101
|
Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:635792. [PMID: 26380289 PMCID: PMC4561298 DOI: 10.1155/2015/635792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/11/2015] [Indexed: 01/24/2023]
Abstract
In skeletal muscle, dystroglycan (DG) is the central component of the dystrophin-glycoprotein complex (DGC), a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1) have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others) model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.
Collapse
|
102
|
Tong X, He S, Chen J, Hu H, Xiang Z, Lu C, Dai F. A novel laminin β gene BmLanB1-w regulates wing-specific cell adhesion in silkworm, Bombyx mori. Sci Rep 2015. [PMID: 26212529 PMCID: PMC4515764 DOI: 10.1038/srep12562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Laminins are important basement membrane (BM) components with crucial roles in development. The numbers of laminin isoforms in various organisms are determined by the composition of the different α, β, and γ chains, and their coding genes, which are variable across spieces. In insects, only two α, one β, and one γ chains have been identified thus far. Here, we isolated a novel laminin β gene, BmLanB1-w, by positional cloning of the mutant (crayfish, cf) with blistered wings in silkworm. Gene structure analysis showed that a 2 bp deletion of the BmLanB1-w gene in the cf mutant caused a frame-shift in the open reading frame (ORF) and generated a premature stop codon. Knockdown of the BmLanB1-w gene produced individuals exhibiting blistered wings, indicating that this laminin gene was required for cell adhesion during wing development. We also identified laminin homologs in different species and showed that two copies of β laminin likely originated in Lepidoptera during evolution. Furthermore, phylogenetic and gene expression analyses of silkworm laminin genes revealed that the BmLanB1-w gene is newly evolved, and is required for wing-specific cell adhesion. This is the first report showing the tissue specific distribution and functional differentiation of β laminin in insects.
Collapse
Affiliation(s)
- Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Songzhen He
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Jun Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| |
Collapse
|
103
|
Kang PB, Morrison L, Iannaccone ST, Graham RJ, Bönnemann CG, Rutkowski A, Hornyak J, Wang CH, North K, Oskoui M, Getchius TSD, Cox JA, Hagen EE, Gronseth G, Griggs RC. Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology 2015; 84:1369-78. [PMID: 25825463 DOI: 10.1212/wnl.0000000000001416] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To delineate optimal diagnostic and therapeutic approaches to congenital muscular dystrophy (CMD) through a systematic review and analysis of the currently available literature. METHODS Relevant, peer-reviewed research articles were identified using a literature search of the MEDLINE, EMBASE, and Scopus databases. Diagnostic and therapeutic data from these articles were extracted and analyzed in accordance with the American Academy of Neurology classification of evidence schemes for diagnostic, prognostic, and therapeutic studies. Recommendations were linked to the strength of the evidence, other related literature, and general principles of care. RESULTS The geographic and ethnic backgrounds, clinical features, brain imaging studies, muscle imaging studies, and muscle biopsies of children with suspected CMD help predict subtype-specific diagnoses. Genetic testing can confirm some subtype-specific diagnoses, but not all causative genes for CMD have been described. Seizures and respiratory complications occur in specific subtypes. There is insufficient evidence to determine the efficacy of various treatment interventions to optimize respiratory, orthopedic, and nutritional outcomes, and more data are needed regarding complications. RECOMMENDATIONS Multidisciplinary care by experienced teams is important for diagnosing and promoting the health of children with CMD. Accurate assessment of clinical presentations and genetic data will help in identifying the correct subtype-specific diagnosis in many cases. Multiorgan system complications occur frequently; surveillance and prompt interventions are likely to be beneficial for affected children. More research is needed to fill gaps in knowledge regarding this category of muscular dystrophies.
Collapse
Affiliation(s)
- Peter B Kang
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Leslie Morrison
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Susan T Iannaccone
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Robert J Graham
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Carsten G Bönnemann
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Anne Rutkowski
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Joseph Hornyak
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Ching H Wang
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Kathryn North
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Maryam Oskoui
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Thomas S D Getchius
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Julie A Cox
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Erin E Hagen
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Gary Gronseth
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | - Robert C Griggs
- From the Division of Pediatric Neurology (P.B.K.), University of Florida College of Medicine, Gainesville; Department of Neurology (P.B.K.), Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Neurology (L.M.), University of New Mexico, Albuquerque; Departments of Pediatrics and Neurology & Neurotherapeutics (S.T.I.), University of Texas Southwestern Medical Center, and Children's Medical Center, Dallas; Division of Critical Care Medicine (R.J.G.), Boston Children's Hospital, and Department of Anaesthesia, Harvard Medical School, Boston; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Cure Congenital Muscular Dystrophy (Cure CMD) (A.R.), Olathe, KS; Department of Emergency Medicine (A.R.), Kaiser Permanente South Bay Medical Center, Harbor City, CA; Department of Physical Medicine & Rehabilitation (J.H.), University of Michigan, Ann Arbor; Departments of Neurology and Pediatrics (C.H.W.), School of Medicine, Stanford University, CA; Department of Neurology (C.H.W.), Driscoll Children's Hospital, Corpus Christi, TX; Murdoch Childrens Research Institute (K.N.), The Royal Children's Hospital, and University of Melbourne, Australia; Neurology & Neurosurgery (M.O.), McGill University, Montréal, Canada; Center for Health Policy (T.S.D.G., J.A.C., E.E.H.), American Academy of Neurology, Minneapolis, MN; Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and Department of Neurology (R.C.G.), University of Rochester Medical Center, NY
| | | |
Collapse
|
104
|
Namgung U. The role of Schwann cell-axon interaction in peripheral nerve regeneration. Cells Tissues Organs 2015; 200:6-12. [PMID: 25765065 DOI: 10.1159/000370324] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
After peripheral nerve injury, Schwann cells are released from the degenerating nerve, dedifferentiated, and then actively participate in axonal regeneration. Dedifferentiated Schwann cells, together with macrophages, are involved in eliminating myelin debris, forming bands of Büngner that provide pathways for regenerating axons, and redifferentiating for remyelination. Activation of Erk1/2 and c-Jun was shown to induce stepwise repair programs in Schwann cells, indicating that plastic changes in Schwann cell activity contribute to interaction with axons for regeneration. Schwann cell β1 integrin was identified to mediate the Cdc2-vimentin pathway and further connect to adaptor molecules in the growth cone of regenerating axons through the binding of extracellular matrix (ECM) proteins. Timely interaction between Schwann cells and the axon (S-A) is critical to achieving efficient axonal regeneration because the delay in S-A interaction results in retarded nerve repair and chronic nerve damage. By comparing with the role of Schwann cells in developing nerves, this review is focused on cellular and molecular aspects of Schwann cell interaction with axons at the early stages of regeneration.
Collapse
Affiliation(s)
- Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
105
|
Camacho A, Núñez N, Dekomien G, Hernández-Laín A, de Aragón AM, Simón R. LAMA2-related congenital muscular dystrophy complicated by West syndrome. Eur J Paediatr Neurol 2015; 19:243-7. [PMID: 25500573 DOI: 10.1016/j.ejpn.2014.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/17/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Mutations in the LAMA2 gene cause autosomal recessive laminin α2 related congenital muscular dystrophy. In patients with partial laminin α2 deficiency the phenotype is usually milder than in those with absent protein. Apart from the typical white matter abnormalities, there is an increased risk of cerebral complications such as epilepsy and mental retardation, despite a structurally normal brain. METHODS/RESULTS We present a patient with primary partial laminin α2 deficiency due to a homozygous novel LAMA2 missense mutation who developed West syndrome in his first year of life. To our knowledge, this combination has not previously been reported. A 5 year-old boy exhibited global hypotonia with generalized muscle weakness from birth. At 8 months of age he presented infantile spasms and an EEG finding of hypsarrhythmia. Seizures were controlled in a few weeks with intramuscular synthetic ACTH, followed by valproic acid. Two years later antiepileptic medication was withdrawn. He achieved unsupported walking at the age of 4, but his cognitive status corresponded to a 2 year-old child. Epilepsy has not recurred and brain MRI showed the typical white matter abnormalities without associated neuronal migration defects. CONCLUSION This report widens the clinical spectrum of cerebral manifestations related with mutations in LAMA2. The beginning of a severe epileptic encephalopathy modifies the natural history of the disease.
Collapse
Affiliation(s)
- Ana Camacho
- Child Neurology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Noemí Núñez
- Child Neurology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | - Rogelio Simón
- Child Neurology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
106
|
Goody MF, Sher RB, Henry CA. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol 2015; 401:75-91. [PMID: 25592225 DOI: 10.1016/j.ydbio.2015.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States
| | - Roger B Sher
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States; Institute for Molecular Biophysics, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
107
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
108
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
109
|
Durbeej M. Laminin-α2 Chain-Deficient Congenital Muscular Dystrophy: Pathophysiology and Development of Treatment. CURRENT TOPICS IN MEMBRANES 2015; 76:31-60. [PMID: 26610911 DOI: 10.1016/bs.ctm.2015.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Laminin-211 is a major constituent of the skeletal muscle basement membrane. It stabilizes skeletal muscle and influences signal transduction events from the myomatrix to the muscle cell. Mutations in the gene encoding the α2 chain of laminin-211 lead to congenital muscular dystrophy type 1A (MDC1A), a life-threatening disease characterized by severe hypotonia, progressive muscle weakness, and joint contractures. Common complications include severely impaired motor ability, respiratory failure, and feeding difficulties. Several adequate animal models for laminin-α2 chain deficiency exist and analyses of different MDC1A mouse models have led to a significant improvement in our understanding of MDC1A pathogenesis. Importantly, the animal models have been indispensable tools for the preclinical development of new therapeutic approaches for laminin-α2 chain deficiency, highlighting a number of important disease driving mechanisms that can be targeted by pharmacological approaches. In this chapter, I will describe laminin-211 and discuss the cellular and molecular pathophysiology of MDC1A as well as progression toward development of treatment.
Collapse
Affiliation(s)
- Madeleine Durbeej
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
110
|
Abstract
Muscle cells have an elaborate plasma membrane and t-tubule system that has been evolutionarily refined to maximize electrical conductivity for synchronous muscle contraction. However, this elaborate plasma membrane network has intrinsic vulnerabilities to stretch-induced membrane injury, and thus requires ongoing maintenance and repair. Herein we discuss the types of membrane injuries encountered by myofibers in healthy muscle and in muscular dystrophy. We review the different mechanisms by which muscle fibers in patients with muscular dystrophy are rendered more susceptible to injury, and we summarize the latest developments in our understanding of how the muscular dystrophy protein dysferlin mediates satellite-cell independent membrane repair.
Collapse
Affiliation(s)
- Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, New South Wales, Australia
| | - Stewart I Head
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
111
|
Sakuma K, Aoi W, Yamaguchi A. The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Front Aging Neurosci 2014; 6:230. [PMID: 25221510 PMCID: PMC4148637 DOI: 10.3389/fnagi.2014.00230] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/10/2014] [Indexed: 12/25/2022] Open
Abstract
Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This review provides an overview of the adaptive changes in several regulators of muscle mass in both sarcopenia and muscular dystrophy.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, Toyohashi, Japan
| | - Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Japan
| |
Collapse
|
112
|
Beytía MDLA, Dekomien G, Hoffjan S, Haug V, Anastasopoulos C, Kirschner J. High creatine kinase levels and white matter changes: Clinical and genetic spectrum of congenital muscular dystrophies with laminin alpha-2 deficiency. Mol Cell Probes 2014; 28:118-22. [DOI: 10.1016/j.mcp.2013.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
|
113
|
Nigro V, Piluso G. Spectrum of muscular dystrophies associated with sarcolemmal-protein genetic defects. Biochim Biophys Acta Mol Basis Dis 2014; 1852:585-93. [PMID: 25086336 DOI: 10.1016/j.bbadis.2014.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 01/31/2023]
Abstract
Muscular dystrophies are heterogeneous genetic disorders that share progressive muscle wasting. This may generate partial impairment of motility as well as a dramatic and fatal course. Less than 30 years ago, the identification of the genetic basis of Duchenne muscular dystrophy opened a new era. An explosion of new information on the mechanisms of disease was witnessed, with many thousands of publications and the characterization of dozens of other genetic forms. Genes mutated in muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, several of which are part of the dystrophin-associated complex. Other gene products localize at the sarcomere and Z band, or are nuclear membrane components. In the present review, we focus on muscular dystrophies caused by defects that affect the sarcolemmal and sub-sarcolemmal proteins. We summarize the nature of each disease, the genetic cause, and the pathogenic pathways that may suggest future treatment options. We examine X-linked Duchenne and Becker muscular dystrophies and the autosomal recessive limb-girdle muscular dystrophies caused by mutations in genes encoding sarcolemmal proteins. The mechanism of muscle damage is reviewed starting from disarray of the shock-absorbing dystrophin-associated complex at the sarcolemma and activation of inflammatory response up to the final stages of fibrosis. We trace only a part of the biochemical, physiopathological and clinical aspects of muscular dystrophy to avoid a lengthy list of different and conflicting observations. We attempt to provide a critical synthesis of what we consider important aspects to better understand the disease. In our opinion, it is becoming ever more important to go back to the bedside to validate and then translate each proposed mechanism. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
114
|
de Oliveira BM, Matsumura CY, Fontes-Oliveira CC, Gawlik KI, Acosta H, Wernhoff P, Durbeej M. Quantitative proteomic analysis reveals metabolic alterations, calcium dysregulation, and increased expression of extracellular matrix proteins in laminin α2 chain-deficient muscle. Mol Cell Proteomics 2014; 13:3001-13. [PMID: 24994560 DOI: 10.1074/mcp.m113.032276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).
Collapse
Affiliation(s)
- Bruno Menezes de Oliveira
- From the §Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Cintia Y Matsumura
- From the §Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, BMC B12, 221 84 Lund, Sweden; ¶Departament of Functional and Structural Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Cibely C Fontes-Oliveira
- From the §Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Kinga I Gawlik
- From the §Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Helena Acosta
- ‖Stem Cell Center, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Patrik Wernhoff
- From the §Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Madeleine Durbeej
- From the §Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, BMC B12, 221 84 Lund, Sweden;
| |
Collapse
|
115
|
von Boxberg Y, Soares S, Féréol S, Fodil R, Bartolami S, Taxi J, Tricaud N, Nothias F. Giant scaffolding protein AHNAK1 interacts with β-dystroglycan and controls motility and mechanical properties of Schwann cells. Glia 2014; 62:1392-406. [PMID: 24796807 DOI: 10.1002/glia.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC CR18 (NPS), Paris, France; Neuroscience Paris Seine (NPS), CNRS UMR 8246, Paris, France; Neuroscience Paris Seine (NPS), INSERM U1130, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Saito F, Kanagawa M, Ikeda M, Hagiwara H, Masaki T, Ohkuma H, Katanosaka Y, Shimizu T, Sonoo M, Toda T, Matsumura K. Overexpression of LARGE suppresses muscle regeneration via down-regulation of insulin-like growth factor 1 and aggravates muscular dystrophy in mice. Hum Mol Genet 2014; 23:4543-58. [PMID: 24722207 DOI: 10.1093/hmg/ddu168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several types of muscular dystrophy are caused by defective linkage between α-dystroglycan (α-DG) and laminin. Among these, dystroglycanopathy, including Fukuyama-type congenital muscular dystrophy (FCMD), results from abnormal glycosylation of α-DG. Recent studies have shown that like-acetylglucosaminyltransferase (LARGE) strongly enhances the laminin-binding activity of α-DG. Therefore, restoration of the α-DG-laminin linkage by LARGE is considered one of the most promising possible therapies for muscular dystrophy. In this study, we generated transgenic mice that overexpress LARGE (LARGE Tg) and crossed them with dy(2J) mice and fukutin conditional knockout mice, a model for laminin α2-deficient congenital muscular dystrophy (MDC1A) and FCMD, respectively. Remarkably, in both the strains, the transgenic overexpression of LARGE resulted in an aggravation of muscular dystrophy. Using morphometric analyses, we found that the deterioration of muscle pathology was caused by suppression of muscle regeneration. Overexpression of LARGE in C2C12 cells further demonstrated defects in myotube formation. Interestingly, a decreased expression of insulin-like growth factor 1 (IGF-1) was identified in both LARGE Tg mice and LARGE-overexpressing C2C12 myotubes. Supplementing the C2C12 cells with IGF-1 restored the defective myotube formation. Taken together, our findings indicate that the overexpression of LARGE aggravates muscular dystrophy by suppressing the muscle regeneration and this adverse effect is mediated via reduced expression of IGF-1.
Collapse
Affiliation(s)
- Fumiaki Saito
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan,
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Miki Ikeda
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiroki Hagiwara
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan, Department of Medical Science, Teikyo University of Science, Uenohara Campus, Uenohara-shi 409-0193, Japan
| | - Toshihiro Masaki
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan, Department of Medical Science, Teikyo University of Science, Senju Campus, Tokyo 120-0045, Japan
| | - Hidehiko Ohkuma
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yuki Katanosaka
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan and
| | - Teruo Shimizu
- Department of Sport and Medical Science, Teikyo University Faculty of Medical Technology, Tokyo 173-8605, Japan
| | - Masahiro Sonoo
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kiichiro Matsumura
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
117
|
Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Béroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24:289-311. [PMID: 24581957 PMCID: PMC5258110 DOI: 10.1016/j.nmd.2013.12.011] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 12/14/2022]
Abstract
Congenital muscular dystrophies (CMDs) are early onset disorders of muscle with histological features suggesting a dystrophic process. The congenital muscular dystrophies as a group encompass great clinical and genetic heterogeneity so that achieving an accurate genetic diagnosis has become increasingly challenging, even in the age of next generation sequencing. In this document we review the diagnostic features, differential diagnostic considerations and available diagnostic tools for the various CMD subtypes and provide a systematic guide to the use of these resources for achieving an accurate molecular diagnosis. An International Committee on the Standard of Care for Congenital Muscular Dystrophies composed of experts on various aspects relevant to the CMDs performed a review of the available literature as well as of the unpublished expertise represented by the members of the committee and their contacts. This process was refined by two rounds of online surveys and followed by a three-day meeting at which the conclusions were presented and further refined. The combined consensus summarized in this document allows the physician to recognize the presence of a CMD in a child with weakness based on history, clinical examination, muscle biopsy results, and imaging. It will be helpful in suspecting a specific CMD subtype in order to prioritize testing to arrive at a final genetic diagnosis.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - Ching H Wang
- Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Susana Quijano-Roy
- Hôpital Raymond Poincaré, Garches, and UFR des sciences de la santé Simone Veil (UVSQ), France
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola, Brussels and Ghent University Hospital, Ghent, Belgium
| | | | - Ana Ferreiro
- UMR787 INSERM/UPMC and Reference Center for Neuromuscular Disorders, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Christophe Béroud
- INSERM U827, Laboratoire de Génétique Moleculaire, Montpellier, France
| | | | | | - Jonathan Bellini
- Stanford University School of Medicine, Stanford, CA, United States
| | | | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
118
|
Xiong H, Tan D, Wang S, Song S, Yang H, Gao K, Liu A, Jiao H, Mao B, Ding J, Chang X, Wang J, Wu Y, Yuan Y, Jiang Y, Zhang F, Wu H, Wu X. Genotype/phenotype analysis in Chinese laminin-α2 deficient congenital muscular dystrophy patients. Clin Genet 2014; 87:233-43. [PMID: 24611677 DOI: 10.1111/cge.12366] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/03/2014] [Accepted: 02/21/2014] [Indexed: 02/01/2023]
Affiliation(s)
- H. Xiong
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - D. Tan
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - S. Wang
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - S. Song
- Department of Medical Genetics, School of Basic Medical Sciences; Peking University; Beijing China
| | - H. Yang
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - K. Gao
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - A. Liu
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - H. Jiao
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - B. Mao
- Department of Neurology; Wuhan Children's Hospital; Wuhan China
| | - J. Ding
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - X. Chang
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - J. Wang
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - Y. Wu
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - Y. Yuan
- Department of Neurology; Peking University First Hospital; Beijing China
| | - Y. Jiang
- Department of Pediatrics; Peking University First Hospital; Beijing China
| | - F. Zhang
- School of Life Sciences; Fudan University; Shanghai China
| | - H. Wu
- Department of Neurology; Beijing Children's Hospital; Beijing China
| | - X. Wu
- Department of Pediatrics; Peking University First Hospital; Beijing China
| |
Collapse
|
119
|
Proteomic profiling of the dystrophin-deficient mdx phenocopy of dystrophinopathy-associated cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:246195. [PMID: 24772416 PMCID: PMC3977469 DOI: 10.1155/2014/246195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/16/2014] [Indexed: 01/07/2023]
Abstract
Cardiorespiratory complications are frequent symptoms of Duchenne muscular dystrophy, a neuromuscular disorder caused by primary abnormalities in the dystrophin gene. Loss of cardiac dystrophin initially leads to changes in dystrophin-associated glycoproteins and subsequently triggers secondarily sarcolemmal disintegration, fibre necrosis, fibrosis, fatty tissue replacement, and interstitial inflammation. This results in progressive cardiac disease, which is the cause of death in a considerable number of patients afflicted with X-linked muscular dystrophy. In order to better define the molecular pathogenesis of this type of cardiomyopathy, several studies have applied mass spectrometry-based proteomics to determine proteome-wide alterations in dystrophinopathy-associated cardiomyopathy. Proteomic studies included both gel-based and label-free mass spectrometric surveys of dystrophin-deficient heart muscle from the established mdx animal model of dystrophinopathy. Comparative cardiac proteomics revealed novel changes in proteins associated with mitochondrial energy metabolism, glycolysis, signaling, iron binding, antibody response, fibre contraction, basal lamina stabilisation, and cytoskeletal organisation. This review summarizes the importance of studying cardiomyopathy within the field of muscular dystrophy research, outlines key features of the mdx heart and its suitability as a model system for studying cardiac pathogenesis, and discusses the impact of recent proteomic findings for exploring molecular and cellular aspects of cardiac abnormalities in inherited muscular dystrophies.
Collapse
|
120
|
Körner Z, Fontes-Oliveira CC, Holmberg J, Carmignac V, Durbeej M. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1518-28. [PMID: 24631023 DOI: 10.1016/j.ajpath.2014.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted.
Collapse
Affiliation(s)
- Zandra Körner
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Johan Holmberg
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Virginie Carmignac
- Genetics of Developmental Abnormalities Team, EA4271, University of Burgundy, Dijon, France
| | - Madeleine Durbeej
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
121
|
Lavrijsen ICM, Leegwater PAJ, Martin AJ, Harris SJ, Tryfonidou MA, Heuven HCM, Hazewinkel HAW. Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers. PLoS One 2014; 9:e87735. [PMID: 24498183 PMCID: PMC3907504 DOI: 10.1371/journal.pone.0087735] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/29/2013] [Indexed: 12/22/2022] Open
Abstract
Hip dysplasia, an abnormal laxity of the hip joint, is seen in humans as well as dogs and is one of the most common skeletal disorders in dogs. Canine hip dysplasia is considered multifactorial and polygenic, and a variety of chromosomal regions have been associated with the disorder. We performed a genome-wide association study in Dutch Labrador Retrievers, comparing data of nearly 18,000 single nucleotide polymorphisms (SNPs) in 48 cases and 30 controls using two different statistical methods. An individual SNP analysis based on comparison of allele frequencies with a χ(2) statistic was used, as well as a simultaneous SNP analysis based on Bayesian variable selection. Significant association with canine hip dysplasia was observed on chromosome 8, as well as suggestive association on chromosomes 1, 5, 15, 20, 25 and 32. Next-generation DNA sequencing of the exons of genes of seven regions identified multiple associated alleles on chromosome 1, 5, 8, 20, 25 and 32 (p<0.001). Candidate genes located in the associated regions on chromosomes 1, 8 and 25 included LAMA2, LRR1 and COL6A3, respectively. The associated region on CFA20 contained candidate genes GDF15, COMP and CILP2. In conclusion, our study identified candidate genes that might affect susceptibility to canine hip dysplasia. These genes are involved in hypertrophic differentiation of chondrocytes and extracellular matrix integrity of basement membrane and cartilage. The functions of the genes are in agreement with the notion that disruptions in endochondral bone formation in combination with soft tissue defects are involved in the etiology of hip dysplasia.
Collapse
Affiliation(s)
- Ineke C. M. Lavrijsen
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter A. J. Leegwater
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alan J. Martin
- Waltham Centre for Pet Nutrition, Leicestershire, United Kingdom
| | | | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henri C. M. Heuven
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Herman A. W. Hazewinkel
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
122
|
Abstract
During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the β1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with β1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding β1 integrins in Schwann cells and show that only α6β1 and α7β1 integrins are required and that α7β1 compensates for the absence of α6β1 during development. The absence of either α7β1 or α6β1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all β1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6β1 and α7β1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell β1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.
Collapse
|
123
|
Gawlik KI, Holmberg J, Durbeej M. Loss of dystrophin and β-sarcoglycan significantly exacerbates the phenotype of laminin α2 chain-deficient animals. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:740-52. [PMID: 24393714 DOI: 10.1016/j.ajpath.2013.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
Abstract
The adhesion molecule laminin α2 chain interacts with the dystrophin-glycoprotein complex, contributes to normal muscle function, and protects skeletal muscles from damage. Complete loss of the laminin α2 chain in mice results in a severe muscular dystrophy phenotype and death at approximately 3 weeks of age. However, it is not clear if the remaining members of the dystrophin-glycoprotein complex further protect laminin α2 chain-deficient skeletal muscle fibers from degeneration. Hence, we generated mice deficient in laminin α2 chain and dystrophin (dy(3K)/mdx) and mice devoid of laminin α2 chain and β-sarcoglycan (dy(3K)/Sgcb). Severe muscular dystrophy and a lack of nourishment inevitably led to massive muscle wasting and death in double-knockout animals. The dy(3K)/Sgcb mice were generally more severely affected than dy(3K)/mdx mice. However, both double-knockout strains displayed exacerbated muscle degeneration, inflammation, fibrosis, and reduced life span (5 to 13 days) compared with single-knockout animals. However, neither extraocular nor cardiac muscle was affected in double-knockout animals. Our results suggest that, although laminin α2 chain, dystrophin, and β-sarcoglycan are all part of the same adhesion complex, they have complementary, but nonredundant, roles in maintaining sarcolemmal integrity and protecting skeletal muscle fibers from damage. Moreover, the double-knockout mice could potentially serve as models in which to study extremely aggressive muscle-wasting conditions.
Collapse
Affiliation(s)
- Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Johan Holmberg
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Madeleine Durbeej
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
124
|
Guo X, Greene K, Akanda N, Smith A, Stancescu M, Lambert S, Vandenburgh H, Hickman J. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System. Biomater Sci 2014; 2:131-138. [PMID: 24516722 DOI: 10.1039/c3bm60166h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Keshel Greene
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Alec Smith
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| | - Stephen Lambert
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; College of Medicine, University of Central Florida, 12201 Research Parkway, Suite 479, Room 463, Orlando, FL 32826, USA
| | - Herman Vandenburgh
- Brown University, Professor Emeritus, Department of Pathology and Lab Medicine, Providence, Rhode Island, 02913 USA ; Myomics, 148 West River Str, Providence, Rhode Island 02904
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA ; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| |
Collapse
|
125
|
Abstract
PURPOSE OF REVIEW We provide a review of recent standards of care and therapeutic development in different forms of muscular dystrophies. This topic is relevant as the improved understanding of these disorders has not only led to a better definition of clinical course and to the development of standards of care for individual types of muscular dystrophies, but also culminated in different therapeutic approaches. RECENT FINDINGS Recent natural history studies have demonstrated the impact of new standards of care in different forms of muscular dystrophies, and identified areas of clinical management in which further developments are needed. The majority of the experimental studies are focused on Duchenne muscular dystrophy. Some of them target patients with specific mutations, such as antisense oligonucleotides, to induce exon skipping of specific mutations or drugs developed to allow read-through of nonsense mutations, whereas other therapies deal with secondary aspects of muscle degeneration, aiming, for example, at reducing inflammation or apoptosis, and may also be suitable for other forms of muscular dystrophies. SUMMARY The advances in the field of muscular dystrophy have resulted in improved clinical course and survival. The encouraging results of early experimental studies could further improve these outcomes in the future.
Collapse
|
126
|
He Z, Luo X, Liang L, Li P, Li D, Zhe M. Merosin-deficient congenital muscular dystrophy type 1A: A case report. Exp Ther Med 2013; 6:1233-1236. [PMID: 24223650 PMCID: PMC3820831 DOI: 10.3892/etm.2013.1271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/01/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to characterize the clinical and genetic features of a 4-year-old female with merosin-deficient congenital muscular dystrophy type 1A (MDC1A). MDC1A is the most common form of congenital muscular dystrophy. MDC1A is caused by mutation of the laminin α-2 gene (LAMA2), localized to chromosome 6q22-23. Clinical presentation, as well as the results of neuro-imaging, electrophysiology and molecular genetic tests were used to evaluate a patient with MDC1A. The patient exhibited severe hypotonia and marked proximal weakness at 6 months of age, as well as delayed developmental milestones. The serum creatine kinase levels of the patient were elevated at 1,556 IU/l. Magnetic resonance imaging (MRI) showed that the white matter in the frontal, parietal, temporal and occipital lobes was abnormal with low signal intensities on T1-weighted images and high signal intensities on T2-weighted images; however, the cortex was normal. Sequencing of the 65 exons of the LAMA2 revealed a homozygous nonsense mutation in exon 50: a C>T exchange in nucleotide 7147 that resulted in a stop codon (Arg2383X stop). Molecular genetic testing is a reliable method for confirming a diagnosis of MDC1A. When a patient presents with severe congenital hypotonia, muscle weakness, high serum creatine kinase (CK) levels and white matter abnormalities, the evaluation may directly proceed to molecular genetic testing of the LAMA2 gene without performing a muscle biopsy.
Collapse
Affiliation(s)
- Zhanwen He
- Department of Pediatrics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | | | | | | | | | | |
Collapse
|
127
|
Charvet B, Guiraud A, Malbouyres M, Zwolanek D, Guillon E, Bretaud S, Monnot C, Schulze J, Bader HL, Allard B, Koch M, Ruggiero F. Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development 2013; 140:4602-13. [PMID: 24131632 DOI: 10.1242/dev.096024] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The myotendinous junction (MTJ) is the major site of force transfer in skeletal muscle, and defects in its structure correlate with a subset of muscular dystrophies. Col22a1 encodes the MTJ component collagen XXII, the function of which remains unknown. Here, we have cloned and characterized the zebrafish col22a1 gene and conducted morpholino-based loss-of-function studies in developing embryos. We showed that col22a1 transcripts localize at muscle ends when the MTJ forms and that COLXXII protein integrates the junctional extracellular matrix. Knockdown of COLXXII expression resulted in muscular dystrophy-like phenotype, including swimming impairment, curvature of embryo trunk/tail, strong reduction of twitch-contraction amplitude and contraction-induced muscle fiber detachment, and provoked significant activation of the survival factor Akt. Electron microscopy and immunofluorescence studies revealed that absence of COLXXII caused a strong reduction of MTJ folds and defects in myoseptal structure. These defects resulted in reduced contractile force and susceptibility of junctional extracellular matrix to rupture when subjected to repeated mechanical stress. Co-injection of sub-phenotypic doses of morpholinos against col22a1 and genes of the major muscle linkage systems showed a synergistic gene interaction between col22a1 and itga7 (α7β1 integrin) that was not observed with dag1 (dystroglycan). Finally, pertinent to a conserved role in humans, the dystrophic phenotype was rescued by microinjection of recombinant human COLXXII. Our findings indicate that COLXXII contributes to the stabilization of myotendinous junctions and strengthens skeletal muscle attachments during contractile activity.
Collapse
Affiliation(s)
- Benjamin Charvet
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 2013; 14:205-13. [PMID: 24052401 DOI: 10.1007/s10048-013-0374-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Defects in dystroglycan post-translational modification result in congenital muscular dystrophy with or without additional eye and brain involvement, are referred to as secondary dystroglycanopathies and have been associated with mutations in 11 different genes encoding glycosyltransferases or associated proteins. However, only one patient with a mutation in the dystroglycan encoding gene DAG1 itself has been described before. We here report a homozygous novel DAG1 missense mutation c.2006G>T predicted to result in the amino acid substitution p.Cys669Phe in the β-subunit of dystroglycan in two Libyan siblings. The affected girls presented with a severe muscle-eye-brain disease-like phenotype with distinct additional findings of macrocephaly and extended bilateral multicystic white matter disease, overlapping with the cerebral findings in patients with megalencephalic leucoencephalopathy with subcortical cysts. This novel clinical phenotype observed in our patients further expands the clinical spectrum of dystroglycanopathies and suggests a role of DAG1 not only for dystroglycanopathies but also for some forms of more extensive and multicystic leucodystrophy.
Collapse
|
129
|
Proregenerative properties of ECM molecules. BIOMED RESEARCH INTERNATIONAL 2013; 2013:981695. [PMID: 24195084 PMCID: PMC3782155 DOI: 10.1155/2013/981695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/04/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
After traumatic injuries to the nervous system, regrowing axons encounter a complex microenvironment where mechanisms that promote regeneration compete with inhibitory processes. Sprouting and axonal regrowth are key components of functional recovery but are often counteracted by inhibitory molecules. This review covers extracellular matrix molecules that support neuron axonal outgrowth.
Collapse
|
130
|
Van Ry PM, Minogue P, Hodges BL, Burkin DJ. Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2013; 23:383-96. [PMID: 24009313 DOI: 10.1093/hmg/ddt428] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a severe and fatal muscle-wasting disease with no cure. MDC1A patients and the dy(W-/-) mouse model exhibit severe muscle weakness, demyelinating neuropathy, failed muscle regeneration and premature death. We have recently shown that laminin-111, a form of laminin found in embryonic skeletal muscle, can substitute for the loss of laminin-211/221 and prevent muscle disease progression in the dy(W-/-) mouse model. What is unclear from these studies is whether laminin-111 can restore failed regeneration to laminin-α2-deficient muscle. To investigate the potential of laminin-111 protein therapy to improve muscle regeneration, laminin-111 or phosphate-buffered saline-treated laminin-α2-deficient muscle was damaged with cardiotoxin and muscle regeneration quantified. Our results show laminin-111 treatment promoted an increase in myofiber size and number, and an increased expression of α7β1 integrin, Pax7, myogenin and embryonic myosin heavy chain, indicating a restoration of the muscle regenerative program. Together, our results show laminin-111 restores muscle regeneration to laminin-α2-deficient muscle and further supports laminin-111 protein as a therapy for the treatment of MDC1A.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA and
| | | | | | | |
Collapse
|
131
|
Widhe M, Johansson U, Hillerdahl CO, Hedhammar M. Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials 2013; 34:8223-34. [PMID: 23916396 DOI: 10.1016/j.biomaterials.2013.07.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022]
Abstract
Silk matrices have previously been shown to possess general properties governing cell viability. However, many cell types also require specific adhesion sites for successful in vitro culture. Herein, we have shown that cell binding motifs can be genetically fused to a partial spider silk protein, 4RepCT, without affecting its ability to self-assemble into stable matrices directly in a physiological-like buffer. The incorporated motifs were exposed in the formed matrices, and available for binding of integrins. Four different human primary cell types; fibroblasts, keratinocytes, endothelial cells and Schwann cells, were applied to the matrices and investigated under serum-free culture conditions. Silk matrices with cell binding motifs, especially RGD, were shown to promote early adherence of cells, which formed stress fibers and distinct focal adhesion points. Schwann cells acquired most spread-out morphology on silk matrices with IKVAV, where significantly more viable cells were found, also when compared to wells coated with laminin. This strategy is thus suitable for development of matrices that allow screening of various cell binding motifs and their effect on different cell types.
Collapse
Affiliation(s)
- Mona Widhe
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, S-75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
132
|
Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. ACTA ACUST UNITED AC 2013; 201:499-510. [PMID: 23671309 PMCID: PMC3653356 DOI: 10.1083/jcb.201212142] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes.
Collapse
Affiliation(s)
- Fedik Rahimov
- Program in Genomics, Division of Genetics, Boston Children's Hospital, and 2 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
133
|
Joassard OR, Durieux AC, Freyssenet DG. β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders. Int J Biochem Cell Biol 2013; 45:2309-21. [PMID: 23845739 DOI: 10.1016/j.biocel.2013.06.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 02/04/2023]
Abstract
β2-Agonists are traditionally used for the treatment of bronchospasm associated with asthma and the treatment of symptomatic patients with COPD. However, β2-agonists are also powerful anabolic agents that trigger skeletal muscle hypertrophy. Investigating the effects of β2-agonists in skeletal muscle over the past 30 years in different animal models has led to the identification of potential therapeutic applications in several muscle wasting disorders, including neuromuscular diseases, cancer cachexia, sepsis or thermal injury. In these conditions, numerous studies indicate that β2-agonists can attenuate and/or reverse the decrease in skeletal muscle mass and associated weakness in animal models of muscle wasting but also in human patients. The purpose of this review is to present the biological and clinical significance of β2-agonists for the treatment of skeletal muscle wasting. After the description of the molecular mechanisms involved in the hypertrophy and anti-atrophy effect of β2-agonists, we will review the anti-atrophy effects of β2-agonist administration in several animal models and human pathologies associated with or leading to skeletal muscle wasting. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Olivier R Joassard
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, F-42023 Saint-Etienne, France
| | | | | |
Collapse
|
134
|
Miciak JJ, Warsing LC, Tibbs ME, Jasper JR, Jampel SB, Malik FI, Tankersley C, Wagner KR. Fast skeletal muscle troponin activator in the dy2J muscular dystrophy model. Muscle Nerve 2013; 48:279-85. [PMID: 23512724 DOI: 10.1002/mus.23848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tirasemtiv is a novel small molecule activator of the fast skeletal muscle troponin complex that produces sensitization of the sarcomere to calcium. Tirasemtiv is currently in Phase II clinical trials for neuromuscular disease. METHODS We conducted a blinded, randomized, placebo-controlled preclinical study of the effect of tirasemtiv on forearm grip strength, endurance, respiratory physiology, and muscle pathology in adequate sample sizes of the Lama2(dy-2J) mouse model of congenital muscular dystrophy. RESULTS Mice receiving a high dose of tirasemtiv had significantly higher muscle fiber cross-sectional area and respiratory response to CO₂ stimulation at 16 weeks than mice on low dose or placebo. There were no changes in muscle pathology, serum creatine kinase, strength, endurance, or respiration following long-term treatment. CONCLUSIONS We conclude that tirasemtiv influences the structure of the skeletal muscle fiber in this model of muscular dystrophy but does not impact muscle function, as evaluated in this study.
Collapse
Affiliation(s)
- Jessica J Miciak
- Center for Genetic Muscle Disorders, The Kennedy Krieger Institute, 707 North Broadway, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Berger J, Currie PD. Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis Model Mech 2013; 5:726-32. [PMID: 23115202 PMCID: PMC3484855 DOI: 10.1242/dmm.010082] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
136
|
Pappalardo A, Pitto L, Fiorillo C, Alice Donati M, Bruno C, Santorelli FM. Neuromuscular disorders in zebrafish: state of the art and future perspectives. Neuromolecular Med 2013; 15:405-19. [PMID: 23584918 DOI: 10.1007/s12017-013-8228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/30/2013] [Indexed: 12/22/2022]
Abstract
Neuromuscular disorders are a broad group of inherited conditions affecting the structure and function of the motor system with polymorphic clinical presentation and disease severity. Although individually rare, collectively neuromuscular diseases have an incidence of 1 in 3,000 and represent a significant cause of disability of the motor system. The past decade has witnessed the identification of a large number of human genes causing muscular disorders, yet the underlying pathogenetic mechanisms remain largely unclear, limiting the developing of targeted therapeutic strategies. To overcome this barrier, model systems that replicate the different steps of human disorders are increasingly being developed. Among these, the zebrafish (Danio rerio) has emerged as an excellent organism for studying genetic disorders of the central and peripheral motor systems. In this review, we will encounter most of the available zebrafish models for childhood neuromuscular disorders, providing a brief overview of results and the techniques, mainly transgenesis and chemical biology, used for genetic manipulation. The amount of data collected in the past few years will lead zebrafish to became a common functional tool for assessing rapidly drug efficacy and off-target effects in neuromuscular diseases and, furthermore, to shed light on new etiologies emerging from large-scale massive sequencing studies.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Molecular Medicine, and Neuromuscular Lab, IRCCS Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Muscular dystrophies are a heterogeneous group of inherited disorders that share similar clinical features and dystrophic changes on muscle biopsy. An improved understanding of their molecular bases has led to more accurate definitions of the clinical features associated with known subtypes. Knowledge of disease-specific complications, implementation of anticipatory care, and medical advances have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected people. A better understanding of the mechanisms underlying the molecular pathogenesis of several disorders and the availability of preclinical models are leading to several new experimental approaches, some of which are already in clinical trials. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | | |
Collapse
|
138
|
Maselli RA, Arredondo J, Ferns MJ, Wollmann RL. Synaptic basal lamina-associated congenital myasthenic syndromes. Ann N Y Acad Sci 2013; 1275:36-48. [PMID: 23278576 DOI: 10.1111/j.1749-6632.2012.06807.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins associated with the basal lamina (BL) participate in complex signal transduction processes that are essential for the development and maintenance of the neuromuscular junction (NMJ). Most important junctional BL proteins are collagens, such as collagen IV (α3-6), collagen XIII, and ColQ; laminins; nidogens; and heparan sulfate proteoglycans, such as perlecan and agrin. Mice lacking Colq (Colq(-/-)), laminin β2 (Lamb2(-/-)), or collagen XIII (Col13a1(-/-)) show immature nerve terminals enwrapped by Schwann cell projections that invaginate into the synaptic cleft and decrease contact surface for neurotransmission. Human mutations in COLQ, LAMB2, and AGRN cause congenital myasthenic syndromes (CMSs) owing to deficiency of ColQ, laminin-β2, and agrin, respectively. In these syndromes the NMJ ultrastructure shows striking resemblance to that of mice lacking the corresponding protein; furthermore, the extracellular localization of mutant proteins may provide favorable conditions for replacement strategies based on gene therapy and stem cells.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
139
|
|
140
|
Borycki AG. The myotomal basement membrane: insight into laminin-111 function and its control by Sonic hedgehog signaling. Cell Adh Migr 2013; 7:72-81. [PMID: 23287393 DOI: 10.4161/cam.23411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The importance of laminin-containing basement membranes (BM) for adult muscle function is well established, in particular due to the severe phenotype of congenital muscular dystrophies in patients with mutations disrupting the BM-muscle cell interaction. Developing muscles in the embryo are also dependent on an intact BM. However, the processes controlled by BM-muscle cell interactions in the embryo are only beginning to be elucidated. In this review, we focus on the myotomal BM to illustrate the critical role of laminin-111 in BM assembly and function at the surface of embryonic muscle cells. The myotomal BM provides also an interesting paradigm to study the complex interplay between laminins-containing BM and growth factor-mediated signaling and activity.
Collapse
|
141
|
Abstract
The congenital muscular dystrophies are a heterogeneous group of disorders in which weakness and dystrophic pattern on muscle biopsy are present at birth or during the first months of life. This chapter reviews the most common forms of congenital muscular dystrophies, including laminin α-2 (merosin) deficiency, Ullrich congenital muscular dystrophy, fukutin-related proteinopathy, rigid spine syndrome, and glycosylation disorders of α-dystroglycan. The latter group is often associated with neuronal migration defects including lissencephaly, pachygyria, cerebellar and brainstem abnormalities, and variable ocular anomalies. Typical clinical findings and underlying genetic defects are discussed to assist in the differential diagnosis and diagnostic work-up of patients with congenital muscular dystrophies. There are still no curative treatment options for patients with congenital muscular dystrophies but regular follow-up and symptomatic care by a multidisciplinary team considering the peculiarities of each disorder are important to maintain or improve patients' quality of life.
Collapse
Affiliation(s)
- Janbernd Kirschner
- Division of Neuropediatrics and Muscle Disorders, Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany.
| |
Collapse
|
142
|
Abstract
A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle's main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function.
Collapse
Affiliation(s)
- Johan Holmberg
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | |
Collapse
|
143
|
Affiliation(s)
- Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| |
Collapse
|
144
|
Meinen S, Lin S, Ruegg MA. Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-α2-deficient congenital muscular dystrophy (MDC1A). Skelet Muscle 2012; 2:18. [PMID: 22943509 PMCID: PMC3598380 DOI: 10.1186/2044-5040-2-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/31/2012] [Indexed: 12/22/2022] Open
Abstract
Background Laminin-α2-deficient congenital muscular dystrophy (MDC1A) is a severe muscle-wasting disease for which no curative treatment is available. Antagonists of the angiotensin II receptor type 1 (AT1), including the anti-hypertensive drug losartan, have been shown to block also the profibrotic action of transforming growth factor (TGF)-β and thereby ameliorate disease progression in mouse models of Marfan syndrome. Because fibrosis and failure of muscle regeneration are the main reasons for the severe disease course of MDC1A, we tested whether L-158809, an analog derivative of losartan, could ameliorate the dystrophy in dyW/dyW mice, the best-characterized model of MDC1A. Methods L-158809 was given in food to dyW/dyW mice at the age of 3 weeks, and the mice were analyzed at the age of 6 to 7 weeks. We examined the effect of L-158809 on muscle histology and on muscle regeneration after injury as well as the locomotor activity and muscle strength of the mice. Results We found that TGF-β signaling in the muscles of the dyW/dyW mice was strongly increased, and that L-158809 treatment suppressed this signaling. Consequently, L-158809 reduced fibrosis and inflammation in skeletal muscle of dyW/dyW mice, and largely restored muscle regeneration after toxin-induced injury. Mice showed improvement in their locomotor activity and grip strength, and their body weight was significantly increased. Conclusion These data provide evidence that AT1 antagonists ameliorate several hallmarks of MDC1A in dyW/dyW mice, the best-characterized mouse model for this disease. Because AT1 antagonists are well tolerated in humans and widely used in clinical practice, these results suggest that losartan may offer a potential future treatment of patients with MDC1A.
Collapse
Affiliation(s)
- Sarina Meinen
- Biozentrum, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
145
|
Gupta VA, Kawahara G, Myers JA, Chen AT, Hall TE, Manzini MC, Currie PD, Zhou Y, Zon LI, Kunkel LM, Beggs AH. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish. PLoS One 2012; 7:e43794. [PMID: 22952766 PMCID: PMC3428294 DOI: 10.1371/journal.pone.0043794] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC) complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8–15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.
Collapse
Affiliation(s)
- Vandana A. Gupta
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Genri Kawahara
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Jennifer A. Myers
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Aye T. Chen
- Stem Cell Program and Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas E. Hall
- Australian Regenerative Medicine Institute, Monash University, Clayton Campus, Victoria, Australia
| | - M. Chiara Manzini
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton Campus, Victoria, Australia
| | - Yi Zhou
- Stem Cell Program and Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonard I. Zon
- Stem Cell Program and Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, San Francisco, California, United States of America
| | - Louis M. Kunkel
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Alan H. Beggs
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
146
|
Colognato H, Tzvetanova ID. Glia unglued: how signals from the extracellular matrix regulate the development of myelinating glia. Dev Neurobiol 2012; 71:924-55. [PMID: 21834081 DOI: 10.1002/dneu.20966] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The health and function of the nervous system relies on glial cells that ensheath neuronal axons with a specialized plasma membrane termed myelin. The molecular mechanisms by which glial cells target and enwrap axons with myelin are only beginning to be elucidated, yet several studies have implicated extracellular matrix proteins and their receptors as being important extrinsic regulators. This review provides an overview of the extracellular matrix proteins and their receptors that regulate multiple steps in the cellular development of Schwann cells and oligodendrocytes, the myelinating glia of the PNS and CNS, respectively, as well as in the construction and maintenance of the myelin sheath itself. The first part describes the relevant cellular events that are influenced by particular extracellular matrix proteins and receptors, including laminins, collagens, integrins, and dystroglycan. The second part describes the signaling pathways and effector molecules that have been demonstrated to be downstream of Schwann cell and oligodendroglial extracellular matrix receptors, including FAK, small Rho GTPases, ILK, and the PI3K/Akt pathway, and the roles that have been ascribed to these signaling mediators. Throughout, we emphasize the concept of extracellular matrix proteins as environmental sensors that act to integrate, or match, cellular responses, in particular to those downstream of growth factors, to appropriate matrix attachment.
Collapse
Affiliation(s)
- Holly Colognato
- Department of Pharmacology, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
147
|
Ip JJK, Hui PKT, Chau MT, Lam WWM. Merosin-deficient congenital muscular dystrophy (MDCMD): a case report with MRI, MRS and DTI findings. J Radiol Case Rep 2012; 6:1-7. [PMID: 23365711 DOI: 10.3941/jrcr.v6i8.997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Congenital muscular dystrophy (CMD) comprises a heterogeneous group of disorders present at birth with muscle weakness, hypotonia and contractures. Congenital muscular dystrophy (CMD) comprises a heterogeneous group of disorders with muscle weakness, hypotonia and contractures present at birth. A particular subset of classic CMD is characterized by a complete absence of merosin. Merosin-deficient congenital muscular dystrophy (MDCMD) is a rare genetic disease involving the central and peripheral nervous system in the childhood. High signal intensities are often observed throughout the centrum semiovale, periventricular, and sub-cortical white matters on T2-weighted images in MRI brain in children with MDCMD. Apparent diffusion coefficient (ADC) map may reveal increased signal intensity and apparent diffusion coefficient values in the periventricular and deep white matters. These white matter findings, observed in late infancy, decrease in severity with age. The pathogenesis of these changes remains uncertain at present. In this article, we outline the specific MR imaging findings seen in a patient with documented MDCMD and also suggest the causes.
Collapse
Affiliation(s)
- Janice J K Ip
- Department of Radiology, Queen Mary Hospital, Hong Kong West Cluster, HKSAR, China.
| | | | | | | |
Collapse
|
148
|
Autophagy in skeletal muscle homeostasis and in muscular dystrophies. Cells 2012; 1:325-45. [PMID: 24710479 PMCID: PMC3901110 DOI: 10.3390/cells1030325] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/18/2012] [Accepted: 07/13/2012] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy) is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis of skeletal muscles during physiological situations and in response to stress. Defective as well as excessive autophagy is harmful for muscle health and has a pathogenic role in several forms of muscle diseases. This review will focus on the role of autophagy in muscle homeostasis and diseases.
Collapse
|
149
|
Abstract
Congenital muscular dystrophies are a highly heterogeneous group of conditions. In the last few years the identification of several new genes encoding for both glycosyltransferases and structural proteins has expanded the spectrum of the known forms. New classifications based on combined clinical, genetic and pathological data include all the recently discovered genes and allow an easier identification of the different forms and insight on pathogenetic mechanisms. The aim of this review is to discuss the most recent advances in this field, providing a conceptual framework to help the understanding of the responsible mechanisms and, when available, an update on the therapeutic perspectives.
Collapse
|
150
|
Lin YY. Muscle diseases in the zebrafish. Neuromuscul Disord 2012; 22:673-84. [PMID: 22647769 DOI: 10.1016/j.nmd.2012.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/09/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Animal models in biomedical research are important for understanding the pathological mechanisms of human diseases at a molecular and cellular level. Several aspects of mammalian animals, however, may limit their use in modelling neuromuscular disorders. Many attributes of zebrafish (Danio rerio) are complementary to mammalian experimental systems, establishing the zebrafish as a powerful model organism in disease biology. This review focuses on a number of key studies using the zebrafish to model hereditary muscle diseases with additional emphasis on recent advances in zebrafish functional genomics and drug discovery. Increasing research in zebrafish disease models, combined with knowledge from mammalian models, will bring novel insights into the disease pathogenesis of neuromuscular disorders, as well as facilitate the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom.
| |
Collapse
|