101
|
Chebib FT, Hogan MC, El-Zoghby ZM, Irazabal MV, Senum SR, Heyer CM, Madsen CD, Cornec-Le Gall E, Behfar A, Harris PC, Torres VE. Autosomal Dominant Polycystic Kidney Patients May Be Predisposed to Various Cardiomyopathies. Kidney Int Rep 2017; 2:913-923. [PMID: 29270497 PMCID: PMC5733883 DOI: 10.1016/j.ekir.2017.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/11/2017] [Accepted: 05/28/2017] [Indexed: 01/18/2023] Open
Abstract
Introduction Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD). Experimental evidence suggests an important role of the polycystins in cardiac development and myocardial function. To determine whether ADPKD may predispose to the development of cardiomyopathy, we have evaluated the coexistence of diagnoses of ADPKD and primary cardiomyopathy in our patients. Methods Clinical data were retrieved from medical records for patients with a coexisting diagnosis of ADPKD and cardiomyopathies evaluated at the Mayo Clinic (1984-2015). Results Among the 58 of 667 patients with available echocardiography data, 39 (5.8%) had idiopathic dilated cardiomyopathy (IDCM), 17 (2.5%) had hypertrophic obstructive cardiomyopathy, and 2 (0.3%) had left ventricular noncompaction. Genetic data were available for 19, 8, and 2 cases of IDCM, hypertrophic obstructive cardiomyopathy, and left ventricular noncompaction, respectively. PKD1 mutations were detected in 42.1%, 62.5%, and 100% of IDCM, hypertrophic obstructive cardiomyopathy, and left ventricular noncompaction cases, respectively. PKD2 mutations were detected only in IDCM cases and were overrepresented (36.8%) relative to the expected frequency in ADPKD (15%). In at least 1 patient from 3 IDMC families and 1 patient from a hypertrophic obstructive cardiomyopathy family, the cardiomyopathy did not segregate with ADPKD, suggesting that the PKD mutations may be predisposing factors rather than solely responsible for the development of cardiomyopathy. Discussion Coexistence of ADPKD and cardiomyopathy in our tertiary referral center cohort appears to be higher than expected by chance. We suggest that PKD1 and PKD2 mutations may predispose to primary cardiomyopathies and that genetic interactions may account for the observed coexistence of ADPKD and cardiomyopathies.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ziad M El-Zoghby
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Charles D Madsen
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Atta Behfar
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
102
|
Busch T, Köttgen M, Hofherr A. TRPP2 ion channels: Critical regulators of organ morphogenesis in health and disease. Cell Calcium 2017; 66:25-32. [PMID: 28807147 DOI: 10.1016/j.ceca.2017.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Ion channels control the membrane potential and mediate transport of ions across membranes. Archetypical physiological functions of ion channels include processes such as regulation of neuronal excitability, muscle contraction, or transepithelial ion transport. In that regard, transient receptor potential ion channel polycystin 2 (TRPP2) is remarkable, because it controls complex morphogenetic processes such as the establishment of properly shaped epithelial tubules and left-right-asymmetry of organs. The fascinating question of how an ion channel regulates morphogenesis has since captivated the attention of scientists in different disciplines. Four loosely connected key insights on different levels of biological complexity ranging from protein to whole organism have framed our understanding of TRPP2 physiology: 1) TRPP2 is a non-selective cation channel; 2) TRPP2 is part of a receptor-ion channel complex; 3) TRPP2 localizes to primary cilia; and 4) TRPP2 is required for organ morphogenesis. In this review, we will discuss the current knowledge in these key areas and highlight some of the challenges ahead.
Collapse
Affiliation(s)
- Tilman Busch
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Michael Köttgen
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
103
|
Lemos FO, Ehrlich BE. Polycystin and calcium signaling in cell death and survival. Cell Calcium 2017; 69:37-45. [PMID: 28601384 DOI: 10.1016/j.ceca.2017.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Abstract
Mutations in polycystin-1 (PC1) and polycystin-2 (PC2) result in a commonly occurring genetic disorder, called Autosomal Dominant Polycystic Kidney Disease (ADPKD), that is characterized by the formation and development of kidney cysts. Epithelial cells with loss-of-function of PC1 or PC2 show higher rates of proliferation and apoptosis and reduced autophagy. PC1 is a large multifunctional transmembrane protein that serves as a sensor that is usually found in complex with PC2, a calcium (Ca2+)-permeable cation channel. In addition to decreased Ca2+ signaling, several other cell fate-related pathways are de-regulated in ADPKD, including cAMP, MAPK, Wnt, JAK-STAT, Hippo, Src, and mTOR. In this review we discuss how polycystins regulate cell death and survival, highlighting the complexity of molecular cascades that are involved in ADPKD.
Collapse
Affiliation(s)
- Fernanda O Lemos
- Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA; Department of Cellular and Molecular Physiology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA.
| |
Collapse
|
104
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
105
|
Elchediak DS, Cahill AM, Furth EE, Kaplan BS, Hartung EA. Extracranial Aneurysms in 2 Patients with Autosomal Recessive Polycystic Kidney Disease. Case Rep Nephrol Dial 2017; 7:34-42. [PMID: 28612004 PMCID: PMC5465521 DOI: 10.1159/000475492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/02/2017] [Indexed: 02/01/2023] Open
Abstract
Unlike autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD) is not generally known to be associated with vascular abnormalities. Only 4 cases of ARPKD patients with intracranial aneurysms have been reported previously. We present 2 ARPKD patients with extracranial vascular abnormalities: a young man with infrarenal aortic and iliac artery aneurysms complicated by dissection and a teenage girl with multiple splenic and gastric artery aneurysms and arterial vascular malformations. These cases raise the question of whether vascular integrity and development may be impaired in ARPKD, perhaps through molecular mechanisms overlapping with ADPKD. This possibility is supported by studies in mice that show ARPKD gene expression in the walls of large blood vessels.
Collapse
Affiliation(s)
| | - Anne Marie Cahill
- bDepartment of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,ePerelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma E Furth
- cDepartment of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,ePerelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bernard S Kaplan
- dDivision of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,ePerelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erum A Hartung
- dDivision of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,ePerelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
106
|
Dalagiorgou G, Piperi C, Adamopoulos C, Georgopoulou U, Gargalionis AN, Spyropoulou A, Zoi I, Nokhbehsaim M, Damanaki A, Deschner J, Basdra EK, Papavassiliou AG. Mechanosensor polycystin-1 potentiates differentiation of human osteoblastic cells by upregulating Runx2 expression via induction of JAK2/STAT3 signaling axis. Cell Mol Life Sci 2017; 74:921-936. [PMID: 27699453 PMCID: PMC11107574 DOI: 10.1007/s00018-016-2394-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
Polycystin-1 (PC1) has been proposed as a chief mechanosensing molecule implicated in skeletogenesis and bone remodeling. Mechanotransduction via PC1 involves proteolytic cleavage of its cytoplasmic tail (CT) and interaction with intracellular pathways and transcription factors to regulate cell function. Here we demonstrate the interaction of PC1-CT with JAK2/STAT3 signaling axis in mechanically stimulated human osteoblastic cells, leading to transcriptional induction of Runx2 gene, a master regulator of osteoblastic differentiation. Primary osteoblast-like PC1-expressing cells subjected to mechanical-stretching exhibited a PC1-dependent increase of the phosphorylated(p)/active form of JAK2. Specific interaction of PC1-CT with pJAK2 was observed after stretching while pre-treatment of cells with PC1 (anti-IgPKD1) and JAK2 inhibitors abolished JAK2 activation. Consistently, mechanostimulation triggered PC1-mediated phosphorylation and nuclear translocation of STAT3. The nuclear phosphorylated(p)/DNA-binding competent pSTAT3 levels were augmented after stretching followed by elevated DNA-binding activity. Pre-treatment with a STAT3 inhibitor either alone or in combination with anti-IgPKD1 abrogated this effect. Moreover, PC1-mediated mechanostimulation induced elevation of Runx2 mRNA levels. ChIP assays revealed direct regulation of Runx2 promoter activity by STAT3/Runx2 after mechanical-stretching that was PC1-dependent. Our findings show that mechanical load upregulates expression of Runx2 gene via potentiation of PC1-JAK2/STAT3 signaling axis, culminating to possibly control osteoblastic differentiation and ultimately bone formation.
Collapse
Affiliation(s)
- Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
107
|
England SJ, Campbell PC, Banerjee S, Swanson AJ, Lewis KE. Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes. Front Cell Dev Biol 2017; 5:5. [PMID: 28271061 PMCID: PMC5318412 DOI: 10.3389/fcell.2017.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/19/2017] [Indexed: 01/01/2023] Open
Abstract
Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have crucial roles in many aspects of vertebrate development and physiology, including the development of many organs as well as left–right patterning and taste. They can be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one PKD1-like protein forms a heteromeric polycystin complex with a PKD2-like protein. For example, PKD1 forms a complex with PKD2 and mutations in either of these proteins cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most frequent potentially-lethal single-gene disorder in humans. Here, we identify the complete family of pkd genes in zebrafish and other teleosts. We describe the genomic locations and sequences of all seven genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and pkd2l1. pkd1l2a/pkd1l2b are likely to be ohnologs of pkd1l2, preserved from the whole genome duplication that occurred at the base of the teleosts. However, in contrast to mammals and cartilaginous and holostei fish, teleosts lack pkd2l2, and pkdrej genes, suggesting that these have been lost in the teleost lineage. In addition, teleost, and holostei fish have only a partial pkd1l3 sequence, suggesting that this gene may be in the process of being lost in the ray-finned fish lineage. We also provide the first comprehensive description of the expression of zebrafish pkd genes during development. In most structures we detect expression of one pkd1-like gene and one pkd2-like gene, consistent with these genes encoding a heteromeric protein complex. For example, we found that pkd2 and pkd1l1 are expressed in Kupffer's vesicle and pkd1 and pkd2 are expressed in the developing pronephros. In the spinal cord, we show that pkd1l2a and pkd2l1 are co-expressed in KA cells. We also identify potential co-expression of pkd1b and pkd2 in the floor-plate. Interestingly, and in contrast to mouse, we observe expression of all seven pkd genes in regions that may correspond to taste receptors. Taken together, these results provide a crucial catalog of pkd genes in an important model system for elucidating cell and developmental processes and modeling human diseases and the most comprehensive analysis of embryonic pkd gene expression in any vertebrate.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | | |
Collapse
|
108
|
Badgandi HB, Hwang SH, Shimada IS, Loriot E, Mukhopadhyay S. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J Cell Biol 2017; 216:743-760. [PMID: 28154160 PMCID: PMC5350516 DOI: 10.1083/jcb.201607095] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/25/2016] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Trafficking of integral membrane proteins to cilia is poorly understood. Badgandi et al. show that tubby family proteins TULP3 and TUB act as general adapters for ciliary trafficking of structurally diverse integral membrane cargo like GCPRs and the polycystin 1/2 complex. The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane.
Collapse
Affiliation(s)
- Hemant B Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Issei S Shimada
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Evan Loriot
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390.,STARS Program, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Jesuit College Preparatory School of Dallas, Dallas, TX 75244
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
109
|
Salehi-Najafabadi Z, Li B, Valentino V, Ng C, Martin H, Yu Y, Wang Z, Kashyap P, Yu Y. Extracellular Loops Are Essential for the Assembly and Function of Polycystin Receptor-Ion Channel Complexes. J Biol Chem 2017; 292:4210-4221. [PMID: 28154010 DOI: 10.1074/jbc.m116.767897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Indexed: 12/15/2022] Open
Abstract
Polycystin complexes, or TRPP-PKD complexes, made of transient receptor potential channel polycystin (TRPP) and polycystic kidney disease (PKD) proteins, play key roles in coupling extracellular stimuli with intracellular Ca2+ signals. For example, the TRPP2-PKD1 complex has a crucial function in renal physiology, with mutations in either protein causing autosomal dominant polycystic kidney disease. In contrast, the TRPP3-PKD1L3 complex responds to low pH and was proposed to be a sour taste receptor candidate. It has been shown previously that the protein partners interact via association of the C-terminal or transmembrane segments, with consequences for the assembly, surface expression, and function of the polycystin complexes. However, the roles of extracellular components, especially the loops that connect the transmembrane segments, in the assembly and function of the polycystin complex are largely unknown. Here, with an immunoprecipitation method, we found that extracellular loops between the first and second transmembrane segments of TRPP2 and TRPP3 associate with the extracellular loops between the sixth and seventh transmembrane segments of PKD1 and PKD1L3, respectively. Immunofluorescence and electrophysiology data further confirm that the associations between these loops are essential for the trafficking and function of the complexes. Interestingly, most of the extracellular loops are also found to be involved in homomeric assembly. Furthermore, autosomal dominant polycystic kidney disease-associated TRPP2 mutant T448K significantly weakened TRPP2 homomeric assembly but had no obvious effect on TRPP2-PKD1 heteromeric assembly. Our results demonstrate a crucial role of these functionally underexplored extracellular loops in the assembly and function of the polycystin complexes.
Collapse
Affiliation(s)
| | - Bin Li
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Victoria Valentino
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Courtney Ng
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Hannah Martin
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Yang Yu
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Zhifei Wang
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Parul Kashyap
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Yong Yu
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| |
Collapse
|
110
|
Molecular insights into lipid-assisted Ca 2+ regulation of the TRP channel Polycystin-2. Nat Struct Mol Biol 2017; 24:123-130. [PMID: 28092368 DOI: 10.1038/nsmb.3357] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 01/03/2023]
Abstract
Polycystin-2 (PC2), a calcium-activated cation TRP channel, is involved in diverse Ca2+ signaling pathways. Malfunctioning Ca2+ regulation in PC2 causes autosomal-dominant polycystic kidney disease. Here we report two cryo-EM structures of distinct channel states of full-length human PC2 in complex with lipids and cations. The structures reveal conformational differences in the selectivity filter and in the large exoplasmic domain (TOP domain), which displays differing N-glycosylation. The more open structure has one cation bound below the selectivity filter (single-ion mode, PC2SI), whereas multiple cations are bound along the translocation pathway in the second structure (multi-ion mode, PC2MI). Ca2+ binding at the entrance of the selectivity filter suggests Ca2+ blockage in PC2MI, and we observed density for the Ca2+-sensing C-terminal EF hand in the unblocked PC2SI state. The states show altered interactions of lipids with the pore loop and TOP domain, thus reflecting the functional diversity of PC2 at different locations, owing to different membrane compositions.
Collapse
|
111
|
Pablo JL, DeCaen PG, Clapham DE. Progress in ciliary ion channel physiology. J Gen Physiol 2016; 149:37-47. [PMID: 27999145 PMCID: PMC5217089 DOI: 10.1085/jgp.201611696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022] Open
Abstract
Mammalian cilia are ubiquitous appendages found on the apical surface of cells. Primary and motile cilia are distinct in both morphology and function. Most cells have a solitary primary cilium (9+0), which lacks the central microtubule doublet characteristic of motile cilia (9+2). The immotile primary cilia house unique signaling components and sequester several important transcription factors. In contrast, motile cilia commonly extend into the lumen of respiratory airways, fallopian tubes, and brain ventricles to move their contents and/or produce gradients. In this review, we focus on the composition of putative ion channels found in both types of cilia and in the periciliary membrane and discuss their proposed functions. Our discussion does not cover specialized cilia in photoreceptor or olfactory cells, which express many more ion channels.
Collapse
Affiliation(s)
- Juan Lorenzo Pablo
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115.,Department of Cardiology, Boston Children's Hospital, Boston, MA 02115.,Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - David E Clapham
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115 .,Department of Cardiology, Boston Children's Hospital, Boston, MA 02115.,Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
112
|
The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 2016; 167:763-773.e11. [PMID: 27768895 DOI: 10.1016/j.cell.2016.09.048] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 11/23/2022]
Abstract
The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.
Collapse
|
113
|
Hofherr A, Busch T, Huber N, Nold A, Bohn A, Viau A, Bienaimé F, Kuehn EW, Arnold SJ, Köttgen M. Efficient genome editing of differentiated renal epithelial cells. Pflugers Arch 2016; 469:303-311. [PMID: 27987038 PMCID: PMC5222933 DOI: 10.1007/s00424-016-1924-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.
Collapse
Affiliation(s)
- Alexis Hofherr
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Tilman Busch
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Nora Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Nold
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Albert Bohn
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Amandine Viau
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Frank Bienaimé
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - E Wolfgang Kuehn
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Michael Köttgen
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|
114
|
de Almeida RMC, Clendenon SG, Richards WG, Boedigheimer M, Damore M, Rossetti S, Harris PC, Herbert BS, Xu WM, Wandinger-Ness A, Ward HH, Glazier JA, Bacallao RL. Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD. Hum Genomics 2016; 10:37. [PMID: 27871310 PMCID: PMC5117508 DOI: 10.1186/s40246-016-0095-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. Results We used the de Almeida laboratory’s sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Conclusions Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD’s mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s40246-016-0095-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita M C de Almeida
- Biocomplexity Institute and Department of Physics, Indiana University, Bloomington, IN, 47405, USA.,Instituto de Física and Instituto Nacional de Ciência e Tecnologia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Sherry G Clendenon
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | | | | | - Michael Damore
- AMGEN Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320-1799, USA
| | - Sandro Rossetti
- Division of Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Peter C Harris
- Division of Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Britney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Min Xu
- Division of Nephrology, Department of Medicine, Richard Roudebush VAMC and Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela Wandinger-Ness
- Department of Pathology MSC08-4640 and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Heather H Ward
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Robert L Bacallao
- Division of Nephrology, Department of Medicine, Richard Roudebush VAMC and Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
115
|
Vetrini F, D'Alessandro LCA, Akdemir ZC, Braxton A, Azamian MS, Eldomery MK, Miller K, Kois C, Sack V, Shur N, Rijhsinghani A, Chandarana J, Ding Y, Holtzman J, Jhangiani SN, Muzny DM, Gibbs RA, Eng CM, Hanchard NA, Harel T, Rosenfeld JA, Belmont JW, Lupski JR, Yang Y. Bi-allelic Mutations in PKD1L1 Are Associated with Laterality Defects in Humans. Am J Hum Genet 2016; 99:886-893. [PMID: 27616478 DOI: 10.1016/j.ajhg.2016.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/11/2016] [Indexed: 01/23/2023] Open
Abstract
Disruption of the establishment of left-right (L-R) asymmetry leads to situs anomalies ranging from situs inversus totalis (SIT) to situs ambiguus (heterotaxy). The genetic causes of laterality defects in humans are highly heterogeneous. Via whole-exome sequencing (WES), we identified homozygous mutations in PKD1L1 from three affected individuals in two unrelated families. PKD1L1 encodes a polycystin-1-like protein and its loss of function is known to cause laterality defects in mouse and medaka fish models. Family 1 had one fetus and one deceased child with heterotaxy and complex congenital heart malformations. WES identified a homozygous splicing mutation, c.6473+2_6473+3delTG, which disrupts the invariant splice donor site in intron 42, in both affected individuals. In the second family, a homozygous c.5072G>C (p.Cys1691Ser) missense mutation was detected in an individual with SIT and congenital heart disease. The p.Cys1691Ser substitution affects a highly conserved cysteine residue and is predicted by molecular modeling to disrupt a disulfide bridge essential for the proper folding of the G protein-coupled receptor proteolytic site (GPS) motif. Damaging effects associated with substitutions of this conserved cysteine residue in the GPS motif have also been reported in other genes, namely GPR56, BAI3, and PKD1 in human and lat-1 in C. elegans, further supporting the likely pathogenicity of p.Cys1691Ser in PKD1L1. The identification of bi-allelic PKD1L1 mutations recapitulates previous findings regarding phenotypic consequences of loss of function of the orthologous genes in mice and medaka fish and further expands our understanding of genetic contributions to laterality defects in humans.
Collapse
Affiliation(s)
| | - Lisa C A D'Alessandro
- Division of Cardiology, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alicia Braxton
- Baylor Genetics, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | - Yan Ding
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Judy Holtzman
- Genetics Department, Kaiser Permanente Medical Group, San Jose, CA 95123, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M Eng
- Baylor Genetics, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil A Hanchard
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaping Yang
- Baylor Genetics, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
116
|
Doerr N, Wang Y, Kipp KR, Liu G, Benza JJ, Pletnev V, Pavlov TS, Staruschenko A, Mohieldin AM, Takahashi M, Nauli SM, Weimbs T. Regulation of Polycystin-1 Function by Calmodulin Binding. PLoS One 2016; 11:e0161525. [PMID: 27560828 PMCID: PMC4999191 DOI: 10.1371/journal.pone.0161525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common genetic disease that leads to progressive renal cyst growth and loss of renal function, and is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The PC1/PC2 complex localizes to primary cilia and can act as a flow-dependent calcium channel in addition to numerous other signaling functions. The exact functions of the polycystins, their regulation and the purpose of the PC1/PC2 channel are still poorly understood. PC1 is an integral membrane protein with a large extracytoplasmic N-terminal domain and a short, ~200 amino acid C-terminal cytoplasmic tail. Most proteins that interact with PC1 have been found to bind via the cytoplasmic tail. Here we report that the PC1 tail has homology to the regulatory domain of myosin heavy chain including a conserved calmodulin-binding motif. This motif binds to CaM in a calcium-dependent manner. Disruption of the CaM-binding motif in PC1 does not affect PC2 binding, cilia targeting, or signaling via heterotrimeric G-proteins or STAT3. However, disruption of CaM binding inhibits the PC1/PC2 calcium channel activity and the flow-dependent calcium response in kidney epithelial cells. Furthermore, expression of CaM-binding mutant PC1 disrupts cellular energy metabolism. These results suggest that critical functions of PC1 are regulated by its ability to sense cytosolic calcium levels via binding to CaM.
Collapse
Affiliation(s)
- Nicholas Doerr
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Yidi Wang
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Kevin R. Kipp
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Guangyi Liu
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States of America
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
| | - Jesse J. Benza
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Vladimir Pletnev
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tengis S. Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Ashraf M. Mohieldin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, United States of America
- University of California Irvine, Medical Campus, Orange, CA, United States of America
| | - Maki Takahashi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, United States of America
- University of California Irvine, Medical Campus, Orange, CA, United States of America
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, United States of America
- University of California Irvine, Medical Campus, Orange, CA, United States of America
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States of America
- * E-mail:
| |
Collapse
|
117
|
Wu Y, Xu JX, El-Jouni W, Lu T, Li S, Wang Q, Tran M, Yu W, Wu M, Barrera IE, Bonventre JV, Zhou J, Denker BM, Kong T. Gα12 is required for renal cystogenesis induced by Pkd1 inactivation. J Cell Sci 2016; 129:3675-3684. [PMID: 27505895 DOI: 10.1242/jcs.190496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
Mutation of PKD1, encoding the protein polycystin-1 (PC1), is the main cause of autosomal dominant polycystic kidney disease (ADPKD). The signaling pathways downstream of PC1 in ADPKD are still not fully understood. Here, we provide genetic evidence for the necessity of Gα12 (encoded by Gna12, hereafter Gα12) for renal cystogenesis induced by Pkd1 knockout. There was no phenotype in mice with deletion of Gα12 (Gα12-/-). Polyinosine-polycytosine (pI:pC)-induced deletion of Pkd1 (Mx1Cre+Pkd1f/fGα12+/+) in 1-week-old mice resulted in multiple kidney cysts by 9 weeks, but the mice with double knockout of Pkd1 and Gα12 (Mx1Cre+Pkd1f/fGα12-/-) had no structural and functional abnormalities in the kidneys. These mice could survive more than one year without kidney abnormalities except multiple hepatic cysts in some mice, which indicates that the effect of Gα12 on cystogenesis is kidney specific. Furthermore, Pkd1 knockout promoted Gα12 activation, which subsequently decreased cell-matrix and cell-cell adhesion by affecting the function of focal adhesion and E-cadherin, respectively. Our results demonstrate that Gα12 is required for the development of kidney cysts induced by Pkd1 mutation in mouse ADPKD.
Collapse
Affiliation(s)
- Yong Wu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jen X Xu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wassim El-Jouni
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tzongshi Lu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suyan Li
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qingyi Wang
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mei Tran
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Renal Division, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Wanfeng Yu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maoqing Wu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan E Barrera
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zhou
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley M Denker
- Renal Division, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Tianqing Kong
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
118
|
Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models. Sci Rep 2016; 6:30013. [PMID: 27418197 PMCID: PMC4945931 DOI: 10.1038/srep30013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/29/2016] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular complications are the leading cause of death in autosomal dominant polycystic kidney disease (ADPKD), and intracranial aneurysm (ICA) causing subarachnoid hemorrhage is among the most serious complications. The diagnostic and therapeutic strategies for ICAs in ADPKD have not been fully established. We here generated induced pluripotent stem cells (iPSCs) from seven ADPKD patients, including four with ICAs. The vascular cells differentiated from ADPKD-iPSCs showed altered Ca(2+) entry and gene expression profiles compared with those of iPSCs from non-ADPKD subjects. We found that the expression level of a metalloenzyme gene, matrix metalloproteinase (MMP) 1, was specifically elevated in iPSC-derived endothelia from ADPKD patients with ICAs. Furthermore, we confirmed the correlation between the serum MMP1 levels and the development of ICAs in 354 ADPKD patients, indicating that high serum MMP1 levels may be a novel risk factor. These results suggest that cellular disease models with ADPKD-specific iPSCs can be used to study the disease mechanisms and to identify novel disease-related molecules or risk factors.
Collapse
|
119
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
120
|
Kim S, Nie H, Nesin V, Tran U, Outeda P, Bai CX, Keeling J, Maskey D, Watnick T, Wessely O, Tsiokas L. The polycystin complex mediates Wnt/Ca(2+) signalling. Nat Cell Biol 2016; 18:752-764. [PMID: 27214281 PMCID: PMC4925210 DOI: 10.1038/ncb3363] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/22/2016] [Indexed: 01/22/2023]
Abstract
WNT ligands induce Ca2+ signaling on target cells. PKD1 (Polycystin 1) is considered an orphan, atypical G protein coupled receptor complexed with TRPP2 (Polycystin 2 or PKD2), a Ca2+-permeable ion channel. Inactivating mutations in their genes cause autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases. Here, we show that WNTs bind to the extracellular domain of PKD1 and induce whole cell currents and Ca2+ influx dependent on TRPP2. Pathogenic PKD1 or PKD2 mutations that abrogate complex formation, compromise cell surface expression of PKD1, or reduce TRPP2 channel activity suppress activation by WNTs. Pkd2−/− fibroblasts lack WNT-induced Ca2+ currents and are unable to polarize during directed cell migration. In Xenopus embryos, PKD1, Dishevelled 2 (DVL2), and WNT9A act within the same pathway to preserve normal tubulogenesis. These data define PKD1 as a WNT (co)receptor and implicate defective WNT/Ca2+ signaling as one of the causes of ADPKD.
Collapse
Affiliation(s)
- Seokho Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Hongguang Nie
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA.,Institute of Metabolic Disease Research and Drug Development, China Medical University, Liaoning Shenyang, 110001 China (H.N)
| | - Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Cleveland Clinic, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Patricia Outeda
- Division of Nephrology, Baltimore PKD Research and Clinical Core Center, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Chang-Xi Bai
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA.,Department of Advanced Research on Mongolian Medicine, Research Institute for Mongolian Medicine, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China (CB)
| | - Jacob Keeling
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Dipak Maskey
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Terry Watnick
- Division of Nephrology, Baltimore PKD Research and Clinical Core Center, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Cleveland Clinic, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
121
|
Yang Y, Ehrlich BE. Structural studies of the C-terminal tail of polycystin-2 (PC2) reveal insights into the mechanisms used for the functional regulation of PC2. J Physiol 2016; 594:4141-9. [PMID: 26857659 DOI: 10.1113/jp270933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/21/2016] [Indexed: 01/17/2023] Open
Abstract
Mutations in polycystin-2 (PC2) lead to autosomal dominant polycystic kidney disease (ADPKD). The molecular mechanism linking mutations in PC2 and the pathogenesis of ADPKD is not well understood. Therefore, understanding the functional regulation of PC2 and its interaction with other proteins under both physiological and pathogenic conditions is important for elucidating the disease mechanism and identifying potential molecular targets for treatment. Normally, PC2 functions as a calcium-permeable channel whose activity is regulated by calcium binding to the C-terminal domain of PC2 (PC2 Cterm). The PC2 Cterm is also involved in the PC2 channel assembly and hetero-oligomerization with other binding partners in cells. Different functional domains of the PC2 Cterm have been studied using structural approaches. Within the PC2 Cterm, there is a calcium-binding EF-hand domain, crucial for the calcium-dependent activity of the PC2 channel. Downstream of the EF-hand domain lies a coiled-coil region, which is involved in the assembly and hetero-interaction of the PC2 protein. The PC2 Cterm can form an oligomer, mediated by the coiled-coil region. Although PC2 Cterm has been extensively studied for its relationship with ADPKD and its importance in PC2 regulation, there are misunderstandings with respect to the definition of the domain topology within the PC2 Cterm and the functional role of each domain. Here, we review previous studies that connect the molecular properties of the domains of PC2 Cterm to distinct aspects of PC2 functions and regulation.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Laboratory Medicine, Yale University, New Haven, CT, 06520, USA.,Department of Pharmacology, Yale University, New Haven, CT, 06520, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA.,Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
122
|
Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc Natl Acad Sci U S A 2016; 113:E2363-72. [PMID: 27071085 DOI: 10.1073/pnas.1517066113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in polycystin-1 and transient receptor potential polycystin 2 (TRPP2) account for almost all clinically identified cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common human genetic diseases. TRPP2 functions as a cation channel in its homomeric complex and in the TRPP2/polycystin-1 receptor/ion channel complex. The activation mechanism of TRPP2 is unknown, which significantly limits the study of its function and regulation. Here, we generated a constitutively active gain-of-function (GOF) mutant of TRPP2 by applying a mutagenesis scan on the S4-S5 linker and the S5 transmembrane domain, and studied functional properties of the GOF TRPP2 channel. We found that extracellular divalent ions, including Ca(2+), inhibit the permeation of monovalent ions by directly blocking the TRPP2 channel pore. We also found that D643, a negatively charged amino acid in the pore, is crucial for channel permeability. By introducing single-point ADPKD pathogenic mutations into the GOF TRPP2, we showed that different mutations could have completely different effects on channel activity. The in vivo function of the GOF TRPP2 was investigated in zebrafish embryos. The results indicate that, compared with wild type (WT), GOF TRPP2 more efficiently rescued morphological abnormalities, including curly tail and cyst formation in the pronephric kidney, caused by down-regulation of endogenous TRPP2 expression. Thus, we established a GOF TRPP2 channel that can serve as a powerful tool for studying the function and regulation of TRPP2. The GOF channel may also have potential application for developing new therapeutic strategies for ADPKD.
Collapse
|
123
|
Saigusa T, Bell PD. Molecular pathways and therapies in autosomal-dominant polycystic kidney disease. Physiology (Bethesda) 2016; 30:195-207. [PMID: 25933820 DOI: 10.1152/physiol.00032.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - P Darwin Bell
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
124
|
Trudel M, Yao Q, Qian F. The Role of G-Protein-Coupled Receptor Proteolysis Site Cleavage of Polycystin-1 in Renal Physiology and Polycystic Kidney Disease. Cells 2016; 5:cells5010003. [PMID: 26805887 PMCID: PMC4810088 DOI: 10.3390/cells5010003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
Polycystin-1 (PC1) plays an essential role in renal tubular morphogenesis, and PC1 dysfunction causes human autosomal dominant polycystic kidney disease. A fundamental characteristic of PC1 is post-translational modification via cleavage at the juxtamembrane GPCR proteolysis site (GPS) motif that is part of the larger GAIN domain. Given the considerable biochemical complexity of PC1 molecules generated in vivo by this process, GPS cleavage has several profound implications on the intracellular trafficking and localization in association with their particular function. The critical nature of GPS cleavage is further emphasized by the increasing numbers of PKD1 mutations that significantly affect this cleavage process. The GAIN domain with the GPS motif therefore represents the key structural element with fundamental importance for PC1 and might be polycystic kidney disease’s (PKD) Achilles’ heel in a large spectrum of PKD1 missense mutations. We highlight the central roles of PC1 cleavage for the regulation of its biogenesis, intracellular trafficking and function, as well as its significance in polycystic kidney disease.
Collapse
Affiliation(s)
- Marie Trudel
- Molecular Genetics and Development, Institut de Recherches Cliniques de Montreal, Universite de Montreal, Faculte de Medecine, Montréal, Québec H2W 1R7, Canada.
| | - Qin Yao
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Feng Qian
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
125
|
Mangolini A, de Stephanis L, Aguiari G. Role of calcium in polycystic kidney disease: From signaling to pathology. World J Nephrol 2016; 5:76-83. [PMID: 26788466 PMCID: PMC4707171 DOI: 10.5527/wjn.v5.i1.76] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/21/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited monogenic kidney disease. Characterized by the development and growth of cysts that cause progressive kidney enlargement, it ultimately leads to end-stage renal disease. Approximately 85% of ADPKD cases are caused by mutations in the PKD1 gene, while mutations in the PKD2 gene account for the remaining 15% of cases. The PKD1 gene encodes for polycystin-1 (PC1), a large multi-functional membrane receptor protein able to regulate ion channel complexes, whereas polycystin-2 (PC2), encoded by the PKD2 gene, is an integral membrane protein that functions as a calcium-permeable cation channel, located mainly in the endoplasmic reticulum (ER). In the primary cilia of the epithelial cells, PC1 interacts with PC2 to form a polycystin complex that acts as a mechanosensor, regulating signaling pathways involved in the differentiation of kidney tubular epithelial cells. Despite progress in understanding the function of these proteins, the molecular mechanisms associated with the pathogenesis of ADPKD remain unclear. In this review we discuss how an imbalance between functional PC1 and PC2 proteins may disrupt calcium channel activities in the cilium, plasma membrane and ER, thereby altering intracellular calcium signaling and leading to the aberrant cell proliferation and apoptosis associated with the development and growth of renal cysts. Research in this field could lead to the discovery of new molecules able to rebalance intracellular calcium, thereby normalizing cell proliferation and reducing kidney cyst progression.
Collapse
|
126
|
Abstract
TRPP2 (polycystin-2, PC2 or PKD2), encoded by the PKD2 gene, is a non-selective cation channel with a large single channel conductance and high Ca(2+) permeability. In cell membrane, TRPP2, along with polycystin-1, TRPV4 and TRPC1, functions as a mechanotransduction channel. In the endoplasmic reticulum, TRPP2 modulates intracellular Ca(2+) release associated with IP3 receptors and the ryanodine receptors. Noteworthily, TRPP2 is widely expressed in vascular endothelial and smooth muscle cells of all major vascular beds, and contributes to the regulation of vessel function. The mutation of the PKD2 gene is a major cause of autosomal dominant polycystic kidney disease (ADPKD), which is not only a common genetic disease of the kidney but also a systemic disorder associated with abnormalities in the vasculature; cardiovascular complications are the leading cause of mortality and morbidity in ADPKD patients. This review provides an overview of the current knowledge regarding the TRPP2 protein and its possible role in cardiovascular function and related diseases.
Collapse
|
127
|
Abstract
Autosomal dominant polycystic kidney disease is caused by mutation of PKD1 (polycystic kidney disease-1) or PKD2 (polycystic kidney disease-2). PKD1 and PKD2 encode PC1 (polycystin-1) and PC2 (polycystin-2), respectively. In addition, the mutation of cilia-associated proteins is also a recognized major factor of pathogenesis, since PC1 and PC2 are located in primary cilium. Abnormalities of PC1 or PC2 lead to aberrant signaling through downstream pathways, such as the negative growth regulation, G protein activation, and canonical and non-canonical Wnt pathways. According to the "second hit" model, an additional somatic mutation results in the expansion of cyst growth. In this chapter we discuss the genetic mechanisms and signaling pathways involved in ADPKD.
Collapse
|
128
|
Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium. J Neurosci 2015; 35:11153-68. [PMID: 26245976 DOI: 10.1523/jneurosci.0686-15.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Directional beating of ependymal (E) cells' cilia in the walls of the ventricles in the brain is essential for proper CSF flow. E cells display two forms of planar cell polarity (PCP): rotational polarity of individual cilium and translational polarity (asymmetric positioning of cilia in the apical area). The orientation of individual E cells varies according to their location in the ventricular wall (location-specific PCP). It has been hypothesized that hydrodynamic forces on the apical surface of radial glia cells (RGCs), the embryonic precursors of E cells, could guide location-specific PCP in the ventricular epithelium. However, the detection mechanisms for these hydrodynamic forces have not been identified. Here, we show that the mechanosensory proteins polycystic kidney disease 1 (Pkd1) and Pkd2 are present in primary cilia of RGCs. Ablation of Pkd1 or Pkd2 in Nestin-Cre;Pkd1(flox/flox) or Nestin-Cre;Pkd2(flox/flox) mice, affected PCP development in RGCs and E cells. Early shear forces on the ventricular epithelium may activate Pkd1 and Pkd2 in primary cilia of RGCs to properly polarize RGCs and E cells. Consistently, Pkd1, Pkd2, or primary cilia on RGCs were required for the proper asymmetric localization of the PCP protein Vangl2 in E cells' apical area. Analyses of single- and double-heterozygous mutants for Pkd1 and/or Vangl2 suggest that these genes function in the same pathway to establish E cells' PCP. We conclude that Pkd1 and Pkd2 mechanosensory proteins contribute to the development of brain PCP and prevention of hydrocephalus. SIGNIFICANCE STATEMENT This study identifies key molecules in the development of planar cell polarity (PCP) in the brain and prevention of hydrocephalus. Multiciliated ependymal (E) cells within the brain ventricular epithelium generate CSF flow through ciliary beating. E cells display location-specific PCP in the orientation and asymmetric positioning of their cilia. Defects in this PCP can result in hydrocephalus. Hydrodynamic forces on radial glial cells (RGCs), the embryonic progenitors of E cells, have been suggested to guide PCP. We show that the mechanosensory proteins Pkd1 and Pkd2 localize to primary cilia in RGCs, and their ablation disrupts the development of PCP in E cells. Early shear forces on RGCs may activate Pkd1 and Pkd2 in RGCs' primary cilia to properly orient E cells. This study identifies key molecules in the development of brain PCP and prevention of hydrocephalus.
Collapse
|
129
|
Flannery RJ, Kleene NK, Kleene SJ. A TRPM4-dependent current in murine renal primary cilia. Am J Physiol Renal Physiol 2015; 309:F697-707. [PMID: 26290373 PMCID: PMC4609916 DOI: 10.1152/ajprenal.00294.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
Defects in primary cilia lead to a variety of human diseases. One of these, polycystic kidney disease, can be caused by defects in a Ca²⁺-gated ion channel (TRPP2) found on the cilium. Other ciliary functions also contribute to cystogenesis, and defects in apical Ca²⁺ homeostasis have been implicated. By recording directly from the native cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin, we have identified a second Ca²⁺-gated channel in the ciliary membrane: the transient receptor potential cation channel, subfamily M, member 4 (TRPM4). In excised primary cilia, TRPM4 was found to have a low sensitivity to Ca²⁺, with an EC₅₀ of 646 μM at +100 mV. It was inhibited by MgATP and by 9-phenanthrol. The channel was not permeable to Ca²⁺ or Cl⁻ and had a permeability ratio PK/PNa of 1.42. Reducing the expression of Trpm4 mRNA with short hairpin (sh) RNA reduced the TRPM4 current by 87% and shortened primary cilia by 43%. When phospholipase C was inhibited, the sensitivity to cytoplasmic Ca²⁺ greatly increased (EC₅₀ = 26 μM at +100 mV), which is consistent with previous reports that phosphatidylinositol 4,5-bisphosphate (PIP2) modulates the channel. MgATP did not restore the channel to a preinactivation state, suggesting that the enzyme or substrate necessary for making PIP2 is not abundant in primary cilia of mIMCD-3 cells. The function of TRPM4 in renal primary cilia is not yet known, but it is likely to influence the apical Ca²⁺ dynamics of the cell, perhaps in tandem with TRPP2.
Collapse
Affiliation(s)
- Richard J Flannery
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Nancy K Kleene
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Steven J Kleene
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
130
|
Ong ACM, Harris PC. A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int 2015; 88:699-710. [PMID: 26200945 PMCID: PMC4589452 DOI: 10.1038/ki.2015.207] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
It is 20 years since the identification of PKD1, the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), followed closely by the cloning of PKD2. These major breakthroughs have led in turn to a period of intense investigation into the function of the two proteins encoded, polycystin-1 and polycystin-2, and how defects in either protein lead to cyst formation and nonrenal phenotypes. In this review, we summarize the major findings in this area and present a current model of how the polycystin proteins function in health and disease.
Collapse
Affiliation(s)
- Albert CM Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, UK
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
131
|
Su X, Wu M, Yao G, El-Jouni W, Luo C, Tabari A, Zhou J. Regulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site. J Cell Sci 2015; 128:4063-73. [PMID: 26430213 DOI: 10.1242/jcs.160556] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
Failure to localize membrane proteins to the primary cilium causes a group of diseases collectively named ciliopathies. Polycystin-1 (PC1, also known as PKD1) is a large ciliary membrane protein defective in autosomal dominant polycystic kidney disease (ADPKD). Here, we developed a large set of PC1 expression constructs and identified multiple sequences, including a coiled-coil motif in the C-terminal tail of PC1, regulating full-length PC1 trafficking to the primary cilium. Ciliary trafficking of wild-type and mutant PC1 depends on the dose of polycystin-2 (PC2, also known as PKD2), and the formation of a PC1-PC2 complex. Modulation of the ciliary trafficking module mediated by the VxP ciliary-targeting sequence and Arf4 and Asap1 does not affect the ciliary localization of full-length PC1. PC1 also promotes PC2 ciliary trafficking. PC2 mutations truncating its C-terminal tail but not those changing the VxP sequence to AxA or impairing the pore of the channel, leading to a dead channel, affect PC1 ciliary trafficking. Cleavage at the GPCR proteolytic site (GPS) of PC1 is not required for PC1 trafficking to cilia. We propose a mutually dependent model for the ciliary trafficking of PC1 and PC2, and that PC1 ciliary trafficking is regulated by multiple cis-acting elements. As all pathogenic PC1 mutations tested here are defective in ciliary trafficking, ciliary trafficking might serve as a functional read-out for ADPKD.
Collapse
Affiliation(s)
- Xuefeng Su
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maoqing Wu
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Yao
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wassim El-Jouni
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Luo
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Azadeh Tabari
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
132
|
Cantero MDR, Velázquez IF, Streets AJ, Ong ACM, Cantiello HF. The cAMP Signaling Pathway and Direct Protein Kinase A Phosphorylation Regulate Polycystin-2 (TRPP2) Channel Function. J Biol Chem 2015; 290:23888-96. [PMID: 26269590 DOI: 10.1074/jbc.m115.661082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 11/06/2022] Open
Abstract
Polycystin-2 (PC2) is a TRP-type, Ca(2+)-permeable non-selective cation channel that plays an important role in Ca(2+) signaling in renal and non-renal cells. The effect(s) of the cAMP pathway and kinase mediated phosphorylation of PC2 seem to be relevant to PC2 trafficking and its interaction with polycystin-1. However, the role of PC2 phosphorylation in channel function is still poorly defined. Here we reconstituted apical membranes of term human syncytiotrophoblast (hST), containing endogenous PC2 (PC2hst), and in vitro translated channel protein (PC2iv). Addition of the catalytic subunit of PKA increased by 566% the spontaneous PC2hst channel activity in the presence of ATP. Interestingly, 8-Br-cAMP also stimulated spontaneous PC2hst channel activity in the absence of the exogenous kinase. Either stimulation was inhibited by addition of alkaline phosphatase, which in turn, was reversed by the phosphatase inhibitor vanadate. Neither maneuver modified the single channel conductance but instead increased channel mean open time. PKA directly phosphorylated PC2, which increased the mean open time but not the single channel conductance of the channel. PKA phosphorylation did not modify either R742X truncated or S829A-mutant PC2iv channel function. The data indicate that the cAMP pathway regulates PC2-mediated cation transport in the hST. The relevant PKA site for PC2 channel regulation centers on a single residue serine 829, in the carboxyl terminus.
Collapse
Affiliation(s)
- María del Rocío Cantero
- From the Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, C1122AAH Buenos Aires, Argentina and
| | - Irina F Velázquez
- From the Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, C1122AAH Buenos Aires, Argentina and
| | - Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Horacio F Cantiello
- From the Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, C1122AAH Buenos Aires, Argentina and
| |
Collapse
|
133
|
Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 2015; 11:451-64. [PMID: 25870007 PMCID: PMC4539141 DOI: 10.1038/nrneph.2015.39] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is responsible for 5-10% of cases of end-stage renal disease worldwide. ADPKD is characterized by the relentless development and growth of cysts, which cause progressive kidney enlargement associated with hypertension, pain, reduced quality of life and eventual kidney failure. Mutations in the PKD1 or PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause ADPKD. However, neither the functions of these proteins nor the molecular mechanisms of ADPKD pathogenesis are well understood. Here, we review the literature that examines how reduced levels of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signalling and indirectly disrupts calcium-regulated cAMP and purinergic signalling. We propose a hypothetical model in which dysregulated metabolism of cAMP and purinergic signalling increases the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signalling that is initiated by mutations in PC1 or PC2, and activates downstream signalling pathways that cause impaired tubulogenesis, increased cell proliferation, increased fluid secretion and interstitial inflammation.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Caroline R Sussman
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| |
Collapse
|
134
|
Cornec-Le Gall E, Audrézet MP, Le Meur Y, Chen JM, Férec C. Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat 2015; 35:1393-406. [PMID: 25263802 DOI: 10.1002/humu.22708] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is characterized by the progressive development and expansion of bilateral fluid-filled cysts derived from the renal tubule epithelial cells. Although typically leading to end-stage renal disease in late middle age, ADPKD represents a continuum, from neonates with hugely enlarged cystic kidneys to cases with adequate kidney function into old age. Since the identification of the first causative gene (i.e., PKD1, encoding polycystin 1) 20 years ago, genetic studies have uncovered a large part of the key factors that underlie the phenotype variability. Here, we provide a comprehensive review of these significant advances as well as those related to disease pathogenesis models, including mutation analysis of PKD1 and PKD2 (encoding polycystin 2), current mutation detection rate, allelic heterogeneity, genotype and phenotype relationships (in terms of three different inheritance patterns: classical autosomal dominant inheritance, complex inheritance, and somatic and germline mosaicism), modifier genes, the role of second somatic mutation hit in renal cystogenesis, and findings from mouse models of polycystic kidney disease. Based upon a combined consideration of the current knowledge, we attempted to propose a unifying framework for explaining the phenotype variability in ADPKD.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France; Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Régional Universitaire, Hôpital de la Cavale Blanche, Brest, France
| | | | | | | | | |
Collapse
|
135
|
Hogan MC, Bakeberg JL, Gainullin VG, Irazabal MV, Harmon AJ, Lieske JC, Charlesworth MC, Johnson KL, Madden BJ, Zenka RM, McCormick DJ, Sundsbak JL, Heyer CM, Torres VE, Harris PC, Ward CJ. Identification of Biomarkers for PKD1 Using Urinary Exosomes. J Am Soc Nephrol 2015; 26:1661-70. [PMID: 25475747 PMCID: PMC4483583 DOI: 10.1681/asn.2014040354] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of ESRD. Affected individuals inherit a defective copy of either PKD1 or PKD2, which encode polycystin-1 (PC1) or polycystin-2 (PC2), respectively. PC1 and PC2 are secreted on urinary exosome-like vesicles (ELVs) (100-nm diameter vesicles), in which PC1 is present in a cleaved form and may be complexed with PC2. Here, label-free quantitative proteomic studies of urine ELVs in an initial discovery cohort (13 individuals with PKD1 mutations and 18 normal controls) revealed that of 2008 ELV proteins, 9 (0.32%) were expressed at significantly different levels in samples from individuals with PKD1 mutations compared to controls (P<0.03). In samples from individuals with PKD1 mutations, levels of PC1 and PC2 were reduced to 54% (P<0.02) and 53% (P<0.001), respectively. Transmembrane protein 2 (TMEM2), a protein with homology to fibrocystin, was 2.1-fold higher in individuals with PKD1 mutations (P<0.03). The PC1/TMEM2 ratio correlated inversely with height-adjusted total kidney volume in the discovery cohort, and the ratio of PC1/TMEM2 or PC2/TMEM2 could be used to distinguish individuals with PKD1 mutations from controls in a confirmation cohort. In summary, results of this study suggest that a test measuring the urine exosomal PC1/TMEM2 or PC2/TMEM2 ratio may have utility in diagnosis and monitoring of polycystic kidney disease. Future studies will focus on increasing sample size and confirming these studies. The data were deposited in the ProteomeXchange (identifier PXD001075).
Collapse
Affiliation(s)
| | - Jason L Bakeberg
- Division of Nephrology and Hypertension, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | | | - John C Lieske
- Renal Laboratory, Department of Laboratory Medicine and Pathology, and
| | | | - Kenneth L Johnson
- Medical Genome Facility-Proteomics Core, Mayo Clinic, Rochester, Minnesota; and
| | - Benjamin J Madden
- Medical Genome Facility-Proteomics Core, Mayo Clinic, Rochester, Minnesota; and
| | - Roman M Zenka
- Medical Genome Facility-Proteomics Core, Mayo Clinic, Rochester, Minnesota; and
| | - Daniel J McCormick
- Medical Genome Facility-Proteomics Core, Mayo Clinic, Rochester, Minnesota; and
| | | | | | | | | | - Christopher J Ward
- Division of Nephrology and Hypertension, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
136
|
Abstract
Skeletal loading is an important physiological regulator of bone mass. Theoretically, mechanical forces or administration of drugs that activate bone mechanosensors would be a novel treatment for osteoporotic disorders, particularly age-related osteoporosis and other bone loss caused by skeletal unloading. Uncertainty regarding the identity of the molecular targets that sense and transduce mechanical forces in bone, however, has limited the therapeutic exploitation of mechanosesning pathways to control bone mass. Recently, two evolutionally conserved mechanosensing pathways have been shown to function as "physical environment" sensors in cells of the osteoblasts lineage. Indeed, polycystin-1 (Pkd1, or PC1) and polycystin-2 (Pkd2, or PC2' or TRPP2), which form a flow sensing receptor channel complex, and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1), which responds to the extracellular matrix microenvironment act in concert to reciprocally regulate osteoblastogenesis and adipogenesis through co-activating Runx2 and a co-repressing PPARγ activities. Interactions of polycystins and TAZ with other putative mechanosensing mechanism, such as primary cilia, integrins and hemichannels, may create multifaceted mechanosensing networks in bone. Moreover, modulation of polycystins and TAZ interactions identify novel molecular targets to develop small molecules that mimic the effects of mechanical loading on bone.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
- Coleman College of Medicine Building, Suite B216, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN 38163, USA
| |
Collapse
|
137
|
Abstract
PURPOSE OF REVIEW Primary (immotile) cilia are specialized organelles present on most cell types. Almost all of proteins associated with a broad spectrum of human cystic kidney diseases have been localized to the region in or around the cilia. Abnormal cilia structure and function have both been reported in animal models and human cystic kidneys. The goal of this review is to discuss current understanding of the mechanisms by which abnormal genes/proteins and cilia interact to potentially influence renal cystogenesis. RECENT FINDINGS Novel direct recording of cilia calcium levels/channel activity suggests that cilia form a calcium-mediated signaling microenvironment separate from the cytoplasm, which could provide a mechanism for cilia-specific downstream signaling. Genetic-based studies confirm that cilia are not required for cystogenesis, but modulate cystic kidney disease severity through a novel, undefined mechanism. Mechanisms by which both cilia-associated and noncilia-associated proteins can alter cilia structure/function have also been identified. SUMMARY Considerable progress has been made in defining the mechanisms by which abnormal genes and proteins affect cilia structure and function. However, the exact mechanisms by which these interactions cause renal cyst formation and progression of cystic kidney disease are still unknown.
Collapse
|
138
|
Yang Y, Keeler C, Kuo IY, Lolis EJ, Ehrlich BE, Hodsdon ME. Oligomerization of the polycystin-2 C-terminal tail and effects on its Ca2+-binding properties. J Biol Chem 2015; 290:10544-54. [PMID: 25716316 PMCID: PMC4400361 DOI: 10.1074/jbc.m115.641803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 02/05/2023] Open
Abstract
Polycystin-2 (PC2) belongs to the transient receptor potential (TRP) family and forms a Ca2+-regulated channel. The C-terminal cytoplasmic tail of human PC2 (HPC2 Cterm) is important for PC2 channel assembly and regulation. In this study, we characterized the oligomeric states and Ca2+-binding profiles in the C-terminal tail using biophysical approaches. Specifically, we determined that HPC2 Cterm forms a trimer in solution with and without Ca2+ bound, although TRP channels are believed to be tetramers. We found that there is only one Ca2+-binding site in the HPC2 Cterm, located within its EF-hand domain. However, the Ca2+ binding affinity of the HPC2 Cterm trimer is greatly enhanced relative to the intrinsic binding affinity of the isolated EF-hand domain. We also employed the sea urchin PC2 (SUPC2) as a model for biophysical and structural characterization. The sea urchin C-terminal construct (SUPC2 Ccore) also forms trimers in solution, independent of Ca2+ binding. In contrast to the human PC2, the SUPC2 Ccore contains two cooperative Ca2+-binding sites within its EF-hand domain. Consequently, trimerization does not further improve the affinity of Ca2+ binding in the SUPC2 Ccore relative to the isolated EF-hand domain. Using NMR, we localized the Ca2+-binding sites in the SUPC2 Ccore and characterized the conformational changes in its EF-hand domain due to trimer formation. Our study provides a structural basis for understanding the Ca2+-dependent regulation of the PC2 channel by its cytosolic C-terminal domain. The improved methodology also serves as a good strategy to characterize other Ca2+-binding proteins.
Collapse
Affiliation(s)
- Yifei Yang
- From the Departments of Laboratory Medicine, Pharmacology, and
| | | | | | | | - Barbara E Ehrlich
- Pharmacology, and Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut 06520
| | | |
Collapse
|
139
|
Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 308:H157-82. [PMID: 25416190 PMCID: PMC4312948 DOI: 10.1152/ajpheart.00457.2014] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jia Xie
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jonathan Stock
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jianyang Du
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
140
|
Gainullin VG, Hopp K, Ward CJ, Hommerding CJ, Harris PC. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J Clin Invest 2015; 125:607-20. [PMID: 25574838 DOI: 10.1172/jci76972] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited nephropathy responsible for 4%-10% of end-stage renal disease cases. Mutations in the genes encoding polycystin-1 (PC1, PKD1) or polycystin-2 (PC2, PKD2) cause ADPKD, and PKD1 mutations are associated with more severe renal disease. PC1 has been shown to form a complex with PC2, and the severity of PKD1-mediated disease is associated with the level of the mature PC1 glycoform. Here, we demonstrated that PC1 and PC2 first interact in the ER before PC1 cleavage at the GPS/GAIN site and determined that PC2 acts as an essential chaperone for PC1 maturation and surface localization. The chaperone function of PC2 was dependent on the presence of the distal coiled-coil domain and was disrupted by pathogenic missense mutations. In Pkd2-/- mice, complete loss of PC2 prevented PC1 maturation. In Pkd2 heterozygotes, the 50% PC2 reduction resulted in a nonequimolar reduction (20%-25%) of the mature PC1 glycoform. Interbreeding between various Pkd1 and Pkd2 models revealed that animals with reduced levels of functional PC1 and PC2 in the kidney exhibited severe, rapidly progressive disease, illustrating the importance of complexing of these proteins for function. Our results indicate that PC2 regulates PC1 maturation; therefore, mature PC1 levels are a determinant of disease severity in PKD2 as well as PKD1.
Collapse
|
141
|
Xu JX, Lu TS, Li S, Wu Y, Ding L, Denker BM, Bonventre JV, Kong T. Polycystin-1 and Gα12 regulate the cleavage of E-cadherin in kidney epithelial cells. Physiol Genomics 2014; 47:24-32. [PMID: 25492927 DOI: 10.1152/physiolgenomics.00090.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused β-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/β-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.
Collapse
Affiliation(s)
- Jen X Xu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tzong-Shi Lu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Suyan Li
- Division of Basic Neuroscience, McLean Hospital, Belmont, Massachusetts
| | - Yong Wu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lai Ding
- Harvard NeuroDiscovery Center, Boston, Massachusetts; and
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tianqing Kong
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts;
| |
Collapse
|
142
|
Xiao Z, Cao L, Liang Y, Huang J, Stern AR, Dallas M, Johnson M, Quarles LD. Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity. PLoS One 2014; 9:e114198. [PMID: 25464512 PMCID: PMC4252138 DOI: 10.1371/journal.pone.0114198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022] Open
Abstract
Polycystin-1 (Pkd1) interacts with polycystin-2 (Pkd2) to form an interdependent signaling complex. Selective deletion of Pkd1 in the osteoblast lineage reciprocally regulates osteoblastogenesis and adipogenesis. The role of Pkd2 in skeletal development has not been defined. To this end, we conditionally inactivated Pkd2 in mature osteoblasts by crossing Osteocalcin (Oc)-Cre;Pkd2+/null mice with floxed Pkd2 (Pkd2flox/flox) mice. Oc-Cre;Pkd2flox/null (Pkd2Oc-cKO) mice exhibited decreased bone mineral density, trabecular bone volume, cortical thickness, mineral apposition rate and impaired biomechanical properties of bone. Pkd2 deficiency resulted in diminished Runt-related transcription factor 2 (Runx2) expressions in bone and impaired osteoblastic differentiation ex vivo. Expression of osteoblast-related genes, including, Osteocalcin, Osteopontin, Bone sialoprotein (Bsp), Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex), Dentin matrix protein 1 (Dmp1), Sclerostin (Sost), and Fibroblast growth factor 23 (FGF23) were reduced proportionate to the reduction of Pkd2 gene dose in bone of Oc-Cre;Pkd2flox/+ and Oc-Cre;Pkd2flox/null mice. Loss of Pkd2 also resulted in diminished peroxisome proliferator-activated receptor γ (PPARγ) expression and reduced bone marrow fat in vivo and reduced adipogenesis in osteoblast culture ex vivo. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP), reciprocally acting as co-activators and co-repressors of Runx2 and PPARγ, were decreased in bone of Oc-Cre;Pkd2flox/null mice. Thus, Pkd1 and Pkd2 have coordinate effects on osteoblast differentiation and opposite effects on adipogenesis, suggesting that Pkd1 and Pkd2 signaling pathways can have independent effects on mesenchymal lineage commitment in bone.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, 38165, United States of America
| | - Li Cao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, 38165, United States of America
| | - Yingjuan Liang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, 38165, United States of America
| | - Jinsong Huang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, 38165, United States of America
| | - Amber Rath Stern
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, 64108, United States of America
- Engineering Systems, Inc., Charlotte, North Carolina, 28227, United States of America
| | - Mark Dallas
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, 64108, United States of America
| | - Mark Johnson
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, 64108, United States of America
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, 38165, United States of America
- * E-mail:
| |
Collapse
|
143
|
Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nat Commun 2014; 5:5482. [PMID: 25405894 PMCID: PMC4237283 DOI: 10.1038/ncomms6482] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/06/2014] [Indexed: 01/14/2023] Open
Abstract
Primary cilia contain specific receptors and channel proteins that sense the extracellular milieu. Defective ciliary function causes ciliopathies such as autosomal dominant polycystic kidney disease (ADPKD). However, little is known about how large ciliary transmembrane proteins traffic to the cilia. Polycystin-1 (PC1) and -2 (PC2), the two ADPKD gene products, are large transmembrane proteins that co-localize to cilia where they act to control proper tubular diameter. Here we describe that PC1 and PC2 must interact and form a complex to reach the trans-Golgi network (TGN) for subsequent ciliary targeting. PC1 must also be proteolytically cleaved at a GPS site for this to occur. Using yeast two-hybrid screening coupled with a candidate approach, we identify a Rabep1/GGA1/Arl3-dependent ciliary targeting mechanism, whereby Rabep1 couples the polycystin complex to a GGA1/Arl3-based ciliary trafficking module at the TGN. This study provides novel insights into the ciliary trafficking mechanism of membrane proteins.
Collapse
|
144
|
Cai Y, Fedeles SV, Dong K, Anyatonwu G, Onoe T, Mitobe M, Gao JD, Okuhara D, Tian X, Gallagher AR, Tang Z, Xie X, Lalioti MD, Lee AH, Ehrlich BE, Somlo S. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J Clin Invest 2014; 124:5129-44. [PMID: 25365220 DOI: 10.1172/jci67273] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/30/2014] [Indexed: 11/17/2022] Open
Abstract
The most severe form of autosomal dominant polycystic kidney disease occurs in patients with mutations in the gene (PKD1) encoding polycystin-1 (PC1). PC1 is a complex polytopic membrane protein expressed in cilia that undergoes autoproteolytic cleavage at a G protein-coupled receptor proteolytic site (GPS). A quarter of PKD1 mutations are missense variants, though it is not clear how these mutations promote disease. Here, we established a cell-based system to evaluate these mutations and determined that GPS cleavage is required for PC1 trafficking to cilia. A common feature among a subset of pathogenic missense mutations is a resulting failure of PC1 to traffic to cilia regardless of GPS cleavage. The application of our system also identified a missense mutation in the gene encoding polycystin-2 (PC2) that prevented this protein from properly trafficking to cilia. Using a Pkd1-BAC recombineering approach, we developed murine models to study the effects of these mutations and confirmed that only the cleaved form of PC1 exits the ER and can rescue the embryonically lethal Pkd1-null mutation. Additionally, steady-state expression levels of the intramembranous COOH-terminal fragment of cleaved PC1 required an intact interaction with PC2. The results of this study demonstrate that PC1 trafficking and expression require GPS cleavage and PC2 interaction, respectively, and provide a framework for functional assays to categorize the effects of missense mutations in polycystins.
Collapse
|
145
|
Hartung EA, Guay-Woodford LM. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics 2014; 134:e833-45. [PMID: 25113295 PMCID: PMC4143997 DOI: 10.1542/peds.2013-3646] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an important cause of chronic kidney disease in children. The care of ARPKD patients has traditionally been the realm of pediatric nephrologists; however, the disease has multisystem effects, and a comprehensive care strategy often requires a multidisciplinary team. Most notably, ARPKD patients have congenital hepatic fibrosis, which can lead to portal hypertension, requiring close follow-up by pediatric gastroenterologists. In severely affected infants, the diagnosis is often first suspected by obstetricians detecting enlarged, echogenic kidneys and oligohydramnios on prenatal ultrasounds. Neonatologists are central to the care of these infants, who may have respiratory compromise due to pulmonary hypoplasia and massively enlarged kidneys. Surgical considerations can include the possibility of nephrectomy to relieve mass effect, placement of dialysis access, and kidney and/or liver transplantation. Families of patients with ARPKD also face decisions regarding genetic testing of affected children, testing of asymptomatic siblings, or consideration of preimplantation genetic diagnosis for future pregnancies. They may therefore interface with genetic counselors, geneticists, and reproductive endocrinologists. Children with ARPKD may also be at risk for neurocognitive dysfunction and may require neuropsychological referral. The care of patients and families affected by ARPKD is therefore a multidisciplinary effort, and the general pediatrician can play a central role in this complex web of care. In this review, we outline the spectrum of clinical manifestations of ARPKD and review genetics of the disease, clinical and genetic diagnosis, perinatal management, management of organ-specific complications, and future directions for disease monitoring and potential therapies.
Collapse
Affiliation(s)
- Erum A Hartung
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
146
|
Allen MD, Qamar S, Vadivelu MK, Sandford RN, Bycroft M. A high-resolution structure of the EF-hand domain of human polycystin-2. Protein Sci 2014; 23:1301-8. [PMID: 24990821 PMCID: PMC4244000 DOI: 10.1002/pro.2513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/25/2014] [Accepted: 06/29/2014] [Indexed: 01/11/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects over 1:1000 of the worldwide population and is caused by mutations in two genes, PKD1 and PKD2. PKD2 encodes a 968-amino acid membrane spanning protein, Polycystin-2 (PC-2), which is a member of the TRP ion channel family. The C-terminal cytoplasmic tail contains an EF-hand motif followed by a short coiled-coil domain. We have determined the structure of the EF-hand region of PC-2 using NMR spectroscopy. The use of different boundaries, compared with those used in previous studies, have enabled us to determine a high resolution structure and show that the EF hand motif forms a standard calcium-binding pocket. The affinity of this pocket for calcium has been measured and mutants that both decrease and increase its affinity for the metal ion have been created.
Collapse
Affiliation(s)
- Mark D Allen
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of CambridgeCambridge, CB2 0XY, United Kingdom
| | - Murali K Vadivelu
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| | - Richard N Sandford
- Academic Department of Medical Genetics, School of Clinical Medicine, University of CambridgeCambridge, CB2 0QQ, United Kingdom
| | - Mark Bycroft
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| |
Collapse
|
147
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, which encode polycystin-1 and polycystin-2, respectively. Rodent models are available to study the pathogenesis of polycystic kidney disease (PKD) and for preclinical testing of potential therapies-either genetically engineered models carrying mutations in Pkd1 or Pkd2 or models of renal cystic disease that do not have mutations in these genes. The models are characterized by age at onset of disease, rate of disease progression, the affected nephron segment, the number of affected nephrons, synchronized or unsynchronized cyst formation and the extent of fibrosis and inflammation. Mouse models have provided valuable mechanistic insights into the pathogenesis of PKD; for example, mutated Pkd1 or Pkd2 cause renal cysts but additional factors are also required, and the rate of cyst formation is increased in the presence of renal injury. Animal studies have also revealed complex genetic and functional interactions among various genes and proteins associated with PKD. Here, we provide an update on the preclinical models commonly used to study the molecular pathogenesis of ADPKD and test potential therapeutic strategies. Progress made in understanding the pathophysiology of human ADPKD through these animal models is also discussed.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| |
Collapse
|
148
|
Chen Y, Chiang HC, Litchfield P, Pena M, Juang C, Riley DJ. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease. J Biomed Sci 2014; 21:63. [PMID: 25030234 PMCID: PMC4422189 DOI: 10.1186/s12929-014-0063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. RESULT We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. CONCLUSION Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.
Collapse
Affiliation(s)
- Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Gross Hall 1130, Mail Code, 4086, Irvine, CA, 92697, USA.
| | - Huai-Chin Chiang
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Patricia Litchfield
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Michelle Pena
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Charity Juang
- Department of Medicine, Division of Endocrinology, University of California, Gross Hall 1130, Mail Code, 4086, Irvine, CA, 92697, USA.
| | - Daniel J Riley
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
- University Transplant Center, The University of Texas Health Science Center at San Antonio, Medicine/Nephrology, MC 7882, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA.
- Renal Research Division, South Texas Veterans Health Care System, Audie L. Murphy Division, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
149
|
Nie X, Arend LJ. Novel roles of Pkd2 in male reproductive system development. Differentiation 2014; 87:161-71. [PMID: 24951251 DOI: 10.1016/j.diff.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 01/26/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited genetic diseases, caused by mutations in PKD1 and/ or PKD2. Infertility and reproductive tract abnormalities in male ADPKD patients are very common and have higher incidence than in the general population. In this work, we reveal novel roles of Pkd2 for male reproductive system development. Disruption of Pkd2 caused dilation of mesonephric tubules/efferent ducts, failure of epididymal coiling, and defective testicular development. Deletion of Pkd2 in the epithelia alone was sufficient to cause reproductive tract defects seen in Pkd2(-/-) mice, suggesting that epithelial Pkd2 plays a pivotal role for development and maintenance of the male reproductive tract. In the testis, Pkd2 also plays a role in interstitial tissue and testicular cord development. In-depth analysis of epithelial-specific knockout mice revealed that Pkd2 is critical to maintain cellular phenotype and developmental signaling in the male reproductive system. Taken together, our data for the first time reveal novel roles for Pkd2 in male reproductive system development and provide new insights in male reproductive system abnormality and infertility in ADPKD patients.
Collapse
Affiliation(s)
- Xuguang Nie
- Department of Pathology, Johns Hopkins University, Ross 632 E, 720 Rutland Ave, Baltimore, MD 21205, USA.
| | - Lois J Arend
- Department of Pathology, Johns Hopkins University, Ross 632 E, 720 Rutland Ave, Baltimore, MD 21205, USA.
| |
Collapse
|
150
|
Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nat Commun 2014; 4:2658. [PMID: 24153433 PMCID: PMC3967097 DOI: 10.1038/ncomms3658] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/23/2013] [Indexed: 11/09/2022] Open
Abstract
Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.
Collapse
|