Wu K, Zhang Q, Poon AW. Integrated Si
3N
4 microresonator-based quantum light sources with high brightness using a subtractive wafer-scale platform.
OPTICS EXPRESS 2021;
29:24750-24764. [PMID:
34614824 DOI:
10.1364/oe.429921]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The silicon nitride (Si3N4) platform, demonstrating a moderate third-order optical nonlinearity and a low optical loss compared with those of silicon, is suitable for integrated quantum photonic circuits. However, it is challenging to develop a crack-free, wafer-scale, thick Si3N4 platform in a single deposition run using a subtractive complementary metal-oxide-semiconductor (CMOS)-compatible fabrication process suitable for dispersion-engineered quantum light sources. In this paper, we demonstrate our unique subtractive fabrication process by introducing a stress-release pattern prior to the single Si3N4 film deposition. Our Si3N4 platform enables 950 nm-thick and 8 μm-wide microring resonators supporting whispering-gallery modes for quantum light sources at 1550 nm wavelengths. We report a high photon-pair generation rate of ∼1.03 MHz/mW2, with a high spectral brightness of ∼5×106 pairs/s/mW2/GHz. We demonstrate the first heralded single-photon measurement on the Si3N4 platform, which exhibits a high quality of conditional self-correlation gH(2)(0) of 0.008 ± 0.003.
Collapse