101
|
Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, Vivo ID, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, et alKentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, Vivo ID, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, Hickey M, Hooning MJ, Hoppe R, Hopper JL, Hottenga JJ, Hu FB, Hübner H, Hunter DJ, ABCTB Investigators, Jernström H, John EM, Karasik D, Khusnutdinova EK, Kristensen VN, Lacey JV, Lambrechts D, Launer LJ, Lind PA, Lindblom A, Magnusson PKE, Mannermaa A, McCarthy MI, Meitinger T, Menni C, Michailidou K, Millwood IY, Milne RL, Montgomery GW, Nevanlinna H, Nolte IM, Nyholt DR, Obi N, O’Brien KM, Offit K, Oldehinkel AJ, Ostrowski SR, Palotie A, Pedersen OB, Peters A, Pianigiani G, Plaseska-Karanfilska D, Pouta A, Pozarickij A, Radice P, Rennert G, Rosendaal FR, Ruggiero D, Saloustros E, Sandler DP, Schipf S, Schmidt CO, Schmidt MK, Small K, Spedicati B, Stampfer M, Stone J, Tamimi RM, Teras LR, Tikkanen E, Turman C, Vachon CM, Wang Q, Winqvist R, Wolk A, Zemel BS, Zheng W, van Dijk KW, Alizadeh BZ, Bandinelli S, Boerwinkle E, Boomsma DI, Ciullo M, Chenevix-Trench G, Cucca F, Esko T, Gieger C, Grant SFA, Gudnason V, Hayward C, Kolčić I, Kraft P, Lawlor DA, Martin NG, Nøhr EA, Pedersen NL, Pennell CE, Ridker PM, Robino A, Snieder H, Sovio U, Spector TD, Stöckl D, Sudlow C, Timpson NJ, Toniolo D, Uitterlinden A, Ulivi S, Völzke H, Wareham NJ, Widen E, Wilson JF, The Lifelines Cohort Study, The Danish Blood Donor study, The Ovarian Cancer Association Consortium, The Breast Cancer Association Consortium, The Biobank Japan Project, The China Kadoorie Biobank Collaborative Group, Pharoah PDP, Li L, Easton DF, Njølstad P, Sulem P, Murabito JM, Murray A, Manousaki D, Juul A, Erikstrup C, Stefansson K, Horikoshi M, Chen Z, Farooqi IS, Pitteloud N, Johansson S, Day FR, Perry JRB, Ong KK. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.14.23291322. [PMID: 37503126 PMCID: PMC10371120 DOI: 10.1101/2023.06.14.23291322] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, NO-0213, Oslo, Norway
| | - Edson M de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Andrea Messina
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alexander S Busch
- Department of General Pediatrics, University of Münster, Münster, Germany
- Deptartment of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Federico Santon
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yassine Zouaghi
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirik Bratland
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Raina Jia
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Margie Riggan
- Department of Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Jonath P Bradfield
- Quantinuum Research, Wayne, PA, USA
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Diana L Cousminer
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lude H Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giorgia Girotto
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Chunyan He
- Department of Epidemiology and Biostatistics, Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Departments of Medical Oncology and Hematology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Institute of Health Sciences, P.O.Box 5000, FI-90014 University of Oulu, Finland
- Biocenter Oulu, P.O.Box 5000, Aapistie 5A, FI-90014 University of Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O.Box 20, FI-90220 Oulu, 90029 OYS, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Kathryn L Lunetta
- Boston University School of Public Health, Department of Biostatistics. Boston, Massachusetts 02118, USA
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’ Foundation Trust, London, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Augsburg, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Susan M Ring
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - Albert V Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - Gonneke Willemsen
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
| | - Marek Zygmunt
- Clinic of Gynaecology and Obstetrics, University Medicine Greifswald, Germany
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital Toronto, Ontario, Canada
- Department of Molecular Genetics University of Toronto Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute University of California Irvine Irvine, CA, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center Medical College of Wisconsin Milwaukee, WI, USA
| | - Catriona LK Barnes
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Amy Berrington
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Federico Canzian
- Genomic Epidemiology Group German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, PA, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Liana Ferreli
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Pascal Guénel
- Team “Exposome and Heredity”, CESP, Gustave Roussy INSERM, University Paris-Saclay, UVSQ Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology at the University of Melbourne and The Royal Women’s Hospital, Victoria, Australia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
| | - Jouke-Jan Hottenga
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health School of Public Health, Boston, Massachusetts 02115, USA
| | - Hanna Hübner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - ABCTB Investigators
- Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine Stanford, CA, USA
- Department of Medicine, Division of Oncology Stanford Cancer Institute, Stanford University School of Medicine Stanford, CA, USA
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, & Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katie M O’Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, NC, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan Kettering Cancer Center New York, NY, USA
- Clinical Genetics Service, Department of Medicine Memorial Sloan Kettering Cancer Center New York, NY, USA
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet - University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of health and medical sciences, University of Copenhagen, Denmark
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of health and medical sciences, University of Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giulia Pianigiani
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov” MASA Skopje Republic of North Macedonia
| | - Anneli Pouta
- National Institute for Health and Welfare, Finland
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion, Faculty of Medicine, Haifa, Israel
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, NC, USA
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Kerrin Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Meir Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia Perth, Western Australia, Australia
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Population Health Sciences Weill Cornell Medicine New York, NY, USA
| | - Lauren R Teras
- Department of Population Science American Cancer Society Atlanta, GA, USA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology Mayo Clinic Rochester, MN, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine Nashville, TN, USA
| | - Ko W van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
- Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Marina Ciullo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan FA Grant
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ellen A Nøhr
- Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics & Gynecology, Odense University Hospital, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales 2305, Australia
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulla Sovio
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Doris Stöckl
- Gesundheitsamt Fürstenfeldbruck, Regierung von Oberbayern, Fürstenfeldbruck, Germany
| | - Cathie Sudlow
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh
| | - Nic J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | | | | | | | | | | | | | - Paul DP Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Pål Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Pediatrics and Adolescents, Haukeland University Hospital, NO-5021, Bergen, Norway
| | | | - Joanne M Murabito
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
- Boston University Chobanian & Avedisian School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA 02118, USA
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, RILD Level 3, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Nelly Pitteloud
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - John RB Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
102
|
Magnotto JC, Mancini A, Bird K, Montenegro L, Tütüncüler F, Pereira SA, Simas V, Garcia L, Roberts SA, Macedo D, Magnuson M, Gagliardi P, Mauras N, Witchel SF, Carroll RS, Latronico AC, Kaiser UB, Abreu AP. Novel MKRN3 Missense Mutations Associated With Central Precocious Puberty Reveal Distinct Effects on Ubiquitination. J Clin Endocrinol Metab 2023; 108:1646-1656. [PMID: 36916482 PMCID: PMC10653150 DOI: 10.1210/clinem/dgad151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
CONTEXT Loss-of-function mutations in the maternally imprinted genes, MKRN3 and DLK1, are associated with central precocious puberty (CPP). Mutations in MKRN3 are the most common known genetic etiology of CPP. OBJECTIVE This work aimed to screen patients with CPP for MKRN3 and DLK1 mutations and analyze the effects of identified mutations on protein function in vitro. METHODS Participants included 84 unrelated children with CPP (79 girls, 5 boys) and, when available, their first-degree relatives. Five academic medical institutions participated. Sanger sequencing of MKRN3 and DLK1 5' upstream flanking and coding regions was performed on DNA extracted from peripheral blood leukocytes. Western blot analysis was performed to assess protein ubiquitination profiles. RESULTS Eight heterozygous MKRN3 mutations were identified in 9 unrelated girls with CPP. Five are novel missense mutations, 2 were previously identified in patients with CPP, and 1 is a frameshift variant not previously associated with CPP. No pathogenic variants were identified in DLK1. Girls with MKRN3 mutations had an earlier age of initial pubertal signs and higher basal serum luteinizing hormone and follicle-stimulating hormone compared to girls with CPP without MRKN3 mutations. Western blot analysis revealed that compared to wild-type MKRN3, mutations within the RING finger domain reduced ubiquitination whereas the mutations outside this domain increased ubiquitination. CONCLUSION MKRN3 mutations were present in 10.7% of our CPP cohort, consistent with previous studies. The novel identified mutations in different domains of MKRN3 revealed different patterns of ubiquitination, suggesting distinct molecular mechanisms by which the loss of MRKN3 results in early pubertal onset.
Collapse
Affiliation(s)
- John C Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keisha Bird
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Filiz Tütüncüler
- Department of Pediatrics and Pediatric Endocrinology Unit, Trakya University Faculty of Medicine, Edirne 22030, Turkey
| | - Sidney A Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vitoria Simas
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonardo Garcia
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie A Roberts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Delanie Macedo
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Magnuson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Priscila Gagliardi
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Selma F Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
103
|
Diaz-Thomas AM, Golden SH, Dabelea DM, Grimberg A, Magge SN, Safer JD, Shumer DE, Stanford FC. Endocrine Health and Health Care Disparities in the Pediatric and Sexual and Gender Minority Populations: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1533-1584. [PMID: 37191578 PMCID: PMC10653187 DOI: 10.1210/clinem/dgad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Endocrine care of pediatric and adult patients continues to be plagued by health and health care disparities that are perpetuated by the basic structures of our health systems and research modalities, as well as policies that impact access to care and social determinants of health. This scientific statement expands the Society's 2012 statement by focusing on endocrine disease disparities in the pediatric population and sexual and gender minority populations. These include pediatric and adult lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) persons. The writing group focused on highly prevalent conditions-growth disorders, puberty, metabolic bone disease, type 1 (T1D) and type 2 (T2D) diabetes mellitus, prediabetes, and obesity. Several important findings emerged. Compared with females and non-White children, non-Hispanic White males are more likely to come to medical attention for short stature. Racially and ethnically diverse populations and males are underrepresented in studies of pubertal development and attainment of peak bone mass, with current norms based on European populations. Like adults, racial and ethnic minority youth suffer a higher burden of disease from obesity, T1D and T2D, and have less access to diabetes treatment technologies and bariatric surgery. LGBTQIA youth and adults also face discrimination and multiple barriers to endocrine care due to pathologizing sexual orientation and gender identity, lack of culturally competent care providers, and policies. Multilevel interventions to address these disparities are required. Inclusion of racial, ethnic, and LGBTQIA populations in longitudinal life course studies is needed to assess growth, puberty, and attainment of peak bone mass. Growth and development charts may need to be adapted to non-European populations. In addition, extension of these studies will be required to understand the clinical and physiologic consequences of interventions to address abnormal development in these populations. Health policies should be recrafted to remove barriers in care for children with obesity and/or diabetes and for LGBTQIA children and adults to facilitate comprehensive access to care, therapeutics, and technological advances. Public health interventions encompassing collection of accurate demographic and social needs data, including the intersection of social determinants of health with health outcomes, and enactment of population health level interventions will be essential tools.
Collapse
Affiliation(s)
- Alicia M Diaz-Thomas
- Department of Pediatrics, Division of Endocrinology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sherita Hill Golden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Dana M Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adda Grimberg
- Department of Pediatrics, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheela N Magge
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua D Safer
- Department of Medicine, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10001, USA
| | - Daniel E Shumer
- Department of Pediatric Endocrinology, C.S. Mott Children's Hospital, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Fatima Cody Stanford
- Massachusetts General Hospital, Department of Medicine-Division of Endocrinology-Neuroendocrine, Department of Pediatrics-Division of Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Boston, MA 02114, USA
| |
Collapse
|
104
|
Hartkopf AD, Fehm TN, Welslau M, Müller V, Schütz F, Fasching PA, Janni W, Witzel I, Thomssen C, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Wöckel A, Kolberg HC, Harbeck N, Stickeler E, Bartsch R, Schneeweiss A, Ettl J, Würstlein R, Krug D, Taran FA, Lüftner D. Update Breast Cancer 2023 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:653-663. [PMID: 37916183 PMCID: PMC10617391 DOI: 10.1055/a-2074-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 11/03/2023] Open
Abstract
With abemaciclib (monarchE study) and olaparib (OlympiA study) gaining approval in the adjuvant treatment setting, a significant change in the standard of care for patients with early stage breast cancer has been established for some time now. Accordingly, some diverse developments are slowly being transferred from the metastatic to the adjuvant treatment setting. Recently, there have also been positive reports of the NATALEE study. Other clinical studies are currently investigating substances that are already established in the metastatic setting. These include, for example, the DESTINY Breast05 study with trastuzumab deruxtecan and the SASCIA study with sacituzumab govitecan. In this review paper, we summarize and place in context the latest developments over the past months.
Collapse
Affiliation(s)
- Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Department of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| | - Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Johannes Ettl
- Klinik für Frauenheilkunde und Gynäkologie, Klinikum Kempten, Klinikverbund Allgäu, Kempten, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinkum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florin-Andrei Taran
- Department of Gynecology and Obstetrics, University Hospital Freiburg, Freiburg, Germany
| | - Diana Lüftner
- Medical University of Brandenburg Theodor-Fontane, Immanuel Hospital Märkische Schweiz, Buckow, Germany
| |
Collapse
|
105
|
Zhang B, Xu J, Liang J, Hao M, Yu Y, Wei J, Fang Y, Na Z, Li D. Causality between COVID‐19 and female reproductive function: A Mendelian randomization study. MEDCOMM – FUTURE MEDICINE 2023; 2. [DOI: 10.1002/mef2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 01/02/2025]
Abstract
AbstractCoronavirus disease 2019 (COVID‐19) has experienced a global pandemic, and currently, the emergence of its variants has posed challenges in terms of prevention and treatment. Nonetheless, the effect of COVID‐19 infection on female reproductive function is unclear. This study aimed to systematically evaluate for the first time the causal effect of COVID‐19 on female reproductive function. Genetic correlations were assessed using linkage disequilibrium score regression. Mendelian randomization (MR) analysis was performed using summary statistics of two variables, including COVID‐19 severity and eight female reproductive traits. The three degrees of severity had genetically significant associations with sex hormone‐binding globulin (SHBG) concentrations (rg = –0.153, p = 0.004; rg = –0.187, p < 0.001; rg = –0.180, p = 0.003). Additionally, MR showed that SHBG (β = –0.020, p = 0.040) and total testosterone levels (β = –0.061, p = 0.009) followed a decreasing trend, as the COVID‐19 infection higher. No significant genetic association was found between COVID‐19 infection and total estradiol concentrations, menstruation, and female infertility. Simultaneously, MR found no causal relationships between COVID‐19 infection and total estradiol concentrations, menstruation, and female infertility (all p > 0.05). In conclusion, COVID‐19 was causally associated with lower SHBG and total testosterone concentrations, offering invaluable insights that will help guide clinical decision‐making.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine Shengjing Hospital of China Medical University Shenyang China
| | - Jixue Xu
- The First Clinical College China Medical University Shenyang China
| | - Junzhi Liang
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine Shengjing Hospital of China Medical University Shenyang China
| | - Mingjun Hao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine Shengjing Hospital of China Medical University Shenyang China
| | - Yuexin Yu
- Reproductive Medicine Center General Hospital of Northern Theater Command Shenyang China
| | - Jingzan Wei
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine Shengjing Hospital of China Medical University Shenyang China
| | - Yuanyuan Fang
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine Shengjing Hospital of China Medical University Shenyang China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University) National Health Commission Shenyang China
| | - Zhijing Na
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine Shengjing Hospital of China Medical University Shenyang China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University) National Health Commission Shenyang China
| | - Da Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine Shengjing Hospital of China Medical University Shenyang China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University) National Health Commission Shenyang China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University) National Health Commission Shenyang China
| |
Collapse
|
106
|
Wang X, Kho PF, Ramachandran D, Bafligil C, Amant F, Goode EL, Scott RJ, Tomlinson I, Evans DG, Crosbie EJ, Dörk T, Spurdle AB, Glubb DM, O'Mara TA. Multi-trait genome-wide association study identifies a novel endometrial cancer risk locus that associates with testosterone levels. iScience 2023; 26:106590. [PMID: 37168552 PMCID: PMC10165198 DOI: 10.1016/j.isci.2023.106590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/02/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
To detect novel endometrial cancer risk variants, we leveraged information from endometrial cancer risk factors in a multi-trait GWAS analysis. We first assessed causal relationships between established and suspected endometrial cancer risk factors, and endometrial cancer using Mendelian randomization. Following multivariable analysis, five independent risk factors (waist circumference, testosterone levels, sex hormone binding globulin levels, age at menarche, and age at natural menopause) were included in a multi-trait Bayesian GWAS analysis. We identified three potentially novel loci that associate with endometrial cancer risk, one of which (7q22.1) replicated in an independent endometrial cancer GWAS dataset and was genome-wide significant in a meta-analysis. This locus may affect endometrial cancer risk through altered testosterone levels. Consistent with this, we observed colocalization between the signals for endometrial cancer risk and expression of CYP3A7, a gene involved in testosterone metabolism. Thus, our findings suggest opportunities for hormone therapy to prevent or treat endometrial cancer.
Collapse
Affiliation(s)
- Xuemin Wang
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Pik Fang Kho
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Cemsel Bafligil
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary’s Hospital, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Frederic Amant
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospitals KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rodney J. Scott
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, NSW 2305, Australia
- Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Ian Tomlinson
- Cancer Genetics and Evolution Laboratory, Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - D. Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Emma J. Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary’s Hospital, Manchester M13 9WL, UK
- Department of Obstetrics and Gynaecology, St Mary’s Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Amanda B. Spurdle
- Population Health Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Dylan M. Glubb
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Tracy A. O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
107
|
Susie Lee D, Semenchenko H. Father absence and pubertal timing in Korean boys and girls. Evol Med Public Health 2023; 11:174-184. [PMID: 37325803 PMCID: PMC10266580 DOI: 10.1093/emph/eoad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/24/2023] [Indexed: 06/17/2023] Open
Abstract
Background and objectives Pubertal timing is a key life history trait with long-term health consequences in both sexes. Evolutionary theory has guided extensive research on developmental influences, in particular growing up without a father, on earlier menarche. Far less is known whether a similar relationship exists for boys, especially beyond western contexts. We used longitudinal data from the nationally representative sample of Korean adolescents, which provided us with a unique opportunity for studying male puberty using a hitherto underutilized biomarker: age at first nocturnal ejaculation. Methodology We pre-registered and tested a prediction that growing up in father-absent households is associated with earlier puberty in both sexes. Large sample size (>6000) allowed testing the effect of father absence, which remains relatively uncommon in Korea, while adjusting for potential confounders using Cox proportional-hazard models. Results Self-reported age at first nocturnal ejaculation was on average 13.8 years, falling within the range known from other societies. Unlike previous findings mostly for white girls, we did not find evidence that Korean girls in father-absent households had a younger age at menarche. Boys in father-absent households reported having their first nocturnal ejaculation 3 months earlier on average, and the difference was evident before age 14. Conclusion and implications The association between father absence and pubertal timing appears sex- and age-dependent, and these differences may further interact with cultural norms regarding gender roles. Our study also highlights the utility of the recalled age of first ejaculation for male puberty research, which has lagged in both evolutionary biology and medicine.
Collapse
Affiliation(s)
- D Susie Lee
- Corresponding author. Max Planck Institute for Demographic Research, Konrad-Zuse Strasse 1, 18057 Rostock, Germany. Tel: +49 381 2081-0; E-mail:
| | - Hanna Semenchenko
- Max Planck Institute for Demographic Research, Konrad-Zuse Strasse 1, 18057 Rostock, Germany
| |
Collapse
|
108
|
Tsompanidis A, Warrier V, Baron-Cohen S. The genetics of autism and steroid-related traits in prenatal and postnatal life. Front Endocrinol (Lausanne) 2023; 14:1126036. [PMID: 37223033 PMCID: PMC10200920 DOI: 10.3389/fendo.2023.1126036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Background Autism likelihood is a largely heritable trait. Autism prevalence has a skewed sex ratio, with males being diagnosed more often than females. Steroid hormones play a mediating role in this, as indicated by studies of both prenatal biology and postnatal medical conditions in autistic men and women. It is currently unclear if the genetics of steroid regulation or production interact with the genetic liability for autism. Methods To address this, two studies were conducted using publicly available datasets, which focused respectively on rare genetic variants linked to autism and neurodevelopmental conditions (study 1) and common genetic variants (study 2) for autism. In Study 1 an enrichment analysis was conducted, between autism-related genes (SFARI database) and genes that are differentially expressed (FDR<0.1) between male and female placentas, in 1st trimester chorionic villi samples of viable pregnancies (n=39). In Study 2 summary statistics of genome wide association studies (GWAS) were used to investigate the genetic correlation between autism and bioactive testosterone, estradiol and postnatal PlGF levels, as well as steroid-related conditions such as polycystic ovaries syndrome (PCOS), age of menarche, and androgenic alopecia. Genetic correlation was calculated based on LD Score regression and results were corrected for multiple testing with FDR. Results In Study 1, there was significant enrichment of X-linked autism genes in male-biased placental genes, independently of gene length (n=5 genes, p<0.001). In Study 2, common genetic variance associated with autism did not correlate to the genetics for the postnatal levels of testosterone, estradiol or PlGF, but was associated with the genotypes associated with early age of menarche in females (b=-0.109, FDR-q=0.004) and protection from androgenic alopecia for males (b=-0.135, FDR-q=0.007). Conclusion The rare genetic variants associated with autism appear to interact with placental sex differences, while the common genetic variants associated with autism appear to be involved in the regulation of steroid-related traits. These lines of evidence indicate that the likelihood for autism is partly linked to factors mediating physiological sex differences throughout development.
Collapse
Affiliation(s)
- Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
109
|
Mathieson I, Day FR, Barban N, Tropf FC, Brazel DM, Vaez A, van Zuydam N, Bitarello BD, Gardner EJ, Akimova ET, Azad A, Bergmann S, Bielak LF, Boomsma DI, Bosak K, Brumat M, Buring JE, Cesarini D, Chasman DI, Chavarro JE, Cocca M, Concas MP, Davey Smith G, Davies G, Deary IJ, Esko T, Faul JD, Franco O, Ganna A, Gaskins AJ, Gelemanovic A, de Geus EJC, Gieger C, Girotto G, Gopinath B, Grabe HJ, Gunderson EP, Hayward C, He C, van Heemst D, Hill WD, Hoffmann ER, Homuth G, Hottenga JJ, Huang H, Hyppӧnen E, Ikram MA, Jansen R, Johannesson M, Kamali Z, Kardia SLR, Kavousi M, Kifley A, Kiiskinen T, Kraft P, Kühnel B, Langenberg C, Liew G, Lind PA, Luan J, Mägi R, Magnusson PKE, Mahajan A, Martin NG, Mbarek H, McCarthy MI, McMahon G, Medland SE, Meitinger T, Metspalu A, Mihailov E, Milani L, Missmer SA, Mitchell P, Møllegaard S, Mook-Kanamori DO, Morgan A, van der Most PJ, de Mutsert R, Nauck M, Nolte IM, Noordam R, Penninx BWJH, Peters A, Peyser PA, Polašek O, Power C, Pribisalic A, Redmond P, Rich-Edwards JW, Ridker PM, Rietveld CA, Ring SM, Rose LM, Rueedi R, Shukla V, Smith JA, Stankovic S, Stefánsson K, Stöckl D, et alMathieson I, Day FR, Barban N, Tropf FC, Brazel DM, Vaez A, van Zuydam N, Bitarello BD, Gardner EJ, Akimova ET, Azad A, Bergmann S, Bielak LF, Boomsma DI, Bosak K, Brumat M, Buring JE, Cesarini D, Chasman DI, Chavarro JE, Cocca M, Concas MP, Davey Smith G, Davies G, Deary IJ, Esko T, Faul JD, Franco O, Ganna A, Gaskins AJ, Gelemanovic A, de Geus EJC, Gieger C, Girotto G, Gopinath B, Grabe HJ, Gunderson EP, Hayward C, He C, van Heemst D, Hill WD, Hoffmann ER, Homuth G, Hottenga JJ, Huang H, Hyppӧnen E, Ikram MA, Jansen R, Johannesson M, Kamali Z, Kardia SLR, Kavousi M, Kifley A, Kiiskinen T, Kraft P, Kühnel B, Langenberg C, Liew G, Lind PA, Luan J, Mägi R, Magnusson PKE, Mahajan A, Martin NG, Mbarek H, McCarthy MI, McMahon G, Medland SE, Meitinger T, Metspalu A, Mihailov E, Milani L, Missmer SA, Mitchell P, Møllegaard S, Mook-Kanamori DO, Morgan A, van der Most PJ, de Mutsert R, Nauck M, Nolte IM, Noordam R, Penninx BWJH, Peters A, Peyser PA, Polašek O, Power C, Pribisalic A, Redmond P, Rich-Edwards JW, Ridker PM, Rietveld CA, Ring SM, Rose LM, Rueedi R, Shukla V, Smith JA, Stankovic S, Stefánsson K, Stöckl D, Strauch K, Swertz MA, Teumer A, Thorleifsson G, Thorsteinsdottir U, Thurik AR, Timpson NJ, Turman C, Uitterlinden AG, Waldenberger M, Wareham NJ, Weir DR, Willemsen G, Zhao JH, Zhao W, Zhao Y, Snieder H, den Hoed M, Ong KK, Mills MC, Perry JRB. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Nat Hum Behav 2023; 7:790-801. [PMID: 36864135 DOI: 10.1038/s41562-023-01528-6] [Show More Authors] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/12/2023] [Indexed: 03/04/2023]
Abstract
Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identified 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology, including puberty timing, age at first birth, sex hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at this locus between reproductive ageing and intensity. Other genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and our results suggest a new role for the melanocortin 1 receptor (MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Integration with data from historical selection scans highlighted an allele in the FADS1/2 gene locus that has been under selection for thousands of years and remains so today. Collectively, our findings demonstrate that a broad range of biological mechanisms contribute to reproductive success.
Collapse
Affiliation(s)
- Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Nicola Barban
- Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Felix C Tropf
- Nuffield College, University of Oxford, Oxford, UK
- École Nationale de la Statistique et de L'administration Économique (ENSAE), Paris, France
- Center for Research in Economics and Statistics (CREST), Paris, France
| | - David M Brazel
- Nuffield College, University of Oxford, Oxford, UK
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Natalie van Zuydam
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Bárbara D Bitarello
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Evelina T Akimova
- Nuffield College, University of Oxford, Oxford, UK
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Ajuna Azad
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, the Netherlands
| | | | - Marco Brumat
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Julie E Buring
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Cesarini
- Department of Economics, New York University, New York, NY, USA
- Research Institute for Industrial Economics, Stockholm, Sweden
- National Bureau of Economic Research, Cambridge, MA, USA
| | - Daniel I Chasman
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Oscar Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Eco J C de Geus
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Giorgia Girotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Bamini Gopinath
- Centre for Vision Research, Westmead Institute for Medical Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Erica P Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chunyan He
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - W David Hill
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hongyang Huang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elina Hyppӧnen
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Magnus Johannesson
- Department of Economics, Stockholm School of Economics, Stockholm, Sweden
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annette Kifley
- Centre for Vision Research, Westmead Institute for Medical Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Gerald Liew
- Centre for Vision Research, Westmead Institute for Medical Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hamdi Mbarek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Qatar Genome Programme, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - George McMahon
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Stacey A Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Paul Mitchell
- Centre for Vision Research, Westmead Institute for Medical Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Stine Møllegaard
- Department of Sociology, University of Copenhagen, Copenhagen, Denmark
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna Morgan
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam, the Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Chris Power
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janet W Rich-Edwards
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul M Ridker
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Cornelius A Rietveld
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Applied Economics, Erasmus School of Economics, Rotterdam, the Netherlands
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Stasa Stankovic
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Doris Stöckl
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | - A Roy Thurik
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Applied Economics, Erasmus School of Economics, Rotterdam, the Netherlands
- Montpellier Business School, Montpellier, France
| | | | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - André G Uitterlinden
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jing Hau Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Yajie Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marcel den Hoed
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Melinda C Mills
- Nuffield College, University of Oxford, Oxford, UK.
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Economics, Econometrics and Finance, University of Groningen, Groningen, the Netherlands.
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
110
|
Naulé L, Mancini A, Pereira SA, Gassaway BM, Lydeard JR, Magnotto JC, Kim HK, Liang J, Matos C, Gygi SP, Merkle FT, Carroll RS, Abreu AP, Kaiser UB. MKRN3 inhibits puberty onset via interaction with IGF2BP1 and regulation of hypothalamic plasticity. JCI Insight 2023; 8:e164178. [PMID: 37092553 PMCID: PMC10243807 DOI: 10.1172/jci.insight.164178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sidney A. Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon M. Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John R. Lydeard
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Han Kyeol Kim
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joy Liang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cynara Matos
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian T. Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust – Medical Research Council Institute of Metabolic Science and
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
111
|
Wang Z, Lu J, Weng W, Fu J, Zhang J. Women's reproductive traits and major depressive disorder: A two-sample Mendelian randomization study. J Affect Disord 2023; 326:139-146. [PMID: 36682697 DOI: 10.1016/j.jad.2023.01.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Evidence suggested strong associations between women's reproductive factors and major depressive disorder (MDD), but their causalities are unclear. METHODS Using female-specific SNPs as genetic instruments obtained from large-scale genome-wide association studies for women's reproductive traits, we designed two-sample univariable and multivariable Mendelian randomization (MR) analysis to evaluate the causal effects of women's reproductive traits on MDD. For both univariable MR (UVMR) and multivariable MR (MVMR), the inverse variance weighting estimates were reported as main results. MR-Egger, weighted median, and generalized summary-data-based MR (GSMR) methods for UVMR, and MVMR-Egger and MVMR-robust methods for MVMR were used as sensitivity analyses. Negative control analyses, MVMR of age at first birth (AFB) and age at first sexual intercourse (AFS) on MDD, and sex-combined genetic variants for AFB and AFS were performed to enhance the robustness of our study. RESULTS There was substantial evidence for associations of genetically predicted later age at menarche (AAM) (odds ratio (OR) = 0.97, 95 % confidence interval (CI) = 0.94-0.99, P = 0.007), AFB (OR = 0.91, 95 % CI = 0.86-0.97, P = 0.002) and AFS (OR = 0.70, 95 % CI = 0.60-0.80, P < 0.001) with lower MDD risk in UVMR. After adjustment of BMI and educational attainment using MVMR, we found consistently significant causal effects of AAM (OR = 0.95, 95 % CI = 0.92-0.99, P = 0.006), AFB (OR = 0.88, 95 % CI = 0.84-0.91, P < 0.001) and AFS (OR = 0.71, 95 % CI = 0.64-0.79, P < 0.001) on MDD. CONCLUSIONS Our results provide compelling evidence that early AAM, AFB, and AFS are risk factors for MDD. Promoting the cognition of reproductive health care for women may reduce the risk of MDD.
Collapse
Affiliation(s)
- Zhenqian Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiawen Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weipin Weng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianhan Fu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
112
|
Xing W, Lv Q, Li Y, Wang C, Mao Z, Li Y, Li J, Yang T, Li L. Genetic prediction of age at menarche, age at natural menopause and type 2 diabetes: A Mendelian randomization study. Nutr Metab Cardiovasc Dis 2023; 33:873-882. [PMID: 36775707 DOI: 10.1016/j.numecd.2023.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS The relationship between reproductive factors and type 2 diabetes (T2D) is controversial; therefore, we explored the causal relationship of age at menarche (AAM), age at natural menopause (ANM), with the risk of T2D and glycemic traits using two-sample Mendelian randomization. METHODS AND RESULTS We used publicly available data at the summary level of genome-wide association studies, where AAM (N = 329,345), ANM (N = 69,360), T2D (N = 464,389). The inverse variance weighting (IVW) method was employed as the primary method. To demonstrate the robustness of the results, we also conducted various sensitivity analysis methods including the MR-Egger regression, the weighted median (WM) and the MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test. After excluding IVs associated with confounders, we found a causal association between later AAM and reduced risk of T2D (OR 0.81 [95% CI 0.75, 0.87]; P = 2.20 × 10-8), lower levels of FI (β -0.04 [95% CI -0.06, -0.01]; P = 2.19 × 10-3), FPG (β -0.03 [95% CI -0.05, -0.007]; P = 9.67 × 10-5) and HOMA-IR (β -0.04 [95% CI -0.06, -0.01]; P = 4,95 × 10-3). As for ANM, we only found a causal effect with HOMA-IR (β -0.01 [95% CI -0.02, -0.005]; P = 1.77 × 10-3), but not with T2D. CONCLUSIONS Our MR study showed a causal relationship between later AAM and lower risk of developing T2D, lower FI, FPG and HOMA-IR levels. This may provide new insights into the prevention of T2D in women.
Collapse
Affiliation(s)
- Wenguo Xing
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Quanjun Lv
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuqian Li
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chongjian Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxing Mao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Tianyu Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
113
|
Li J, Yu Y, Yuan J, Liu D, Fang J, Wu P, Zhou Y, Wang Y, Sun Y. Association between early life adversity and allostatic load in girls with precocious puberty. Psychoneuroendocrinology 2023; 152:106101. [PMID: 37004468 DOI: 10.1016/j.psyneuen.2023.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
CONTEXT The mechanisms underlying the elevated long-term health risk in girls with precocious puberty remain unclear, but might result from physiological wear and tear associated with greater exposure to early life adversity. OBJECTIVE This study aims to explore early life adversity in girls with precocious puberty and its association with allostatic load. METHODS Early life adversity and hair cortisol concentration were measured among 213 girls with precocious puberty (8.21 ± 1.07). Allostatic load score is constructed by using 13 physiological biomarkers representing four systems and hair cortisol concentration. Multivariate linear regression models have estimated the associations between cumulative early life adversity exposure with total and system-specific allostatic load scores. Associations between cumulative early life adversity and the risk of high allostatic load (3 + high-risk biomarkers) were tested using binary logistics regression. RESULTS More than two-thirds (67.6%) of girls with central precocious puberty reported two or more early life adversity exposure. Compared to those with no early life adversity exposure, girls who reported early life adversity score ≥ 2 had significantly higher total allostatic load score (β: 1.20-1.64, P < 0.001). Metabolic system was more sensitive to cumulative early life adversity exposure, each form of early life adversity exposure was associated with 0.48-unit increases in metabolic allostatic load score (95%CI: 0.06, 0.90, P = 0.026). Girls reported early life adversity score ≥ 3 were three times more likely to have a high allostatic load compared with those without early life adversity exposure in both unadjusted and adjusted models (ORadjusted=3.83, 95%CI: 1.17, 12.55, P = 0.001). CONCLUSION Multisystem physiological dysregulation is observed in girls with central precocious puberty, which might result from cumulative wear-and-tear associated with early life adversity.
Collapse
Affiliation(s)
- Jing Li
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Yue Yu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jingyi Yuan
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Deyun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiao Fang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Peipei Wu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Yi Zhou
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Ya Wang
- Department of Child Health Care, Anhui Provincial Children's Hospital, Hefei, Anhui Province, China.
| | - Ying Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health&Aristogenics, Hefei, Anhui Province, China; Stomatologic Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
114
|
Wang Z, Lu J, Weng W, Zhang J. Women's reproductive traits and cerebral small-vessel disease: A two-sample Mendelian randomization study. Front Neurol 2023; 14:1064081. [PMID: 37064189 PMCID: PMC10098092 DOI: 10.3389/fneur.2023.1064081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundObservational studies have suggested that women's reproductive factors (age at menarche (AAM), age at first birth (AFB), age at first sexual intercourse (AFS), age at natural menopause (ANM), and pregnancy loss) may influence the risk of cerebral small-vessel disease (CSVD) although the causality remains unclear.MethodsWe conducted two-sample univariable Mendelian randomization (UVMR) and multivariable MR (MVMR) to simultaneously investigate the causal relationships between five women's reproductive traits and CSVD clinical [intracerebral hemorrhage (ICH) by location or small-vessel ischemic stroke (SVS)] and subclinical measures [white matter hyperintensities (WMH), fractional anisotropy (FA), and mean diffusivity (MD)], utilizing data from large-scale genome-wide association studies of European ancestry. For both UVMR and MVMR, the inverse-variance-weighted (IVW) estimates were reported as the main results. The MR-Egger, weighted median, generalized summary-data-based MR (GSMR), and MR-pleiotropy residual sum and outlier (MR-PRESSO) methods for UVMR and MVMR-Egger, and the MVMR-robust methods for MVMR were used as sensitivity analyses. Sex-combined instruments for AFS and AFB were used to assess the impact of sex instrumental heterogeneity. Positive control analysis was implemented to measure the efficacy of selected genetic instruments.ResultsWe found no evidence to support causal associations between genetic liability for women's reproductive factors and the risk of CSVD in UVMR (all P-values > 0.05). Using MVMR, the results were consistent with the findings of UVMR after accounting for body mass index and educational attainment (all P-values > 0.05). Sensitivity analyses also provided consistent results. The putative positive causality was observed between AAM, ANM, and ovarian cancer, ensuring the efficacy of selected genetic instruments.ConclusionOur findings do not convincingly support a causal effect of women's reproductive factors on CSVD. Future studies are warranted to investigate specific estrogen-related physiological changes in women, which may inform current researchers on the causal mechanisms involved in cerebral small-vessel disease progression.
Collapse
Affiliation(s)
- Zhenqian Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiawen Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weipin Weng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Jie Zhang
| |
Collapse
|
115
|
Pan C, Li C, Cheng S, Chen Y, Zhang J, Zhang Z, Zhang H, Liu L, Meng P, Yang X, Cheng B, Wen Y, Jia Y, Zhang F. The Effect of Secondary Sexual Characteristics Outset Time Abnormality on Addiction in Adults: a Mendelian Randomization Study. Int J Ment Health Addict 2023. [DOI: 10.1007/s11469-023-01037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
116
|
Ardissino M, Slob EAW, Carter P, Rogne T, Girling J, Burgess S, Ng FS. Sex-Specific Reproductive Factors Augment Cardiovascular Disease Risk in Women: A Mendelian Randomization Study. J Am Heart Assoc 2023; 12:e027933. [PMID: 36846989 PMCID: PMC10111460 DOI: 10.1161/jaha.122.027933] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/23/2022] [Indexed: 03/01/2023]
Abstract
Background Observational studies suggest that reproductive factors are associated with cardiovascular disease, but these are liable to influence by residual confounding. This study explores the causal relevance of reproductive factors on cardiovascular disease in women using Mendelian randomization. Methods and Results Uncorrelated (r2<0.001), genome-wide significant (P<5×10-8) single-nucleotide polymorphisms were extracted from sex-specific genome-wide association studies of age at first birth, number of live births, age at menarche, and age at menopause. Inverse-variance weighted Mendelian randomization was used for primary analyses on outcomes of atrial fibrillation, coronary artery disease, heart failure, ischemic stroke, and stroke. Earlier genetically predicted age at first birth increased risk of coronary artery disease (odds ratio [OR] per year, 1.49 [95% CI, 1.28-1.74], P=3.72×10-7) heart failure (OR, 1.27 [95% CI, 1.06-1.53], P=0.009), and stroke (OR, 1.25 [95% CI, 1.00-1.56], P=0.048), with partial mediation through body mass index, type 2 diabetes, blood pressure, and cholesterol traits. Higher genetically predicted number of live births increased risk of atrial fibrillation (OR for <2, versus 2, versus >2 live births, 2.91 [95% CI, 1.16-7.29], P=0.023), heart failure (OR, 1.90 [95% CI, 1.28-2.82], P=0.001), ischemic stroke (OR, 1.86 [95% CI, 1.03-3.37], P=0.039), and stroke (OR, 2.07 [95% CI, 1.22-3.52], P=0.007). Earlier genetically predicted age at menarche increased risk of coronary artery disease (OR per year, 1.10 [95% CI, 1.06-1.14], P=1.68×10-6) and heart failure (OR, 1.12 [95% CI, 1.07-1.17], P=5.06×10-7); both associations were at least partly mediated by body mass index. Conclusions These results support a causal role of a number of reproductive factors on cardiovascular disease in women and identify multiple modifiable mediators amenable to clinical intervention.
Collapse
Affiliation(s)
- Maddalena Ardissino
- National Heart and Lung InstituteImperial College LondonLondonUnited Kingdom
- Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Eric A. W. Slob
- Medical Research Council Biostatistics UnitUniversity of CambridgeCambridgeUnited Kingdom
- Department of Applied Economics, Erasmus School of EconomicsErasmus University RotterdamRotterdamThe Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus University RotterdamRotterdamThe Netherlands
| | - Paul Carter
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Tormod Rogne
- Department of Chronic Disease EpidemiologyYale School of Public HealthNew HavenCT
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
- Centre for Fertility and HealthNorwegian Institute of Public HealthOsloNorway
| | - Joanna Girling
- Department of Obstetrics and GynaecologyChelsea and Westminster Hospital NHS Foundation TrustLondonUnited Kingdom
| | - Stephen Burgess
- Medical Research Council Biostatistics UnitUniversity of CambridgeCambridgeUnited Kingdom
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
| | - Fu Siong Ng
- National Heart and Lung InstituteImperial College LondonLondonUnited Kingdom
| |
Collapse
|
117
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
118
|
Laugesen K, Mengel-From J, Christensen K, Olsen J, Hougaard DM, Boding L, Olsen A, Erikstrup C, Hetland ML, Høgdall E, Kjaergaard AD, Sørensen E, Brügmann A, Petersen ERB, Brandslund I, Nordestgaard BG, Jensen GB, Skajaa N, Troelsen FS, Fuglsang CH, Svingel LS, Sørensen HT. A Review of Major Danish Biobanks: Advantages and Possibilities of Health Research in Denmark. Clin Epidemiol 2023; 15:213-239. [PMID: 36852012 PMCID: PMC9960719 DOI: 10.2147/clep.s392416] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Biobank research may lead to an improved understanding of disease etiology and advance personalized medicine. Denmark (population ~5.9 million) provides a unique setting for population-based health research. The country is a rich source of biobanks and the universal, tax-funded healthcare system delivers routinely collected data to numerous registries and databases. By virtue of the civil registration number (assigned uniquely to all Danish citizens), biological specimens stored in biobanks can be combined with clinical and demographic data from these population-based health registries and databases. In this review, we aim to provide an understanding of advantages and possibilities of biobank research in Denmark. As knowledge about the Danish setting is needed to grasp the full potential, we first introduce the Danish healthcare system, the Civil Registration System, the population-based registries, and the interface with biobanks. We then describe the biobank infrastructures, comprising the Danish National Biobank Initiative, the Bio- and Genome Bank Denmark, and the Danish National Genome Center. Further, we briefly provide an overview of fourteen selected biobanks, including: The Danish Newborn Screening Biobank; The Danish National Birth Cohort; The Danish Twin Registry Biobank; Diet, Cancer and Health; Diet, Cancer and Health - Next generations; Danish Centre for Strategic Research in Type 2 Diabetes; Vejle Diabetes Biobank; The Copenhagen Hospital Biobank; The Copenhagen City Heart Study; The Copenhagen General Population Study; The Danish Cancer Biobank; The Danish Rheumatological Biobank; The Danish Blood Donor Study; and The Danish Pathology Databank. Last, we inform on practical aspects, such as data access, and discuss future implications.
Collapse
Affiliation(s)
- Kristina Laugesen
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, the Danish Twin Registry, and the Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, the Danish Twin Registry, and the Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Jørn Olsen
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Lasse Boding
- The Danish National Biobank, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Merete Lund Hetland
- The DANBIO Registry and Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark.,Bio- and GenomeBank Denmark (RBGB), Molecular Unit, Department of Pathology, Herlev Hospital, Herlev, Denmark
| | - Alisa D Kjaergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja Brügmann
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Ivan Brandslund
- Department of Clinical Biochemistry and Immunology, Lillebaelt Hospital, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, University of Copenhagen, Herlev, Denmark
| | - Gorm B Jensen
- The Copenhagen City Heart Study, Frederiksberg and Bispebjerg Hospital, Frederiksberg, Denmark
| | - Nils Skajaa
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | | | | | - Lise Skovgaard Svingel
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Henrik T Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| |
Collapse
|
119
|
Prenatal Exposure to Parental Lifestyle Factors, Diseases, and Use of Medications and Male Pubertal Development: a Review of Epidemiological Studies Published 2017–2022. CURR EPIDEMIOL REP 2023. [DOI: 10.1007/s40471-023-00320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
120
|
Hao Y, Xiao J, Liang Y, Wu X, Zhang H, Xiao C, Zhang L, Burgess S, Wang N, Zhao X, Kraft P, Li J, Jiang X. Reassessing the causal role of obesity in breast cancer susceptibility: a comprehensive multivariable Mendelian randomization investigating the distribution and timing of exposure. Int J Epidemiol 2023; 52:58-70. [PMID: 35848946 PMCID: PMC7614158 DOI: 10.1093/ije/dyac143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/20/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Previous Mendelian randomization (MR) studies on obesity and risk of breast cancer adopted a small number of instrumental variables and focused mainly on the crude total effect. We aim to investigate the independent causal effect of obesity on breast cancer susceptibility, considering the distribution of fat, covering both early and late life. METHODS Using an enlarged set of female-specific genetic variants associated with adult general [body mass index (BMI)] and abdominal obesity [waist-to-hip ratio (WHR) with and without adjustment for BMI, WHR and WHRadjBMI] as well as using sex-combined genetic variants of childhood obesity (childhood BMI), we performed a two-sample univariable MR to re-evaluate the total effect of each obesity-related exposure on overall breast cancer (Ncase = 133 384, Ncontrol = 113 789). We further looked into its oestrogen receptor (ER)-defined subtypes (NER+ = 69 501, NER- = 21 468, Ncontrol = 105 974). Multivariable MR was applied to estimate the independent causal effect of each obesity-related exposure on breast cancer taking into account confounders as well as to investigate the independent effect of adult and childhood obesity considering their inter-correlation. RESULTS In univariable MR, the protective effects of both adult BMI [odds ratio (OR) = 0.89, 95% CI = 0.83-0.96, P = 2.06 × 10-3] and childhood BMI (OR = 0.78, 95% CI = 0.70-0.87, P = 4.58 × 10-6) were observed for breast cancer overall. Comparable effects were found in ER+ and ER- subtypes. Similarly, genetically predicted adult WHR was also associated with a decreased risk of breast cancer overall (OR = 0.87, 95% CI = 0.80-0.96, P = 3.77 × 10-3), restricting to ER+ subtype (OR = 0.88, 95% CI = 0.80-0.98, P = 1.84 × 10-2). Conditional on childhood BMI, the effect of adult general obesity on breast cancer overall attenuated to null (BMI: OR = 1.00, 95% CI = 0.90-1.10, P = 0.96), whereas the effect of adult abdominal obesity attenuated to some extent (WHR: OR = 0.90, 95% CI = 0.82-0.98, P = 1.49 × 10-2; WHRadjBMI: OR = 0.92, 95% CI = 0.86-0.99, P = 1.98 × 10-2). On the contrary, an independent protective effect of childhood BMI was observed in breast cancer overall, irrespective of adult measures (adjusted for adult BMI: OR = 0.84, 95% CI = 0.77-0.93, P = 3.93 × 10-4; adjusted for adult WHR: OR = 0.84, 95% CI = 0.76-0.91, P = 6.57 × 10-5; adjusted for adult WHRadjBMI: OR = 0.80, 95% CI = 0.74-0.87, P = 1.24 × 10-7). CONCLUSION Although successfully replicating the inverse causal relationship between adult obesity-related exposures and risk of breast cancer, our study demonstrated such effects to be largely (adult BMI) or partly (adult WHR or WHRadjBMI) attributed to childhood obesity. Our findings highlighted an independent role of childhood obesity in affecting the risk of breast cancer as well as the importance of taking into account the complex interplay underlying correlated exposures.
Collapse
Affiliation(s)
- Yu Hao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Liang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Stephen Burgess
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Nan Wang
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xunying Zhao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
121
|
Wang L, Xu F, Zhang Q, Chen J, Zhou Q, Sun C. Causal relationships between birth weight, childhood obesity and age at menarche: A two-sample Mendelian randomization analysis. Clin Endocrinol (Oxf) 2023; 98:212-220. [PMID: 36237121 DOI: 10.1111/cen.14831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Observational studies suggest birth weight and childhood obesity are closely associated with age at menarche. However, the relationships between them are currently inconsistent and it remains elusive whether such associations are causal. Therefore, the aim of the study was to investigate whether there existed causal relationships between birth weight, childhood obesity and age at menarche. DESIGN, PATIENTS AND MEASUREMENTS A two-sample Mendelian randomization (MR) study. The standard inverse variance weighted MR analyses were adopted to evaluate the causal effects of birth weight (n = 143,677), childhood body mass index (BMI) (n = 39,620) on age at menarche (n = 182,416) with summary statistics from large-scale genome-wide association studies (GWASs). Meanwhile, we validated our MR results with some sensitivity analyses including maximum likelihood, weighted-median and MR pleiotropy residual sum and outlier methods. RESULTS The present study showed that each one standard deviation (1-SD) lower birth weight was predicted to result in a 0.1479 years earlier of age at menarche (β = .1479, 95% confidence interval [CI] = 0.0422-0.2535; p = 0.0061). We also found that genetically predicted 1-SD increase in childhood BMI was causally associated with early age at menarche (β = -.3966, 95% CI = -0.5294 to -0.2639; p = 4.73E-09). CONCLUSIONS Our MR study suggests the causal effect of lower birth weight and higher childhood BMI on the increased risk of earlier menarche. It may be the opportune time to carry out weight control intervention in prenatal and early childhood development periods to prevent early menarche onset, thus decreasing the future adverse consequences.
Collapse
Affiliation(s)
- Lianke Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Zhang
- Department of Community Nursing, College of Nursing and Health, Zhengzhou University, Henan, Zhengzhou, China
| | - Jiajun Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qianyu Zhou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Changqing Sun
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
122
|
Tsai MC, Hsu CH, Chu SK, Roy-Gagnon MH, Lin SH. Genome-wide association study of age at menarche in the Taiwan Biobank suggests NOL4 as a novel associated gene. J Hum Genet 2023; 68:339-345. [PMID: 36710296 DOI: 10.1038/s10038-023-01124-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Sexual maturation is a complex physiological process that involves multiple variables, such as genetic and environmental factors. Among females, age at menarche (AM) is a critical milestone for sexual maturation. This study aimed to identify genetic markers of AM using nationwide population cohort data in Taiwan. Females with self-reported AM between 10 and 16 years (N = 39,827) were eligible for the final analysis. To identify genetic signals related to AM, we conducted a genome-wide association study using a linear regression model and split-half meta-analysis method to verify our findings. The Functional Mapping and Annotation web-based platform was used for positional mapping and gene-based and gene-set analyses. The meta-analysis identified four significant loci, i.e., LIN28B (pooled P = 1.39 × 10-21), NOL4 (pooled P = 8.94 × 10-9), GPR45 (pooled P = 4.19 × 10-11), and LOC105373831 (pooled P = 4.37 × 10-8), that were associated with AM. MAGMA gene-based analysis revealed that LIN28B (P = 1.13 × 10-8), NOL4 (P = 2.27 × 10-7), RXRG (P = 4.34 × 10-7), ETV5 (P = 1.75 × 10-6), and HACE1 (P = 1.82 × 10-6) were significantly associated with AM, while the gene-set analysis identified a significantly enriched pathway involving mTOR signaling complex (FDR corrected P = 1.28 × 10-2). The results replicated evidence for several genetic markers associated with AM in the Taiwanese female population. Our analysis identified a novel locus (rs7239368) in NOL4 associated with AM (β = 0.051 ± 0.009 years, pooled P = 8.94 × 10-9), whereas additional research is needed to validate its molecular role in sexual maturation.
Collapse
Affiliation(s)
- Meng-Che Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Humanities and Social Medicine, Collage of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hui Hsu
- Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Kai Chu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Clinical Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
123
|
Bassols J, de Zegher F, Diaz M, Carreras-Badosa G, Garcia-Beltran C, Puerto-Carranza E, Oliver-Vila C, Casano P, Franco CA, Malpique R, López-Bermejo A, Ibáñez L. Effects of half-dose spiomet treatment in girls with early puberty and accelerated bone maturation: a multicenter, randomized, placebo-controlled study protocol. Trials 2023; 24:56. [PMID: 36694227 PMCID: PMC9873221 DOI: 10.1186/s13063-022-07050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND A "mismatch" sequence of less prenatal weight gain and more postnatal weight gain may lead to ectopic lipid accumulation, and trigger the development of early adrenarche/pubarche and the activation of the gonadotropic axis resulting in early puberty and ending up in full-blown adolescent polycystic ovary syndrome (PCOS). In the present study, we assess whether a low-dose combination of generics that collectively reduce ectopic fat through different pathways can slow down the accelerated maturation in "mismatch" girls with early puberty. METHODS Randomized, placebo-controlled, multicenter, phase 2a, study in 64 girls [age, 8.0-9.3 years; birthweight (BW) for gestational age in lower tertile (-1.96< Z-score <-0.44), body mass index (BMI) in upper tertile (+0.44< Z-score < +1.96) and early progressive puberty (Tanner B2 at 7.7-9.0 years)]. Pharmacological intervention will be with a half-dose version of SPIOMET (mini-spiomet), a combination that reverts the PCOS phenotype in "mismatch" adolescents; mini-spiomet will contain spironolactone (25 mg/day, to raise brown adipose tissue activity), pioglitazone (3.75 mg/day, to raise adiponectin and insulin sensitivity), and metformin (425 mg/day, to raise AMPK activity and GDF15). Recruitment: 1 year; double-blind treatment: 1 year; open follow-up: 1 year; analyses and reporting: 1 year. INTERVENTIONS randomization (1:1) for placebo vs mini-spiomet. PRIMARY OUTCOME annualized bone age advancement (0-1 year) by BoneXpert; secondary outcomes: insulin, IGF-I, high-molecular-weight adiponectin (HMW-adip), sex hormone binding globulin (SHBG), ultra-sensitive C-reactive protein (usCRP), androgens, luteinizing hormone (LH), follicle-stimulating hormone (FSH), oestradiol, growth-and-differentiation factor 15 (GDF15), C-X-C motif chemokine ligand-14 (CXCL14), safety parameters, and quantification of hepato-visceral fat. DISCUSSION The present study, if successful, may provide a first proof of the concept that the rapid maturation of girls with an upward mismatch between pre- and post-natal weight gain can be slowed down with a fixed low-dose combination of old and safe generics jointly targeting a reduction of ectopic fat without necessarily lowering body weight. TRIAL REGISTRATION EudraCT 2021-006766-21. Registered on May 30, 2022.
Collapse
Affiliation(s)
- Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Francis de Zegher
- Leuven Research & Development, University of Leuven, Leuven, Belgium
| | - Marta Diaz
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Cristina Garcia-Beltran
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Cora Oliver-Vila
- Pediatric Endocrinology Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Paula Casano
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Céline Alicia Franco
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Rita Malpique
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
- Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain.
- Department of Medical Sciences, University of Girona, Girona, Spain.
| | - Lourdes Ibáñez
- Endocrinology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
124
|
Vezzoli V, Hrvat F, Goggi G, Federici S, Cangiano B, Quinton R, Persani L, Bonomi M. Genetic architecture of self-limited delayed puberty and congenital hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 2023; 13:1069741. [PMID: 36726466 PMCID: PMC9884699 DOI: 10.3389/fendo.2022.1069741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
Distinguishing between self limited delayed puberty (SLDP) and congenital hypogonadotropic hypogonadism (CHH) may be tricky as they share clinical and biochemical characteristics. and appear to lie within the same clinical spectrum. However, one is classically transient (SDLP) while the second is typically a lifetime condition (CHH). The natural history and long-term outcomes of these two conditions differ significantly and thus command distinctive approaches and management. Because the first presentation of SDLP and CHH is very similar (delayed puberty with low LH and FSH and low sex hormones), the scientific community is scrambling to identify diagnostic tests that can allow a correct differential diagnosis among these two conditions, without having to rely on the presence or absence of phenotypic red flags for CHH that clinicians anyway seem to find hard to process. Despite the heterogeneity of genetic defects so far reported in DP, genetic analysis through next-generation sequencing technology (NGS) had the potential to contribute to the differential diagnostic process between SLDP and CHH. In this review we will provide an up-to-date overview of the genetic architecture of these two conditions and debate the benefits and the bias of performing genetic analysis seeking to effectively differentiate between these two conditions.
Collapse
Affiliation(s)
- Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Faris Hrvat
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giovanni Goggi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Federici
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Biagio Cangiano
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Richard Quinton
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, Newcastle-upon-Tyne, United Kingdom
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, United Kingdom
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
125
|
Resztak JA, Choe J, Nirmalan S, Wei J, Bruinsma J, Houpt R, Alazizi A, Mair-Meijers HE, Wen X, Slatcher RB, Zilioli S, Pique-Regi R, Luca F. Analysis of transcriptional changes in the immune system associated with pubertal development in a longitudinal cohort of children with asthma. Nat Commun 2023; 14:230. [PMID: 36646693 PMCID: PMC9842661 DOI: 10.1038/s41467-022-35742-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Puberty is an important developmental period marked by hormonal, metabolic and immune changes. Puberty also marks a shift in sex differences in susceptibility to asthma. Yet, little is known about the gene expression changes in immune cells that occur during pubertal development. Here we assess pubertal development and leukocyte gene expression in a longitudinal cohort of 251 children with asthma. We identify substantial gene expression changes associated with age and pubertal development. Gene expression changes between pre- and post-menarcheal females suggest a shift from predominantly innate to adaptive immunity. We show that genetic effects on gene expression change dynamically during pubertal development. Gene expression changes during puberty are correlated with gene expression changes associated with asthma and may explain sex differences in prevalence. Our results show that molecular data used to study the genetics of early onset diseases should consider pubertal development as an important factor that modifies the transcriptome.
Collapse
Affiliation(s)
- Justyna A Resztak
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Jane Choe
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Shreya Nirmalan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Julian Bruinsma
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Russell Houpt
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | | | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Samuele Zilioli
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
126
|
Ono M, Ando H, Daikoku T, Fujiwara T, Mieda M, Mizumoto Y, Iizuka T, Kagami K, Hosono T, Nomura S, Toyoda N, Sekizuka-Kagami N, Maida Y, Kuji N, Nishi H, Fujiwara H. The Circadian Clock, Nutritional Signals and Reproduction: A Close Relationship. Int J Mol Sci 2023; 24:ijms24021545. [PMID: 36675058 PMCID: PMC9865912 DOI: 10.3390/ijms24021545] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The circadian rhythm, which is necessary for reproduction, is controlled by clock genes. In the mouse uterus, the oscillation of the circadian clock gene has been observed. The transcription of the core clock gene period (Per) and cryptochrome (Cry) is activated by the heterodimer of the transcription factor circadian locomotor output cycles kaput (Clock) and brain and muscle Arnt-like protein-1 (Bmal1). By binding to E-box sequences in the promoters of Per1/2 and Cry1/2 genes, the CLOCK-BMAL1 heterodimer promotes the transcription of these genes. Per1/2 and Cry1/2 form a complex with the Clock/Bmal1 heterodimer and inactivate its transcriptional activities. Endometrial BMAL1 expression levels are lower in human recurrent-miscarriage sufferers. Additionally, it was shown that the presence of BMAL1-depleted decidual cells prevents trophoblast invasion, highlighting the importance of the endometrial clock throughout pregnancy. It is widely known that hormone synthesis is disturbed and sterility develops in Bmal1-deficient mice. Recently, we discovered that animals with uterus-specific Bmal1 loss also had poor placental development, and these mice also had intrauterine fetal death. Furthermore, it was shown that time-restricted feeding controlled the uterine clock's circadian rhythm. The uterine clock system may be a possibility for pregnancy complications, according to these results. We summarize the most recent research on the close connection between the circadian clock and reproduction in this review.
Collapse
Affiliation(s)
- Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Correspondence: ; Tel.: +81-3-3342-6111
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takiko Daikoku
- Institute for Experimental Animals, Advanced Science Research Center, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoko Fujiwara
- Department of Social Work and Life Design, Kyoto Notre Dame University, Kyoto 606-0848, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Natsumi Toyoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Institute for Experimental Animals, Advanced Science Research Center, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Naomi Sekizuka-Kagami
- Department of Nursing, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yoshiko Maida
- Department of Nursing, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Naoaki Kuji
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
127
|
Hagen CP, Fischer MB, Wohlfahrt-Veje C, Assens M, Busch AS, Pedersen AT, Juul A, Main KM. AMH concentrations in infancy and mid-childhood predict ovarian activity in adolescence: A long-term longitudinal study of healthy girls. EClinicalMedicine 2023; 55:101742. [PMID: 36386030 PMCID: PMC9661496 DOI: 10.1016/j.eclinm.2022.101742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Anti-Müllerian hormone (AMH) is produced by granulosa cells in small growing ovarian follicles. In adult women, serum concentrations of AMH reflect the ovarian reserve of resting primordial follicles, and low AMH is associated with risk of early menopause. In contrast, patients with polycystic ovary syndrome (PCOS) have elevated AMH. The primary aim of this study was to evaluate the individual tracking of serum AMH concentrations, as well as whether AMH in early childhood reflects ovarian activity in adolescence. METHODS In this large longitudinal study of healthy girls were examined from infancy to adolescence (1997-2019) including physical examination, assessment of serum concentrations of reproductive hormones (in infancy, median age 0.3 yrs; mid-childhood, 7.2 yrs; puberty, 11.3 yrs; and adolescence, 15.9 yrs), transabdominal ultrasound (TAUS, puberty and adolescence) and magnetic resonance imaging (MRI, puberty) of the ovaries. FINDINGS Each girl maintained her relative AMH concentration (expressed as standard deviation (SD) scores) over time; mean variation of individual age adjusted AMH concentrations was 0.56 ± 0.31 SD.Serum concentrations of AMH in adolescence correlated with AMH in infancy and childhood; infancy: r = 0.347; mid-childhood: r = 0.637; puberty: r = 0.675, all p < 0.001.AMH correlated negatively with FSH concentrations in all age groups (infancy: r = -0.645, p < 0.001; mid-childhood: r = -0.222, p < 0.001; puberty: r = -0.354, p < 0.001; adolescence: n = 275, r = -0.175, p = 0.004).Serum AMH concentrations in mid-childhood correlated with the number of follicles in puberty (TAUS and MRI) as well as in adolescence (TAUS); e.g. total number of follicles: TAUS puberty (r = 0.607), MRI puberty (r = 0.379), TAUS adolescence (r = 0.414), all p < 0.001.AMH concentration in infancy as well as in mid-childhood predicted low AMH (<10 pmol/L) in adolescence; AMH infancy <7.5 pmol/L as predictor of low AMH in adolescence: sensitivity 0.71, specificity 0.70, AUC 0.759; AMH mid-childhood < 8.4 pmol/L as predictor of low AMH in adolescence: sensitivity 0.88, specificity 0.87, AUC 0.949.Girls with high serum AMH concentration in mid-childhood (AMH >30.0 pmol/L vs. other girls) had higher adolescent LH (median 4.53 vs. 3.29 U/L p = 0.041), LH/FSH ratio (1.00 vs 0.67, p = 0.019), testosterone (1.05 vs 0.81 nmol/L, p = 0.005), total number of follicles (23 vs. 19, p = 0.004), and higher prevalence of irregular cycles (10/15 = 67% vs. 28/113 = 25%, p = 0.002). INTERPRETATION The present findings suggest remarkably stable ovarian activity from small growing follicles in healthy girls, supporting AMH in early life as a useful clinical tool to predict future ovarian activity. FUNDING The work was supported by The Center on Endocrine Disruptors (CeHoS) under The Danish Environmental Protection Agency and The Ministry of Environment and Food (grant number: MST-621-00 065), the EU (QLK4-CT1999-01422; QLK4-2001-00269), the Novo Nordisk Foundation and The Danish Ministry of Science Technology and Innovation (2107-05-0006). A.S.B. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 464240267. KM receives honoraria from Novo Nordisk A/S for teaching at the Danish annual postgraduate course of pituitary diseases.
Collapse
Affiliation(s)
- Casper P. Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
- Corresponding author. Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark.
| | - Margit Bistrup Fischer
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Christine Wohlfahrt-Veje
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Maria Assens
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Alexander S. Busch
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynaecology, The Fertility Clinic. Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katharina M. Main
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
128
|
Guirado J, Carranza-Valencia J, Morante J. Mammalian puberty: a fly perspective. FEBS J 2023; 290:359-369. [PMID: 35607827 PMCID: PMC10084137 DOI: 10.1111/febs.16534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
Mammalian puberty and Drosophila metamorphosis, despite their evolutionary distance, exhibit similar design principles and conservation of molecular components. In this Viewpoint, we review recent advances in this area and the similarities between both processes in terms of the signaling pathways and neuroendocrine circuits involved. We argue that the detection and uptake of peripheral fat by Drosophila prothoracic endocrine cells induces endomembrane remodeling and ribosomal maturation, leading to the acquisition of high biosynthetic and secretory capacity. The absence of this fat-neuroendocrine interorgan communication leads to giant, obese, non-pupating larvae. Importantly, human leptin is capable of signaling the pupariation process in Drosophila, and its expression prevents obesity and triggers maturation in mutants that do not pupate. This implies that insect metamorphosis can be used to address issues related to the biology of leptin and puberty.
Collapse
Affiliation(s)
- Juan Guirado
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
| | - Juan Carranza-Valencia
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
| |
Collapse
|
129
|
Street ME, Ponzi D, Renati R, Petraroli M, D’Alvano T, Lattanzi C, Ferrari V, Rollo D, Stagi S. Precocious puberty under stressful conditions: new understanding and insights from the lessons learnt from international adoptions and the COVID-19 pandemic. Front Endocrinol (Lausanne) 2023; 14:1149417. [PMID: 37201098 PMCID: PMC10187034 DOI: 10.3389/fendo.2023.1149417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
Neuro-biological variations in the timing of sexual maturation within a species are part of an evolved strategy that depend on internal and external environmental conditions. An increased incidence of central precocious puberty (CPP) has been described in both adopted and "covid-19 pandemic" children. Until recently, it was hypothesised that the triggers for CPP in internationally adopted children were likely to be better nutrition, greater environmental stability, and improved psychological wellbeing. However, following data collected during and after the coronavirus (COVID-19) global pandemic, other possibilities must be considered. In a society with high levels of child wellbeing, the threat to life presented by an unknown and potentially serious disease and the stressful environment created by lockdowns and other public health measures could trigger earlier pubertal maturation as an evolutionary response to favour early reproduction. The main driver for increased rates of precocious and rapidly progressive puberty during the pandemic could have been the environment of "fear and stress" in schools and households. In many children, CPP may have been triggered by the psychological effects of living without normal social contact, using PPE, being near adults concerned about financial and other issues and the fear of getting ill. The features and time of progression of CPP in children during the pandemic are similar to those observed in adopted children. This review considers the mechanisms regulating puberty with a focus on neurobiological and evolutionary mechanisms, and analyses precocious puberty both during the pandemic and in internationally adopted children searching for common yet unconsidered factors in an attempt to identify the factors which may have acted as triggers. In particular, we focus on stress as a potential factor in the early activation of the hypothalamic-pituitary-gonadal axis and its correlation with rapid sexual maturation.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, P. Barilla Children’s Hospital, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
- *Correspondence: Maria Elisabeth Street,
| | - Davide Ponzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Renati
- Department of Pedagogy, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Maddalena Petraroli
- Unit of Paediatrics, P. Barilla Children’s Hospital, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Tiziana D’Alvano
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, P. Barilla Children’s Hospital, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Claudia Lattanzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, P. Barilla Children’s Hospital, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Vittorio Ferrari
- Health Sciences Department, University of Florence, Florence, Italy
| | - Dolores Rollo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Stagi
- Health Sciences Department, University of Florence, Florence, Italy
- Azienda Ospedaliero Univesitaria Meyer IRCCS, Florence, Italy
| |
Collapse
|
130
|
Yao L, Graff JC, Aleya L, Jiao Y, Gu W, Tian G. Bring the life stages into the domain of basic and clinical pharmacology. Front Pharmacol 2022; 13:923016. [PMID: 36582531 PMCID: PMC9792989 DOI: 10.3389/fphar.2022.923016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Completely distinct physiological conditions and immune responses exist among different human life stages. Age is not always consistent with the life stage. We proposed to incorporate the concept of the life stages into basic and clinical pharmacology, including clinical trials, drug labels, and drug usage in clinical practice. Life-stage-based medical treatment is the application of medicine according to life stages such as prepuberty, reproductive, and aging. A large number of diseases are life-stage-dependent. Many medications and therapy have shown various age effects but not been recognized as life-stage-dependent. The same dosage and drug applications used in different life stages lead to divergent outcomes. Incorporating life stages in medicine and drug usage will enhance the efficacy and precision of the medication in disease treatment.
Collapse
Affiliation(s)
- Lan Yao
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, United States
| | - J. Carolyn Graff
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté Université, Besançon Cedex, France
| | - Yan Jiao
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, United States,Research Service, Memphis VA Medical Center, Memphis, TN, United States,Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Weikuan Gu,
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
131
|
Lewis ME. Exploring adolescence as a key life history stage in bioarchaeology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:519-534. [PMCID: PMC9825885 DOI: 10.1002/ajpa.24615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 04/16/2024]
Abstract
Adolescence is a unique period in the life history of an individual. It is characterized by a myriad of changes that bioarchaeologists are only just coming to appreciate, related to sexual maturation, linear growth, immunological transformation, and emotional and cognitive development. New methods allow us to measure this age of transition through the stages of the adolescent growth, as a proxy for the physical development associated with sexual maturation (puberty). This review outlines ways bioarchaeologists may draw on research developments from the fields of human biology, evolutionary theory and neurobiology to advance a more holistic approach to the study of adolescence in the past. It considers current theoretical and analytical approaches to highlight the research potential of this critical stage of life history. This synthesis integrates the most recent research in the medical sciences concerned with body and brain development, and outlines the biological processes involved with sexual and physical maturation of the adolescent. The goal of this review is to help inform potentially rewarding areas of research that bioarchaeologists can contribute to and draw from, as well as the challenges and limitations, theoretical and methodological questions, and ways in which we can develop the study of adolescence in the discipline going forward.
Collapse
Affiliation(s)
- Mary E. Lewis
- Department of ArchaeologyUniversity of ReadingReadingUK
| |
Collapse
|
132
|
Sinclair-Waters M, Nome T, Wang J, Lien S, Kent MP, Sægrov H, Florø-Larsen B, Bolstad GH, Primmer CR, Barson NJ. Dissecting the loci underlying maturation timing in Atlantic salmon using haplotype and multi-SNP based association methods. Heredity (Edinb) 2022; 129:356-365. [PMID: 36357776 PMCID: PMC9709158 DOI: 10.1038/s41437-022-00570-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in wild populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association methods with sequencing data for 313 individuals from wild populations to test the mutational composition of known candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at five loci out of 116 candidates previously identified in an aquaculture strain with maturation timing in wild Atlantic salmon. We found that at four of these five loci, variation explained by the locus was predominantly driven by a single SNP suggesting the genetic architecture of this trait includes multiple loci with simple, non-clustered alleles and a locus with potentially more complex alleles. This highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study provides a useful multi-SNP framework for future work using sequencing data to characterize genetic variation underlying phenotypes in wild populations.
Collapse
Affiliation(s)
- Marion Sinclair-Waters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Torfinn Nome
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jing Wang
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Key laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew P Kent
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Nicola J Barson
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
133
|
Wang Z, Lu J, Weng W, Zhang L, Zhang J. Women's reproductive traits and ischemic stroke: a two-sample Mendelian randomization study. Ann Clin Transl Neurol 2022; 10:70-83. [PMID: 36398399 PMCID: PMC9852390 DOI: 10.1002/acn3.51702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We conducted a Mendelian randomization (MR) study to disentangle causal associations between women's reproductive behaviors and ischemic stroke (IS) and investigate the roles of two modifiable risk factors (body mass index (BMI) and educational attainment (EA)) in these associations. METHODS Using summary-level data from large-scale genome-wide association studies, we performed univariable MR to examine whether there is genetic evidence that women's reproductive traits are causally associated with IS and its subtypes. Multivariable MR and MR mediation analysis were used to investigate whether BMI and EA are common mechanisms or mediators for these associations. A set of sensitivity analyses were conducted to test valid MR assumptions. RESULTS We observed consistent and statistically significant associations across female and sex-combined analyses for earlier age at first birth (AFB) and age at first sexual intercourse (AFS) with a higher risk of IS and large-artery atherosclerotic stroke (LAS) risk in the primary analysis. The odds ratios of IS per 1 SD increase in genetically predicted early AFB and AFS were 0.93 (95% CI, 0.86-0.99; p = 0.046) and 0.83 (95% CI, 0.70-0.97, p = 0.020), respectively. Further analyses indicated that BMI played a shared role in AFS and IS/LAS while EA played a shared role in AFS/AFB and IS/LAS as well as a mediator in the path from AFS to IS/LAS. INTERPRETATION These findings may inform prevention strategies and interventions directed toward relative women's reproductive behaviors and IS. Future studies are warranted to explore other factors related to EA which are responsible for these causalities.
Collapse
Affiliation(s)
- Zhenqian Wang
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Jiawen Lu
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Weipin Weng
- Department of Neurology, The Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Li Zhang
- School of Public HealthFudan UniversityShanghai200032China
| | - Jie Zhang
- Department of Neurology, The Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| |
Collapse
|
134
|
Cinzori ME, Strakovsky RS. Effects of Elevated Maternal Adiposity on Offspring Reproductive Health: A Perspective From Epidemiologic Studies. J Endocr Soc 2022; 7:bvac163. [PMID: 36438545 PMCID: PMC9683496 DOI: 10.1210/jendso/bvac163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
One in seven couples in developed countries suffers from infertility. Maternal overweight or obesity have detrimental and lasting effects on offspring cardiometabolic health, and although substantially more data are needed, hormonal imbalances in utero resulting from excessive maternal adiposity could also disrupt reproductive programming and affect the future reproductive health of offspring. Therefore, this mini-review evaluates the human epidemiologic evidence that maternal overweight/obesity could be associated with poor reproductive health outcomes in offspring. We searched PubMed for relevant studies using terms such as "maternal obesity" and "reproductive development." While the human epidemiologic literature is limited, studies have thus far observed that maternal obesity is associated with disrupted external genital development and several other markers of reproductive health across the lifespan. Specifically, maternal obesity is associated with higher risks of hypospadias and cryptorchidism in males and disrupted anogenital distance both in males and females. Maternal obesity has also been linked to earlier age at menarche in daughters, and precocious puberty in both sons and daughters. Finally, daughters of women with overweight or obesity have higher risks of developing polycystic ovarian syndrome, which has implications for fertility. This body of research suggests that in utero exposure to maternal obesity could disrupt reproductive system development, but substantially more evidence is needed, as almost no human epidemiologic studies have evaluated the long-term consequences of maternal obesity with regard to offspring fertility/fecundity.
Collapse
Affiliation(s)
- Maria E Cinzori
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
135
|
Strom NI, Smit DJA, Silzer T, Iyegbe C, Burton CL, Pool R, Lemire M, Crowley JJ, Hottenga JJ, Ivanov VZ, Larsson H, Lichtenstein P, Magnusson P, Rück C, Schachar RJ, Wu HM, Meier SM, Crosbie J, Arnold PD, Mattheisen M, Boomsma DI, Mataix-Cols D, Cath D. Meta-analysis of genome-wide association studies of hoarding symptoms in 27,537 individuals. Transl Psychiatry 2022; 12:479. [PMID: 36379924 PMCID: PMC9666541 DOI: 10.1038/s41398-022-02248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hoarding Disorder (HD) is a mental disorder characterized by persistent difficulties discarding or parting with possessions, often resulting in cluttered living spaces, distress, and impairment. Its etiology is largely unknown, but twin studies suggest that it is moderately heritable. In this study, we pooled phenotypic and genomic data from seven international cohorts (N = 27,537 individuals) and conducted a genome wide association study (GWAS) meta-analysis of parent- or self-reported hoarding symptoms (HS). We followed up the results with gene-based and gene-set analyses, as well as leave-one-out HS polygenic risk score (PRS) analyses. To examine a possible genetic association between hoarding symptoms and other phenotypes we conducted cross-trait PRS analyses. Though we did not report any genome-wide significant SNPs, we report heritability estimates for the twin-cohorts between 26-48%, and a SNP-heritability of 11% for an unrelated sub-cohort. Cross-trait PRS analyses showed that the genetic risk for schizophrenia and autism spectrum disorder were significantly associated with hoarding symptoms. We also found suggestive evidence for an association with educational attainment. There were no significant associations with other phenotypes previously linked to HD, such as obsessive-compulsive disorder, depression, anxiety, or attention-deficit hyperactivity disorder. To conclude, we found that HS are heritable, confirming and extending previous twin studies but we had limited power to detect any genome-wide significant loci. Much larger samples will be needed to further extend these findings and reach a "gene discovery zone". To move the field forward, future research should not only include genetic analyses of quantitative hoarding traits in larger samples, but also in samples of individuals meeting strict diagnostic criteria for HD, and more ethnically diverse samples.
Collapse
Affiliation(s)
- Nora I Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Dirk J A Smit
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Talisa Silzer
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Conrad Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Christie L Burton
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, Netherlands
| | - Mathieu Lemire
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - James J Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Jouke-Jan Hottenga
- Netherlands Twin Register, Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Volen Z Ivanov
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical sciences, Örebro University, Örebro, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Russell J Schachar
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Hei Man Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Sandra M Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Community Health & Epidemiology, Dalhousie University, NS, Dalhousie, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manuel Mattheisen
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Community Health & Epidemiology, Dalhousie University, NS, Dalhousie, Canada
| | - Dorret I Boomsma
- Netherlands Twin Register, Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Danielle Cath
- Rijksuniversiteit Groningen and Department of Psychiatry, University Medical Center Groningen, Groningen, Netherlands
- Department of specialized training, Drenthe Mental Health Care Institute, Assen, The Netherlands
| |
Collapse
|
136
|
Wang B, Wu J, Li H, Jin X, Sui C, Yu Z. Using genetic instruments to estimate the causal effect of hormonal reproductive factors on osteoarthritis. Front Public Health 2022; 10:941067. [PMID: 36452961 PMCID: PMC9702564 DOI: 10.3389/fpubh.2022.941067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Hormonal reproductive factors have been considered to play an important role in the etiology of osteoarthritis (OA). We performed Mendelian randomization (MR) to examine whether a causal effect existed between them. Methods MR was performed by using publicly released genome-wide association study (GWAS) summary statistics to estimate the causal associations of three relevant exposures, including age at menarche (AAM), age at natural menopause (ANM) and age at first birth (AFB), with the risk of OA. We employed several MR methods, including inverse-variance weighted (IVW), MR-Egger regression, weighted median and weighted mode, to estimate the causality. We performed a sensitivity analysis by manually pruning pleiotropic variants associated with the known confounder body mass index (BMI). Results The instrumental variables that achieved genome-wide significance, including 349 AAM single nucleotide polymorphisms (SNPs), 121 AAM SNPs, 54 ANM SNPs, and 10 AFB SNPs, were incorporated into the operation. IVW analysis indicated that each additional year in AFB was associated with a decreasing risk of hip and/or knee OA and overall OA (hip and/or knee OA: OR = 0.79, 95% CI: 0.64-0.93, P = 1.33 × 10-3; overall OA: OR = 0.80, 95% CI: 0.68-0.92, P = 1.80 × 10-4). In addition, our results suggested that AAM exerted a causal effect on knee OA in an unfavorable manner (OR = 0.86, 95% CI: 0.76-0.95, P = 1.58 × 10-3). After accounting for the effect of BMI, the causal effect association between AFB and hip and/or knee OA was also examined (IVW: OR = 0.78, 95% CI: 0.66-0.92, P = 3.22 × 10-3). Conclusion Our findings add a growing body of evidence surrounding the unfavorable effects of early AFB on OA risk, suggesting the essential for relevant health problem management in susceptible populations.
Collapse
Affiliation(s)
- Bingran Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China,Department of Clinical Medicine, The Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Junhua Wu
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Han Li
- Department of Electrocardiogram, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China,Department of Clinical Medicine, The Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Cong Sui
- Department of Orthopedics Trauma, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China,*Correspondence: Zhen Yu
| |
Collapse
|
137
|
Golovchenko I, Aizikovich B, Golovchenko O, Reshetnikov E, Churnosova M, Aristova I, Ponomarenko I, Churnosov M. Sex Hormone Candidate Gene Polymorphisms Are Associated with Endometriosis. Int J Mol Sci 2022; 23:13691. [PMID: 36430184 PMCID: PMC9697627 DOI: 10.3390/ijms232213691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The present study was designed to examine whether sex hormone polymorphisms proven by GWAS are associated with endometriosis risk. Unrelated female participants totaling 1376 in number (395 endometriosis patients and 981 controls) were recruited into the study. Nine single-nucleotide polymorphisms (SNPs) which GWAS correlated with circulating levels of sex hormones were genotyped using a TaqMan allelic discrimination assay. FSH-lowering, and LH- and testosterone-heightening polymorphisms of the FSHB promoter (allelic variants A rs11031002 and C rs11031005) exhibit a protective effect for endometriosis (OR = 0.60-0.68). By contrast, the TT haplotype loci that were GWAS correlated with higher FSH levels and lower LH and testosterone concentrations determined an increased risk for endometriosis (OR = 2.03). Endometriosis-involved epistatic interactions were found between eight loci of sex hormone genes (without rs148982377 ZNF789) within twelve genetic simulation models. In silico examination established that 8 disorder-related loci and 80 proxy SNPs are genome variants affecting the expression, splicing, epigenetic and amino acid conformation of the 34 genes which enrich the organic anion transport and secondary carrier transporter pathways. In conclusion, the present study showed that sex hormone polymorphisms proven by GWAS are associated with endometriosis risk and involved in the molecular pathophysiology of the disease due to their functionality.
Collapse
Affiliation(s)
- Ilya Golovchenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Boris Aizikovich
- Department of Fundamental Medicine, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Oleg Golovchenko
- Department of Obstetrics and Gynecology, Belgorod State University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| |
Collapse
|
138
|
Camilleri M, Zhernakova A, Bozzarelli I, D'Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 2022; 19:689-702. [PMID: 35948782 DOI: 10.1038/s41575-022-00662-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain. .,Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
139
|
D'Urso S, Arumugam P, Weider T, Hwang LD, Bond TA, Kemp JP, Warrington NM, Evans DM, O'Mara TA, Moen GH. Mendelian randomization analysis of factors related to ovulation and reproductive function and endometrial cancer risk. BMC Med 2022; 20:419. [PMID: 36320039 PMCID: PMC9623961 DOI: 10.1186/s12916-022-02585-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Observational epidemiological studies suggest a link between several factors related to ovulation and reproductive function and endometrial cancer (EC) risk; however, it is not clear whether these relationships are causal, and whether the risk factors act independently of each other. The aim of this study was to investigate putative causal relationships between the number of live births, age at last live birth, and years ovulating and EC risk. METHODS: We conducted a series of observational analyses to investigate various risk factors and EC risk in the UK Biobank (UKBB). Additionally, multivariate analysis was performed to elucidate the relationship between the number of live births, age at last live birth, and years ovulating and other related factors such as age at natural menopause, age at menarche, and body mass index (BMI). Secondly, we used Mendelian randomization (MR) to assess if these observed relationships were causal. Genome-wide significant single nucleotide polymorphisms (SNPs) were extracted from previous studies of woman's number of live births, age at menopause and menarche, and BMI. We conducted a genome-wide association analysis using the UKBB to identify SNPs associated with years ovulating, years using the contraceptive pill, and age at last live birth. RESULTS We found evidence for a causal effect of the number of live births (inverse variance weighted (IVW) odds ratio (OR): 0.537, p = 0.006), the number of years ovulating (IVW OR: 1.051, p = 0.014), in addition to the known risk factors BMI, age at menarche, and age at menopause on EC risk in the univariate MR analyses. Due to the close relationships between these factors, we followed up with multivariable MR (MVMR) analysis. Results from the MVMR analysis showed that number of live births had a causal effect on EC risk (OR: 0.783, p = 0.036) independent of BMI, age at menarche and age at menopause. CONCLUSIONS MVMR analysis showed that the number of live births causally reduced the risk of EC.
Collapse
Affiliation(s)
- Shannon D'Urso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Pooja Arumugam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Therese Weider
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Tom A Bond
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
- Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - John P Kemp
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.
- Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK.
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
140
|
Ma T, Li YH, Chen MM, Ma Y, Gao D, Chen L, Ma Q, Zhang Y, Liu JY, Wang XX, Dong YH, Ma J. [Associations between early onset of puberty and obesity types in children: Based on both the cross-sectional study and cohort study]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 36241240 PMCID: PMC9568395 DOI: 10.19723/j.issn.1671-167x.2022.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To explore and analyze the relationship between early onset of puberty and different types of obesity in children, by combining large sample cross-sectional survey data with long-term longitudinal cohort data, so as to provide clues for further clarifying the health hazards of early onset of puberty and obesity prevention and control. METHODS The research data were from the cross-sectional survey data of seven provinces(autonomous regions, municipalities) in China and the cohort data of adolescent development in Xiamen. The study first found the association between early onset of puberty and obesity by Logistic regression on the cross-sectional data, and then used Poisson regression to analyze the association between early puberty initiation and various types of obesity risk. RESULTS In the study, 43 137 and 1 266 children were included in the cross-sectional survey and cohort survey respectively. The cross-sectional study found that among the girls aged 10-13 years, compared with the girls of the same age who did not start puberty, the body mass index (BMI)-Z score of the girls in the puberty start group was 0.5-0.8 higher, and the waist circumference Z score was 0.4-0.7 higher, and the risk of various types of obesity was higher. At the same time, the early onset of puberty was positively correlated with simple obesity, central obesity and compound obesity, the OR (95%CI) were 1.86 (1.42-2.44), 1.95 (1.65-2.32) and 1.86 (1.41-2.45), respectively. No significant association was found in boys. According to the cohort data, in girls, the risk of simple obesity was 6.00 times [RR (95%CI): 6.00 (1.07-33.60)], the risk of central obesity was 3.30 times [RR (95%CI): 3.30 (1.22-8.92)], and the risk of compound obesity was 5.76 times [RR (95%CI): 5.76 (1.03-32.30)], compared with the group without early puberty initiation, while no association between early puberty initiation and obesity was found in boys. CONCLUSION Based on the cross-sectional survey and longitudinal cohort survey, it is confirmed that the early onset of puberty in girls may increase the risk of simple obesity, central obesity and compound obesity, while there is no significant correlation between puberty onset and obesity in boys.
Collapse
Affiliation(s)
- T Ma
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - Y H Li
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - M M Chen
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - Y Ma
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - D Gao
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - L Chen
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - Q Ma
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - Y Zhang
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - J Y Liu
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - X X Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Y H Dong
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| | - J Ma
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
141
|
Watson HJ, Thornton LM, Yilmaz Z, Baker JH, Coleman JR, Adan RA, Alfredsson L, Andreassen OA, Ask H, Berrettini WH, Boehnke M, Boehm I, Boni C, Buehren K, Bulant J, Burghardt R, Chang X, Cichon S, Cone RD, Courtet P, Crow S, Crowley JJ, Danner UN, de Zwaan M, Dedoussis G, DeSocio JE, Dick DM, Dikeos D, Dina C, Djurovic S, Dmitrzak-Weglarz M, Docampo-Martinez E, Duriez P, Egberts K, Ehrlich S, Eriksson JG, Escaramís G, Esko T, Estivill X, Farmer A, Fernández-Aranda F, Fichter MM, Föcker M, Foretova L, Forstner AJ, Frei O, Gallinger S, Giegling I, Giuranna J, Gonidakis F, Gorwood P, Gratacòs M, Guillaume S, Guo Y, Hakonarson H, Hauser J, Havdahl A, Hebebrand J, Helder SG, Herms S, Herpertz-Dahlmann B, Herzog W, Hinney A, Hübel C, Hudson JI, Imgart H, Jamain S, Janout V, Jiménez-Murcia S, Jones IR, Julià A, Kalsi G, Kaminská D, Kaprio J, Karhunen L, Kas MJ, Keel PK, Kennedy JL, Keski-Rahkonen A, Kiezebrink K, Klareskog L, Klump KL, Knudsen GPS, La Via MC, Le Hellard S, Leboyer M, Li D, Lilenfeld L, Lin B, Lissowska J, Luykx J, Magistretti P, Maj M, Marsal S, Marshall CR, Mattingsdal M, Meulenbelt I, Micali N, Mitchell KS, Monteleone AM, et alWatson HJ, Thornton LM, Yilmaz Z, Baker JH, Coleman JR, Adan RA, Alfredsson L, Andreassen OA, Ask H, Berrettini WH, Boehnke M, Boehm I, Boni C, Buehren K, Bulant J, Burghardt R, Chang X, Cichon S, Cone RD, Courtet P, Crow S, Crowley JJ, Danner UN, de Zwaan M, Dedoussis G, DeSocio JE, Dick DM, Dikeos D, Dina C, Djurovic S, Dmitrzak-Weglarz M, Docampo-Martinez E, Duriez P, Egberts K, Ehrlich S, Eriksson JG, Escaramís G, Esko T, Estivill X, Farmer A, Fernández-Aranda F, Fichter MM, Föcker M, Foretova L, Forstner AJ, Frei O, Gallinger S, Giegling I, Giuranna J, Gonidakis F, Gorwood P, Gratacòs M, Guillaume S, Guo Y, Hakonarson H, Hauser J, Havdahl A, Hebebrand J, Helder SG, Herms S, Herpertz-Dahlmann B, Herzog W, Hinney A, Hübel C, Hudson JI, Imgart H, Jamain S, Janout V, Jiménez-Murcia S, Jones IR, Julià A, Kalsi G, Kaminská D, Kaprio J, Karhunen L, Kas MJ, Keel PK, Kennedy JL, Keski-Rahkonen A, Kiezebrink K, Klareskog L, Klump KL, Knudsen GPS, La Via MC, Le Hellard S, Leboyer M, Li D, Lilenfeld L, Lin B, Lissowska J, Luykx J, Magistretti P, Maj M, Marsal S, Marshall CR, Mattingsdal M, Meulenbelt I, Micali N, Mitchell KS, Monteleone AM, Monteleone P, Myers R, Navratilova M, Ntalla I, O’Toole JK, Ophoff RA, Padyukov L, Pantel J, Papežová H, Pinto D, Raevuori A, Ramoz N, Reichborn-Kjennerud T, Ricca V, Ripatti S, Ripke S, Ritschel F, Roberts M, Rotondo A, Rujescu D, Rybakowski F, Scherag A, Scherer SW, Schmidt U, Scott LJ, Seitz J, Silén Y, Šlachtová L, Slagboom PE, Slof-Op ‘t Landt MC, Slopien A, Sorbi S, Świątkowska B, Tortorella A, Tozzi F, Treasure J, Tsitsika A, Tyszkiewicz-Nwafor M, Tziouvas K, van Elburg AA, van Furth EF, Walton E, Widen E, Zerwas S, Zipfel S, Bergen AW, Boden JM, Brandt H, Crawford S, Halmi KA, Horwood LJ, Johnson C, Kaplan AS, Kaye WH, Mitchell JE, Olsen CM, Pearson JF, Pedersen NL, Strober M, Werge T, Whiteman DC, Woodside DB, Gordon S, Maguire S, Larsen JT, Parker R, Petersen LV, Jordan J, Kennedy M, Wade TD, Birgegård A, Lichtenstein P, Landén M, Martin NG, Mortensen PB, Breen G, Bulik CM. Common Genetic Variation and Age of Onset of Anorexia Nervosa. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:368-378. [PMID: 36324647 PMCID: PMC9616394 DOI: 10.1016/j.bpsgos.2021.09.001] [Show More Authors] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/08/2022] Open
Abstract
Background Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche. Methods A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (<13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses. Results Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h 2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-onset AN. Conclusions Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.
Collapse
Affiliation(s)
- Hunna J. Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- School of Psychology, Curtin University, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Laura M. Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zeynep Yilmaz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jessica H. Baker
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan R.I. Coleman
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, King’s College London and South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Roger A.H. Adan
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, the Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ole A. Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Helga Ask
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Wade H. Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, Philadelphia, Pennsylvania
| | - Michael Boehnke
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Ilka Boehm
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Claudette Boni
- INSERM 1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Katharina Buehren
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - Josef Bulant
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Roland Burghardt
- Department of Child and Adolescent Psychiatry, Klinikum Frankfurt/Oder, Frankfurt, Germany
| | - Xiao Chang
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sven Cichon
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
- The Center for Eating Disorders at Sheppard Pratt, Baltimore, Maryland
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Roger D. Cone
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Philippe Courtet
- Department of Emergency Psychiatry and Post-Acute Care, CHRU Montpellier, University of Montpellier, Montpellier, France
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
- The Center for Eating Disorders at Sheppard Pratt, Baltimore, Maryland
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - James J. Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Unna N. Danner
- Department of Clinical Psychology, Faculty of Social Sciences, University Utrecht, Utrecht, the Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | - Danielle M. Dick
- Department of Psychology, Commonwealth University, Richmond, Virginia
- College Behavioral and Emotional Health Institute, Commonwealth University, Richmond, Virginia
- Department of Human and Molecular Genetics, Commonwealth University, Richmond, Virginia
| | - Dimitris Dikeos
- First Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Christian Dina
- L’institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Srdjan Djurovic
- NORMENT Centre, Department of Clinical Science, University of Oslo, Oslo, Norway
- Department of Medical Genetics, University of Bergen, Bergen, Norway
| | | | - Elisa Docampo-Martinez
- Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Barcelona, Spain
| | - Philibert Duriez
- INSERM 1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
- GHU Paris Psychiatrie et Neurosciences, CMME, Paris, France
| | - Karin Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Centre for Mental Health, Würzburg, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Johan G. Eriksson
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Geòrgia Escaramís
- Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Barcelona, Spain
| | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Xavier Estivill
- Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Barcelona, Spain
- Genomics and Disease, Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain
| | - Anne Farmer
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital Bellvitge-IDIBELL and CIBEROBN, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Manfred M. Fichter
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
- Schön Klinik Roseneck Affiliated With the Medical Faculty of the University of Munich, Prien, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University Hospital Münster, Münster, Germany
| | - Lenka Foretova
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Andreas J. Forstner
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Steven Gallinger
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Emergency Psychiatry and Post-Acute Care, CHRU Montpellier, University of Montpellier, Montpellier, France
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ina Giegling
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Johanna Giuranna
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fragiskos Gonidakis
- First Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Philip Gorwood
- INSERM 1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
- CMME (GHU Paris Psychiatrie et Neurosciences), Hôpital Sainte Anne, Paris, France
| | - Mònica Gratacòs
- Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Barcelona, Spain
| | - Sébastien Guillaume
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Emergency Psychiatry and Post-Acute Care, CHRU Montpellier, University of Montpellier, Montpellier, France
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Yiran Guo
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hakon Hakonarson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joanna Hauser
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Alexandra Havdahl
- Nic Waals Institute, Lovisenberg Diaconal Hospitaland, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Sietske G. Helder
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- Zorg op Orde, Delft, the Netherlands
| | - Stefan Herms
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Herzog
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Anke Hinney
- Nic Waals Institute, Lovisenberg Diaconal Hospitaland, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christopher Hübel
- National Institute for Health Research Biomedical Research Centre, King’s College London and South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - James I. Hudson
- Biological Psychiatry Laboratory, McLean Hospital/Harvard Medical School, Boston, Massachusetts
| | - Hartmut Imgart
- Eating Disorders Unit, Parklandklinik, Bad Wildungen, Germany
| | - Stephanie Jamain
- Inserm U955, Institut Mondor de recherches Biomédicales, Laboratoire, Neuro-Psychiatrie Translationnelle, and Fédération Hospitalo-Universitaire de Précision Médecine en Addictologie et Psychiatrie, University Paris-Est-Créteil, Créteil, France
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital Bellvitge-IDIBELL and CIBEROBN, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ian R. Jones
- National Centre for Mental Health, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Antonio Julià
- Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Gursharan Kalsi
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Deborah Kaminská
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Leila Karhunen
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Martien J.H. Kas
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, the Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Pamela K. Keel
- Department of Psychology, Florida State University, Tallahassee, Florida
| | - James L. Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Anna Keski-Rahkonen
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Kirsty Kiezebrink
- Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kelly L. Klump
- Department of Psychology, Michigan State University, Lansing, Michigan
| | - Gun Peggy S. Knudsen
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria C. La Via
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie Le Hellard
- Department of Clinical Science, K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Laboratory Building, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Inserm U955, Institut Mondor de recherches Biomédicales, Laboratoire, Neuro-Psychiatrie Translationnelle, and Fédération Hospitalo-Universitaire de Précision Médecine en Addictologie et Psychiatrie, University Paris-Est-Créteil, Créteil, France
| | - Dong Li
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lisa Lilenfeld
- Department of Clinical Psychology, the Chicago School of Professional Psychology, Washington, DC
| | - Bochao Lin
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Jolanta Lissowska
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, the Netherlands
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jurjen Luykx
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, the Netherlands
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pierre Magistretti
- Department of Psychiatry, University of Lausanne-University Hospital of Lausanne, Lausanne, Switzerland
- BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Mario Maj
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Sara Marsal
- InsideOut Institute for Eating Disorders, The Charles Perkins Centre, the University of Sydney, Sydney, New South Wales, Australia
- Sydney Local Health District, NSW Health, St. Leonards, New South Wales, Australia
- Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Christian R. Marshall
- Department of Paediatric Laboratory Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Morten Mattingsdal
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Ingrid Meulenbelt
- Department of Biomedical Data Science, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nadia Micali
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pediatrics Gynaecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Karen S. Mitchell
- Women’s Health Sciences Division, National Center for PTSD, Boston, Massachusetts
- Department of Psychiatry, Boston University, Boston, Massachusetts
| | | | - Palmiero Monteleone
- Department of Psychiatry, University of Lausanne-University Hospital of Lausanne, Lausanne, Switzerland
- BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Richard Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Marie Navratilova
- Department of Cancer, Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ionna Ntalla
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | - Roel A. Ophoff
- Center for Neurobehavioral Genetics, University of California at Los Angeles, Los Angeles, California
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | | | - Hana Papežová
- Eating Disorders Unit, Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Dalila Pinto
- Division of Psychiatric Genomics, Department of Psychiatry, and Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Anu Raevuori
- Department of Adolescent Psychiatry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Adolescent Psychiatry, University of Helsinki, Helsinki, Finland
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnologies, University of Pisa, Pisa, Italy
| | - Nicolas Ramoz
- INSERM 1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Valdo Ricca
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- Department of Health Science, University of Florence, Florence, Italy
| | - Samuli Ripatti
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin, Berlin, Germany
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Biometry, University of Helsinki, Helsinki, Finland
| | - Stephan Ripke
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin, Berlin, Germany
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Biometry, University of Helsinki, Helsinki, Finland
| | - Franziska Ritschel
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marion Roberts
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Alessandro Rotondo
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Adolescent Psychiatry, University of Helsinki, Helsinki, Finland
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnologies, University of Pisa, Pisa, Italy
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Filip Rybakowski
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Stephen W. Scherer
- McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Genetics and Genome Biology and the Center for Applied Genomics, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ulrike Schmidt
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, King’s College London and South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Laura J. Scott
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - Yasmina Silén
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Lenka Šlachtová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - P. Eline Slagboom
- Department of Biomedical Data Science, Leiden University Medical Centre, Leiden, the Netherlands
| | - Margarita C.T. Slof-Op ‘t Landt
- Department of Psychiatry, Leiden University Medical Centre, Leiden, the Netherlands
- Rivierduinen Eating Disorders Ursula, Leiden, the Netherlands
| | - Agnieszka Slopien
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCSS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Beata Świątkowska
- Department of Environmental Epidemiology, the Reference Center for Asbestos Exposure and Health Risk Assessment, Lódź, Poland
| | - Alfonso Tortorella
- Adolescent Health Unit, Second Department of Pediatrics, Athens, Greece
- Department of Psychiatry, University of Perugia, Perugia, Italy
| | - Federica Tozzi
- Brain Sciences Department, Stremble Ventures, Limassol, Cyprus
| | - Janet Treasure
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, King’s College London and South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Artemis Tsitsika
- Adolescent Health Unit, Second Department of Pediatrics, Athens, Greece
- Department of Psychiatry, University of Perugia, Perugia, Italy
| | - Marta Tyszkiewicz-Nwafor
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Konstantinos Tziouvas
- Pediatric Intensive Care Unit, “P. & A. Kyriakou” Children's Hospital, University of Athens, Athens, Greece
| | - Annemarie A. van Elburg
- Department of Clinical Psychology, Faculty of Social Sciences, University Utrecht, Utrecht, the Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands
| | - Eric F. van Furth
- Department of Psychiatry, Leiden University Medical Centre, Leiden, the Netherlands
- Rivierduinen Eating Disorders Ursula, Leiden, the Netherlands
| | - Esther Walton
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, Helsinki, Finland
| | - Elisabeth Widen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, Helsinki, Finland
| | - Stephanie Zerwas
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Internal Medicine VI, Psychosomatic Medicine and Psychotherapy, University Medical Hospital Tuebingen, Tuebingen, Germany
- Centre of Excellence for Eating Disorders, University Tuebingen, Tuebingen, Germany
| | - Stephan Zipfel
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Internal Medicine VI, Psychosomatic Medicine and Psychotherapy, University Medical Hospital Tuebingen, Tuebingen, Germany
- Centre of Excellence for Eating Disorders, University Tuebingen, Tuebingen, Germany
| | - Andrew W. Bergen
- Oregon Research Institute, Eugene, Oregon
- Biorealm Research, Walnut, California
| | - Joseph M. Boden
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Harry Brandt
- The Center for Eating Disorders at Sheppard Pratt, Baltimore, Maryland
| | - Steven Crawford
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
- The Center for Eating Disorders at Sheppard Pratt, Baltimore, Maryland
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katherine A. Halmi
- New York Presbyterian Hospital-Westchester Division, Weill Cornell Medical College of Cornell University, White Plains, New York
| | - L. John Horwood
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | | | - Allan S. Kaplan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Walter H. Kaye
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - James E. Mitchell
- Department of Psychiatry and Behavioral Science, School of Medicine and Health Sciences, University of North Dakota, Fargo, North Dakota
| | - Catherine M. Olsen
- Cancer Control Group, University of Queensland, Brisbane, Queensland, Australia
| | - John F. Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Michael Strober
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Thomas Werge
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David C. Whiteman
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - D. Blake Woodside
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
- Program for Eating Disorders, University Health Network, Toronto, Ontario, Canada
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Emergency Psychiatry and Post-Acute Care, CHRU Montpellier, University of Montpellier, Montpellier, France
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Maguire
- InsideOut Institute for Eating Disorders, The Charles Perkins Centre, the University of Sydney, Sydney, New South Wales, Australia
- Sydney Local Health District, NSW Health, St. Leonards, New South Wales, Australia
- Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Janne T. Larsen
- National Centre for Register-based Research, Aarhus BSS, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Liselotte V. Petersen
- National Centre for Register-based Research, Aarhus BSS, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Jennifer Jordan
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
- Clinical Research Unit, Canterbury District Health Board, Christchurch, New Zealand
| | - Martin Kennedy
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Tracey D. Wade
- College of Education, Psychology and Social Work, Flinders University, Adelaide, South Australia, Australia
| | - Andreas Birgegård
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Inserm U955, Institut Mondor de recherches Biomédicales, Laboratoire, Neuro-Psychiatrie Translationnelle, and Fédération Hospitalo-Universitaire de Précision Médecine en Addictologie et Psychiatrie, University Paris-Est-Créteil, Créteil, France
| | - Nicholas G. Martin
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Preben Bo Mortensen
- National Centre for Register-based Research, Aarhus BSS, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Gerome Breen
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, King’s College London and South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Cynthia M. Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
142
|
Cheng TS, Ong KK, Biro FM. Adverse Effects of Early Puberty Timing in Girls and Potential Solutions. J Pediatr Adolesc Gynecol 2022; 35:532-535. [PMID: 35644513 DOI: 10.1016/j.jpag.2022.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Given the global secular declining trends of the age at puberty and its relevant mechanisms, as illustrated in the first part of this series, the present part will discuss the public health implications of early puberty and potential clinical and public health measures. Although the major effect of earlier maturation impacts adolescents' mental health and likelihood of engaging in risky behaviors, there are also effects in adulthood on cardiometabolic health, especially type 2 diabetes, and an increased risk of certain cancers, especially hormone-related cancers such as breast cancer. The paper ends with recommendations for clinical management, especially for girls who should receive further evaluation, as well as recommendations for the patient and her family and public health considerations.
Collapse
Affiliation(s)
- Tuck Seng Cheng
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus Box 285, Cambridge, CB2 0QQ, United Kingdom; Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus Box 285, Cambridge, CB2 0QQ, United Kingdom; Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus Box 116, Cambridge, CB2 0QQ, United Kingdom
| | - Frank M Biro
- Division of Adolescent and Transition Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.
| |
Collapse
|
143
|
Saengkaew T, Howard SR. Genetics of pubertal delay. Clin Endocrinol (Oxf) 2022; 97:473-482. [PMID: 34617615 PMCID: PMC9543006 DOI: 10.1111/cen.14606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
The timing of pubertal development is strongly influenced by the genetic background, and clinical presentations of delayed puberty are often found within families with clear patterns of inheritance. The discovery of the underlying genetic regulators of such conditions, in recent years through next generation sequencing, has advanced the understanding of the pathogenesis of disorders of pubertal timing and the potential for genetic testing to assist diagnosis for patients with these conditions. This review covers the significant advances in the understanding of the biological mechanisms of delayed puberty that have occurred in the last two decades.
Collapse
Affiliation(s)
- Tansit Saengkaew
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Endocrinology Unit, Department of Paediatrics, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
144
|
Tai AS, Lin RT, Lin YC, Wang CH, Lin SH, Imoto S. Genome-wide causal mediation analysis identifies genetic loci associated with uterine fibroids mediated by age at menarche. Hum Reprod 2022; 37:2197-2212. [PMID: 35689443 PMCID: PMC10467635 DOI: 10.1093/humrep/deac136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/04/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Could the direct contribution of genetic variants to the pathophysiology of uterine fibroids and the contribution mediated by age at menarche be different? SUMMARY ANSWER Age at menarche plays a mediation role in the genetic influence on uterine fibroids, and four causal genetic mechanisms underlying the age at menarche-mediated effects of common genetic loci on uterine fibroid development were identified. WHAT IS KNOWN ALREADY Uterine fibroids are common benign tumors developing from uterine smooth muscle. Genome-wide association studies (GWASs) have identified over 30 genetic loci associated with uterine fibroids in different ethnic populations. Several genetic variations in or nearby these identified loci were also associated with early age at menarche, one of the major risk factors of uterine fibroids. Although the results of GWASs reveal how genetic variations affect uterine fibroids, the genetic mechanism of uterine fibroids mediated by age at menarche remains elusive. STUDY DESIGN, SIZE, DURATION In this study, we conducted a genome-wide causal mediation analysis in two cohorts covering a total of 69 552 females of Han Chinese descent from the Taiwan Biobank (TWB). TWB is an ongoing community- and hospital-based cohort aiming to enroll 200 000 individuals from the general Taiwanese population between 30 and 70 years old. It has been enrolling Taiwanese study participants since 2012 and has extensive phenotypic data collected from 148 291 individuals as of May 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS We recruited individuals in two cohorts, with 13 899 females in TWB1 and 55 653 females in TWB2. The two sets of individuals are almost distinct, with only 730 individuals enrolled in both cohorts. Over 99% of the participants are Han Chinese. Approximately 21% of participants developed uterine fibroids. DNA samples from both cohorts were genotyped using two different customized chips (TWB1 and TWB2 arrays). After quality control and genotype imputation, 646 973 TWB1 single-nucleotide polymorphisms (SNPs) and 686 439 TWB2 SNPs were assessed in our analysis. There were 99 939 SNPs which overlapped between the TWB1 and TWB2 arrays, 547 034 TWB1 array-specific SNPs and 586 500 TWB2 array-specific SNPs. We performed GWASs for screening potential risk SNPs for age at menarche and for uterine fibroids. We subsequently identified causal mediation effects of risk SNPs on uterine fibroids mediated by age at menarche. MAIN RESULTS AND THE ROLE OF CHANCE In addition to known loci at LIN28B associated with age at menarche and loci at WNT4 associated with uterine fibroids, we identified 162 SNPs in 77 transcripts that were associated with menarche-mediated causal effects on uterine fibroids via four different causal genetic mechanisms: a both-harmful group with 52 SNPs, a both-protective group with 34 SNPs, a mediator-harmful group with 22 SNPs and a mediator-protective group with 54 SNPs. Among these SNPs, rs809302 in SLK significantly increased the risk of developing uterine fibroids by 3.92% through a mechanism other than age at menarche (P < 10-10), and rs371721345 in HLA-DOB was associated with a 2.70% decreased risk (P < 10-10) in the occurrence of uterine fibroids, mediated by age at menarche. These findings provide insights into the mechanism underlying the effect of genetic loci on uterine fibroids mediated by age at menarche. LIMITATIONS, REASONS FOR CAUTION A potential issue is that the present study relied upon self-reported age at menarche and uterine fibroid information. Due to the experimental design, the consistency between self-reports and medical records for uterine fibroids in Taiwan cannot be checked. Fortunately, the literature support that self-reporting even years later remains a practical means for collecting data on menarche and uterine fibroids. We found that the impact of under-reporting of uterine fibroids is less in our study. In addition, the rate of reporting a diagnosis of uterine fibroids was within the rates of medical diagnosis based on national health insurance data. Future work investigating the consistency between self-reports and medical records in Taiwan can remedy this issue. WIDER IMPLICATIONS OF THE FINDINGS This study is the first to investigate whether and to what extent age at menarche mediates the causal effects of genetic variants on uterine fibroids by using genome-wide causal mediation analysis. By treating age at menarche as a mediator, this report provides an insight into the genetic risk factors for developing uterine fibroids. Thus, this article represents a step forward in deciphering the role of intermediated risk factors in the genetic mechanism of disease. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the China Medical University, Taiwan (CMU110-ASIA-13 and CMU107-Z-04), the Ministry of Science and Technology, Taiwan (MOST 110-2314-B-039-058) and the International Joint Usage/Research Center, the Institute of Medical Science, the University of Tokyo, Japan (K2104). The authors have no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- An-Shun Tai
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan
| | - Ro-Ting Lin
- College of Public Health, China Medical University, Taichung, Taiwan
| | - Yi-Chun Lin
- College of Public Health, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Hsuan Lin
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
145
|
Genetic control of RNA splicing and its distinct role in complex trait variation. Nat Genet 2022; 54:1355-1363. [PMID: 35982161 PMCID: PMC9470536 DOI: 10.1038/s41588-022-01154-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/08/2022] [Indexed: 12/11/2022]
Abstract
Most genetic variants identified from genome-wide association studies (GWAS) in humans are noncoding, indicating their role in gene regulation. Previous studies have shown considerable links of GWAS signals to expression quantitative trait loci (eQTLs) but the links to other genetic regulatory mechanisms, such as splicing QTLs (sQTLs), are underexplored. Here, we introduce an sQTL mapping method, testing for heterogeneity between isoform-eQTLeffects (THISTLE), with improved power over competing methods. Applying THISTLE together with a complementary sQTL mapping strategy to brain transcriptomic (n = 2,865) and genotype data, we identified 12,794 genes with cis-sQTLs at P < 5 × 10−8, approximately 61% of which were distinct from eQTLs. Integrating the sQTL data into GWAS for 12 brain-related complex traits (including diseases), we identified 244 genes associated with the traits through cis-sQTLs, approximately 61% of which could not be discovered using the corresponding eQTL data. Our study demonstrates the distinct role of most sQTLs in the genetic regulation of transcription and complex trait variation. A powerful method for splicing quantitative trait loci (sQTL) mapping, THISTLE, is presented and applied to a collection of 2,865 brain samples. Integration with GWAS identifies 244 genes associated via cis-sQTLs, of which 61% were not identified using expression QTLs.
Collapse
|
146
|
Xiong J, Tian Y, Ma G, Ling A, Shan S, Cheng G. Comparative RNA-seq analysis and ceRNA network of genistein-treated GT1-7 neurons. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
147
|
Chen F, Wen W, Long J, Shu X, Yang Y, Shu XO, Zheng W. Mendelian randomization analyses of 23 known and suspected risk factors and biomarkers for breast cancer overall and by molecular subtypes. Int J Cancer 2022; 151:372-380. [PMID: 35403707 PMCID: PMC9177773 DOI: 10.1002/ijc.34026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 08/03/2023]
Abstract
Many risk factors have been identified for breast cancer. The potential causality for some of them remains uncertain, and few studies have comprehensively investigated these associations by molecular subtypes. We performed a two-sample Mendelian randomization (MR) study to evaluate potential causal associations of 23 known and suspected risk factors and biomarkers with breast cancer risk overall and by molecular subtypes using data from the Breast Cancer Association Consortium. The inverse-variance weighted method was used to estimate odds ratios (OR) and 95% confidence interval (CI) for association of each trait with breast cancer risk. Significant associations with breast cancer risk were found for 15 traits, including age at menarche, age at menopause, body mass index, waist-to-hip ratio, height, physical activity, cigarette smoking, sleep duration, and morning-preference chronotype, and six blood biomarkers (estrogens, insulin-like growth factor-1, sex hormone-binding globulin [SHBG], telomere length, HDL-cholesterol and fasting insulin). Noticeably, an increased circulating SHBG was associated with a reduced risk of estrogen receptor (ER)-positive cancer (OR = 0.83, 95% CI: 0.73-0.94), but an elevated risk of ER-negative (OR = 1.12, 95% CI: 0.93-1.36) and triple negative cancer (OR = 1.19, 95% CI: 0.92-1.54) (Pheterogeneity = 0.01). Fasting insulin was most strongly associated with an increased risk of HER2-negative cancer (OR = 1.94, 95% CI: 1.18-3.20), but a reduced risk of HER2-enriched cancer (OR = 0.46, 95% CI: 0.26-0.81) (Pheterogeneity = 0.006). Results from sensitivity analyses using MR-Egger and MR-PRESSO were generally consistent. Our study provides strong evidence supporting potential causal associations of several risk factors for breast cancer and suggests potential heterogeneous associations of SHBG and fasting insulin levels with subtypes of breast cancer.
Collapse
Affiliation(s)
- Fa Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
148
|
Hirtz R, Hars C, Naaresh R, Laabs BH, Antel J, Grasemann C, Hinney A, Hebebrand J, Peters T. Causal Effect of Age at Menarche on the Risk for Depression: Results From a Two-Sample Multivariable Mendelian Randomization Study. Front Genet 2022; 13:918584. [PMID: 35903354 PMCID: PMC9315288 DOI: 10.3389/fgene.2022.918584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
A fair number of epidemiological studies suggest that age at menarche (AAM) is associated with depression, but the reported effect sizes are small, and there is evidence of residual confounding. Moreover, previous Mendelian randomization (MR) studies to avoid inferential problems inherent to epidemiological studies have provided mixed findings. To clarify the causal relationship between age at menarche and broadly defined depression risk, we used 360 genome-wide significantly AAM-related single-nucleotide polymorphisms (SNPs) as instrumental variable and data from the latest GWAS for the broadly defined depression risk on 807,553 individuals (246,363 cases and 561,190 controls). Multiple methods to account for heterogeneity of the instrumental variable (penalized weighted median, MR Lasso, and contamination mixture method), systematic and idiosyncratic pleiotropy (MR RAPS), and horizontal pleiotropy (MR PRESSO and multivariable MR using three methods) were used. Body mass index, education attainment, and total white blood count were considered pleiotropic phenotypes in the multivariable MR analysis. In the univariable [inverse-variance weighted (IVW): OR = 0.96, 95% confidence interval = 0.94–0.98, p = 0.0003] and multivariable MR analysis (IVW: OR = 0.96, 95% confidence interval = 0.94–0.99, p = 0.007), there was a significant causal effect of AAM on depression risk. Thus, the present study supports conclusions from previous epidemiological studies implicating AAM in depression without the pitfalls of residual confounding and reverse causation. Considering the adverse consequences of an earlier AAM on mental health, this finding should foster efforts to address risk factors that promote an earlier AAM.
Collapse
Affiliation(s)
- Raphael Hirtz
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Raphael Hirtz, , orcid.org/0000-0003-1162-4305
| | - Christine Hars
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Roaa Naaresh
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University Medical Center Schleswig-Holstein—Campus Lübeck, University of Lübeck, Lübeck, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Corinna Grasemann
- Department of Pediatrics, Division of Rare Diseases and CeSER, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
149
|
Lorenz K, Thom CS, Adurty S, Voight BF. TSABL: Trait Specific Annotation Based Locus predictor. BMC Genomics 2022; 23:444. [PMID: 35705896 PMCID: PMC9202130 DOI: 10.1186/s12864-022-08654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of Genome Wide Associate Study (GWAS) loci fall in the non-coding genome, making causal variants difficult to identify and study. We hypothesized that the regulatory features underlying causal variants are biologically specific, identifiable from data, and that the regulatory architecture that influences one trait is distinct compared to biologically unrelated traits. RESULTS To better characterize and identify these variants, we used publicly available GWAS loci and genomic annotations to build 17 Trait Specific Annotation Based Locus (TSABL) predictors to identify differences between GWAS loci associated with different phenotypic trait groups. We used a penalized binomial logistic regression model to select trait relevant annotations and tested all models on a holdout set of loci not used for training in any trait. We were able to successfully build models for autoimmune, electrocardiogram, lipid, platelet, red blood cell, and white blood cell trait groups. We used these models both to prioritize variants in existing loci and to identify new genomic regions of interest. CONCLUSIONS We found that TSABL models identified biologically relevant regulatory features, and anticipate their future use to enhance the design and interpretation of genetic studies.
Collapse
Affiliation(s)
- Kim Lorenz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher S Thom
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
150
|
Molenberg R, Thio CHL, Aalbers MW, Uyttenboogaart M, Larsson SC, Bakker MK, Ruigrok YM, Snieder H, van Dijk JMC. Sex Hormones and Risk of Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study. Stroke 2022; 53:2870-2875. [PMID: 35652345 PMCID: PMC9389934 DOI: 10.1161/strokeaha.121.038035] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The risk of aneurysmal subarachnoid hemorrhage (aSAH) is increased in postmenopausal women compared with men of similar age, suggesting a role for sex hormones. We aimed to explore whether sex hormones, and age at menarche/menopause have a causal effect on aSAH risk by conducting a 2-sample MR study (Mendelian randomization).
Collapse
Affiliation(s)
- Rob Molenberg
- Department of Neurosurgery (R.M., M.W.A., J.M.C.v.D.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Chris H L Thio
- Department of Epidemiology (C.H.L.T., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery (R.M., M.W.A., J.M.C.v.D.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Maarten Uyttenboogaart
- Department of Neurology and Medical Imaging Center (M.U.), University of Groningen, University Medical Center Groningen, the Netherlands
| | | | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (S.C.L.).,Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Sweden (S.C.L.)
| | - Mark K Bakker
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, the Netherlands (M.K.B., Y.M.R.)
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, the Netherlands (M.K.B., Y.M.R.)
| | - Harold Snieder
- Department of Epidemiology (C.H.L.T., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery (R.M., M.W.A., J.M.C.v.D.), University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|