had coronary heart disease (CHD), 1,901 had hypertension, 485 had cancer, and 919 lacked these diseases. The men were followed from baseline until Dec 31, 2019 or death (mean 10.8 ± 6.5 SD years, range 0.01–28.8 years; 99.0% deceased by that date). In a heterozygote disadvantage model, longevity-associated genotypes were associated with significantly lower mortality risk in individuals having hypertension (covariate-adjusted hazard ratio [HR] 0.83 [95% CI: 0.76–0.93, p = 4.3 x10–4]. But in individuals with diabetes, CHD, and cancer there was no genotypic difference in lifespan. As expected, normotensive men outlived men with hypertension (p = 0.036). There was no effect, however, of genotypic difference on lifespan in normotensive men (p = 0.11). We found that SNP rs4130113 potentially influenced the binding of transcription factors E2A, MYF, NRSF, TAL1, and TCF12 so as to alter GHR expression. We propose that in individuals with hypertension, longevity-associated genetic variation in GHR enhances cell resilience mechanisms to help protect against cellular stress caused by hypertension. As a result, hypertension-affected men who possess the longevity-associated genetic variant of GHR live as long as normotensive men.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA.,Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.,Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Randi Chen
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Kamal H Masaki
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96817, USA
| | - D Craig Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA.,Department of Human Welfare, Okinawa International University, Ginowan, Okinawa 901-2701, Japan
| | - Richard C Allsopp
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96817, USA
| | - Brian J Morris
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96817, USA.,School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
105
|
Betrie AH, Brock JA, Harraz OF, Bush AI, He GW, Nelson MT, Angus JA, Wright CE, Ayton S. Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nat Commun 2021; 12:3296. [PMID: 34075043 PMCID: PMC8169932 DOI: 10.1038/s41467-021-23198-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Zinc, an abundant transition metal, serves as a signalling molecule in several biological systems. Zinc transporters are genetically associated with cardiovascular diseases but the function of zinc in vascular tone regulation is unknown. We found that elevating cytoplasmic zinc using ionophores relaxed rat and human isolated blood vessels and caused hyperpolarization of smooth muscle membrane. Furthermore, zinc ionophores lowered blood pressure in anaesthetized rats and increased blood flow without affecting heart rate. Conversely, intracellular zinc chelation induced contraction of selected vessels from rats and humans and depolarized vascular smooth muscle membrane potential. We demonstrate three mechanisms for zinc-induced vasorelaxation: (1) activation of transient receptor potential ankyrin 1 to increase calcitonin gene-related peptide signalling from perivascular sensory nerves; (2) enhancement of cyclooxygenase-sensitive vasodilatory prostanoid signalling in the endothelium; and (3) inhibition of voltage-gated calcium channels in the smooth muscle. These data introduce zinc as a new target for vascular therapeutics.
Collapse
Affiliation(s)
- Ashenafi H Betrie
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui, China
| | - James A Brock
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui, China
| | - Mark T Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - James A Angus
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
106
|
de las Fuentes L, Sung YJ, Noordam R, Winkler T, Feitosa MF, Schwander K, Bentley AR, Brown MR, Guo X, Manning A, Chasman DI, Aschard H, Bartz TM, Bielak LF, Campbell A, Cheng CY, Dorajoo R, Hartwig FP, Horimoto ARVR, Li C, Li-Gao R, Liu Y, Marten J, Musani SK, Ntalla I, Rankinen T, Richard M, Sim X, Smith AV, Tajuddin SM, Tayo BO, Vojinovic D, Warren HR, Xuan D, Alver M, Boissel M, Chai JF, Chen X, Christensen K, Divers J, Evangelou E, Gao C, Girotto G, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Rueedi R, Shu XO, Snieder H, Sofer T, Takeuchi F, Verweij N, Ware EB, Weiss S, Yanek LR, Amin N, Arking DE, Arnett DK, Bergmann S, Boerwinkle E, Brody JA, Broeckel U, Brumat M, Burke G, Cabrera CP, Canouil M, Chee ML, Chen YDI, Cocca M, Connell J, de Silva HJ, de Vries PS, Eiriksdottir G, Faul JD, Fisher V, Forrester T, Fox EF, Friedlander Y, Gao H, Gigante B, Giulianini F, Gu CC, Gu D, Harris TB, He J, Heikkinen S, Heng CK, Hunt S, Ikram MA, Irvin MR, Kähönen M, Kavousi M, et alde las Fuentes L, Sung YJ, Noordam R, Winkler T, Feitosa MF, Schwander K, Bentley AR, Brown MR, Guo X, Manning A, Chasman DI, Aschard H, Bartz TM, Bielak LF, Campbell A, Cheng CY, Dorajoo R, Hartwig FP, Horimoto ARVR, Li C, Li-Gao R, Liu Y, Marten J, Musani SK, Ntalla I, Rankinen T, Richard M, Sim X, Smith AV, Tajuddin SM, Tayo BO, Vojinovic D, Warren HR, Xuan D, Alver M, Boissel M, Chai JF, Chen X, Christensen K, Divers J, Evangelou E, Gao C, Girotto G, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Rueedi R, Shu XO, Snieder H, Sofer T, Takeuchi F, Verweij N, Ware EB, Weiss S, Yanek LR, Amin N, Arking DE, Arnett DK, Bergmann S, Boerwinkle E, Brody JA, Broeckel U, Brumat M, Burke G, Cabrera CP, Canouil M, Chee ML, Chen YDI, Cocca M, Connell J, de Silva HJ, de Vries PS, Eiriksdottir G, Faul JD, Fisher V, Forrester T, Fox EF, Friedlander Y, Gao H, Gigante B, Giulianini F, Gu CC, Gu D, Harris TB, He J, Heikkinen S, Heng CK, Hunt S, Ikram MA, Irvin MR, Kähönen M, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Kraja AT, Krieger JE, Langefeld CD, Li Y, Liang J, Liewald DCM, Liu CT, Liu J, Lohman KK, Mägi R, McKenzie CA, Meitinger T, Metspalu A, Milaneschi Y, Milani L, Mook-Kanamori DO, Nalls MA, Nelson CP, Norris JM, O'Connell J, Ogunniyi A, Padmanabhan S, Palmer ND, Pedersen NL, Perls T, Peters A, Petersmann A, Peyser PA, Polasek O, Porteous DJ, Raffel LJ, Rice TK, Rotter JI, Rudan I, Rueda-Ochoa OL, Sabanayagam C, Salako BL, Schreiner PJ, Shikany JM, Sidney SS, Sims M, Sitlani CM, Smith JA, Starr JM, Strauch K, Swertz MA, Teumer A, Tham YC, Uitterlinden AG, Vaidya D, van der Ende MY, Waldenberger M, Wang L, Wang YX, Wei WB, Weir DR, Wen W, Yao J, Yu B, Yu C, Yuan JM, Zhao W, Zonderman AB, Becker DM, Bowden DW, Deary IJ, Dörr M, Esko T, Freedman BI, Froguel P, Gasparini P, Gieger C, Jonas JB, Kammerer CM, Kato N, Lakka TA, Leander K, Lehtimäki T, Magnusson PKE, Marques-Vidal P, Penninx BWJH, Samani NJ, van der Harst P, Wagenknecht LE, Wu T, Zheng W, Zhu X, Bouchard C, Cooper RS, Correa A, Evans MK, Gudnason V, Hayward C, Horta BL, Kelly TN, Kritchevsky SB, Levy D, Palmas WR, Pereira AC, Province MM, Psaty BM, Ridker PM, Rotimi CN, Tai ES, van Dam RM, van Duijn CM, Wong TY, Rice K, Gauderman WJ, Morrison AC, North KE, Kardia SLR, Caulfield MJ, Elliott P, Munroe PB, Franks PW, Rao DC, Fornage M. Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci. Mol Psychiatry 2021; 26:2111-2125. [PMID: 32372009 PMCID: PMC7641978 DOI: 10.1038/s41380-020-0719-3] [Show More Authors] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, 63110, USA.
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Thomas Winkler
- Department of Genetic Epidemiology, University of Regensburg, 93051, Regensburg, Germany
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Alisa Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, 75724, France
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
| | - Fernando P Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, 96020-220, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - A R V R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, 30602, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 70808, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Icelandic Heart Association, Kopavogur, 201, Iceland
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Deng Xuan
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, Southern Denmark University, Odense, 5000, Denmark
| | - Jasmin Divers
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Giorgia Girotto
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - Sarah E Harris
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang-Chi Hsu
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Mathematics and Statistics, University of Minnesota, Duluth, MN, 55812, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Ilja M Nolte
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, 9700RB, The Netherlands
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Skåne, 205 02, Sweden
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Muhammad Riaz
- College of Medicine, Biological Sciences and Psychology, Health Sciences, The Infant Mortality and Morbidity Studies (TIMMS), Leicester, LE1 7RH, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, 9700RB, The Netherlands
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 9713GZ, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, 40536, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Marco Brumat
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
| | - Gregory Burke
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
| | - Miao Li Chee
- Statistics Unit, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Massimiliano Cocca
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - John Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Virginia Fisher
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, JMAAW15, Jamaica
| | - Ervin F Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, 91120, Israel
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Bruna Gigante
- Cardiovascular Unit, Bioclinicum, Department of Medicine, Karolinska Hospital, Stockholm, 17164, Sweden
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, 18288, Sweden
| | | | - Chi Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dongfeng Gu
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiang He
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70211, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70211, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119228, Singapore
| | - Steven Hunt
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84108, USA
- Weill Cornell Medicine in Qatar, Doha, Qatar
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marguerite R Irvin
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - J E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Carl D Langefeld
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David C M Liewald
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Kurt K Lohman
- Public Health Sciences, Biostatistics and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Colin A McKenzie
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, JMAAW15, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, 80333, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, 1081 BT, The Netherlands
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Mike A Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20895, USA
- Data Tecnica International, Glen Echo, MD, 20812, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Jill M Norris
- Department of Epidemiology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adesola Ogunniyi
- Department of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | | | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Thomas Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 85764, Neuherberg, Germany
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
- University Hospital Split, Split, Croatia
- Psychiatric Hospital "Sveti Ivan", Zagreb, Croatia
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Leslie J Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, 92868, USA
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | | | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | | | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 25249, USA
| | - Stephen S Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, EH8 9AZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universitat Munchen, 80539, Munich, Germany
| | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9700RB, The Netherlands
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Yih Chung Tham
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dhananjay Vaidya
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - M Yldau van der Ende
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 85764, Neuherberg, Germany
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, , University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Donald W Bowden
- Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA, 02142, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-, Salem, NC, 27157, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
- Department of Genomics of Common Disease, Imperial College London, London, W12 0NN, UK
| | - Paolo Gasparini
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), 85764, Neuherberg, Germany
| | - Jost Bruno Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, 68167, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Capital Medical University, 100730, Beijing, China
| | - Candace M Kammerer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70211, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70211, Finland
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, 1081 BT, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Ultrecht, The Netherlands
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bernardo L Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, 96020-220, Brazil
| | - Tanika N Kelly
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Stephen B Kritchevsky
- Sticht Center for Health Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Daniel Levy
- NHLBI Framingham Heart Study, Framingham, MA, 01702, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Walter R Palmas
- Division of General Medicine, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - A C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Michael M Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Paul M Ridker
- Harvard Medical School, Boston, MA, 02115, USA
- Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tien Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kari E North
- Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC, 27514, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Skåne, 205 02, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Västerbotten, 901 85, Sweden
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 70808, USA
| |
Collapse
|
107
|
Madden RA, McCartney DL, Walker RM, Hillary RF, Bermingham ML, Rawlik K, Morris SW, Campbell A, Porteous DJ, Deary IJ, Evans KL, Hafferty J, McIntosh AM, Marioni RE. Birth weight associations with DNA methylation differences in an adult population. Epigenetics 2021; 16:783-796. [PMID: 33079621 PMCID: PMC8216207 DOI: 10.1080/15592294.2020.1827713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) theory predicts that prenatal and early life events shape adult health outcomes. Birth weight is a useful indicator of the foetal experience and has been associated with multiple adult health outcomes. DNA methylation (DNAm) is one plausible mechanism behind the relationship of birth weight to adult health. Through data linkage between Generation Scotland and historic Scottish birth cohorts, and birth records held through the NHS Information and Statistics Division, a sample of 1,757 individuals with available birth weight and DNAm data was derived. Epigenome-wide association studies (EWAS) were performed in two independently generated DNAm subgroups (nSet1 = 1,395, nSet2 = 362), relating adult DNAm from whole blood to birth weight. Meta-analysis yielded one genome-wide significant CpG site (p = 5.97x10-9), cg00966482. There was minimal evidence for attenuation of the effect sizes for the lead loci upon adjustment for numerous potential confounder variables (body mass index, educational attainment, and socioeconomic status). Associations between birth weight and epigenetic measures of biological age were also assessed. Associations between lower birth weight and higher Grim Age acceleration (p(FDR) = 3.6x10-3) and shorter DNAm-derived telomere length (p(FDR) = 1.7x10-3) are described, although results for three other epigenetic clocks were null. Our results provide support for an association between birth weight and DNAm both locally at one CpG site, and globally via biological ageing estimates.
Collapse
Affiliation(s)
- Rebecca A. Madden
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rosie M. Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Robert F. Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Mairead L. Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Konrad Rawlik
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Stewart W. Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jonathan Hafferty
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
108
|
Oishi E, Hata J, Honda T, Sakata S, Chen S, Hirakawa Y, Yoshida D, Shibata M, Ohara T, Furuta Y, Kitazono T, Ninomiya T. Development of a risk prediction model for incident hypertension in Japanese individuals: the Hisayama Study. Hypertens Res 2021; 44:1221-1229. [PMID: 34059807 DOI: 10.1038/s41440-021-00673-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/09/2022]
Abstract
The identification of individuals at high risk of developing hypertension can be of great value to improve the efficiency of primary prevention strategies for hypertension. The objective of this study was to develop a risk prediction model for incident hypertension based on prospective longitudinal data from a general Japanese population. A total of 982 subjects aged 40-59 years without hypertension at baseline were followed up for 10 years (2002-12) for the incidence of hypertension. Hypertension was defined as systolic blood pressure (SBP) ≥ 140 mmHg, diastolic blood pressure (DBP) ≥ 90 mmHg, or the use of antihypertensive agents. The risk prediction model was developed using a Cox proportional hazards model. A simple risk scoring system was also established based on the developed model. During the follow-up period (median 10 years, interquartile range 5-10 years), 302 subjects (120 men and 182 women) developed new-onset hypertension. The risk prediction model for hypertension consisted of age, sex, SBP, DBP, use of glucose-lowering agents, body mass index (BMI), parental history of hypertension, moderate-to-high alcohol intake, and the interaction between age and BMI. The developed model demonstrated good discrimination (Harrell's C statistic=0.812 [95% confidence interval, 0.791-0.834]; optimism-corrected C statistic based on 200 bootstrap samples=0.804) and calibration (Greenwood-Nam-D'Agostino χ2 statistic=12.2). This risk prediction model is a useful guide for estimating an individual's absolute risk for hypertension and could facilitate the management of Japanese individuals at high risk of developing hypertension in the future.
Collapse
Affiliation(s)
- Emi Oishi
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Honda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoko Sakata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sanmei Chen
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichiro Hirakawa
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daigo Yoshida
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mao Shibata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Furuta
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
109
|
Razavi MA, Bazzano LA, Nierenberg J, Huang Z, Fernandez C, Razavi AC, Whelton SP, He J, Kelly TN. Advances in Genomics Research of Blood Pressure Responses to Dietary Sodium and Potassium Intakes. Hypertension 2021; 78:4-15. [PMID: 33993724 DOI: 10.1161/hypertensionaha.121.16509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than half of US adults have hypertension by 40 years of age and a subsequent increase in atherosclerotic cardiovascular disease risk. Dietary sodium and potassium are intricately linked to the pathophysiology of hypertension. However, blood pressure responses to dietary sodium and potassium, phenomena known as salt and potassium sensitivity of blood pressure, respectively, are heterogenous and normally distributed in the general population. Like blood pressure, salt and potassium sensitivity are complex phenotypes, and previous research has shown that up to 75% of individuals experience a blood pressure change in response to such dietary minerals. Previous research has also implicated both high salt sensitivity and low salt sensitivity (or salt resistance) of blood pressure to an increased risk of hypertension and potentially atherosclerotic cardiovascular disease risk. Given the clinical challenges required to accurately measure the sodium and potassium response phenotypes, genomic characterization of these traits has become of interest for hypertension prevention initiatives on both the individual and population levels. Here, we review advances in human genomics research of blood pressure responses to dietary sodium and potassium by focusing on 3 main areas, including the phenotypic characterization of salt sensitivity and resistance, clinical challenges in diagnosing such phenotypes, and the genomic mechanisms that may help to explain salt and potassium sensitivity and resistance. Through this process, we hope to further underline the value of leveraging genomics and broader multiomics for characterizing the blood pressure response to sodium and potassium to improve precision in lifestyle approaches for primordial and primary atherosclerotic cardiovascular disease prevention.
Collapse
Affiliation(s)
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Jovia Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine (J.N.)
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Camilo Fernandez
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Alexander C Razavi
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Seamus P Whelton
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (S.P.W.)
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| |
Collapse
|
110
|
Guo Y, Li X, Wang Z, Yu B. Gut Microbiota Dysbiosis in Human Hypertension: A Systematic Review of Observational Studies. Front Cardiovasc Med 2021; 8:650227. [PMID: 34055933 PMCID: PMC8160125 DOI: 10.3389/fcvm.2021.650227] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction: Hypertension is one of the major risk factors to human health and human studies on association between gut microbiota and hypertension or blood pressure have received increased attention. In the present study, we aim to evaluate gut microbiota dysbiosis in human hypertension using a method of systematic review. Methods: PubMed, EMBASE, and Web of Science databases were searched until March 2021 to identify eligible articles. Additional articles were also identified by searching specific authors in this field. Inclusion criteria were observational studies based on stool samples with hypertension group and control group. Newcastle-Ottawa quality assessment scale (NOS) was used to assess the quality of the included studies. PROSPERO registration number: CRD42020212219. Results: A total of 17 studies enrolling 9,085 participants were included. Fifteen of the enrolled studies showed good quality and two studies showed fair quality based on NOS. We found alpha diversity in hypertension decreased significantly and microbial structure can be separated compared with control groups. Gut microbiota of hypertension showed depletion of short chain fatty acids (SCFAs) producers and over-growth of some Proteobacteria and Bacteroidetes members. Up-regulation of lipopolysaccharide biosynthesis, phosphotransferase system, ABC transporters, etc. and down-regulation of some amino acid metabolism, etc. in hypertension were reported. Fecal SCFAs levels increased and plasma SCFAs levels decreased in hypertension. Stronger microbial interactions in hypertension were seen. Conclusion: In conclusion, gut microbiota dysbiosis was observed in hypertension, including decreased diversity, altered microbial structure, compositional change of taxa, alterations of microbial function, nutritional and immunological factors, and microbial interactions. Poor absorption and high excretion of SCFAs may play an important role in the pathogenesis of hypertension. These findings may provide insights into etiology study and new microbial-based therapies of hypertension. Systematic Review Registration: PROSPERO database, identifier CRD42020212219.
Collapse
Affiliation(s)
- Yang Guo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaosu Li
- Department of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhijian Wang
- Department of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
111
|
Zhang F, Baranova A, Zhou C, Cao H, Chen J, Zhang X, Xu M. Causal influences of neuroticism on mental health and cardiovascular disease. Hum Genet 2021; 140:1267-1281. [PMID: 33973063 DOI: 10.1007/s00439-021-02288-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
We investigated the relationship between neuroticism and 16 mental and 18 physical traits using summary results of genome-wide association studies for these traits. LD score regression was used to investigate genetic correlations between neuroticism and the 34 health outcomes. Mendelian randomization was performed to investigate mutual causal relationships between neuroticism and the 34 health outcomes. Neuroticism genetically correlates with a majority of health-related traits and confers causal effects on 12 mental traits (major depressive disorder (MDD), insomnia, subjective well-being (SWB, negatively), schizophrenia, attention-deficit/hyperactivity disorder, alcohol dependence, loneliness, anorexia nervosa, anxiety disorder, bipolar disorder, obsessive-compulsive disorder, and psychiatric disorders) and two physical diseases (cardiovascular disease and hypertensive disease). Conversely, MDD, SWB, and insomnia have a causal effect on neuroticism. We highlighted key genes contributing to the causal associations between neuroticism and MDD, including RBFOX1, RERE, SOX5, and TCF4, and those contributing to the causal associations between neuroticism and cardiovascular diseases, including MAD1L1, ARNTL, RERE, and SOX6. The present study indicates that genetic variation mediates the causal influences of neuroticism on mental health and cardiovascular diseases.
Collapse
Affiliation(s)
- Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, 20110, USA.,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, 20110, USA
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, 210029, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mingqing Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
112
|
Update on Treatment of Hypertension After Renal Transplantation. Curr Hypertens Rep 2021; 23:25. [PMID: 33961145 DOI: 10.1007/s11906-021-01151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW To incorporate novel findings on pathophysiology and treatment of posttransplant hypertension. RECENT FINDINGS (1) The sodium retaining effects of CNIs are mediated by stimulation of the thiazide-sensitive sodium chloride co-transporter in the distal convoluted tubule and in this regard chlorthalidone was proven to be an effective antihypertensive drug in renal transplantation. (2) Local and not systemic activation of the renin-angiotensin-aldosterone system plays a crucial role in the pathogenesis of posttransplant hypertension. (3) Recent randomized controlled trials failed to prove the presumed superiority of renin-angiotensin blockers in kidney transplantation. (4) Steroid-free and mammalian target of rapamycin-based immunosuppressive drug combinations did not show favorable effects on blood pressure control. (5) In a recent report the risk of non-melanoma skin cancer was higher with thiazide diuretics. But the increased cancer risk in transplant recipients is mainly attributed to comorbidities, such as diabetes and hypertension and of course to the transplantation condition itself or the obligatory application of immunosuppression, and has little to do with the antihypertensive medication Actual recommendations about BP targets in adult renal transplant recipients are coming from a post hoc analysis of a large randomized trial with another primary endpoint. Unless convincing studies on treatment of hypertension after renal transplantation are available, the ESC/ESH Guidelines 2018 should apply for these patients.
Collapse
|
113
|
Eales JM, Jiang X, Xu X, Saluja S, Akbarov A, Cano-Gamez E, McNulty MT, Finan C, Guo H, Wystrychowski W, Szulinska M, Thomas HB, Pramanik S, Chopade S, Prestes PR, Wise I, Evangelou E, Salehi M, Shakanti Y, Ekholm M, Denniff M, Nazgiewicz A, Eichinger F, Godfrey B, Antczak A, Glyda M, Król R, Eyre S, Brown J, Berzuini C, Bowes J, Caulfield M, Zukowska-Szczechowska E, Zywiec J, Bogdanski P, Kretzler M, Woolf AS, Talavera D, Keavney B, Maffia P, Guzik TJ, O'Keefe RT, Trynka G, Samani NJ, Hingorani A, Sampson MG, Morris AP, Charchar FJ, Tomaszewski M. Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nat Genet 2021; 53:630-637. [PMID: 33958779 DOI: 10.1038/s41588-021-00835-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
The kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome. We uncovered kidney targets for 479 (58.3%) BP-GWAS variants and paired 49 BP-GWAS kidney genes with 210 licensed drugs. Our colocalization and Mendelian randomization analyses identified 179 unique kidney genes with evidence of putatively causal effects on BP. Through Mendelian randomization, we also uncovered effects of BP on renal outcomes commonly affecting patients with hypertension. Collectively, our studies identified genetic variants, kidney genes, molecular mechanisms and biological pathways of key relevance to the genetic regulation of BP and inherited susceptibility to hypertension.
Collapse
Affiliation(s)
- James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Xiao Jiang
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eddie Cano-Gamez
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Michelle T McNulty
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - Christopher Finan
- Institute of Cardiovascular Science, University College London, London, UK
| | - Hui Guo
- Centre for Biostatistics, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Medical University of Silesia, Katowice, Poland
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Huw B Thomas
- Division of Evolution and Genomic Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sanjeev Pramanik
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- East Lancashire Hospitals NHS Trust, Blackburn, UK
| | - Sandesh Chopade
- Institute of Cardiovascular Science, University College London, London, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Ingrid Wise
- Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, Queensland, Australia
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Mahan Salehi
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Yusif Shakanti
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Mikael Ekholm
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Alicja Nazgiewicz
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Felix Eichinger
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bradley Godfrey
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Maciej Glyda
- Department of Transplantology and General Surgery Poznan, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Medical University of Silesia, Katowice, Poland
| | - Stephen Eyre
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Jason Brown
- Division of Research and Innovation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Carlo Berzuini
- Centre for Biostatistics, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - John Bowes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Mark Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | | | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | | | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Division of Cardiology and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Raymond T O'Keefe
- Division of Evolution and Genomic Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Gosia Trynka
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Biomedical Research Centre, Leicester, UK
| | - Aroon Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Matthew G Sampson
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew P Morris
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
114
|
Nierenberg JL, Anderson AH, He J, Parsa A, Srivastava A, Cohen JB, Saraf SL, Rahman M, Rosas SE, Kelly TN, CRIC Study Investigators. Association of Blood Pressure Genetic Risk Score with Cardiovascular Disease and CKD Progression: Findings from the CRIC Study. KIDNEY360 2021; 2:1251-1260. [PMID: 35369652 PMCID: PMC8676389 DOI: 10.34067/kid.0007632020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
Background In the general population, genetic risk for high BP has been associated with cardiovascular disease, but not kidney function or incident CKD. These relationships have not been studied longitudinally in participants with CKD. We examined whether BP genetic risk predicts cardiovascular disease and kidney disease progression in patients with CKD. Methods We included 1493 African- and 1581 European-ancestry participants from the Chronic Renal Insufficiency Cohort who were followed for 12 years. We examined associations of BP genetic risk scores with development of cardiovascular disease (myocardial infarction, congestive heart failure, or stroke) and CKD progression (incident ESKD or halving of eGFR) using Cox proportional hazards models. Analyses were stratified by race and included adjustment for age, sex, study site, and ancestry principal components. Results Among European-ancestry participants, each SD increase in systolic BP and pulse pressure genetic risk score conferred a 15% (95% CI, 4% to 27%) and 11% (95% CI, 1% to 23%), respectively, higher risk of cardiovascular disease, with a similar, marginally significant trend for diastolic BP. Among African-ancestry participants, each SD increase in systolic and diastolic BP genetic risk score conferred a 10% (95% CI, 1% to 20%) and 9% (95% CI, 0% to 18%), respectively, higher risk of cardiovascular disease. Higher genetic risk was not associated with CKD progression. Conclusions Genetic risk for elevation in BP was associated with increased risk of cardiovascular disease, but not CKD progression.
Collapse
Affiliation(s)
- Jovia L. Nierenberg
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Amanda H. Anderson
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana,Department of Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Afshin Parsa
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, Maryland
| | - Anand Srivastava
- Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jordana B. Cohen
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Santosh L. Saraf
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois
| | - Mahboob Rahman
- Division of Nephrology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sylvia E. Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | | |
Collapse
|
115
|
Muntner P. Hypertension Across the Life Course: Introduction to an American Journal of Hypertension Compendium. Am J Hypertens 2021; 34:231-233. [PMID: 33821940 DOI: 10.1093/ajh/hpab010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
116
|
Wenric S, Jeff JM, Joseph T, Yee MC, Belbin GM, Owusu Obeng A, Ellis SB, Bottinger EP, Gottesman O, Levin MA, Kenny EE. Rapid response to the alpha-1 adrenergic agent phenylephrine in the perioperative period is impacted by genomics and ancestry. THE PHARMACOGENOMICS JOURNAL 2021; 21:174-189. [PMID: 33168928 PMCID: PMC7997806 DOI: 10.1038/s41397-020-00194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022]
Abstract
The emergence of genomic data in biobanks and health systems offers new ways to derive medically important phenotypes, including acute phenotypes occurring during inpatient clinical care. Here we study the genetic underpinnings of the rapid response to phenylephrine, an α1-adrenergic receptor agonist commonly used to treat hypotension during anesthesia and surgery. We quantified this response by extracting blood pressure (BP) measurements 5 min before and after the administration of phenylephrine. Based on this derived phenotype, we show that systematic differences exist between self-reported ancestry groups: European-Americans (EA; n = 1387) have a significantly higher systolic response to phenylephrine than African-Americans (AA; n = 1217) and Hispanic/Latinos (HA; n = 1713) (31.3% increase, p value < 6e-08 and 22.9% increase, p value < 5e-05 respectively), after adjusting for genetic ancestry, demographics, and relevant clinical covariates. We performed a genome-wide association study to investigate genetic factors underlying individual differences in this derived phenotype. We discovered genome-wide significant association signals in loci and genes previously associated with BP measured in ambulatory settings, and a general enrichment of association in these genes. Finally, we discovered two low frequency variants, present at ~1% in EAs and AAs, respectively, where patients carrying one copy of these variants show no phenylephrine response. This work demonstrates our ability to derive a quantitative phenotype suited for comparative statistics and genome-wide association studies from dense clinical and physiological measures captured for managing patients during surgery. We identify genetic variants underlying non response to phenylephrine, with implications for preemptive pharmacogenomic screening to improve safety during surgery.
Collapse
Affiliation(s)
- Stephane Wenric
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janina M Jeff
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Muh-Ching Yee
- Stanford Functional Genomics Facility, Stanford, CA, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Gillian M Belbin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aniwaa Owusu Obeng
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pharmacy Department, The Mount Sinai Hospital, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen B Ellis
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erwin P Bottinger
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew A Levin
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
117
|
Goddard PC, Keys KL, Mak ACY, Lee EY, Liu AK, Samedy-Bates LA, Risse-Adams O, Contreras MG, Elhawary JR, Hu D, Huntsman S, Oh SS, Salazar S, Eng C, Himes BE, White MJ, Burchard EG. Integrative genomic analysis in African American children with asthma finds three novel loci associated with lung function. Genet Epidemiol 2021; 45:190-208. [PMID: 32989782 PMCID: PMC7902343 DOI: 10.1002/gepi.22365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/06/2022]
Abstract
Bronchodilator (BD) drugs are commonly prescribed for treatment and management of obstructive lung function present with diseases such as asthma. Administration of BD medication can partially or fully restore lung function as measured by pulmonary function tests. The genetics of baseline lung function measures taken before BD medication have been extensively studied, and the genetics of the BD response itself have received some attention. However, few studies have focused on the genetics of post-BD lung function. To address this gap, we analyzed lung function phenotypes in 1103 subjects from the Study of African Americans, Asthma, Genes, and Environment, a pediatric asthma case-control cohort, using an integrative genomic analysis approach that combined genotype, locus-specific genetic ancestry, and functional annotation information. We integrated genome-wide association study (GWAS) results with an admixture mapping scan of three pulmonary function tests (forced expiratory volume in 1 s [FEV1 ], forced vital capacity [FVC], and FEV1 /FVC) taken before and after albuterol BD administration on the same subjects, yielding six traits. We identified 18 GWAS loci, and five additional loci from admixture mapping, spanning several known and novel lung function candidate genes. Most loci identified via admixture mapping exhibited wide variation in minor allele frequency across genotyped global populations. Functional fine-mapping revealed an enrichment of epigenetic annotations from peripheral blood mononuclear cells, fetal lung tissue, and lung fibroblasts. Our results point to three novel potential genetic drivers of pre- and post-BD lung function: ADAMTS1, RAD54B, and EGLN3.
Collapse
Affiliation(s)
- Pagé C. Goddard
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Kevin L. Keys
- Department of Medicine, University of California, San Francisco, California, USA
- Berkeley Institute for Data Science, University of California, Berkeley, California, USA
| | - Angel C. Y. Mak
- Department of Medicine, University of California, San Francisco, California, USA
| | - Eunice Y. Lee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Amy K. Liu
- Department of Neurology, University of California, San Francisco, California, USA
| | - Lesly-Anne Samedy-Bates
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Oona Risse-Adams
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Biology, University of California, Santa Cruz, California, USA
| | - María G. Contreras
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Jennifer R. Elhawary
- Department of Medicine, University of California, San Francisco, California, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California, USA
| | - Sam S. Oh
- Department of Medicine, University of California, San Francisco, California, USA
| | - Sandra Salazar
- Department of Medicine, University of California, San Francisco, California, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California, USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marquitta J. White
- Department of Medicine, University of California, San Francisco, California, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
118
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3538] [Impact Index Per Article: 884.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
119
|
Liu L, Zeng P, Xue F, Yuan Z, Zhou X. Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization. Am J Hum Genet 2021; 108:240-256. [PMID: 33434493 PMCID: PMC7895847 DOI: 10.1016/j.ajhg.2020.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptome-wide association study (TWAS) integrates data from genome-wide association studies and gene expression mapping studies for investigating the gene regulatory mechanisms underlying diseases. Existing TWAS methods are primarily univariate in nature, focusing on analyzing one outcome trait at a time. However, many complex traits are correlated with each other and share a common genetic basis. Consequently, analyzing multiple traits jointly through multivariate analysis can potentially improve the power of TWASs. Here, we develop a method, moPMR-Egger (multiple outcome probabilistic Mendelian randomization with Egger assumption), for analyzing multiple outcome traits in TWAS applications. moPMR-Egger examines one gene at a time, relies on its cis-SNPs that are in potential linkage disequilibrium with each other to serve as instrumental variables, and tests its causal effects on multiple traits jointly. A key feature of moPMR-Egger is its ability to test and control for potential horizontal pleiotropic effects from instruments, thus maximizing power while minimizing false associations for TWASs. In simulations, moPMR-Egger provides calibrated type I error control for both causal effects testing and horizontal pleiotropic effects testing and is more powerful than existing univariate TWAS approaches in detecting causal associations. We apply moPMR-Egger to analyze 11 traits from 5 trait categories in the UK Biobank. In the analysis, moPMR-Egger identified 13.15% more gene associations than univariate approaches across trait categories and revealed distinct regulatory mechanisms underlying systolic and diastolic blood pressures.
Collapse
Affiliation(s)
- Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
120
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
121
|
Baek EJ, Kim S. Current Understanding of Pressure Natriuresis. Electrolyte Blood Press 2021; 19:38-45. [PMID: 35003284 PMCID: PMC8715224 DOI: 10.5049/ebp.2021.19.2.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Pressure natriuresis refers to the concept that increased renal perfusion pressure leads to a decrease in tubular reabsorption of sodium and an increased sodium excretion. The set point of blood pressure is the point at which pressure natriuresis and extracellular fluid volume are in equilibrium. The term "abnormal pressure natriuresis" usually refers to the expected abnormal effect of a certain level of blood pressure on sodium excretion. Factors that cause abnormal pressure natriuresis are known. Sympathetic nerve system, genetic factors, and dietary factors may affect an increase in renal perfusion pressure. An increase in renal perfusion pressure increases renal interstitial hydrostatic pressure (RIHP). Increased RIHP affects tubular reabsorption through alterations in tight junctional permeability to sodium in proximal tubules, redistribution of apical sodium transporters, and/or release of renal autacoids. Renal autocoids such as nitric oxide, prostaglandin E2, kinins, and angiotensin II may also regulate pressure natriuresis by acting directly on renal tubule sodium transport. In addition, inflammation and reactive oxygen species may mediate pressure natriuresis. Recently, the use of new drugs associated with pressure natriuretic mechanisms, such as angiotensin receptor neprilysin inhibitor and sodium glucose co-transporter 2 inhibitors, has been consistently demonstrated to reduce mortality and hypertension-related complications. Therefore, the understanding of pressure natriuresis is gaining attention as an antihypertensive strategy. In this review, we provide a basic overview of pressure natriuresis to the target audience of nephrologists.
Collapse
Affiliation(s)
- Eun Ji Baek
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
122
|
Zhu P, Herrington WG, Haynes R, Emberson J, Landray MJ, Sudlow CL, Woodward M, Baigent C, Lewington S, Staplin N. Conventional and Genetic Evidence on the Association between Adiposity and CKD. J Am Soc Nephrol 2021; 32:127-137. [PMID: 33127858 PMCID: PMC7894659 DOI: 10.1681/asn.2020050679] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The size of any causal contribution of central and general adiposity to CKD risk and the underlying mechanism of mediation are unknown. METHODS Data from 281,228 UK Biobank participants were used to estimate the relevance of waist-to-hip ratio and body mass index (BMI) to CKD prevalence. Conventional approaches used logistic regression. Genetic analyses used Mendelian randomization (MR) and data from 394 waist-to-hip ratio and 773 BMI-associated loci. Models assessed the role of known mediators (diabetes mellitus and BP) by adjusting for measured values (conventional analyses) or genetic associations of the selected loci (multivariable MR). RESULTS Evidence of CKD was found in 18,034 (6.4%) participants. Each 0.06 higher measured waist-to-hip ratio and each 5-kg/m2 increase in BMI were associated with 69% (odds ratio, 1.69; 95% CI, 1.64 to 1.74) and 58% (1.58; 1.55 to 1.62) higher odds of CKD, respectively. In analogous MR analyses, each 0.06-genetically-predicted higher waist-to-hip ratio was associated with a 29% (1.29; 1.20 to 1.38) increased odds of CKD, and each 5-kg/m2 genetically-predicted higher BMI was associated with a 49% (1.49; 1.39 to 1.59) increased odds. After adjusting for diabetes and measured BP, chi-squared values for associations for waist-to-hip ratio and BMI fell by 56%. In contrast, mediator adjustment using multivariable MR found 83% and 69% reductions in chi-squared values for genetically-predicted waist-to-hip ratio and BMI models, respectively. CONCLUSIONS Genetic analyses suggest that conventional associations between central and general adiposity with CKD are largely causal. However, conventional approaches underestimate mediating roles of diabetes, BP, and their correlates. Genetic approaches suggest these mediators explain most of adiposity-CKD-associated risk.
Collapse
Affiliation(s)
- Pengfei Zhu
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, Oxford, United Kingdom,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - William G. Herrington
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, Oxford, United Kingdom,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom,Oxford Kidney Unit, Churchill Hospital, Oxford, United Kingdom
| | - Richard Haynes
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, Oxford, United Kingdom,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom,Oxford Kidney Unit, Churchill Hospital, Oxford, United Kingdom
| | - Jonathan Emberson
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, Oxford, United Kingdom,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Martin J. Landray
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, Oxford, United Kingdom,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom,Health Data Research UK, University of Oxford, Oxford, United Kingdom,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Cathie L.M. Sudlow
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Woodward
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia,The George Institute for Global Health, Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom,Welch Center for Prevention, Epidemiology and Clinical Research, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Colin Baigent
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, Oxford, United Kingdom,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sarah Lewington
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Natalie Staplin
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, Oxford, United Kingdom,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
123
|
Pietzner M, Wheeler E, Carrasco-Zanini J, Raffler J, Kerrison ND, Oerton E, Auyeung VPW, Luan J, Finan C, Casas JP, Ostroff R, Williams SA, Kastenmüller G, Ralser M, Gamazon ER, Wareham NJ, Hingorani AD, Langenberg C. Genetic architecture of host proteins involved in SARS-CoV-2 infection. Nat Commun 2020; 11:6397. [PMID: 33328453 PMCID: PMC7744536 DOI: 10.1038/s41467-020-19996-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).
Collapse
Affiliation(s)
- Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Erin Oerton
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, UK
- UCL BHF Research Accelerator centre, London, UK
| | - Juan P Casas
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | | | | | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité University Medicine, Berlin, Germany
| | - Eric R Gamazon
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, UK.
- UCL BHF Research Accelerator centre, London, UK.
- Health Data Research UK, Institute of Health Informatics, University College London, London, UK.
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health (BIH), Charité University Medicine, Berlin, Germany.
| |
Collapse
|
124
|
Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, et alSurendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, Cho K, Christensen C, Connell J, Mutsert RD, Dominiczak AF, Dörr M, Eiriksdottir G, Farmaki AE, Gaziano JM, Grarup N, Grove ML, Hallmans G, Hansen T, Have CT, Heiss G, Jørgensen ME, Jousilahti P, Kajantie E, Kamat M, Käräjämäki A, Karpe F, Koistinen HA, Kovesdy CP, Kuulasmaa K, Laatikainen T, Lannfelt L, Lee IT, Lee WJ, Linneberg A, Martin LW, Moitry M, Nadkarni G, Neville MJ, Palmer CNA, Papanicolaou GJ, Pedersen O, Peters J, Poulter N, Rasheed A, Rasmussen KL, Rayner NW, Mägi R, Renström F, Rettig R, Rossouw J, Schreiner PJ, Sever PS, Sigurdsson EL, Skaaby T, Sun YV, Sundstrom J, Thorgeirsson G, Esko T, Trabetti E, Tsao PS, Tuomi T, Turner ST, Tzoulaki I, Vaartjes I, Vergnaud AC, Willer CJ, Wilson PWF, Witte DR, Yonova-Doing E, Zhang H, Aliya N, Almgren P, Amouyel P, Asselbergs FW, Barnes MR, Blakemore AI, Boehnke M, Bots ML, Bottinger EP, Buring JE, Chambers JC, Chen YDI, Chowdhury R, Conen D, Correa A, Davey Smith G, Boer RAD, Deary IJ, Dedoussis G, Deloukas P, Di Angelantonio E, Elliott P, Felix SB, Ferrières J, Ford I, Fornage M, Franks PW, Franks S, Frossard P, Gambaro G, Gaunt TR, Groop L, Gudnason V, Harris TB, Hayward C, Hennig BJ, Herzig KH, Ingelsson E, Tuomilehto J, Järvelin MR, Jukema JW, Kardia SLR, Kee F, Kooner JS, Kooperberg C, Launer LJ, Lind L, Loos RJF, Majumder AAS, Laakso M, McCarthy MI, Melander O, Mohlke KL, Murray AD, Nordestgaard BG, Orho-Melander M, Packard CJ, Padmanabhan S, Palmas W, Polasek O, Porteous DJ, Prentice AM, Province MA, Relton CL, Rice K, Ridker PM, Rolandsson O, Rosendaal FR, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sattar N, Sheu WHH, Smith BH, Soranzo N, Spector TD, Starr JM, Sebert S, Taylor KD, Lakka TA, Timpson NJ, Tobin MD, van der Harst P, van der Meer P, Ramachandran VS, Verweij N, Virtamo J, Völker U, Weir DR, Zeggini E, Charchar FJ, Wareham NJ, Langenberg C, Tomaszewski M, Butterworth AS, Caulfield MJ, Danesh J, Edwards TL, Holm H, Hung AM, Lindgren CM, Liu C, Manning AK, Morris AP, Morrison AC, O'Donnell CJ, Psaty BM, Saleheen D, Stefansson K, Boerwinkle E, Chasman DI, Levy D, Newton-Cheh C, Munroe PB, Howson JMM. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat Genet 2020; 52:1314-1332. [PMID: 33230300 PMCID: PMC7610439 DOI: 10.1038/s41588-020-00713-x] [Show More Authors] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elena V Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Najim Lahrouchi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences Amsterdam, Amsterdam, the Netherlands
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Savita Karthikeyan
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - James Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Lingyan Chen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Chen Yao
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - James H Cartwright
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Vinicius Tragante
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | | | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Bram P Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Isobel D Stewart
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Paul L Auer
- Joseph J Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vickie S Braithwaite
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Nutrition and Bone Health Group, University of Cambridge, Cambridge, UK
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Fotios Drenos
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA
| | - Cristiano Fava
- Department of Medicine, University of Verona, Verona, Italy
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Teresa Ferreira
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christopher N Foley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Queen Mary University of London, London, UK
- Division of Psychiatry, University College of London, London, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Aki S Havulinna
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Jennifer E Huffman
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
| | - Jukka Kontto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Martin G Larson
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaana Lindström
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - David Mosen-Ansorena
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Markus Perola
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Clinical and Molecular Metabolism Research Program (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nuno Sepúlveda
- Department of Infection Biology, Faculty of Tropical and Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre of Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University of, Singapore, Singapore
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James R Staley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alena Stanáková
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Tennessee Valley Health Systems VA, Nashville, TN, USA
| | - Giovanni Veronesi
- Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robin Young
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing-Hua Zhao
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | | | - Eralda Asllanaj
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Stefan Blankenberg
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - John Connell
- University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eero Kajantie
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Mihir Kamat
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - AnneMari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Vaasa, Finland
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Csaba P Kovesdy
- Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
| | - Kari Kuulasmaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, , Chung Shan Medical University, Taichung, Taiwan
- College of Science, Tunghai University, Taichung, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Marie Moitry
- Department of Public health, Strasbourg University Hospital, University of Strasbourg, Strasbourg, France
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Colin N A Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James Peters
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Katrine L Rasmussen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - N William Rayner
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Rainer Rettig
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jacques Rossouw
- Division of Cardiovascular Sciences, NHLBI, Bethesda, MD, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Peter S Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Emil L Sigurdsson
- Department of Family Medicine, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Health Care in Iceland, Reykjavik, Iceland
| | - Tea Skaaby
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Johan Sundstrom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Philip S Tsao
- VA Palo Alto Health Care System, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peter W F Wilson
- Atlanta VAMC and Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Naheed Aliya
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Peter Almgren
- Department of Medicine, Lund University, Malmö, Sweden
| | - Philippe Amouyel
- Univ Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
- INSERM, U1167, Lille, France
- CHU Lille, U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK, Institute of Health Informatics, University College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Alexandra I Blakemore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, UK
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Non-communicable Disease Research (CNCR), Dhaka, Bangladesh
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Cardiovascular Research Institute Basel, Basel, Switzerland
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Health Data Research UK-London at Imperial College London, London, UK
- UKDRI, Dementia Research Institute at Imperial College London, London, UK
- British Heart Foundation (BHF) Centre of Research Excellence, Imperial College London, London, UK
| | - Stephan B Felix
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Jean Ferrières
- Department of Cardiology and Department of Epidemiology, INSERM UMR 1027, Toulouse University Hospital, Toulouse, France
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Oxford Center for Diabetes, Endocrinology & Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Franks
- Institute of Reproductive & Developmental Biology, Imperial College London, London, UK
| | | | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Branwen J Hennig
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- Wellcome Trust, London, UK
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, and University Hospital Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- National Institute of Public Health, Madrid, Spain
| | - Marjo-Riitta Järvelin
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Unit of Primary Care, Oulu University Hospital, Kajaanintie, Oulu, Finland
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Kee
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Jaspal S Kooner
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Genentech, South San Francisco, San Francisco, CA, USA
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alison D Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- MRC International Nutrition Group at London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, UK
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nicole Soranzo
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, UK
| | - Sylvain Sebert
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Timo A Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio, Finland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin D Tobin
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Vasan S Ramachandran
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Niek Verweij
- University Medical Center Groningen, Groningen, the Netherlands
| | - Jarmo Virtamo
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Fadi J Charchar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Health Innovation and Transformation Center, Federation University Australia, Ballarat, Victoria, Australia
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Hilma Holm
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | - Adriana M Hung
- VA Tennessee Valley Healthcare System, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chunyu Liu
- Boston University School of Public Health, Boston, MA, USA
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare, Section of Cardiology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Danish Saleheen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Levy
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Population Sciences, Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK.
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK.
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd, Oxford, UK.
| |
Collapse
|
125
|
Gallo JE, Ochoa JE, Warren HR, Misas E, Correa MM, Gallo-Villegas JA, Bedoya G, Aristizábal D, McEwen JG, Caulfield MJ, Parati G, Clay OK. Hypertension and the roles of the 9p21.3 risk locus: Classic findings and new association data. Int J Cardiol Hypertens 2020; 7:100050. [PMID: 33330845 PMCID: PMC7491459 DOI: 10.1016/j.ijchy.2020.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The band 9p21.3 contains an established genomic risk zone for cardiovascular disease (CVD). Since the initial 2007 Wellcome Trust Case Control Consortium study (WTCCC), the increased CVD risk associated with 9p21.3 has been confirmed by multiple studies in different continents. However, many years later there was still no confirmed report of a corresponding association of 9p21.3 with hypertension, a major CV risk factor, nor with blood pressure (BP). THEORY In this contribution, we review the bipartite haplotype structure of the 9p21.3 risk locus: one block is devoid of protein-coding genes but contains the lead CVD risk SNPs, while the other block contains the first exon and regulatory DNA of the gene for the cell cycle inhibitor p15. We consider how findings from molecular biology offer possibilities of an involvement of p15 in hypertension etiology, with expression of the p15 gene modulated by genetic variation from within the 9p21.3 risk locus. RESULTS We present original results from a Colombian study revealing moderate but persistent association signals for BP and hypertension within the classic 9p21.3 CVD risk locus. These SNPs are mostly confined to a 'hypertension island' that spans less than 60 kb and coincides with the p15 haplotype block. We find confirmation in data originating from much larger, recent European BP studies, albeit with opposite effect directions. CONCLUSION Although more work will be needed to elucidate possible mechanisms, previous findings and new data prompt reconsidering the question of how variation in 9p21.3 might influence hypertension components of cardiovascular risk.
Collapse
Key Words
- 1 KG, 1000 Genomes Project
- BP, blood pressure
- Blood pressure levels
- CVD, cardiovascular disease
- DBP, diastolic blood pressure
- EGFR, epidermal growth factor receptor
- GWAS, genome wide association studi(es)
- Genotype-phenotype associations
- Haplotypes
- MAF, minor allele frequency
- RAS, renin angiotensin system
- SBP, systolic blood pressure
- SNP, single nucleotide polymorphism
- TGF-β, transforming growth factor beta
- VSMC, vascular smooth muscle cell(s)
- bp, base pair
- kb, kilobase pair
Collapse
Affiliation(s)
- Juan E. Gallo
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan E. Ochoa
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Helen R. Warren
- Clinical Pharmacology Department, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - Elizabeth Misas
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Gabriel Bedoya
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Dagnóvar Aristizábal
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- SICOR, Medellín, Colombia
| | - Juan G. McEwen
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Mark J. Caulfield
- Clinical Pharmacology Department, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Oliver K. Clay
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Translational Microbiology and Emerging Diseases (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
126
|
Teleka S, Hindy G, Drake I, Poveda A, Melander O, Liedberg F, Orho-Melander M, Stocks T. Blood pressure and bladder cancer risk in men by use of survival analysis and in interaction with NAT2 genotype, and by Mendelian randomization analysis. PLoS One 2020; 15:e0241711. [PMID: 33237904 PMCID: PMC7688142 DOI: 10.1371/journal.pone.0241711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
The association between blood pressure (BP) and bladder cancer (BC) risk remains unclear with confounding by smoking being of particular concern. We investigated the association between BP and BC risk among men using conventional survival-analysis, and by Mendelian Randomization (MR) analysis in an attempt to disconnect the association from smoking. We additionally investigated the interaction between BP and N-acetyltransferase-2 (NAT2) rs1495741, an established BC genetic risk variant, in the association. Populations consisting of 188,167 men with 502 incident BC's in the UK-biobank and 27,107 men with 928 incident BC's in two Swedish cohorts were used for the analysis. We found a positive association between systolic BP and BC risk in Cox-regression survival analysis in the Swedish cohorts, (hazard ratio [HR] per standard deviation [SD]: 1.14 [95% confidence interval 1.05-1.22]) and MR analysis (odds ratio per SD: 2-stage least-square regression, 7.70 [1.92-30.9]; inverse-variance weighted estimate, 3.43 [1.12-10.5]), and no associations in the UK-biobank (HR systolic BP: 0.93 [0.85-1.02]; MR OR: 1.24 [0.35-4.40] and 1.37 [0.43-4.37], respectively). BP levels were positively associated with muscle-invasive BC (MIBC) (HRs: systolic BP, 1.32 [1.09-1.59]; diastolic BP, 1.27 [1.04-1.55]), but not with non-muscle invasive BC, which could be analyzed in the Swedish cohorts only. There was no interaction between BP and NAT2 in relation to BC on the additive or multiplicative scale. These results suggest that BP might be related to BC, more particularly MIBC. There was no evidence to support interaction between BP and NAT2 in relation to BC in our study.
Collapse
Affiliation(s)
- Stanley Teleka
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
- * E-mail:
| | - George Hindy
- Department of Population Medicine, College of Medicine Qatar University, Doha, Qatar
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Isabel Drake
- Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Alaitz Poveda
- Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Division of Urological Research, Institution of Translational Medicine, Lund University, Malmö, Sweden
- Department of Urology, Skåne University Hospital, Skåne, Sweden
| | | | - Tanja Stocks
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|
127
|
Diet-gene interaction: effects of polymorphisms in the ACE, AGT and BDKRB2 genes and the consumption of sodium, potassium, calcium, and magnesium on blood pressure of normotensive adult individuals. Mol Cell Biochem 2020; 476:1211-1219. [PMID: 33190196 DOI: 10.1007/s11010-020-03983-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Functional variants in genes of the renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems have already been implicated in blood pressure (BP) modulation, but few studies have focused on a nutrigenetics approach. Thus, the aim of this study is to verify the effects of the interaction between genetic polymorphisms (rs4340-ACE, rs699-AGT, and rs1799722-BDKRB2) and micronutrient consumption (sodium, potassium, calcium, and magnesium) on BP values of normotensive adult individuals. The study included 335 adults, men and women, 25.5 (6.6) years old. Biochemical, anthropometric, BP measurements, and food intake data were assessed for all participants. Gene-nutrient interaction on BP outcome was tested by multiple linear regression with manual backward stepwise modeling. Our results indicated that individuals with G allele for rs699 polymorphism, in the increase of sodium and magnesium consumption, both in the genotypic model (sodium, p = 0.035; magnesium, p = 0.016) and in the dominant model (sodium, p = 0.009; magnesium, p = 0.006) had higher systolic BP (SBP) levels compared to AA homozygotes (sodium, p = 0.001; magnesium, p < 0.001). Also, individuals with the T allele for the rs1799722 polymorphism, with higher calcium intake, had significantly higher levels of SBP and diastolic BP (DBP) when compared to CC homozygotes (p = 0.037). In conclusion, our findings pointed for significant interactions between genetic polymorphisms (rs699-AGT and rs1799722-BDKRB2) and the consumption of micronutrients (sodium, magnesium, and calcium) on the BP variation. These findings contribute to the understanding of the complex mechanisms involved in BP regulation, which probable include several gene-nutrition interactions.
Collapse
|
128
|
Morris J, Leung SSY, Bailey ME, Cullen B, Ferguson A, Graham N, Johnston KJA, Lyall DM, Lyall LM, Ward J, Smith DJ, Strawbridge RJ. Exploring the Role of Contactins across Psychological, Psychiatric and Cardiometabolic Traits within UK Biobank. Genes (Basel) 2020; 11:E1326. [PMID: 33182605 PMCID: PMC7697406 DOI: 10.3390/genes11111326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with severe mental illness have an increased risk of cardiometabolic diseases compared to the general population. Shared risk factors and medication effects explain part of this excess risk; however, there is growing evidence to suggest that shared biology (including genetic variation) is likely to contribute to comorbidity between mental and physical illness. Contactins are a family of genes involved in development of the nervous system and implicated, though genome-wide association studies, in a wide range of psychological, psychiatric and cardiometabolic conditions. Contactins are plausible candidates for shared pathology between mental and physical health. We used data from UK Biobank to systematically assess how genetic variation in contactin genes was associated with a wide range of psychological, psychiatric and cardiometabolic conditions. We also investigated whether associations for cardiometabolic and psychological traits represented the same or distinct signals and how the genetic variation might influence the measured traits. We identified: A novel genetic association between variation in CNTN1 and current smoking; two independent signals in CNTN4 for BMI; and demonstrated that associations between CNTN5 and neuroticism were distinct from those between CNTN5 and blood pressure/HbA1c. There was no evidence that the contactin genes contributed to shared aetiology between physical and mental illness.
Collapse
Affiliation(s)
- Julia Morris
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Soddy Sau Yu Leung
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Mark E.S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Breda Cullen
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Amy Ferguson
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Nicholas Graham
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Deanery of Molecular, Genetic and Population Health Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Donald M. Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Laura M. Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK; (J.M.); (S.S.Y.L.); (B.C.); (A.F.); (N.G.); (K.J.A.J.); (D.M.L.); (L.M.L.); (J.W.); (D.J.S.)
- Health Data Research UK, Glasgow G12 8RZ, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
129
|
Berillo O, Ouerd S, Idris-Khodja N, Rehman A, Richer C, Sinnett D, Kwitek AE, Paradis P, Schiffrin EL. Chromosome 2 Fragment Substitutions in Dahl Salt-Sensitive Rats and RNA Sequencing Identified Enpep and Hs2st1 as Vascular Inflammatory Modulators. Hypertension 2020; 77:178-189. [PMID: 33161775 DOI: 10.1161/hypertensionaha.120.15690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chromosome 2 introgression from normotensive Brown Norway (BN) rats into hypertensive Dahl salt-sensitive (SS) background (SS-chromosome 2BN/Mcwi; consomic S2B) reduced blood pressure and vascular inflammation under a normal-salt diet (NSD). We hypothesized that BN chromosome 2 contains anti-inflammatory genes that could reduce blood pressure and vascular inflammation in rats fed NSD or high-salt diet (HSD). Four- to 6-week old male SS and congenic rats containing the BN chromosome 2 distal portion (SS.BN-[rs13453786-rs66377062]/Aek; S2Ba) and middle segment (SS.BN-[rs106982173-rs65057186]/Aek; S2Bb) were fed NSD or HSD (4% NaCl) up to age 12 to 13 weeks. Systolic blood pressure determined by telemetry was higher in SS rats fed HSD versus NSD. Systolic blood pressure was lower in both congenic rats than in SS under NSD, but similar under HSD versus SS. Reactive oxygen species generation using dihydroethidium staining, expression of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and immune cell infiltration by immunofluorescence demonstrated that S2Ba rats present less inflammation under NSD and more under HSD versus SS rats. RNA sequencing and reverse transcription-quantitative PCR identified 2 differentially expressed genes encoded within BN chromosome 2 distal portion that could act as regulators of vascular inflammation. These were downregulated glutamyl aminopeptidase (Enpep) that was anti-inflammatory under NSD and upregulated heparan sulfate 2-O-sulfotransferase 1 (Hs2st1) that was proinflammatory under HSD. In conclusion, 2 differentially expressed genes encoded within introgressed BN chromosome 2 distal fragment were identified: Enpep associated with reduced vascular inflammation under NSD, and Hs2st1, associated with increased vascular inflammation under HSD.
Collapse
Affiliation(s)
- Olga Berillo
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Sofiane Ouerd
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Noureddine Idris-Khodja
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Asia Rehman
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Chantal Richer
- Sainte-Justine University Hospital, Montreal, QC, Canada (C.R., D.S.)
| | - Daniel Sinnett
- Sainte-Justine University Hospital, Montreal, QC, Canada (C.R., D.S.)
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee (A.E.K.)
| | - Pierre Paradis
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Ernesto L Schiffrin
- Department of Medicine (E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| |
Collapse
|
130
|
Ji LD, Tang NLS, Xu ZF, Xu J. Genes Regulate Blood Pressure, but "Environments" Cause Hypertension. Front Genet 2020; 11:580443. [PMID: 33240327 PMCID: PMC7680891 DOI: 10.3389/fgene.2020.580443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Laboratory for Genetics of Disease Susceptibility, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Feng Xu
- Department of Cardiology, Ningbo No. 7 Hospital, Ningbo, China
| | - Jin Xu
- Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China.,Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
131
|
Preuss F, Chatterjee D, Mathea S, Shrestha S, St-Germain J, Saha M, Kannan N, Raught B, Rottapel R, Knapp S. Nucleotide Binding, Evolutionary Insights, and Interaction Partners of the Pseudokinase Unc-51-like Kinase 4. Structure 2020; 28:1184-1196.e6. [PMID: 32814032 DOI: 10.1016/j.str.2020.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 07/29/2020] [Indexed: 01/11/2023]
Abstract
Unc-51-like kinase 4 (ULK4) is a pseudokinase that has been linked to the development of several diseases. Even though sequence motifs required for ATP binding in kinases are lacking, ULK4 still tightly binds ATP and the presence of the co-factor is required for structural stability of ULK4. Here, we present a high-resolution structure of a ULK4-ATPγS complex revealing a highly unusual ATP binding mode in which the lack of the canonical VAIK motif lysine is compensated by K39, located N-terminal to αC. Evolutionary analysis suggests that degradation of active site motifs in metazoan ULK4 has co-occurred with an ULK4-specific activation loop, which stabilizes the C helix. In addition, cellular interaction studies using BioID and biochemical validation data revealed high confidence interactors of the pseudokinase and armadillo repeat domains. Many of the identified ULK4 interaction partners were centrosomal and tubulin-associated proteins and several active kinases suggesting interesting regulatory roles for ULK4.
Collapse
Affiliation(s)
- Franziska Preuss
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Deep Chatterjee
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Safal Shrestha
- Institute of Bioinformatics & Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Manipa Saha
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Natarajan Kannan
- Institute of Bioinformatics & Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada; Departments of Medicine, Immunology and Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany.
| |
Collapse
|
132
|
Wang H, Liu Z, Shao J, Jiang M, Lu X, Lin L, Wang L, Xu Q, Zhang H, Li X, Zhou J, Chen Y, Zhang R. Pathogenesis of premature coronary artery disease: Focus on risk factors and genetic variants. Genes Dis 2020; 9:370-380. [PMID: 35224153 PMCID: PMC8843894 DOI: 10.1016/j.gendis.2020.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/17/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
The development of premature coronary artery disease (PCAD) is dependent on both genetic predisposition and traditional risk factors. Strategies for unraveling the genetic basis of PCAD have evolved with the advent of modern technologies. Genome-wide association studies (GWASs) have identified a considerable number of common genetic variants that are associated with PCAD. Most of these genetic variants are attributable to lipid and blood pressure-related single-nucleotide polymorphisms (SNPs). The genetic variants that predispose individuals to developing PCAD may depend on race and ethnicity. Some characteristic genetic variants have been identified in Chinese populations. Although translating this genetic knowledge into clinical applications is still challenging, these genetic variants can be used for CAD phenotype identification, genetic prediction and therapy. In this article we will provide a comprehensive review of genetic variants detected by GWASs that are predicted to contribute to the development of PCAD. We will highlight recent findings regarding CAD-related genetic variants in Chinese populations and discuss the potential clinical utility of genetic variants for preventing and managing PCAD.
Collapse
|
133
|
Sullivan KM, Susztak K. Unravelling the complex genetics of common kidney diseases: from variants to mechanisms. Nat Rev Nephrol 2020; 16:628-640. [PMID: 32514149 PMCID: PMC8014547 DOI: 10.1038/s41581-020-0298-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of loci associated with kidney-related traits such as glomerular filtration rate, albuminuria, hypertension, electrolyte and metabolite levels. However, these impressive, large-scale mapping approaches have not always translated into an improved understanding of disease or development of novel therapeutics. GWAS have several important limitations. Nearly all disease-associated risk loci are located in the non-coding region of the genome and therefore, their target genes, affected cell types and regulatory mechanisms remain unknown. Genome-scale approaches can be used to identify associations between DNA sequence variants and changes in gene expression (quantified through bulk and single-cell methods), gene regulation and other molecular quantitative trait studies, such as chromatin accessibility, DNA methylation, protein expression and metabolite levels. Data obtained through these approaches, used in combination with robust computational methods, can deliver robust mechanistic inferences for translational exploitation. Understanding the genetic basis of common kidney diseases means having a comprehensive picture of the genes that have a causal role in disease development and progression, of the cells, tissues and organs in which these genes act to affect the disease, of the cellular pathways and mechanisms that drive disease, and of potential targets for disease prevention, detection and therapy.
Collapse
Affiliation(s)
- Katie Marie Sullivan
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
134
|
Hall KT, Kessler T, Buring JE, Passow D, Sesso HD, Zee RYL, Ridker PM, Chasman DI, Schunkert H. Genetic variation at the coronary artery disease risk locus GUCY1A3 modifies cardiovascular disease prevention effects of aspirin. Eur Heart J 2020; 40:3385-3392. [PMID: 31228190 DOI: 10.1093/eurheartj/ehz384] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/26/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
AIMS Efficacy of aspirin in primary prevention of cardiovascular disease (CVD) may be influenced by a common allele in guanylate cyclase GUCY1A3, which has been shown to modify platelet function and increase CVD risk. METHODS AND RESULTS We investigated whether homozygotes of the GUCY1A3 rs7692387 risk (G) allele benefited from aspirin in two long-term, randomized placebo-controlled trials of aspirin in primary CVD prevention: the Women's Genome Health Study (WGHS, N = 23 294) and a myocardial infarction (MI, N = 550) and stroke (N = 382) case-control set from the Physician's Health Study (PHS, N = 22 071). Bleeding risk was evaluated in the WGHS. In the placebo group of the WGHS, the GUCY1A3 risk (G) allele was confirmed to increase CVD risk [hazard ratio 1.38; 95% confidence interval (CI) 1.08-1.78; P = 0.01]. Random-effects meta-analysis of the WGHS and PHS revealed that aspirin reduced CVD events among risk allele homozygotes [G/G: odds ratio (OR) 0.79; 95% CI 0.65-0.97; P = 0.03] but increased CVD events among non-risk allele carriers (e.g. G/A: OR 1.39; 95% CI 1.03-1.87; P = 0.03) thus implying an interaction between genotype stratum and aspirin intake (Pinteraction = 0.01). Bleeding associated with aspirin increased in all genotype groups, with higher risks in heterozygotes. CONCLUSION In two randomized placebo-controlled trials in the setting of primary prevention, aspirin reduced the incidence of CVD events in individuals homozygous for the GUCY1A3 risk (G) allele, whereas heterozygote individuals had more events when taking aspirin.
Collapse
Affiliation(s)
- Kathryn T Hall
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02146, USA
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Lazarettstrasse 36, 80636 Munich, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02146, USA
| | - Dani Passow
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02146, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02146, USA
| | - Robert Y L Zee
- Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02146, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02146, USA
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Lazarettstrasse 36, 80636 Munich, Germany
| |
Collapse
|
135
|
Sunuwar L, Frkatović A, Sharapov S, Wang Q, Neu HM, Wu X, Haritunians T, Wan F, Michel S, Wu S, Donowitz M, McGovern D, Lauc G, Sears C, Melia J. Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease. JCI Insight 2020; 5:140978. [PMID: 32897876 PMCID: PMC7605523 DOI: 10.1172/jci.insight.140978] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
ZIP8 is a metal transporter with a role in manganese (Mn) homeostasis. A common genetic variant in ZIP8 (rs13107325; A391T) ranks in the top 10 of pleiotropic SNPs identified in GWAS; A391T has associations with an increased risk of schizophrenia, obesity, Crohn’s disease, and reduced blood Mn. Here, we used CRISPR/Cas9-mediated knockin (KI) to generate a mouse model of ZIP8 A391T (Zip8 393T-KI mice). Recapitulating the SNP association with blood Mn, blood Mn was reduced in Zip8 393T-KI mice. There was restricted abnormal tissue Mn homeostasis, with decreases in liver and kidney Mn and a reciprocal increase in biliary Mn, providing in vivo evidence of hypomorphic Zip8 function. Upon challenge in a chemically induced colitis model, male Zip8 393T-KI mice exhibited enhanced disease susceptibility. ZIP8 391-Thr associated with reduced triantennary plasma N-glycan species in a population-based cohort to define a genotype-specific glycophenotype hypothesized to be linked to Mn-dependent glycosyltransferase activity. This glycophenotype was maintained in a cohort of patients with Crohn’s disease. These data and the pleiotropic disease associations with ZIP8 391-Thr suggest underappreciated roles of Mn homeostasis in complex human disease. Abnormal manganese homeostasis is implicated by a GWAS disease-associated SNP, rs13107325 (ZIP8 A391T), studied in a knockin mouse model and human N-glycome analyses.
Collapse
Affiliation(s)
- Laxmi Sunuwar
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Sodbo Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Qinchuan Wang
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather M Neu
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Xinqun Wu
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology and.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Michel
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Shaoguang Wu
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Cynthia Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joanna Melia
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
136
|
Pertusa C, Tarín JJ, Cano A, García-Pérez MA. Association of a single nucleotide polymorphism of RANK gene with blood pressure in Spanish women. Medicine (Baltimore) 2020; 99:e22436. [PMID: 33019425 PMCID: PMC7535656 DOI: 10.1097/md.0000000000022436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/23/2020] [Indexed: 12/30/2022] Open
Abstract
In addition to governing key functions in bone metabolism and the immune system, the RANK/RANKL/OPG system plays a role in the vascular system, particularly in vascular calcification and atherosclerosis.Given that these 2 phenotypes are considered a major cause of high blood pressure (BP), in this study we analyzed the association of SNPs in RANK and OPG genes with blood pressure. An observational study was conducted of 2 SNPs in the RANK gene (rs884205 and rs78326403) and 1 in the OPG gene (rs4876869) with systolic (SBP) and diastolic blood pressure (DBP) in a cohort of 695 women.Data analysis revealed a statistically significant association between the SNP rs884205 and BP pressure (SBP and DBP). Analyzing this relationship by the dominant inheritance model for this SNP (allele risk: A), women of the AA/AC genotype showed higher BP than women of the CC genotype, both for SBP (P = .001) and for DBP (P = .003), and these associations both surpassed the Bonferroni threshold for multiple comparisons. Multivariate regression analysis including known predictors of BP as independent variables was performed to evaluate the strength of this association, which in the case of the SNP rs884205 of the RANK gene remained statistically significant after adjustment for both SBP (P = .0006) and DBP (P = .005), demonstrating the key role of this SNP in BP.We report a robust association between the SNP rs884205 in RANK gene and BP in women, and this SNP is validated as a candidate in cardiovascular risk studies.
Collapse
Affiliation(s)
- Clara Pertusa
- Research Foundation, INCLIVA Institute of Health Research, Valencia
| | - Juan J. Tarín
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia
| | - Miguel Angel García-Pérez
- Research Foundation, INCLIVA Institute of Health Research, Valencia
- Department of Genetics, University of Valencia, Burjassot, Spain
| |
Collapse
|
137
|
Abstract
PURPOSE OF REVIEW Genetic variance on blood pressure was shown about 100 years ago; a Mendelian inheritance was initially presumed. Platt and Pickering conducted a lively debate, whether blood pressure was inherited in a Mendelian fashion or whether the condition was polygenic. Genetic-hypertension research has appropriately followed both pathways. RECENT FINDINGS Genome-wide association studies, Pickering model, have identified more than 500 blood-pressure loci, the targets of which are waiting to be evaluated. Then, come the 'dark-horses' of hypertension, namely 'secondary' causes. These conditions have been remarkably elucidative including pheochromocytoma, primary aldosteronism, Cushing's syndrome, and even renovascular hypertension. All these conditions feature genetic causes. Finally, arrive the Platt followers. A plethora of Mendelian conditions located within the kidney are established. These syndromes involve increased sodium (as chloride) absorption in the distal nephron. Finally, nonsalt-dependent Mendelian forms involving the vascular directly have been described. Mechanistically, Mendelian forms have large effects on blood pressure and offer effective treatment targets. SUMMARY Which genetic models will bring us improved therapies? Ongoing studies will answer that question. It behooves the clinician to follow this dynamic area of research.
Collapse
|
138
|
Gray KJ, Kovacheva VP, Mirzakhani H, Bjonnes AC, Almoguera B, Wilson ML, Ingles SA, Lockwood CJ, Hakonarson H, McElrath TF, Murray JC, Norwitz ER, Karumanchi SA, Bateman BT, Keating BJ, Saxena R. Risk of pre-eclampsia in patients with a maternal genetic predisposition to common medical conditions: a case-control study. BJOG 2020; 128:55-65. [PMID: 32741103 DOI: 10.1111/1471-0528.16441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess whether women with a genetic predisposition to medical conditions known to increase pre-eclampsia risk have an increased risk of pre-eclampsia in pregnancy. DESIGN Case-control study. SETTING AND POPULATION Pre-eclampsia cases (n = 498) and controls (n = 1864) in women of European ancestry from five US sites genotyped on a cardiovascular gene-centric array. METHODS Significant single-nucleotide polymorphisms (SNPs) from 21 traits in seven disease categories (cardiovascular, inflammatory/autoimmune, insulin resistance, liver, obesity, renal and thrombophilia) with published genome-wide association studies (GWAS) were used to create a genetic instrument for each trait. Multivariable logistic regression was used to test the association of each continuous scaled genetic instrument with pre-eclampsia. Odds of pre-eclampsia were compared across quartiles of the genetic instrument and evaluated for significance. MAIN OUTCOME MEASURES Genetic predisposition to medical conditions and relationship with pre-eclampsia. RESULTS An increasing burden of risk alleles for elevated diastolic blood pressure (DBP) and increased body mass index (BMI) were associated with an increased risk of pre-eclampsia (DBP, overall OR 1.11, 95% CI 1.01-1.21, P = 0.025; BMI, OR 1.10, 95% CI 1.00-1.20, P = 0.042), whereas alleles associated with elevated alkaline phosphatase (ALP) were protective (OR 0.89, 95% CI 0.82-0.97, P = 0.008), driven primarily by pleiotropic effects of variants in the FADS gene region. The effect of DBP genetic loci was even greater in early-onset pre-eclampsia cases (at <34 weeks of gestation, OR 1.30, 95% CI 1.08-1.56, P = 0.005). For other traits, there was no evidence of an association. CONCLUSIONS These results suggest that the underlying genetic architecture of pre-eclampsia may be shared with other disorders, specifically hypertension and obesity. TWEETABLE ABSTRACT A genetic predisposition to increased diastolic blood pressure and obesity increases the risk of pre-eclampsia.
Collapse
Affiliation(s)
- K J Gray
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - V P Kovacheva
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - H Mirzakhani
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - A C Bjonnes
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - B Almoguera
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - M L Wilson
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - S A Ingles
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - C J Lockwood
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - H Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Divisions of Human Genetics and Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - T F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - J C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - E R Norwitz
- Department of Obstetrics & Gynecology, Tufts Medical Center, Boston, Massachusetts, USA
| | - S A Karumanchi
- Center for Vascular Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - B T Bateman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - B J Keating
- Department of Surgery and Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - R Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
139
|
Pineda B, Pertusa C, Panach L, Tarín JJ, Cano A, García-Pérez MÁ. Polymorphisms in genes involved in T-cell co-stimulation are associated with blood pressure in women. Gene 2020; 754:144838. [PMID: 32525043 DOI: 10.1016/j.gene.2020.144838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/06/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
In recent years, conclusive data have emerged on a relationship between immune system, especially the T-cell, and blood pressure (BP). The objective of the present study was to determine the association between BP and four polymorphisms in CD80, CD86, CD28 and CTLA4 genes that code for key proteins in the T-cell co-stimulation process, in a female cohort. To that end, an association study in a cohort of 934 women over 40 years old from two hospitals was done. Raw data showed a significant association between the SNP rs1129055 of CD86 gene and BP. Analyzing this association against inheritance patterns, higher SBP (p < 0.000) and DBP (p = 0.005) values were observed in AA than in GG/GA genotype subjects in the largest sample cohort (Hospital 1). In multivariate linear regression studies, with adjustment for presumed independent predictors of BP, the SNP of the CD86 gene remained a predictor of SBP (p = 0.001) and DBP (p = 0.006), as did the SNP rs867234 of the CD80 gene for DBP (p < 0.000), both resisting the Bonferroni correction for multiple comparisons. As conclusion, we report a robust association between the SNP rs1129055 of CD86 gene and BP. The SNP rs867234 of CD80 gene was also shown to be a strong predictor of DBP.
Collapse
Affiliation(s)
- Begoña Pineda
- Research Foundation, INCLIVA Institute of Health Research, 46010 Valencia, Spain
| | - Clara Pertusa
- Research Foundation, INCLIVA Institute of Health Research, 46010 Valencia, Spain
| | - Layla Panach
- Research Foundation, INCLIVA Institute of Health Research, 46010 Valencia, Spain
| | - Juan J Tarín
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Miguel Ángel García-Pérez
- Research Foundation, INCLIVA Institute of Health Research, 46010 Valencia, Spain; Department of Genetics, University of Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
140
|
Tapia-Conyer R, Alegre-Díaz J, Gnatiuc L, Wade R, Ramirez-Reyes R, Herrington WG, Lewington S, Clarke R, Collins R, Peto R, Kuri-Morales P, Emberson J. Association of Blood Pressure With Cause-Specific Mortality in Mexican Adults. JAMA Netw Open 2020; 3:e2018141. [PMID: 32975571 PMCID: PMC7519421 DOI: 10.1001/jamanetworkopen.2020.18141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IMPORTANCE Elevated blood pressure is a major cause of premature death, but there is little direct evidence demonstrating this association in studies of Hispanic populations. OBJECTIVE To assess the association between blood pressure and cause-specific mortality in a large cohort of Mexican adults with a high prevalence of uncontrolled diabetes. DESIGN, SETTING, AND PARTICIPANTS A total of 159 755 adults aged 35 years or older from 2 districts in Mexico City were recruited to this cohort study between April 1998 and September 2004 and followed up until January 2018. The present analyses focused on 133 613 participants who were aged 35 to 74 years and had no history of chronic disease besides diabetes. EXPOSURE Blood pressure. MAIN OUTCOMES AND MEASURES Cox regression, adjusted for confounders, yielded mortality rate ratios (RRs) for deaths of participants occurring between ages 35 and 74 years. RESULTS Of the 133 613 participants (43 263 [32.4%] men; mean [SD] age, 50 [11] years), 16 911 (12.7%) had self-reported previously diagnosed diabetes (including 8435 [6.3%] with uncontrolled diabetes, defined as hemoglobin A1c ≥9%) and 6548 (4.9%) had undiagnosed diabetes. Systolic blood pressure (SBP) was associated with vascular mortality between ages 35 to 74 years, with each 20 mm Hg lower usual SBP associated with 35% lower vascular mortality (RR, 0.65; 95% CI, 0.61-0.68), including 48% lower stroke mortality (RR, 0.52; 95% CI, 0.47-0.59) and 32% lower ischemic heart disease mortality (RR, 0.68; 95% CI, 0.63-0.74). These RRs were broadly similar in those with and without diabetes. Compared with those without diabetes and SBP less than 135 mm Hg at recruitment, the vascular mortality RR was 2.8 (95% CI, 2.4-3.3) for those without diabetes and SBP of 155 mm Hg or greater, 4.7 (95% CI, 4.1-5.4) for those with uncontrolled diabetes and SBP less than 135 mm Hg, and 8.9 (95% CI, 7.2-11.1) for those with uncontrolled diabetes and SBP of 155 mm Hg or greater. Lower SBP was also associated with decreased kidney-related mortality (RR per 20 mm Hg lower usual SBP, 0.69; 95% CI, 0.64-0.74), decreased mortality from infection (RR, 0.81; 95% CI, 0.71-0.91), and decreased mortality from hepatobiliary disease (RR, 0.87; 95% CI, 0.78-0.98), but not decreased neoplastic or respiratory mortality. SBP was more informative for vascular mortality than other blood pressure measures (eg, compared with SBP, diastolic blood pressure was only two-thirds as informative). CONCLUSIONS AND RELEVANCE Blood pressure was most strongly associated with vascular and kidney-related mortality in this Mexican population, with particularly high absolute excess mortality rates among individuals with diabetes. The findings reinforce the need for more widespread use of blood pressure-lowering medication in Mexico, particularly among those with diabetes.
Collapse
Affiliation(s)
- Roberto Tapia-Conyer
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jesus Alegre-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Louisa Gnatiuc
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Rachel Wade
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Raúl Ramirez-Reyes
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - William G. Herrington
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sarah Lewington
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Richard Peto
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Pablo Kuri-Morales
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jonathan Emberson
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
141
|
Poveda A, Atabaki‐Pasdar N, Ahmad S, Hallmans G, Renström F, Franks PW. Association of Established Blood Pressure Loci With 10-Year Change in Blood Pressure and Their Ability to Predict Incident Hypertension. J Am Heart Assoc 2020; 9:e014513. [PMID: 32805198 PMCID: PMC7660819 DOI: 10.1161/jaha.119.014513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Background Genome-wide association studies have identified >1000 genetic variants cross-sectionally associated with blood pressure variation and prevalent hypertension. These discoveries might aid the early identification of subpopulations at risk of developing hypertension or provide targets for drug development, amongst other applications. The aim of the present study was to analyze the association of blood pressure-associated variants with long-term changes (10 years) in blood pressure and also to assess their ability to predict hypertension incidence compared with traditional risk variables in a Swedish population. Methods and Results We constructed 6 genetic risk scores (GRSs) by summing the dosage of the effect allele at each locus of genetic variants previously associated with blood pressure traits (systolic blood pressure GRS (GRSSBP): 554 variants; diastolic blood pressure GRS (GRSDBP): 481 variants; mean arterial pressure GRS (GRSMAP): 20 variants; pulse pressure GRS (GRSPP): 478 variants; hypertension GRS (GRSHTN): 22 variants; combined GRS (GRScomb): 1152 variants). Each GRS was longitudinally associated with its corresponding blood pressure trait, with estimated effects per GRS SD unit of 0.50 to 1.21 mm Hg for quantitative traits and odds ratios (ORs) of 1.10 to 1.35 for hypertension incidence traits. The GRScomb was also significantly associated with hypertension incidence defined according to European guidelines (OR, 1.22 per SD; 95% CI, 1.10‒1.35) but not US guidelines (OR, 1.11 per SD; 95% CI, 0.99‒1.25) while controlling for traditional risk factors. The addition of GRScomb to a model containing traditional risk factors only marginally improved discrimination (Δarea under the ROC curve = 0.001-0.002). Conclusions GRSs based on discovered blood pressure-associated variants are associated with long-term changes in blood pressure traits and hypertension incidence, but the inclusion of genetic factors in a model composed of conventional hypertension risk factors did not yield a material increase in predictive ability.
Collapse
Affiliation(s)
- Alaitz Poveda
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Naeimeh Atabaki‐Pasdar
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Shafqat Ahmad
- Preventive Medicine DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA
- Department of Medical SciencesMolecular EpidemiologyUppsala UniversityUppsalaSweden
| | - Göran Hallmans
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Frida Renström
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
- Division of Endocrinology and DiabetesCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Paul W. Franks
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
- Department of NutritionHarvard Chan School of Public HealthBostonMA
| |
Collapse
|
142
|
Bi W, Fritsche LG, Mukherjee B, Kim S, Lee S. A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank. Am J Hum Genet 2020; 107:222-233. [PMID: 32589924 DOI: 10.1016/j.ajhg.2020.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/03/2020] [Indexed: 12/09/2022] Open
Abstract
With increasing biobanking efforts connecting electronic health records and national registries to germline genetics, the time-to-event data analysis has attracted increasing attention in the genetics studies of human diseases. In time-to-event data analysis, the Cox proportional hazards (PH) regression model is one of the most used approaches. However, existing methods and tools are not scalable when analyzing a large biobank with hundreds of thousands of samples and endpoints, and they are not accurate when testing low-frequency and rare variants. Here, we propose a scalable and accurate method, SPACox (a saddlepoint approximation implementation based on the Cox PH regression model), that is applicable for genome-wide scale time-to-event data analysis. SPACox requires fitting a Cox PH regression model only once across the genome-wide analysis and then uses a saddlepoint approximation (SPA) to calibrate the test statistics. Simulation studies show that SPACox is 76-252 times faster than other existing alternatives, such as gwasurvivr, 185-511 times faster than the standard Wald test, and more than 6,000 times faster than the Firth correction and can control type I error rates at the genome-wide significance level regardless of minor allele frequencies. Through the analysis of UK Biobank inpatient data of 282,871 white British European ancestry samples, we show that SPACox can efficiently analyze large sample sizes and accurately control type I error rates. We identified 611 loci associated with time-to-event phenotypes of 12 common diseases, of which 38 loci would be missed within a logistic regression framework with a binary phenotype defined as event occurrence status during the follow-up period.
Collapse
|
143
|
Human essential hypertension: no significant association of polygenic risk scores with antihypertensive drug responses. Sci Rep 2020; 10:11940. [PMID: 32686723 PMCID: PMC7371738 DOI: 10.1038/s41598-020-68878-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/30/2020] [Indexed: 11/08/2022] Open
Abstract
Polygenic risk scores (PRSs) for essential hypertension, calculated from > 900 genomic loci, were recently found to explain a significant fraction of hypertension heritability and complications. To investigate whether variation of hypertension PRS also captures variation of antihypertensive drug responsiveness, we calculated two different PRSs for both systolic and diastolic blood pressure: one based on the top 793 independent hypertension-associated single nucleotide polymorphisms and another based on over 1 million genome-wide variants. Using our pharmacogenomic GENRES study comprising four different antihypertensive monotherapies (n ~ 200 for all drugs), we identified a weak, but (after Bonferroni correction) statistically nonsignificant association of higher genome-wide PRSs with weaker response to a diuretic. In addition, we noticed a correlation between high genome-wide PRS and electrocardiographic left ventricular hypertrophy. Finally, using data of the Finnish arm of the LIFE study (n = 346), we found that PRSs for systolic blood pressure were slightly higher in patients with drug-resistant hypertension than in those with drug-controlled hypertension (p = 0.03, not significant after Bonferroni correction). In conclusion, our results indicate that patients with elevated hypertension PRSs may be predisposed to difficult-to-control hypertension and complications thereof. No general association between a high PRS and less efficient drug responsiveness was noticed.
Collapse
|
144
|
Ercu M, Markó L, Schächterle C, Tsvetkov D, Cui Y, Maghsodi S, Bartolomaeus TU, Maass PG, Zühlke K, Gregersen N, Hübner N, Hodge R, Mühl A, Pohl B, Illas RM, Geelhaar A, Walter S, Napieczynska H, Schelenz S, Taube M, Heuser A, Anistan YM, Qadri F, Todiras M, Plehm R, Popova E, Langanki R, Eichhorst J, Lehmann M, Wiesner B, Russwurm M, Forslund SK, Kamer I, Müller DN, Gollasch M, Aydin A, Bähring S, Bader M, Luft FC, Klussmann E. Phosphodiesterase 3A and Arterial Hypertension. Circulation 2020; 142:133-149. [DOI: 10.1161/circulationaha.119.043061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (
PDE3A
); however, in vivo modeling of the genetic defect and thus showing an involvement of mutant PDE3A is lacking.
Methods:
We used genetic mapping, sequencing, transgenic technology, CRISPR-Cas9 gene editing, immunoblotting, and fluorescence resonance energy transfer. We identified new patients, performed extensive animal phenotyping, and explored new signaling pathways.
Results:
We describe a novel mutation within a 15 base pair (bp) region of the
PDE3A
gene and define this segment as a mutational hotspot in hypertension with brachydactyly. The mutations cause an increase in enzyme activity. A CRISPR/Cas9-generated rat model, with a 9-bp deletion within the hotspot analogous to a human deletion, recapitulates hypertension with brachydactyly. In mice, mutant transgenic PDE3A overexpression in smooth muscle cells confirmed that mutant PDE3A causes hypertension. The mutant PDE3A enzymes display consistent changes in their phosphorylation and an increased interaction with the 14-3-3θ adaptor protein. This aberrant signaling is associated with an increase in vascular smooth muscle cell proliferation and changes in vessel morphology and function.
Conclusions:
The mutated
PDE3A
gene drives mechanisms that increase peripheral vascular resistance causing hypertension. We present 2 new animal models that will serve to elucidate the underlying mechanisms further. Our findings could facilitate the search for new antihypertensive treatments.
Collapse
Affiliation(s)
- Maria Ercu
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
| | - Lajos Markó
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Carolin Schächterle
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Yingqiu Cui
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Sara Maghsodi
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Theda U.P. Bartolomaeus
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Philipp G. Maass
- Genetics and Genome Biology Program, Sickkids Research Institute and Department of Molecular Genetics, University of Toronto, ON, Canada (P.G.M.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Nerine Gregersen
- Auckland District Health Board (ADHB), Genetic Health Service New Zealand – Northern Hub (N.G.)
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
| | - Russell Hodge
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Astrid Mühl
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Bärbel Pohl
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Rosana Molé Illas
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Andrea Geelhaar
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Stephan Walter
- Abteilung für Nephrologie/Hypertensiologie, St. Vincenz Krankenhaus, Limburg, Germany (S.W.)
| | - Hanna Napieczynska
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Stefanie Schelenz
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Martin Taube
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Yoland-Marie Anistan
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, Berlin, Germany (Y.-M.A., M.G.)
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Ralph Plehm
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Elena Popova
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Reika Langanki
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Jenny Eichhorst
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Martin Lehmann
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Burkhard Wiesner
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät MA N1, Ruhr-Universität Bochum, Germany (M.R.)
| | - Sofia K. Forslund
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
- Berlin Institute of Health (BIH), Germany (S.K.F.)
| | - Ilona Kamer
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Dominik N. Müller
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Maik Gollasch
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
- Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, Berlin, Germany (Y.-M.A., M.G.)
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (M.G.)
| | - Atakan Aydin
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Sylvia Bähring
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Institute for Biology, University of Lübeck, Germany (M.B.)
| | - Friedrich C. Luft
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
| |
Collapse
|
145
|
Pietzner M, Wheeler E, Carrasco-Zanini J, Raffler J, Kerrison ND, Oerton E, Auyeung VP, Luan J, Finan C, Casas JP, Ostroff R, Williams SA, Kastenmüller G, Ralser M, Gamazon ER, Wareham NJ, Hingorani AD, Langenberg C. Genetic architecture of host proteins interacting with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.01.182709. [PMID: 32637948 PMCID: PMC7337378 DOI: 10.1101/2020.07.01.182709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental identification of viral-host protein interactions in cellular assays and measurement of host response proteins in COVID-19 patients. Identification of genetic variants that influence the level or activity of these proteins in the host could enable rapid 'in silico' assessment in human genetic studies of their causal relevance as molecular targets for new or repurposed drugs to treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral interaction partners such as MARK3 affect immune response, and establish the first link between a recently reported variant for respiratory failure of COVID-19 patients at the ABO locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).
Collapse
Affiliation(s)
- Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Erin Oerton
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, UK
- UCL BHF Research Accelerator centre
| | - Juan P. Casas
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | | | | | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité University Medicine, Berlin, Germany
| | - Eric R. Gamazon
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, UK
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, UK
- UCL BHF Research Accelerator centre
- Health Data Research UK, Institute of Health Informatics, University College London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, UK
| |
Collapse
|
146
|
Tonomura S, Ihara M, Friedland RP. Microbiota in cerebrovascular disease: A key player and future therapeutic target. J Cereb Blood Flow Metab 2020; 40:1368-1380. [PMID: 32312168 PMCID: PMC7308516 DOI: 10.1177/0271678x20918031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stroke is the second leading cause of death and a significant cause of disability worldwide. Recent advances in DNA sequencing, proteomics, metabolomics, and computational tools are dramatically increasing access to the identification of host-microbiota interactions in systemic diseases. In this review, we describe the accumulating evidence showing how human microbiota plays an essential role in cerebrovascular diseases. We introduce the symbiotic relationships between microbiota and the mucosal immune system, focusing on differences by anatomical sites. Microbiota directly or indirectly contributes to the pathogenesis of traditional vascular risk factors including age, obesity, diabetes mellitus, dyslipidemia, and hypertension. Moreover, recent studies proposed independent effects of the microbiome on the progression of various subtypes of stroke through direct microbial invasion, exotoxins, functional amyloids, inflammation, and microbe-derived metabolites. We propose the critical concept of gene-microbial interaction to elucidate the heterogeneity of stroke and provide possible therapeutic avenues. We suggest ways to resolve the vast inter-individual diversity of cerebrovascular disease and mechanisms for personalized prevention and treatment.
Collapse
Affiliation(s)
- Shuichi Tonomura
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robert P Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
147
|
Microbiota-governed microRNA-204 impairs endothelial function and blood pressure decline during inactivity in db/db mice. Sci Rep 2020; 10:10065. [PMID: 32572127 PMCID: PMC7308358 DOI: 10.1038/s41598-020-66786-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
An impaired decline in blood pressure at rest is typical in people with diabetes, reflects endothelial dysfunction, and increases the risk of end-organ damage. Here we report that microRNA-204 (miR-204) promotes endothelial dysfunction and impairment in blood pressure decline during inactivity. We show that db/db mice overexpress miR-204 in the aorta, and its absence rescues endothelial dysfunction and impaired blood pressure decline during inactivity despite obesity. The vascular miR-204 is sensitive to microbiota, and microbial suppression reversibly decreases aortic miR-204 and improves endothelial function, while the endothelial function of mice lacking miR-204 remained indifferent to the microbial alterations. We also show that the circulating miR-122 regulates vascular miR-204 as miR-122 inhibition decreases miR-204 in endothelial cells and aorta. This study establishes that miR-204 impairs endothelial function, promotes impairment in blood pressure decline during rest, and opens avenues for miR-204 inhibition strategies against vascular dysfunction.
Collapse
|
148
|
Transgenic overexpression of glutathione S-transferase μ-type 1 reduces hypertension and oxidative stress in the stroke-prone spontaneously hypertensive rat. J Hypertens 2020; 37:985-996. [PMID: 30308595 DOI: 10.1097/hjh.0000000000001960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Combined congenic breeding and microarray gene expression profiling previously identified glutathione S-transferase μ-type 1 (Gstm1) as a positional and functional candidate gene for blood pressure (BP) regulation in the stroke-prone spontaneously hypertensive (SHRSP) rat. Renal Gstm1 expression in SHRSP rats is significantly reduced when compared with normotensive Wistar Kyoto (WKY) rats. As Gstm1 plays an important role in the secondary defence against oxidative stress, significantly lower expression levels may be functionally relevant in the development of hypertension. The aim of this study was to investigate the role of Gstm1 in BP regulation and oxidative stress by transgenic overexpression of the Gstm1 gene. METHOD Two independent Gstm1 transgenic SHRSP lines were generated by microinjecting SHRSP embryos with a linear construct controlled by the EF-1α promoter encoding WKY Gstm1 cDNA [SHRSP-Tg(Gstm1)1 and SHRSP-Tg(Gstm1)2]. RESULTS Transgenic rats exhibit significantly reduced BP and pulse pressure when compared with SHRSP [systolic: SHRSP 205.2 ± 3.7 mmHg vs. SHRSP-Tg(Gstm1)1 175.5 ± 1.6 mmHg and SHRSP-Tg(Gstm1)2 172 ± 3.2 mmHg, P < 0.001; pulse pressure: SHRSP 58.4 ± 0.73 mmHg vs. SHRSP-Tg(Gstm1)1 52.7 ± 0.19 mmHg and SHRSP-Tg(Gstm1)2 40.7 ± 0.53 mmHg, P < 0.001]. Total renal and aortic Gstm1 expression in transgenic animals was significantly increased compared with SHRSP [renal relative quantification (RQ): SHRSP-Tg(Gstm1)1 1.95 vs. SHRSP 1.0, P < 0.01; aorta RQ: SHRSP-Tg(Gstm1)1 2.8 vs. SHRSP 1.0, P < 0.05]. Renal lipid peroxidation (malondialdehyde: protein) and oxidized : reduced glutathione ratio levels were significantly reduced in both transgenic lines when compared with SHRSP [malondialdehyde: SHRSP 0.04 ± 0.009 μmol/l vs. SHRSP-Tg(Gstm1)1 0.024 ± 0.002 μmol/l and SHRSP-Tg(Gstm1)2 0.021 ± 0.002 μmol/l; (oxidized : reduced glutathione ratio): SHRSP 5.19 ± 2.26 μmol/l vs. SHRSP-Tg(Gstm1)1 0.17 ± 0.11 μmol/l and SHRSP-Tg(Gstm1)2 0.47 ± 0.22 μmol/l]. Transgenic SHRSP rats containing the WKY Gstm1 gene demonstrate significantly lower BP, reduced oxidative stress and improved levels of renal Gstm1 expression. CONCLUSION These data support the hypothesis that reduced renal Gstm1 plays a role in the development of hypertension.
Collapse
|
149
|
Zhang Y, Zhang Y, Sun K, Meng Z, Chen L. The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 2020; 11:1-13. [PMID: 30239845 PMCID: PMC6359923 DOI: 10.1093/jmcb/mjy052] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
The prevalence of metabolic diseases is growing worldwide. Accumulating evidence suggests that solute carrier (SLC) transporters contribute to the etiology of various metabolic diseases. Consistent with metabolic characteristics, the top five organs in which SLC transporters are highly expressed are the kidney, brain, liver, gut, and heart. We aim to understand the molecular mechanisms of important SLC transporter-mediated physiological processes and their potentials as drug targets. SLC transporters serve as ‘metabolic gate’ of cells and mediate the transport of a wide range of essential nutrients and metabolites such as glucose, amino acids, vitamins, neurotransmitters, and inorganic/metal ions. Gene-modified animal models have demonstrated that SLC transporters participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, tissue development, oxidative stress, host defense, and neurological regulation. Furthermore, the human genomic studies have identified that SLC transporters are susceptible or causative genes in various diseases like cancer, metabolic disease, cardiovascular disease, immunological disorders, and neurological dysfunction. Importantly, a number of SLC transporters have been successfully targeted for drug developments. This review will focus on the current understanding of SLCs in regulating physiology, nutrient sensing and uptake, and risk of diseases.
Collapse
Affiliation(s)
- Yong Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuping Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kun Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ziyi Meng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
150
|
Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, Huffman JE, Assimes TL, Lorenz K, Zhu X, Hilliard AT, Judy RL, Huang J, Lee KM, Klarin D, Pyarajan S, Danesh J, Melander O, Rasheed A, Mallick NH, Hameed S, Qureshi IH, Afzal MN, Malik U, Jalal A, Abbas S, Sheng X, Gao L, Kaestner KH, Susztak K, Sun YV, DuVall SL, Cho K, Lee JS, Gaziano JM, Phillips LS, Meigs JB, Reaven PD, Wilson PW, Edwards TL, Rader DJ, Damrauer SM, O'Donnell CJ, Tsao PS, Chang KM, Voight BF, Saleheen D. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 2020; 52:680-691. [PMID: 32541925 PMCID: PMC7343592 DOI: 10.1038/s41588-020-0637-y] [Citation(s) in RCA: 483] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
We investigated type 2 diabetes (T2D) genetic susceptibility via multi-ethnic meta-analysis of 228,499 cases and 1,178,783 controls in the Million Veteran Program, DIAMANTE, Biobank Japan, and other studies. We report 568 associations, including 286 autosomal, 7 X chromosomal, and 25 identified in ancestry-specific analyses that were previously unreported. Transcriptome-wide association analysis detected 3,568 T2D-associations with genetically predicted gene expression in 687 novel genes; of these, 54 are known to interact with FDA-approved drugs. A polygenic risk score was strongly associated with increased risk of T2D-related retinopathy and modestly associated with chronic kidney disease (CKD), peripheral artery disease (PAD), and neuropathy. We investigated the genetic etiology of T2D-related vascular outcomes in MVP and observed statistical SNP-T2D interactions at 13 variants, including coronary heart disease, CKD, PAD, and neuropathy. These findings may help to identify potential therapeutic targets for T2D and genomic pathways that link T2D to vascular outcomes.
Collapse
Affiliation(s)
- Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob M Keaton
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,College of Nursing and Health Sciences, University of Massachusetts, Lowell, MA, USA
| | - Donald R Miller
- Edith Nourse Rogers Memorial VA Hospital, Bedford, MA, USA.,Center for Population Health, University of Massachusetts, Lowell, MA, USA
| | - Jin Zhou
- Phoenix VA Health Care System, Phoenix, AZ, USA.,Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kimberly Lorenz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Statistics, Stanford University, Stanford, CA, USA
| | - Austin T Hilliard
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Renae L Judy
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jie Huang
- VA Boston Healthcare System, Boston, MA, USA.,Department of Global Health, Peking University School of Public Health, Beijing, China
| | - Kyung M Lee
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Derek Klarin
- VA Boston Healthcare System, Boston, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Vascular Surgery and Endovascular Therapy, University of Florida School of Medicine, Gainesville, FL, USA
| | - Saiju Pyarajan
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | | | - Shahid Hameed
- Punjab Institute of Cardiology, Lahore, Punjab, Pakistan
| | - Irshad H Qureshi
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Muhammad Naeem Afzal
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Uzma Malik
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Anjum Jalal
- Department of Cardiology, Faisalabad Institute of Cardiology, Faisalabad, Punjab, Pakistan
| | - Shahid Abbas
- Department of Cardiology, Faisalabad Institute of Cardiology, Faisalabad, Punjab, Pakistan
| | - Xin Sheng
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Long Gao
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan V Sun
- Atlanta VA Medical Center, Decatur, GA, USA.,Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Scott L DuVall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Jennifer S Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, GA, USA.,Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA.,College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Peter W Wilson
- Atlanta VA Medical Center, Decatur, GA, USA.,Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Nashville VA Medical Center, Nashville, TN, USA
| | - Daniel J Rader
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA. .,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan. .,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|