101
|
Burns K, Mullin BH, Moolhuijsen LME, Laisk T, Tyrmi JS, Cui J, Actkins KV, Louwers YV, Davis LK, Dudbridge F, Azziz R, Goodarzi MO, Laivuori H, Mägi R, Visser JA, Laven JSE, Wilson SG, Day FR, Stuckey BGA. Body mass index stratified meta-analysis of genome-wide association studies of polycystic ovary syndrome in women of European ancestry. BMC Genomics 2024; 25:208. [PMID: 38408933 PMCID: PMC10895801 DOI: 10.1186/s12864-024-09990-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex multifactorial disorder with a substantial genetic component. However, the clinical manifestations of PCOS are heterogeneous with notable differences between lean and obese women, implying a different pathophysiology manifesting in differential body mass index (BMI). We performed a meta-analysis of genome-wide association study (GWAS) data from six well-characterised cohorts, using a case-control study design stratified by BMI, aiming to identify genetic variants associated with lean and overweight/obese PCOS subtypes. RESULTS The study comprised 254,588 women (5,937 cases and 248,651 controls) from individual studies performed in Australia, Estonia, Finland, the Netherlands and United States of America, and separated according to three BMI stratifications (lean, overweight and obese). Genome-wide association analyses were performed for each stratification within each cohort, with the data for each BMI group meta-analysed using METAL software. Almost half of the total study population (47%, n = 119,584) were of lean BMI (≤ 25 kg/m2). Two genome-wide significant loci were identified for lean PCOS, led by rs12000707 within DENND1A (P = 1.55 × 10-12) and rs2228260 within XBP1 (P = 3.68 × 10-8). One additional locus, LINC02905, was highlighted as significantly associated with lean PCOS through gene-based analyses (P = 1.76 × 10-6). There were no significant loci observed for the overweight or obese sub-strata when analysed separately, however, when these strata were combined, an association signal led by rs569675099 within DENND1A reached genome-wide significance (P = 3.22 × 10-9) and a gene-based association was identified with ERBB4 (P = 1.59 × 10-6). Nineteen of 28 signals identified in previous GWAS, were replicated with consistent allelic effect in the lean stratum. There were less replicated signals in the overweight and obese groups, and only 4 SNPs were replicated in each of the three BMI strata. CONCLUSIONS Genetic variation at the XBP1, LINC02905 and ERBB4 loci were associated with PCOS within unique BMI strata, while DENND1A demonstrated associations across multiple strata, providing evidence of both distinct and shared genetic features between lean and overweight/obese PCOS-affected women. This study demonstrated that PCOS-affected women with contrasting body weight are not only phenotypically distinct but also show variation in genetic architecture; lean PCOS women typically display elevated gonadotrophin ratios, lower insulin resistance, higher androgen levels, including adrenal androgens, and more favourable lipid profiles. Overall, these findings add to the growing body of evidence supporting a genetic basis for PCOS as well as differences in genetic patterns relevant to PCOS BMI-subtype.
Collapse
Affiliation(s)
- Kharis Burns
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, WA, 6009, Australia.
- Medical School, University of Western Australia, Nedlands, WA, Australia.
| | - Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaakko S Tyrmi
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jinrui Cui
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ky'Era V Actkins
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne V Louwers
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank Dudbridge
- Population Health Sciences, University of Leicester, Leicester, UK
| | - Ricardo Azziz
- Obstetrics & Gynecology, Medicine, and Healthcare Organization & Policy, Schools of Medicine and Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hannele Laivuori
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
- Institute for Molecular Medicine Finland, FIMM, hiLIFE, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Felix R Day
- MRC Epidemiology Unit, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Bronwyn G A Stuckey
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Keogh Institute for Medical Research, Nedlands, WA, Australia
| |
Collapse
|
102
|
Fragomeni G, De Napoli L, De Gregorio V, Genovese V, Barbato V, Serratore G, Morrone G, Travaglione A, Candela A, Gualtieri R, Talevi R, Catapano G. Enhanced solute transport and steady mechanical stimulation in a novel dynamic perifusion bioreactor increase the efficiency of the in vitro culture of ovarian cortical tissue strips. Front Bioeng Biotechnol 2024; 12:1310696. [PMID: 38390358 PMCID: PMC10882273 DOI: 10.3389/fbioe.2024.1310696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction: We report the development and preliminary evaluation of a novel dynamic bioreactor to culture ovarian cortical tissue strips that leverages tissue response to enhanced oxygen transport and adequate mechanical stimulation. In vitro multistep ovarian tissue static culture followed by mature oocyte generation, fertilization, and embryo transfer promises to use the reserve of dormant follicles. Unfortunately, static in vitro culture of ovarian tissue does not promote development of primordial to secondary follicles or sustain follicle viability and thereby limits the number of obtainable mature oocytes. Enhancing oxygen transport to and exerting mechanical stimulation on ovarian tissue in a dynamic bioreactor may more closely mimic the physiological microenvironment and thus promote follicle activation, development, and viability. Materials and Methods: The most transport-effective dynamic bioreactor design was modified using 3D models of medium and oxygen transport to maximize strip perifusion and apply tissue fluid dynamic shear stresses and direct compressive strains to elicit tissue response. Prototypes of the final bioreactor design were manufactured with materials of varying cytocompatibility and assessed by testing the effect of leachables on sperm motility. Effectiveness of the bioreactor culture was characterized against static controls by culturing fresh bovine ovarian tissue strips for 7 days at 4.8 × 10-5 m/s medium filtration flux in air at -15% maximal total compressive strain and by assessing follicle development, health, and viability. Results and Conclusions: Culture in dynamic bioreactors promoted effective oxygen transport to tissues and stimulated tissues with strains and fluid dynamic shear stresses that, although non-uniform, significantly influenced tissue metabolism. Tissue strip culture in bioreactors made of cytocompatible polypropylene preserved follicle viability and promoted follicle development better than static culture, less so in bioreactors made of cytotoxic ABS-like resin.
Collapse
Affiliation(s)
- Gionata Fragomeni
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luigi De Napoli
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Vincenza De Gregorio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Vincenzo Genovese
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Vincenza Barbato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Giuseppe Serratore
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Giuseppe Morrone
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Angela Travaglione
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Andrea Candela
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Roberto Gualtieri
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Riccardo Talevi
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Gerardo Catapano
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| |
Collapse
|
103
|
Guo N, Zhang L, He N, Guo H, Liu J. The causal effects of age at menarche and age at menopause on sepsis: A two-sample Mendelian randomization analysis. PLoS One 2024; 19:e0293540. [PMID: 38324609 PMCID: PMC10849219 DOI: 10.1371/journal.pone.0293540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/15/2023] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVES To determine whether the age at menarche (AAM) and the age at menopause (ANM) are causally related to the development of sepsis. METHODS We performed a two-sample Mendelian randomization (MR) analysis by utilizing summary statistics from genome-wide association study (GWAS) datasets for both the exposure and outcome variables. Single nucleotide polymorphisms (SNPs) that exhibited significant associations with AAM and ANM were chosen as instrumental variables to estimate the causal effects on sepsis. Our study employed a variety of methods, including MR-Egger regression, weighted median estimation, inverse variance weighting, a simple model, and a weighted model. Odds ratios (ORs) along with their corresponding 95% confidence intervals (CIs) were used as the primary indicators for assessing causality. Furthermore, we conducted sensitivity analyses to explore the presence of genetic heterogeneity and validate the robustness of the tools employed. RESULT Our analysis revealed a significant negative causal relationship between AAM and the risk of sepsis (IVW: OR = 0.870, 95% CI = 0.793-0.955, P = 0.003). However, our Mendelian randomization (MR) analysis did not yield sufficient evidence to support a causal link between ANM and sepsis (IVW: OR = 0.987, 95% CI = 0.971-1.004, P = 0.129). CONCLUSIONS Our findings suggest that an earlier AAM may be associated with an increased risk of sepsis. However, we did not find sufficient evidence to support a causal relationship between ANM and sepsis.
Collapse
Affiliation(s)
- Na Guo
- The Fist Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Lu Zhang
- The Fist Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Nannan He
- The Fist Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Hong Guo
- Department of Intensive Care Unit, The First Hospital of Lanzhou University, Lan Zhou, Gansu Province, China
| | - Jian Liu
- The Fist Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
- Department of Intensive Care Unit, Gansu Provincial Maternity and Child Health Hospital/Gansu Provincial General Hospital, Lan Zhou, Gansu Province, China
| |
Collapse
|
104
|
Clayton GL, Borges MC, Lawlor DA. The impact of reproductive factors on the metabolic profile of females from menarche to menopause. Nat Commun 2024; 15:1103. [PMID: 38320991 PMCID: PMC10847109 DOI: 10.1038/s41467-023-44459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
We explore the relation between age at menarche, parity and age at natural menopause with 249 metabolic traits in over 65,000 UK Biobank women using multivariable regression, Mendelian randomization and negative control (parity only). Older age of menarche is related to a less atherogenic metabolic profile in multivariable regression and Mendelian randomization, which is largely attenuated when accounting for adult body mass index. In multivariable regression, higher parity relates to more particles and lipids in VLDL, which are not observed in male negative controls. In multivariable regression and Mendelian randomization, older age at natural menopause is related to lower concentrations of inflammation markers, but we observe inconsistent results for LDL-related traits due to chronological age-specific effects. For example, older age at menopause is related to lower LDL-cholesterol in younger women but slightly higher in older women. Our findings support a role of reproductive traits on later life metabolic profile and provide insights into identifying novel markers for the prevention of adverse cardiometabolic outcomes in women.
Collapse
Affiliation(s)
- Gemma L Clayton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| |
Collapse
|
105
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578648. [PMID: 38352597 PMCID: PMC10862846 DOI: 10.1101/2024.02.02.578648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53 and TAp63, regulate primordial follicle elimination in response to DNA damage, however the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DNA damage response in wildtype and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces a DNA damage response in ovarian cells that is solely dependent on CHEK2. DNA damage activates multiple ovarian response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pre-granulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, as well as therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Joshy George
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
106
|
Wang H, Li C, Chen L, Zhang M, Ren T, Zhang S. Causal relationship between female reproductive factors, sex hormones and uterine leiomyoma: a Mendelian randomization study. Reprod Biomed Online 2024; 48:103584. [PMID: 38061975 DOI: 10.1016/j.rbmo.2023.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 02/12/2024]
Abstract
RESEARCH QUESTION Are the observed associations between female reproductive factors and sex hormones with the risk of uterine leiomyoma truly causal associations? DESIGN The putative causal relationships between female reproductive factors and sex hormones with uterine leiomyoma were investigated using two-sample Mendelian randomization. Statistics on exposure-associated genetic variants were obtained from genome-wide association studies (GWAS). The uterine leiomyoma GWAS from the FinnGen and FibroGENE consortia were used as outcome data for discovery and replication analyses, respectively. Results were pooled by meta-analysis. Sensitivity analyses ensured robustness of the Mendelian randomization analysis. RESULTS When FinnGen GWAS were used as outcome data, a causal relationship was found between age at menarche (OR 0.84, P < 0.0001), age at menopause (OR 1.08, P < 0.0001), number of live births (OR 0.25, P < 0.001) and total testosterone levels (OR 0.90, P < 0.001) with the risk of uterine leiomyoma. When FibroGENE GWAS were used as outcome data, Mendelian randomization results for age at menopause, the number of live births and total testosterone levels were replicated. In the meta-analysis, a later age at menopause (OR 1.08, P < 0.0001) was associated with an increased risk of uterine leiomyoma. A higher number of live births (OR 0.25, P < 0.0001) and higher total testosterone levels (OR 0.90, P < 0.0001) were associated with a decreased risk of uterine leiomyoma. CONCLUSIONS A causal relationship between later age at menopause, lower number of live births and lower total testosterone levels with increased risk of uterine leiomyoma was found.
Collapse
Affiliation(s)
- Hefei Wang
- Department of Obstetrics and Gynaecology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chun Li
- Department of Immunology, School of Basic Medical Sciences, Beihua University, Jilin, Jilin, China
| | - Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengwen Zhang
- Department of Obstetrics and Gynaecology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tong Ren
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Obstetric and Gynaecologic Diseases, Beijing, China.
| | - Songling Zhang
- Department of Obstetrics and Gynaecology, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
107
|
Knight AK, Spencer JB, Smith AK. DNA methylation as a window into female reproductive aging. Epigenomics 2024; 16:175-188. [PMID: 38131149 PMCID: PMC10841041 DOI: 10.2217/epi-2023-0298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
People with ovaries experience reproductive aging as their reproductive function and system declines. This has significant implications for both fertility and long-term health, with people experiencing an increased risk of cardiometabolic disorders after menopause. Reproductive aging can be assessed through markers of ovarian reserve, response to fertility treatment or molecular biomarkers, including DNA methylation. Changes in DNA methylation with age associate with poorer reproductive outcomes, and epigenome-wide studies can provide insight into genes and pathways involved. DNA methylation-based epigenetic clocks can quantify biological age in reproductive tissues and systemically. This review provides an overview of hallmarks and theories of aging in the context of the reproductive system, and then focuses on studies of DNA methylation in reproductive tissues.
Collapse
Affiliation(s)
- Anna K Knight
- Research Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica B Spencer
- Reproductive Endocrinology & Infertility Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alicia K Smith
- Research Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Reproductive Endocrinology & Infertility Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
108
|
Panier S, Wang S, Schumacher B. Genome Instability and DNA Repair in Somatic and Reproductive Aging. ANNUAL REVIEW OF PATHOLOGY 2024; 19:261-290. [PMID: 37832947 DOI: 10.1146/annurev-pathmechdis-051122-093128] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Genetic material is constantly subjected to genotoxic insults and is critically dependent on DNA repair. Genome maintenance mechanisms differ in somatic and germ cells as the soma only requires maintenance during an individual's lifespan, while the germline indefinitely perpetuates its genetic information. DNA lesions are recognized and repaired by mechanistically highly diverse repair machineries. The DNA damage response impinges on a vast array of homeostatic processes and can ultimately result in cell fate changes such as apoptosis or cellular senescence. DNA damage causally contributes to the aging process and aging-associated diseases, most prominently cancer. By causing mutations, DNA damage in germ cells can lead to genetic diseases and impact the evolutionary trajectory of a species. The mechanisms ensuring tight control of germline DNA repair could be highly instructive in defining strategies for improved somatic DNA repair. They may provide future interventions to maintain health and prevent disease during aging.
Collapse
Affiliation(s)
- Stephanie Panier
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Siyao Wang
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
109
|
Cui J, Wang Y. Premature ovarian insufficiency: a review on the role of tobacco smoke, its clinical harm, and treatment. J Ovarian Res 2024; 17:8. [PMID: 38191456 PMCID: PMC10775475 DOI: 10.1186/s13048-023-01330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Premature ovarian insufficiency (POI) is a condition in which the quantity of follicles and the quality of oocytes gradually decrease. This results in an estrogen secretion disorder and abnormal follicle development, which can lead to related diseases, early onset of menopause, sexual dysfunction, and an increased risk of cardiovascular issues, osteoporosis, and depression, among others. This disease significantly impacts the physical and mental health and overall quality of life of affected women. Factors such as genetic abnormalities, oophorectomy, radiotherapy for malignancy, idiopathic conditions, and an unhealthy lifestyle, including smoking, can accelerate the depletion of the follicular pool and the onset of menopause. Extensive research has been conducted on the detrimental effects of tobacco smoke on the ovaries. This article aims to review the advancements in understanding the impact of tobacco smoke on POI, both in vivo and in vitro. Furthermore, we explore the potential adverse effects of common toxicants found in tobacco smoke, such as polycyclic aromatic hydrocarbons (PAHs), heavy metals like cadmium, alkaloids like nicotine and its major metabolite cotinine, benzo[a]pyrene, and aromatic amines. In addition to discussing the toxicants, this article also reviews the complications associated with POI and the current state of research and application of treatment methods. These findings will contribute to the development of more precise treatments for POI, offering theoretical support for enhancing the long-term quality of life for women affected by this condition.
Collapse
Affiliation(s)
- Jinghan Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| |
Collapse
|
110
|
van Bree BE, Jorissen LM, Pattinaja DAPM, Bons JAP, Spaanderman MEA, Valkenburg O, van Golde RJT. No evidence for a diminished ovarian reserve among patients with hypertensive disorders of pregnancy: a case control study. J Ovarian Res 2024; 17:5. [PMID: 38184677 PMCID: PMC10770972 DOI: 10.1186/s13048-023-01333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Existing evidence suggests a relation between cardiovascular dysfunction and diminished ovarian reserve. While it is known that pre-existent cardiovascular dysfunction is also associated with the development of preeclampsia (PE) during pregnancy, we hypothesize that signs of diminished ovarian reserve may occur more frequently among women with a history of hypertensive disorders of pregnancy (HDP). The aim of our study was therefore to analyse if women with a history of HDP show signs of diminished ovarian reserve, represented by lower anti-Mullarian hormone (AMH) levels, compared to controls. For this retrospective observational case control study, patients included women with a history of HDP, whereas controls constituted of women with a history of an uncomplicated pregnancy. The study was conducted in a tertiary referral centre in which all women underwent a one-time cardiovascular and metabolic assessment. Ovarian reserve and markers of cardiovascular function were evaluated, adjusted for age and body mass index (BMI) using linear regression analyses. RESULTS 163 patients and 81 controls were included over a time span of 3 years. No signs of diminished ovarian reserve i.e. lower AMH level were observed in the patient group versus controls. A subgroup analysis even showed higher AMH levels in late onset HDP as compared to controls (2.8 vs. 2.0 µg/L, p = 0.025). As expected, cardiovascular function markers were significantly less favourable in the patient group compared to controls; higher levels of systolic blood pressure (BP) (5%), diastolic BP (4%), triglycerides (29%), glucose (4%) and insulin levels (81%) (all p < 0.05), whereas high density lipid (HDL) cholesterol was 12% lower (NS). CONCLUSIONS Despite unfavourable cardiovascular risk profile, the present study does not substantiate the hypothesis that women with HDP show accelerated ovarian ageing as compared to healthy parous controls. Although HDP patients should be warned about their cardiovascular health, they shouldn't be concerned about unfavourable ovarian reserve status.
Collapse
Affiliation(s)
- Bo E van Bree
- Department of Obstetrics & Gynaecology, Maastricht University Medical Centre+, 5800, 6202 AZ, Maastricht, The Netherlands.
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Laura M Jorissen
- Department of Obstetrics & Gynaecology, Maastricht University Medical Centre+, 5800, 6202 AZ, Maastricht, The Netherlands
| | - Désirée A P M Pattinaja
- Department of Obstetrics & Gynaecology, Maastricht University Medical Centre+, 5800, 6202 AZ, Maastricht, The Netherlands
| | - Judith A P Bons
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marc E A Spaanderman
- Department of Obstetrics & Gynaecology, Maastricht University Medical Centre+, 5800, 6202 AZ, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Olivier Valkenburg
- Department of Obstetrics & Gynaecology, Maastricht University Medical Centre+, 5800, 6202 AZ, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ron J T van Golde
- Department of Obstetrics & Gynaecology, Maastricht University Medical Centre+, 5800, 6202 AZ, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
111
|
Yazdanpanah N, Jumentier B, Yazdanpanah M, Ong KK, Perry JRB, Manousaki D. Mendelian randomization identifies circulating proteins as biomarkers for age at menarche and age at natural menopause. Commun Biol 2024; 7:47. [PMID: 38184718 PMCID: PMC10771430 DOI: 10.1038/s42003-023-05737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Age at menarche (AAM) and age at natural menopause (ANM) are highly heritable traits and have been linked to various health outcomes. We aimed to identify circulating proteins associated with altered ANM and AAM using an unbiased two-sample Mendelian randomization (MR) and colocalization approach. By testing causal effects of 1,271 proteins on AAM, we identified 22 proteins causally associated with AAM in MR, among which 13 proteins (GCKR, FOXO3, SEMA3G, PATE4, AZGP1, NEGR1, LHB, DLK1, ANXA2, YWHAB, DNAJB12, RMDN1 and HPGDS) colocalized. Among 1,349 proteins tested for causal association with ANM using MR, we identified 19 causal proteins among which 7 proteins (CPNE1, TYMP, DNER, ADAMTS13, LCT, ARL and PLXNA1) colocalized. Follow-up pathway and gene enrichment analyses demonstrated links between AAM-related proteins and obesity and diabetes, and between AAM and ANM-related proteins and various types of cancer. In conclusion, we identified proteomic signatures of reproductive ageing in women, highlighting biological processes at both ends of the reproductive lifespan.
Collapse
Affiliation(s)
- Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Basile Jumentier
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada.
- Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
112
|
Kang H, Pan S, Lin S, Wang YY, Yuan N, Jia P. PharmGWAS: a GWAS-based knowledgebase for drug repurposing. Nucleic Acids Res 2024; 52:D972-D979. [PMID: 37831083 PMCID: PMC10767932 DOI: 10.1093/nar/gkad832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Leveraging genetics insights to promote drug repurposing has become a promising and active strategy in pharmacology. Indeed, among the 50 drugs approved by FDA in 2021, two-thirds have genetically supported evidence. In this regard, the increasing amount of widely available genome-wide association studies (GWAS) datasets have provided substantial opportunities for drug repurposing based on genetics discoveries. Here, we developed PharmGWAS, a comprehensive knowledgebase designed to identify candidate drugs through the integration of GWAS data. PharmGWAS focuses on novel connections between diseases and small-molecule compounds derived using a reverse relationship between the genetically-regulated expression signature and the drug-induced signature. Specifically, we collected and processed 1929 GWAS datasets across a diverse spectrum of diseases and 724 485 perturbation signatures pertaining to a substantial 33609 molecular compounds. To obtain reliable and robust predictions for the reverse connections, we implemented six distinct connectivity methods. In the current version, PharmGWAS deposits a total of 740 227 genetically-informed disease-drug pairs derived from drug-perturbation signatures, presenting a valuable and comprehensive catalog. Further equipped with its user-friendly web design, PharmGWAS is expected to greatly aid the discovery of novel drugs, the exploration of drug combination therapies and the identification of drug resistance or side effects. PharmGWAS is available at https://ngdc.cncb.ac.cn/pharmgwas.
Collapse
Affiliation(s)
- Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Lin
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Na Yuan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
113
|
Vogt EC, Bratland E, Berland S, Berentsen R, Lund A, Björnsdottir S, Husebye E, Øksnes M. Improving diagnostic precision in primary ovarian insufficiency using comprehensive genetic and autoantibody testing. Hum Reprod 2024; 39:177-189. [PMID: 37953503 PMCID: PMC10767963 DOI: 10.1093/humrep/dead233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/31/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION Is it possible to find the cause of primary ovarian insufficiency (POI) in more women by extensive screening? SUMMARY ANSWER Adding next generation sequencing techniques including a POI-associated gene panel, extended whole exome sequencing data, as well as specific autoantibody assays to the recommended diagnostic investigations increased the determination of a potential etiological diagnosis of POI from 11% to 41%. WHAT IS KNOWN ALREADY POI affects ∼1% of women. Clinical presentations and pathogenic mechanisms are heterogeneous and include genetic, autoimmune, and environmental factors, but the underlying etiology remains unknown in the majority of cases. STUDY DESIGN, SIZE, DURATION Prospective cross-sectional study of 100 women with newly diagnosed POI of unknown cause consecutively referred to Haukeland University Hospital, Bergen, Norway, January 2019 to December 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS In addition to standard recommended diagnostic investigations including screening for chromosomal anomalies and premutations in the fragile X mental retardation 1 gene (FMR1) we used whole exome sequencing, including targeted analysis of 103 ovarian-related genes, and assays of autoantibodies against steroid cell antigens. MAIN RESULTS AND THE ROLE OF CHANCE We identified chromosomal aberrations in 8%, FMR1 premutations in 3%, genetic variants related to POI in 16%, and autoimmune POI in 3%. Furthermore in 11% we identified POI associated genetic Variants of unknown signifcance (VUS). A homozygous pathogenic variant in the ZSWIM7 gene (NM_001042697.2) was found in two women, corroborating this as a novel cause of monogenic POI. No associations between phenotypes and genotypes were found. LIMITATIONS, REASONS FOR CAUTION Use of candidate genetic and autoimmune markers limit the possibility to discover new markers. To further investigate the genetic variants, family studies would have been useful. We found a relatively high proportion of genetic variants in women from Africa and lack of genetic diversity in the genomic databases can impact diagnostic accuracy. WIDER IMPLICATIONS OF THE FINDINGS Since no specific clinical or biochemical markers predicted the underlying cause of POI discussion of which tests should be part of diagnostic screening in clinical practice remains open. New technology has altered the availability and effectiveness of genetic testing, and cost-effectiveness analyses are required to aid sustainable diagnostics. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by grants and fellowships from Stiftelsen Kristian Gerhard Jebsen, the Novonordisk Foundation, the Norwegian Research Council, University of Bergen, and the Regional Health Authorities of Western Norway. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER NCT04082169.
Collapse
Affiliation(s)
- Elinor Chelsom Vogt
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ragnhild Berentsen
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Agnethe Lund
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Sigridur Björnsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Eystein Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marianne Øksnes
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
114
|
Nikou N, López Panadés M, Roig I. Histological and Cytological Techniques to Study Perinatal Mouse Ovaries and Oocytes. Methods Mol Biol 2024; 2770:151-170. [PMID: 38351453 DOI: 10.1007/978-1-0716-3698-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The regulation of female fertility in mammals depends on critical processes during oocyte development and maturation. Therefore, it is crucial to use specific approaches when studying mammalian female fertility to preserve ovary and oocyte structures effectively. The methods of collecting and culturing ovaries and oocytes play an essential role in the study of mammalian follicle development and oocyte quality. This chapter presents a collection of protocols that focus on various methods for studying mammalian ovaries and oocytes, providing researchers with a variety of approaches to choose from.
Collapse
Affiliation(s)
- Nikoleta Nikou
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology, and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria López Panadés
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology, and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Cell Biology, Physiology, and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
115
|
Han JDJ. The ticking of aging clocks. Trends Endocrinol Metab 2024; 35:11-22. [PMID: 37880054 DOI: 10.1016/j.tem.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Computational models that measure biological age and aging rate regardless of chronological age are called aging clocks. The underlying counting mechanisms of the intrinsic timers of these clocks are still unclear. Molecular mediators and determinants of aging rate point to the key roles of DNA damage, epigenetic drift, and inflammation. Persistent DNA damage leads to cellular senescence and the senescence-associated secretory phenotype (SASP), which induces cytotoxic immune cell infiltration; this further induces DNA damage through reactive oxygen and nitrogen species (RONS). I discuss the possibility that DNA damage (or the response to it, including epigenetic changes) is the fundamental counting unit of cell cycles and cellular senescence, that ultimately accounts for cell composition changes and functional decline in tissues, as well as the key intervention points.
Collapse
Affiliation(s)
- Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China; International Center for Aging and Cancer (ICAC), The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
116
|
Zhao X, Shi W, Liu X, Zhang W. Emerging trends and research priorities in premature ovarian insufficiency genes: a bibliometric and visualization study. Gynecol Endocrinol 2023; 39:2283033. [PMID: 38010136 DOI: 10.1080/09513590.2023.2283033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
PURPOSE To illustrate the results achieved by genes in premature ovarian insufficiency (POI) and collaborations in the field, and to explore key themes and future directions. METHODS Articles and reviews related to POI genes published between 1990 and 2022 were retrieved from the Web of Science core collection (WoSCC) for the total bibliometric analysis. Tools were analyzed for publication, country, institution, journal, authors, reference, keywords, subject categories, funding agencies, and research hotspots using a bibliometric online analysis platform, Bibliographic Co-occurrence Matrix Builder (BICOMB), CiteSpace V, and VOSviewer. RESULTS A total of 2,232 papers were included in this study. Articles were published in 52 countries, with the United States publishing the most, followed by China. A total of 308 institutions contributed to relevant publications. Shandong University published the most papers. Qin Y's team published the most relevant papers. Human reproduction and fertility and sterility are the two journals with the most papers. X-chromosome abnormalities, transcription factor mutations, and FMR1 genes are the directions of more POI, and DNA repair is the keyword of the research frontier in recent years. CONCLUSIONS This study summarizes the relevant literature on POI gene research for the first time and analyzes the current hotspots and future trends in this field. The findings can further reveal the etiology, diagnosis, and treatment of POI, which is beneficial for researchers to grasp the genetic dynamics of POI women.
Collapse
Affiliation(s)
- Xi Zhao
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Wenying Shi
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Xiaojuan Liu
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| |
Collapse
|
117
|
Lin Y, Wang G, Li Y, Yang H, Zhao Y, Liu J, Mu L. Circulating Inflammatory Cytokines and Female Reproductive Diseases: A Mendelian Randomization Analysis. J Clin Endocrinol Metab 2023; 108:3154-3164. [PMID: 37350485 DOI: 10.1210/clinem/dgad376] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
CONTEXT Extensive studies have provided considerable evidence suggesting the role of inflammation in the development of female reproductive diseases. However, causality has not been established. OBJECTIVE To explore whether genetically determined circulating levels of cytokines are causally associated with female reproductive diseases and discover potential novel drug targets for these diseases. METHODS Instrumental variables (IVs) for 47 circulating cytokines were obtained from a genome-wide association study (GWAS) meta-analysis of 31 112 European individuals. Protein quantitative trait loci and expression quantitative trait loci close to genes served as our IVs. Summary data of 9 female reproductive diseases were mainly derived from GWAS meta-analysis of the UK biobank and FinnGen. We elevated the association using the Wald ratio or inverse variance-weighted Mendelian randomization (MR) with subsequent assessments for MR assumptions in several sensitivity and colocalization analyses. We consider a false discovery rate <0.05 as statistical significance in MR analyses. Replication studies were conducted for further validation, and phenome-wide association studies were designed to explore potential side effects. RESULTS Our results indicated that high levels of macrophage colony-stimulating factor (MCSF), growth-regulated oncogene-alpha (GROα), and soluble intercellular adhesion molecule-1 were associated with increased risks of endometriosis, female infertility, and pre-eclampsia, respectively. High platelet-derived growth factor-BB (PDGF-BB) levels that reduced the risk of ovarian aging were also supported. Replication analysis supported the relationship between GROα and female infertility, and between MCSF and endometriosis. CONCLUSION We identified 4 correlated pairs that implied potential protein drug targets. Notably, we preferred highlighting the value of PDGF-BB as a drug target for ovarian aging, and MCSF as a drug target for endometriosis.
Collapse
Affiliation(s)
- Yiting Lin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiquan Wang
- Center for Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
118
|
Yu Y, Hou L, Wu Y, Yu Y, Liu X, Wu S, He Y, Ge Y, Wei Y, Qian F, Luo Q, Feng Y, Cheng X, Yu T, Li H, Xue F. Causal associations between female reproductive behaviors and psychiatric disorders: a lifecourse Mendelian randomization study. BMC Psychiatry 2023; 23:799. [PMID: 37915018 PMCID: PMC10621101 DOI: 10.1186/s12888-023-05203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND The timings of reproductive life events have been examined to be associated with various psychiatric disorders. However, studies have not considered the causal pathways from reproductive behaviors to different psychiatric disorders. This study aimed to investigate the nature of the relationships between five reproductive behaviors and twelve psychiatric disorders. METHODS Firstly, we calculated genetic correlations between reproductive factors and psychiatric disorders. Then two-sample Mendelian randomization (MR) was conducted to estimate the causal associations among five reproductive behaviors, and these reproductive behaviors on twelve psychiatric disorders, using genome-wide association study (GWAS) summary data from genetic consortia. Multivariable MR was then applied to evaluate the direct effect of reproductive behaviors on these psychiatric disorders whilst accounting for other reproductive factors at different life periods. RESULTS Univariable MR analyses provide evidence that age at menarche, age at first sexual intercourse and age at first birth have effects on one (depression), seven (anxiety disorder, ADHD, bipolar disorder, bipolar disorder II, depression, PTSD and schizophrenia) and three psychiatric disorders (ADHD, depression and PTSD) (based on p<7.14×10-4), respectively. However, after performing multivariable MR, only age at first sexual intercourse has direct effects on five psychiatric disorders (Depression, Attention deficit or hyperactivity disorder, Bipolar disorder, Posttraumatic stress disorder and schizophrenia) when accounting for other reproductive behaviors with significant effects in univariable analyses. CONCLUSION Our findings suggest that reproductive behaviors predominantly exert their detrimental effects on psychiatric disorders and age at first sexual intercourse has direct effects on psychiatric disorders.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Lei Hou
- Beijing International Center for Mathematical Research, Peking University, Beijing, People's Republic of China
| | - Yutong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuanyuan Yu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinhui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Sijia Wu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yina He
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yilei Ge
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yun Wei
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Fengtong Qian
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Qingxin Luo
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yue Feng
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaojing Cheng
- Shandong Mental Health Center, Shandong Province, Jinan, China
| | - Tiangui Yu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Hongkai Li
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China.
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Fuzhong Xue
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China.
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
119
|
Yi Y, Fu J, Xie S, Zhang Q, Xu B, Wang Y, Wang Y, Li B, Zhao G, Li J, Li Y, Zhao J. Association between ovarian reserve and spontaneous miscarriage and their shared genetic architecture. Hum Reprod 2023; 38:2247-2258. [PMID: 37713654 DOI: 10.1093/humrep/dead180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Indexed: 09/17/2023] Open
Abstract
STUDY QUESTION Can potential mechanisms involved in the likely concurrence of diminished ovarian reserve (DOR) and miscarriage be identified using genetic data? SUMMARY ANSWER Concurrence between ovarian reserve and spontaneous miscarriage was observed, and may be attributed to shared genetic risk loci enriched in antigen processing and presentation and autoimmune disease pathways. WHAT IS KNOWN ALREADY Previous studies have shown that lower serum anti-Müllerian hormone (AMH) levels are associated with increased risk of embryo aneuploidy and spontaneous miscarriage, although findings have not been consistent across all studies. A recent meta-analysis suggested that the association between DOR and miscarriage may not be causal, but rather a result of shared underlying causes such as clinical conditions or past exposure. Motivated by this hypothesis, we conducted the present analysis to explore the concurrence between DOR and miscarriage, and to investigate potential mechanisms using genetic data. STUDY DESIGN, SIZE, DURATION Three data sources were used in the study: the clinical IVF data were retrospectively collected from an academically affiliated Reproductive Medicine Center (17 786 cycles included); the epidemiological data from the UK Biobank (UKB), which is a large-scale, population-based, prospective cohort study (35 316 white women included), were analyzed; and individual-level genotype data from the UKB were extracted for further analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS There were three modules of analysis. First, clinical IVF data were used to test the association between ovarian reserve biomarkers and the subsequent early spontaneous miscarriage risk. Second, the UKB data were used to test the association of spontaneous miscarriage history and early menopause. Third, individual-level genotype data from the UKB were analyzed to identify specific pleiotropic genes which affect the development of miscarriage and menopause. MAIN RESULTS AND THE ROLE OF CHANCE In the analysis of clinical IVF data, the risk of early spontaneous miscarriage was 1.57 times higher in the group with AMH < 1.1 ng/ml group (P < 0.001), 1.62 times for antral follicular count <5 (P < 0.001), and 1.39 times for FSH ≥10 mIU/ml (P < 0.001) in comparison with normal ovarian reserve groups. In the analysis of UKB data, participants with a history of three or more miscarriages had a one-third higher risk of experiencing early menopause (odds ratio: 1.30, 95% CI 1.13-1.49, P < 0.001), compared with participants without spontaneous miscarriage history. We identified 158 shared genetic risk loci that affect both miscarriage and menopause, which enrichment analysis showed were involved in antigen processing and presentation and autoimmune disease pathways. LIMITATIONS, REASONS FOR CAUTION The analyses of the UKB data were restricted to participants of European ancestry, as 94.6% of the cohort were of white ethnicity. Further studies are needed in non-white populations. Additionally, maternal age at the time of spontaneous miscarriage was not available in the UKB cohort, therefore we adjusted for age at baseline assessment in the models instead. It is known that miscarriage rate in IVF is higher compared to natural conception, highlighting a need for caution when generalizing our findings from the IVF cohort to the general population. WIDER IMPLICATIONS OF THE FINDINGS Our findings have implications for IVF clinicians in terms of patient counseling on the prognosis of IVF treatment, as well as for genetic counseling regarding miscarriage. Our results highlight the importance of further research on the shared genetic architecture and common pathophysiological basis of DOR and miscarriage, which may lead to new therapeutic opportunities. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Hunan Youth Science and Technology Innovation Talent Project (2020RC3060), the International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program, YJ20220220), the fellowship of China Postdoctoral Science Foundation (2022M723564), and the Natural Science Foundation of Hunan Province, China (2023JJ41016). This work has been accepted for poster presentation at the 39th Annual Meeting of ESHRE, Copenhagen, Denmark, 25-28 June 2023 (Poster number: P-477). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yan Yi
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Jing Fu
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Shi Xie
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Qiong Zhang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Bin Xu
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Yonggang Wang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Yijing Wang
- Department of Geriatrics, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Li
- Department of Geriatrics, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- Department of Geriatrics, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- Department of Geriatrics, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| |
Collapse
|
120
|
Marchante M, Ramirez-Martin N, Buigues A, Martinez J, Pellicer N, Pellicer A, Herraiz S. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY) 2023; 15:10856-10874. [PMID: 37847151 PMCID: PMC10637815 DOI: 10.18632/aging.205086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Female fertility is negatively correlated with age, with noticeable declines in oocyte quantity and quality until menopause. To understand this physiological process and evaluate human approaches for treating age-related infertility, preclinical studies in appropriate animal models are needed. Thus, we aimed to characterize an immunodeficient physiological aging mouse model displaying ovarian characteristics of different stages during women's reproductive life. NOD/SCID mice of different ages (8-, 28-, and 36-40-week-old) were employed to mimic ovarian phenotypes of young, Advanced Maternal Age (AMA), and old women (~18-20-, ~36-38-, and >45-years-old, respectively). Mice were stimulated, mated, and sacrificed to recover oocytes and embryos. Then, ovarian reserve, follicular growth, ovarian stroma, mitochondrial dysfunction, and proteomic profiles were assessed. Age-matched C57BL/6 mice were employed to cross-validate the reproductive outcomes. The quantity and quality of oocytes were decreased in AMA and Old mice. These age-related effects associated spindle and chromosome abnormalities, along with decreased developmental competence to blastocyst stage. Old mice had less follicles, impaired follicle activation and growth, an ovarian stroma inconducive to growth, and increased mitochondrial dysfunctions. Proteomic analysis corroborated these histological findings. Based on that, NOD/SCID mice can be used to model different ovarian aging phenotypes and potentially test human anti-aging treatments.
Collapse
Affiliation(s)
- María Marchante
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia 46010, Spain
| | - Noelia Ramirez-Martin
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Anna Buigues
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Jessica Martinez
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Nuria Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- IVIRMA Valencia, Valencia 46015, Spain
| | - Antonio Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
- IVIRMA Rome, Rome 00197, Italy
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| |
Collapse
|
121
|
Knoblochova L, Duricek T, Vaskovicova M, Zorzompokou C, Rayova D, Ferencova I, Baran V, Schultz RM, Hoffmann ER, Drutovic D. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 2023; 24:e56530. [PMID: 37694680 PMCID: PMC10561370 DOI: 10.15252/embr.202256530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Collapse
Affiliation(s)
- Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomas Duricek
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Chrysoula Zorzompokou
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Diana Rayova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Vladimir Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of SciencesKosiceSlovakia
| | - Richard M Schultz
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
122
|
Ruth KS, Beaumont RN, Locke JM, Tyrrell J, Crandall CJ, Hawkes G, Frayling TM, Prague JK, Patel KA, Wood AR, Weedon MN, Murray A. Insights into the genetics of menopausal vasomotor symptoms: genome-wide analyses of routinely-collected primary care health records. BMC Med Genomics 2023; 16:231. [PMID: 37784116 PMCID: PMC10546673 DOI: 10.1186/s12920-023-01658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/08/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Vasomotor symptoms (VMS) can often significantly impact women's quality of life at menopause. In vivo studies have shown that increased neurokinin B (NKB) / neurokinin 3 receptor (NK3R) signalling contributes to VMS, with previous genetic studies implicating the TACR3 gene locus that encodes NK3R. Large-scale genomic analyses offer the possibility of biological insights but few such studies have collected data on VMS, while proxy phenotypes such as hormone replacement therapy (HRT) use are likely to be affected by changes in clinical practice. We investigated the genetic basis of VMS by analysing routinely-collected health records. METHODS We performed a GWAS of VMS derived from linked primary-care records and cross-sectional self-reported HRT use in up to 153,152 women from UK Biobank, a population-based cohort. In a subset of this cohort (n = 39,356), we analysed exome-sequencing data to test the association with VMS of rare deleterious genetic variants. Finally, we used Mendelian randomisation analysis to investigate the reasons for HRT use over time. RESULTS Our GWAS of health-records derived VMS identified a genetic signal near TACR3 associated with a lower risk of VMS (OR=0.76 (95% CI 0.72,0.80) per A allele, P=3.7x10-27), which was consistent with previous studies, validating this approach. Conditional analyses demonstrated independence of genetic signals for puberty timing and VMS at the TACR3 locus, including a rare variant predicted to reduce functional NK3R levels that was associated with later menarche (P = 5 × 10-9) but showed no association with VMS (P = 0.6). Younger menopause age was causally-associated with greater HRT use before 2002 but not after. CONCLUSIONS We provide support for TACR3 in the genetic basis of VMS but unexpectedly find that rare genomic variants predicted to lower NK3R levels did not modify VMS, despite the proven efficacy of NK3R antagonists. Using genomics we demonstrate changes in genetic associations with HRT use over time, arising from a change in clinical practice since the early 2000s, which is likely to reflect a switch from preventing post-menopausal complications in women with earlier menopause to primarily treating VMS. Our study demonstrates that integrating routinely-collected primary care health records and genomic data offers great potential for exploring the genetic basis of symptoms.
Collapse
Affiliation(s)
- Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK.
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Jonathan M Locke
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Carolyn J Crandall
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at University of California, Los Angeles, CA, 90024, USA
| | - Gareth Hawkes
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Julia K Prague
- Exeter Centre of Excellence for Diabetes Research, University of Exeter, Exeter, EX2 5DW, UK
- Macleod Diabetes and Endocrinology Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, EX2 5DW, UK
| | - Kashyap A Patel
- Exeter Centre of Excellence for Diabetes Research, University of Exeter, Exeter, EX2 5DW, UK
- Macleod Diabetes and Endocrinology Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, EX2 5DW, UK
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| |
Collapse
|
123
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
124
|
Moysés-Oliveira M, Scaff AMC, Adami LNG, Hachul H, Andersen ML, Tufik S. Genetic factors underlying insomnia and ovarian insufficiency. Climacteric 2023; 26:510-512. [PMID: 37144421 DOI: 10.1080/13697137.2023.2205580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
Premature ovarian insufficiency (POI) is characterized by a loss of regular hormone production and egg release in women below the age of 40 years, which often leads to infertility, vaginal dryness and dysfunctional sleep. Acknowledging the common co-occurrence of insomnia and POI, we tested the overlap between POI and insomnia-associated genes, which were implicated in previous large-scale populational genetics efforts. Among the 27 overlapping genes, three pathways were found as enriched: DNA replication, homologous recombination and Fanconi anemia. We then describe biological mechanisms, which link these pathways to a dysfunctional regulation and response to oxidative stress. We propose that oxidative stress may correspond to one of the convergent cellular processes between ovarian malfunction and insomnia pathogenic etiology. This overlap might also be driven by cortisol release associated with dysregulated DNA repair mechanisms. Benefiting from the enormous advances in populational genetics studies, this study provides a novel outlook on the relationship between insomnia and POI. The shared genetic factors and critical biological nodes between these two comorbidities may lead to identification of putative pharmacological and therapeutical targets, which can leverage novel approaches to treat or alleviate their symptoms.
Collapse
Affiliation(s)
| | | | - L N G Adami
- Sleep Institute, AFIP, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - H Hachul
- Sleep Institute, AFIP, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M L Andersen
- Sleep Institute, AFIP, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - S Tufik
- Sleep Institute, AFIP, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
125
|
Chang CL. Facilitation of Ovarian Response by Mechanical Force-Latest Insight on Fertility Improvement in Women with Poor Ovarian Response or Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:14751. [PMID: 37834198 PMCID: PMC10573075 DOI: 10.3390/ijms241914751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The decline in fertility in aging women, especially those with poor ovarian response (POR) or primary ovarian insufficiency (POI), is a major concern for modern IVF centers. Fertility treatments have traditionally relied on gonadotropin- and steroid-hormone-based IVF practices, but these methods have limitations, especially for women with aging ovaries. Researchers have been motivated to explore alternative approaches. Ovarian aging is a complicated process, and the deterioration of oocytes, follicular cells, the extracellular matrix (ECM), and the stromal compartment can all contribute to declining fertility. Adjunct interventions that involve the use of hormones, steroids, and cofactors and gamete engineering are two major research areas aimed to improve fertility in aging women. Additionally, mechanical procedures including the In Vitro Activation (IVA) procedure, which combines pharmacological activators and fragmentation of ovarian strips, and the Whole Ovary Laparoscopic Incision (WOLI) procedure that solely relies on mechanical manipulation in vivo have shown promising results in improving follicle growth and fertility in women with POR and POI. Advances in the use of mechanical procedures have brought exciting opportunities to improve fertility outcomes in aging women with POR or POI. While the lack of a comprehensive understanding of the molecular mechanisms that lead to fertility decline in aging women remains a major challenge for further improvement of mechanical-manipulation-based approaches, recent progress has provided a better view of how these procedures promote folliculogenesis in the fibrotic and avascular aging ovaries. In this review, we first provide a brief overview of the potential mechanisms that contribute to ovarian aging in POI and POR patients, followed by a discussion of measures that aim to improve ovarian folliculogenesis in aging women. At last, we discuss the likely mechanisms that contribute to the outcomes of IVA and WOLI procedures and potential future directions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
126
|
Tschiderer L, Peters SAE, van der Schouw YT, van Westing AC, Tong TYN, Willeit P, Seekircher L, Moreno‐Iribas C, Huerta JM, Crous‐Bou M, Söderholm M, Schulze MB, Johansson C, Själander S, Heath AK, Macciotta A, Dahm CC, Ibsen DB, Pala V, Mellemkjær L, Burgess S, Wood A, Kaaks R, Katzke V, Amiano P, Rodriguez‐Barranco M, Engström G, Weiderpass E, Tjønneland A, Halkjær J, Panico S, Danesh J, Butterworth A, Onland‐Moret NC. Age at Menopause and the Risk of Stroke: Observational and Mendelian Randomization Analysis in 204 244 Postmenopausal Women. J Am Heart Assoc 2023; 12:e030280. [PMID: 37681566 PMCID: PMC10547274 DOI: 10.1161/jaha.123.030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Background Observational studies have shown that women with an early menopause are at higher risk of stroke compared with women with a later menopause. However, associations with stroke subtypes are inconsistent, and the causality is unclear. Methods and Results We analyzed data of the UK Biobank and EPIC-CVD (European Prospective Investigation Into Cancer and Nutrition-Cardiovascular Diseases) study. A total of 204 244 postmenopausal women without a history of stroke at baseline were included (7883 from EPIC-CVD [5292 from the subcohort], 196 361 from the UK Biobank). Pooled mean baseline age was 58.9 years (SD, 5.8), and pooled mean age at menopause was 47.8 years (SD, 6.2). Over a median follow-up of 12.6 years (interquartile range, 11.8-13.3), 6770 women experienced a stroke (5155 ischemic strokes, 1615 hemorrhagic strokes, 976 intracerebral hemorrhages, and 639 subarachnoid hemorrhages). In multivariable adjusted observational Cox regression analyses, the pooled hazard ratios per 5 years younger age at menopause were 1.09 (95% CI, 1.07-1.12) for stroke, 1.09 (95% CI, 1.06-1.13) for ischemic stroke, 1.10 (95% CI, 1.04-1.16) for hemorrhagic stroke, 1.14 (95% CI, 1.08-1.20) for intracerebral hemorrhage, and 1.00 (95% CI, 0.84-1.20) for subarachnoid hemorrhage. When using 2-sample Mendelian randomization analysis, we found no statistically significant association between genetically proxied age at menopause and risk of any type of stroke. Conclusions In our study, earlier age at menopause was related to a higher risk of stroke. We found no statistically significant association between genetically proxied age at menopause and risk of stroke, suggesting no causal relationship.
Collapse
Affiliation(s)
- Lena Tschiderer
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtthe Netherlands
- Institute of Health EconomicsMedical University of InnsbruckInnsbruckAustria
| | - Sanne A. E. Peters
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtthe Netherlands
- The George Institute for Global Health, School of Public HealthImperial College LondonLondonUnited Kingdom
- The George Institute for Global HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Yvonne T. van der Schouw
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Anniek C. van Westing
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtthe Netherlands
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Tammy Y. N. Tong
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Peter Willeit
- Institute of Health EconomicsMedical University of InnsbruckInnsbruckAustria
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
| | - Lisa Seekircher
- Institute of Health EconomicsMedical University of InnsbruckInnsbruckAustria
| | - Conchi Moreno‐Iribas
- Instituto de Salud Pública y Laboral de NavarraPamplonaSpain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - José María Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Department of EpidemiologyMurcia Regional Health Council‐IMIBMurciaSpain
| | - Marta Crous‐Bou
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO)–Bellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMA
| | - Martin Söderholm
- Department of NeurologySkåne University Hospital, Lund and MalmöMalmöSweden
- Department of Clinical Sciences, MalmöLund UniversityMalmöSweden
| | - Matthias B. Schulze
- Department of Molecular EpidemiologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
- Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - Cecilia Johansson
- Skellefteå Research Unit, Department of Public Health and Clinical MedicineUmeå UniversityUmeåVästerbottenSweden
| | - Sara Själander
- Department of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public HealthImperial College LondonLondonUnited Kingdom
| | - Alessandra Macciotta
- Centre for Biostatistics, Epidemiology, and Public Health (C‐BEPH), Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | | - Daniel B. Ibsen
- Department of Public HealthAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhusDenmark
- MRC Epidemiology UnitUniversity of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Valeria Pala
- Epidemiology and Prevention UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | | | - Stephen Burgess
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeCambridgeUnited Kingdom
- MRC Biostatistics Unit, School of Clinical MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Angela Wood
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
| | - Rudolf Kaaks
- Division of Cancer EpidemiologyGerman Cancer Research Center, DKFZHeidelbergGermany
| | - Verena Katzke
- Division of Cancer EpidemiologyGerman Cancer Research Center, DKFZHeidelbergGermany
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Ministry of Health of the Basque GovernmentSub Directorate for Public Health and Addictions of GipuzkoaSan SebastianSpain
- Biodonostia Health Research InstituteEpidemiology of Chronic and Communicable Diseases GroupSan SebastianSpain
| | - Miguel Rodriguez‐Barranco
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Escuela Andaluza de Salud Pública (EASP)GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Gunnar Engström
- Department of Clinical Sciences, MalmöLund UniversityMalmöSweden
| | | | - Anne Tjønneland
- Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jytte Halkjær
- Danish Cancer Society Research CenterCopenhagenDenmark
| | | | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
- National Institute for Health and Care Research Cambridge Biomedical Research CentreCambridge University HospitalsCambridgeUnited Kingdom
- The National Institute for Health and Care Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and GenomicsUniversity of CambridgeCambridgeUnited Kingdom
- Human GeneticsWellcome Sanger InstituteSaffron WaldenUnited Kingdom
- Health Data Research UK CambridgeWellcome Genome Campus and University of CambridgeCambridgeUnited Kingdom
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
| | - Adam Butterworth
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
- Heart and Lung Research InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Health Data Research UK CambridgeWellcome Genome Campus and University of CambridgeCambridgeUnited Kingdom
- NIHR Blood and Transplant Research Unit in Donor Health and BehaviourUniversity of CambridgeCambridgeUnited Kingdom
- BHF Centre of Research Excellence, School of Clinical MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
| | - N. Charlotte Onland‐Moret
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
127
|
Liu M, Feng J. Association between adiposity and facial aging: results from a Mendelian randomization study. Eur J Med Res 2023; 28:350. [PMID: 37715292 PMCID: PMC10503104 DOI: 10.1186/s40001-023-01236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/16/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Skin, as a sociologically meaningful interface, has psychological implications different from other organs, particularly in the context of the global population aging. Growing evidence suggests that facial aging is associated with an increased risk of adiposity. Existing research, however, were observational, and while they may find some correlations, it is difficult to simply disentangle non-causal or reverse-causal links because these associations may be confounded or fail to accurately reflect true causative linkages. OBJECTIVES We conducted a 2-sample Mendelian randomization (MR) study to examine the potential effect of facial aging on the risk of broad obesity and its three major adiposity indicators, including body mass index (BMI), body fat percentage (BF%) and waist circumference (WC). METHODS Genetic instruments from IEU OpenGWAS project, one of the largest available genome-wide association studies (GWAS) for facial aging (423,999 samples) were used to investigate the relation to broad obesity (32,858 cases, 65,839 controls). Using the inverse-variance weighted (IVW) technique, single nucleotide polymorphisms (SNPs) associated with adiposity indicators (BMI (461,460 samples), BF% (454,633 samples), and WC (462,166 samples)) were investigated in relationship to facial aging. Further sensitivity analyses were performed, including Mendelian randomization-Egger (MR-Egger), weighted median estimates, and leave-one-out analysis, to evaluate the consistency of the results and related potential issues in MR studies. RESULTS We identified strong and significant correlations between adiposity and facial aging in the 17 broad obesity-associated SNPs (IVW estimate of odds ratio OR = 1.020, 95% CI 1.010-1.029, P = 7.303e - 05), 458 BMI-associated SNPs (IVW estimate of odds ratio OR = 1.047, 95% CI 1.0357-1.058, P = 1.154e - 16),for the 395 BF%-associated SNPs (OR = 1.056, 95%CI 1.040-1.072,P = 7.617e - 12), or for the 374 WC-associated SNPs (OR = 1.072, 95% CI 1057-1.087,P = 1.229e - 23). A range of complementary methodologies have been employed to evaluate horizontal pleiotropy and related potential caveats occurring in MR research. CONCLUSIONS Using Mendelian randomization as an alternative approach to investigate causality, we found a causal relationship between adiposity and facial aging, which was statistically strong and significant.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jingwei Feng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
128
|
Zhang X, Huangfu Z, Wang S. Review of mendelian randomization studies on age at natural menopause. Front Endocrinol (Lausanne) 2023; 14:1234324. [PMID: 37766689 PMCID: PMC10520463 DOI: 10.3389/fendo.2023.1234324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Menopause marks the end of the reproductive phase of life. Based on epidemiological studies, abnormal age at natural menopause (ANM) is thought to contribute to a number of adverse outcomes, such as osteoporosis, cardiovascular disease, and cancer. However, the causality of these associations remains unclear. A powerful epidemiological method known as Mendelian randomization (MR) can be used to clarify the causality between ANM and other diseases or traits. The present review describes MR studies that included ANM as an exposure, outcome and mediator. The findings of MR analyses on ANM have revealed that higher body mass index, poor educational level, early age at menarche, early age at first live birth, early age at first sexual intercourse, and autoimmune thyroid disease appear to be involved in early ANM etiology. The etiology of late ANM appears to be influenced by higher free thyroxine 4 and methylene tetrahydrofolate reductase gene mutations. Furthermore, early ANM has been found to be causally associated with an increased risk of osteoporosis, fracture, type 2 diabetes mellitus, glycosylated hemoglobin, and the homeostasis model of insulin resistance level. In addition, late ANM has been found to be causally associated with an increased systolic blood pressure, higher risk of breast cancer, endometrial cancer, endometrioid ovarian carcinoma, lung cancer, longevity, airflow obstruction, and lower risk of Parkinson's disease. ANM is also a mediator for breast cancer caused by birth weight and childhood body size. However, due to the different instrumental variables used, some results of studies are inconsistent. Future studies with more valid genetic variants are needed for traits with discrepancies between MRs or between MR and other types of epidemiological studies.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Huangfu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
129
|
Ojavee SE, Darrous L, Patxot M, Läll K, Fischer K, Mägi R, Kutalik Z, Robinson MR. Genetic insights into the age-specific biological mechanisms governing human ovarian aging. Am J Hum Genet 2023; 110:1549-1563. [PMID: 37543033 PMCID: PMC10502738 DOI: 10.1016/j.ajhg.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/07/2023] Open
Abstract
There is currently little evidence that the genetic basis of human phenotype varies significantly across the lifespan. However, time-to-event phenotypes are understudied and can be thought of as reflecting an underlying hazard, which is unlikely to be constant through life when values take a broad range. Here, we find that 74% of 245 genome-wide significant genetic associations with age at natural menopause (ANM) in the UK Biobank show a form of age-specific effect. Nineteen of these replicated discoveries are identified only by our modeling framework, which determines the time dependency of DNA-variant age-at-onset associations without a significant multiple-testing burden. Across the range of early to late menopause, we find evidence for significantly different underlying biological pathways, changes in the signs of genetic correlations of ANM to health indicators and outcomes, and differences in inferred causal relationships. We find that DNA damage response processes only act to shape ovarian reserve and depletion for women of early ANM. Genetically mediated delays in ANM were associated with increased relative risk of breast cancer and leiomyoma at all ages and with high cholesterol and heart failure for late-ANM women. These findings suggest that a better understanding of the age dependency of genetic risk factor relationships among health indicators and outcomes is achievable through appropriate statistical modeling of large-scale biobank data.
Collapse
Affiliation(s)
- Sven E Ojavee
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Liza Darrous
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia; Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Zoltan Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | | |
Collapse
|
130
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
131
|
Shi Y, Miao BY, Ai XX, Cao P, Gao J, Xu Y, Yang Q, Fei J, Zhang Q, Mai QY, Wen YX, Qu YL, Zhou CQ, Xu YW. Identification of common genetic polymorphisms associated with down-regulated gonadotropin levels in an exome-wide association study. Fertil Steril 2023; 120:671-681. [PMID: 37001689 DOI: 10.1016/j.fertnstert.2023.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To investigate whether common genetic polymorphisms are associated with gonadotropin levels after down-regulation with daily gonadotropin-releasing hormone agonist and whether the polymorphisms of candidate variants influence the ovarian response to exogenous gonadotropins. DESIGN Genetic association study. SETTING University-affiliated in vitro fertilization center. PATIENTS Subjects enrolled in an exploratory exome-wide association study (n = 862), a replication exome-wide association study (n = 86), and a classifier validation study (n = 148) were recruited from September 2016 to October 2018, September 2019 to September 2020, and January 2021 to December 2021, respectively. The included patients were aged ≤40 years and had a basal follicle-stimulating hormone (FSH) ≤12 IU/L. INTERVENTIONS All participants received a luteal phase down-regulation long protocol. Genome DNA was extracted from the peripheral blood leukocytes. For the exploratory and replication cohorts, exome sequencing was conducted on a HiSeq 2500 sequencing platform. The multiplex polymerase chain reaction amplification technique and next-generation sequencing also were performed in the exploratory and replication cohorts. For the samples of the validation cohort, Sanger sequencing was performed. MAIN OUTCOME MEASURES The primary endpoint was the gonadotropin levels after down-regulation, and the secondary endpoints were hormone levels and follicle diameters during stimulation, the total dose of FSH, duration of FSH stimulation, number of oocytes retrieved, and clinical pregnancy rate. RESULTS In the exploratory cohort, we identified that FSHB rs6169 (P=2.71 × 10-24) and its single-nucleotide polymorphisms in high linkage disequilibrium were associated with the down-regulated FSH level. The same locus was confirmed in the replication cohort. Women carrying the C allele of FSHB rs6169 exhibited higher average estradiol level during stimulation (P=6.82 × 10-5), shorter duration of stimulation, and less amount of exogenous FSH (Pduration=0.0002; Pdose=0.0024). In the independent validation set, adding rs6169 genotypes into the prediction model for FSH level after down-regulation enhanced the area under the curve from 0.560 to 0.712 in a logistic regression model, and increased prediction accuracy by 41.05% when a support vector machine classifier was applied. CONCLUSION The C allele of FSHB rs6169 is a susceptibility site for the relatively high level of FSH after down-regulation, which may be associated with increased ovarian FSH sensitivity.
Collapse
Affiliation(s)
- Yue Shi
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Ben-Yu Miao
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Xi-Xiong Ai
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China; Reproductive Medicine Center, The Affiliated Shenzhen Maternity and Child Healthcare Hospital of the South Medical University, Shenzhen, Guangdong, China
| | - Ping Cao
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China; Research School for Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Jun Gao
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Qun Yang
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Jia Fei
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Qian Zhang
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Qing-Yun Mai
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yang-Xing Wen
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yan-Lin Qu
- Department of Management Science and Engineering, Stanford University, Stanford, California
| | - Can-Quan Zhou
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yan-Wen Xu
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
132
|
Vanderschelden RK, Rodriguez-Escriba M, Chan SH, Berman AJ, Rajkovic A, Yatsenko SA. Heterozygous TP63 pathogenic variants in isolated primary ovarian insufficiency. J Assist Reprod Genet 2023; 40:2211-2218. [PMID: 37453019 PMCID: PMC10440319 DOI: 10.1007/s10815-023-02886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
PURPOSE Our study aimed to identify the genetic causes of non-syndromic primary ovarian insufficiency (POI) in female patients. METHODS We performed whole exome sequencing in females suffering from isolated POI and in their available family members. Copy number variations were validated by long-range PCR and Sanger sequencing, and conservation analysis was used to evaluate the impact of sequence variants on protein composition. RESULTS We detected two pathogenic TP63 heterozygous deleterious single nucleotide variants and a novel TP63 intragenic copy number alteration in three unrelated women with isolated POI. Two of these genetic variants are predicted to result in loss of transactivation inhibition of p63, whereas the third one affects the first exon of the ΔNp63 isoforms. CONCLUSION Our results broaden the spectrum of TP63-related disorders, which now includes sporadic and familial, isolated, and syndromic POI. Genomic variants that impair the transactivation inhibitory domain of the TAp63α isoform are the cause of non-syndromic POI. Additionally, variants affecting only the ΔNp63 isoforms may result in isolated POI. In patients with isolated POI, careful evaluation of genomic variants in pleiotropic genes such as TP63 will be essential to establish a full clinical spectrum and atypical presentation of a disorder.
Collapse
Affiliation(s)
| | | | - Serena H Chan
- Division of Pediatric and Adolescent Gynecology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, USA.
| |
Collapse
|
133
|
Schuermans A, Nakao T, Uddin MM, Hornsby W, Ganesh S, Shadyab AH, Liu S, Haring B, Shufelt CL, Taub MA, Mathias RA, Kooperberg C, Reiner AP, Bick AG, Manson JE, Natarajan P, Honigberg MC. Age at Menopause, Leukocyte Telomere Length, and Coronary Artery Disease in Postmenopausal Women. Circ Res 2023; 133:376-386. [PMID: 37489536 PMCID: PMC10528840 DOI: 10.1161/circresaha.123.322984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Premature menopause is a risk factor for accelerated cardiovascular aging, but underlying mechanisms remain incompletely understood. This study investigated the role of leukocyte telomere length (LTL), a marker of cellular aging and genomic instability, in the association of premature menopause with cardiovascular disease. METHODS Participants from the UK Biobank and Women's Health Initiative with complete reproductive history and LTL measurements were included. Primary analyses tested the association between age at menopause and LTL using multivariable-adjusted linear regression. Secondary analyses stratified women by history of gynecologic surgery. Mendelian randomization was used to infer causal relationships between LTL and age at natural menopause. Multivariable-adjusted Cox regression and mediation analyses tested the joint associations of premature menopause and LTL with incident coronary artery disease. RESULTS This study included 130 254 postmenopausal women (UK Biobank: n=122 224; Women's Health Initiative: n=8030), of whom 4809 (3.7%) had experienced menopause before age 40. Earlier menopause was associated with shorter LTL (meta-analyzed ß=-0.02 SD/5 years of earlier menopause [95% CI, -0.02 to -0.01]; P=7.2×10-12). This association was stronger and significant in both cohorts for women with natural/spontaneous menopause (meta-analyzed ß=-0.04 SD/5 years of earlier menopause [95% CI, -0.04 to -0.03]; P<2.2×10-16) and was independent of hormone therapy use. Mendelian randomization supported a causal association of shorter genetically predicted LTL with earlier age at natural menopause. LTL and age at menopause were independently associated with incident coronary artery disease, and mediation analyses indicated small but significant mediation effects of LTL in the association of menopausal age with coronary artery disease. CONCLUSIONS Earlier age at menopause is associated with shorter LTL, especially among women with natural menopause. Accelerated telomere shortening may contribute to the heightened cardiovascular risk associated with premature menopause.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shriie Ganesh
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Simin Liu
- Department of Epidemiology and Brown Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Bernhard Haring
- Department of Medicine III, Saarland University Medical Center, Homburg, Saarland, Germany
- Department of Medicine I, University of Wuerzburg, Bavaria, Germany
| | - Chrisandra L. Shufelt
- Division of Internal Medicine, Women’s Health Research Center, Mayo Clinic, Jacksonville, Florida
| | - Margaret A. Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
134
|
Shen C, Jiang Y, Lin J, He Y, Liu Y, Fang D. SIRT6 reduces the symptoms of premature ovarian failure and alleviates oxidative stress and apoptosis in granulosa cells by degrading p66SHC via H3K9AC. Gynecol Endocrinol 2023; 39:2250003. [PMID: 37634527 DOI: 10.1080/09513590.2023.2250003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
CONTEXT Substantial evidence suggests that ovarian oxidative stress can result in severe ovarian dysfunction. OBJECTIVE The purpose of this article is to investigate the potential of SIRT6 in alleviating premature ovarian failure (POF) by inhibiting oxidative stress. METHODS To mimic POF, mice were administered daily subcutaneous injections of d-galactose. The levels of E2, FSH, LH, AMH, and progesterone in serum were measured, along with changes in follicles and SIRT6 levels. Mice were treated with the SIRT6 agonist MDL-800, SIRT6 levels, follicles, and aforementioned hormones were reassessed. The effects of MDL-800 on oxidative stress and apoptosis were subsequently identified. Primary granulosa cells were isolated from mice, and the effects of H2O2 and MDL-800 on cell viability, oxidative stress, SIRT6 level, and apoptosis were evaluated. In addition, the regulation of SIRT6 on H3K9AC/p66SHC was verified by examining changes in protein levels, promoter activity, and the reversal effects of p66SHC overexpression. RESULTS MDL-800 mitigated hormone fluctuations, reduced follicle depletion in ovarian tissue, and attenuated oxidative stress and apoptosis in mice. In vitro experiments demonstrated that MDL-800 enhanced the resilience of primary granulosa cells against H2O2, as evidenced by increased cell viability and reduced oxidative stress and apoptosis. Furthermore, SIRT6 was found to decrease H3K9AC and p66SHC levels, as well as attenuate p66SHC promoter activity. The protective effects of MDL-800 on cells were reversed upon p66SHC overexpression. CONCLUSION In summary, this study highlights that activation of SIRT6 can alleviate POF and reduce oxidative stress by degrading H3K9AC and suppressing p66Shc levels in granulosa cells.
Collapse
Affiliation(s)
- Chuan Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yibei He
- Department of Laboratory Medicine, Chengdu Chenghua District Maternal and Child Health Hospital, Chengdu, Sichuan, P.R. China
| | - Yue Liu
- Department of Laboratory Medicine, Chengdu Chenghua District Maternal and Child Health Hospital, Chengdu, Sichuan, P.R. China
| | - Dingzhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
135
|
Xu W, Yang Y, Yu Y, Wen C, Zhao S, Cao L, Zhao S, Qin Y, Chen ZJ. FAAP100 is required for the resolution of transcription-replication conflicts in primordial germ cells. BMC Biol 2023; 21:174. [PMID: 37580696 PMCID: PMC10426154 DOI: 10.1186/s12915-023-01676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The maintenance of genome stability in primordial germ cells (PGCs) is crucial for the faithful transmission of genetic information and the establishment of reproductive reserve. Numerous studies in recent decades have linked the Fanconi anemia (FA) pathway with fertility, particularly PGC development. However, the role of FAAP100, an essential component of the FA core complex, in germ cell development is unexplored. RESULTS We find that FAAP100 plays an essential role in R-loop resolution and replication fork protection to counteract transcription-replication conflicts (TRCs) during mouse PGC proliferation. FAAP100 deletion leads to FA pathway inactivation, increases TRCs as well as cotranscriptional R-loops, and contributes to the collapse of replication forks and the generation of DNA damage. Then, the activated p53 signaling pathway triggers PGC proliferation defects, ultimately resulting in insufficient establishment of reproductive reserve in both sexes of mice. CONCLUSIONS Our findings suggest that FAAP100 is required for the resolution of TRCs in PGCs to safeguard their genome stability.
Collapse
Affiliation(s)
- Weiwei Xu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yajuan Yang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yongze Yu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Canxin Wen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Simin Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Lili Cao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
| |
Collapse
|
136
|
Tsui V, Lyu R, Novakovic S, Stringer JM, Dunleavy JE, Granger E, Semple T, Leichter A, Martelotto LG, Merriner DJ, Liu R, McNeill L, Zerafa N, Hoffmann ER, O’Bryan MK, Hutt K, Deans AJ, Heierhorst J, McCarthy DJ, Crismani W. Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals. CELL GENOMICS 2023; 3:100349. [PMID: 37601968 PMCID: PMC10435384 DOI: 10.1016/j.xgen.2023.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/22/2023]
Abstract
Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.
Collapse
Affiliation(s)
- Vanessa Tsui
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Stevan Novakovic
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jessica M. Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jessica E.M. Dunleavy
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Elissah Granger
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tim Semple
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Anna Leichter
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruijie Liu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy McNeill
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moira K. O’Bryan
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Deans
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Molecular Genetics Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
137
|
Walters RG, Millwood IY, Lin K, Schmidt Valle D, McDonnell P, Hacker A, Avery D, Edris A, Fry H, Cai N, Kretzschmar WW, Ansari MA, Lyons PA, Collins R, Donnelly P, Hill M, Peto R, Shen H, Jin X, Nie C, Xu X, Guo Y, Yu C, Lv J, Clarke RJ, Li L, Chen Z, China Kadoorie Biobank Collaborative Group. Genotyping and population characteristics of the China Kadoorie Biobank. CELL GENOMICS 2023; 3:100361. [PMID: 37601966 PMCID: PMC10435379 DOI: 10.1016/j.xgen.2023.100361] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/09/2023] [Accepted: 06/24/2023] [Indexed: 08/22/2023]
Abstract
The China Kadoorie Biobank (CKB) is a population-based prospective cohort of >512,000 adults recruited from 2004 to 2008 from 10 geographically diverse regions across China. Detailed data from questionnaires and physical measurements were collected at baseline, with additional measurements at three resurveys involving ∼5% of surviving participants. Analyses of genome-wide genotyping, for >100,000 participants using custom-designed Axiom arrays, reveal extensive relatedness, recent consanguinity, and signatures reflecting large-scale population movements from recent Chinese history. Systematic genome-wide association studies of incident disease, captured through electronic linkage to death and disease registries and to the national health insurance system, replicate established disease loci and identify 14 novel disease associations. Together with studies of candidate drug targets and disease risk factors and contributions to international genetics consortia, these demonstrate the breadth, depth, and quality of the CKB data. Ongoing high-throughput omics assays of collected biosamples and planned whole-genome sequencing will further enhance the scientific value of this biobank.
Collapse
Affiliation(s)
- Robin G. Walters
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Iona Y. Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Dan Schmidt Valle
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Pandora McDonnell
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Alex Hacker
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Daniel Avery
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Ahmed Edris
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Hannah Fry
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Na Cai
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | - M. Azim Ansari
- Nuffield Department of Medicine, Oxford University, Oxford OX1 3SY, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Paul A. Lyons
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rory Collins
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Michael Hill
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Richard Peto
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Hongbing Shen
- Department of Epidemiology, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chao Nie
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yu Guo
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing 100191, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing 100191, China
| | - Robert J. Clarke
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing 100191, China
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - China Kadoorie Biobank Collaborative Group
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Nuffield Department of Medicine, Oxford University, Oxford OX1 3SY, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Epidemiology, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211116, China
- BGI-Shenzhen, Shenzhen 518083, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing 100191, China
| |
Collapse
|
138
|
Ren J, Huang Q, Lie X, Tong X, Yao Q, Zhou G. Kidney damage on fertility and pregnancy: A Mendelian randomization. PLoS One 2023; 18:e0288788. [PMID: 37478100 PMCID: PMC10361496 DOI: 10.1371/journal.pone.0288788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Low fertility and adverse pregnancy outcomes are commonly observed in women with chronic kidney disease (CKD). However, a causal relationship between low fertility and adverse pregnancy outcomes with CKD remains unclear. Besides, whether mild kidney dysfunction can affect fertility and pregnancy still needs exploration. Hence, this study aimed to investigate the causal effect of kidney damage on fertility and pregnancy using Mendelian randomization (MR). METHODS We first used two-sample MR to examine the effects of kidney damage on fertility and pregnancy. Next, we introduced the Bayesian model averaging MR analysis to detect major causal relationships and render the results robust. The genetic instruments and outcome data were derived from various large genome-wide association studies. RESULTS Adverse pregnancy outcomes: Our analyses supported a suggestive causal effect of CKD and estimated glomerular filtration rate (eGFR) rapid on stillbirth, with CKD having an odds ratio (OR) of 1.020 [95% confidence interval (CI) 1.002 to 1.038] and eGFR rapid having an OR of 1.026 (95% CI 1.004-1.048). We also discovered a suggestive causal effect of eGFR on spontaneous abortion, with an OR of 2.63 (95% CI 1.269 to 5.450). Moreover, increased urinary albumin-to-creatinine ratio (UACR) was regarded as a potential risk factor for pre-eclampsia (OR = 1.936; 95% CI 1.065 to 3.517) and gestational hypertension (OR = 1.700; 95% CI 1.002 to 2.886). Fertility assessment: The results indicated that eGFR and UACR had a suggestive causal relationship with the anti-Müllerian hormone level (eGFR beta: 1.004; UACR beta: 0.405). CONCLUSIONS Our study used MR to demonstrate a suggestive causal relationship between kidney damage and fertility and pregnancy. We reported that mild kidney dysfunction might be a risk factor for reduced fertility and adverse pregnancy outcomes. Dynamic renal detection may help preserve fertility and reduce the risk of pregnancy loss.
Collapse
Affiliation(s)
- Jin Ren
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First College of Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyan Huang
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First College of Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Lie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xingli Tong
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ge Zhou
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
139
|
Cappola AR, Auchus RJ, El-Hajj Fuleihan G, Handelsman DJ, Kalyani RR, McClung M, Stuenkel CA, Thorner MO, Verbalis JG. Hormones and Aging: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1835-1874. [PMID: 37326526 PMCID: PMC11491666 DOI: 10.1210/clinem/dgad225] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Multiple changes occur across various endocrine systems as an individual ages. The understanding of the factors that cause age-related changes and how they should be managed clinically is evolving. This statement reviews the current state of research in the growth hormone, adrenal, ovarian, testicular, and thyroid axes, as well as in osteoporosis, vitamin D deficiency, type 2 diabetes, and water metabolism, with a specific focus on older individuals. Each section describes the natural history and observational data in older individuals, available therapies, clinical trial data on efficacy and safety in older individuals, key points, and scientific gaps. The goal of this statement is to inform future research that refines prevention and treatment strategies in age-associated endocrine conditions, with the goal of improving the health of older individuals.
Collapse
Affiliation(s)
- Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrinology and Metabolism Section, Medical Service, LTC Charles S. Kettles Veteran Affairs Medical Center, Ann Arbor, MI 48015, USA
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, Division of Endocrinology, Department of Internal Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney and Andrology Department, Concord Repatriation General Hospital, Sydney 2139, Australia
| | - Rita R Kalyani
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael McClung
- Oregon Osteoporosis Center, Portland, OR 97213, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Cynthia A Stuenkel
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Michael O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph G Verbalis
- Division of Endocrinology and Metabolism, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
140
|
Shah P, Hill R, Clark S, Dion C, Abakir A, Arends M, Leitch H, Reik W, Crossan G. Primordial germ cell DNA demethylation and development require DNA translesion synthesis.. [DOI: 10.1101/2023.07.05.547775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
AbstractMutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. It remains unclear if the role of DDR is solely in meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/-orPcnaK164R/K164R) or extension (Rev7-/-) result in a >150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.
Collapse
|
141
|
Denos M, Sun YQ, Jiang L, Brumpton BM, Mai XM. Age at Menarche, age at Natural Menopause, and Risk of Lung and Colorectal Cancers: A Mendelian Randomization Study. J Endocr Soc 2023; 7:bvad077. [PMID: 37404243 PMCID: PMC10315561 DOI: 10.1210/jendso/bvad077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 07/06/2023] Open
Abstract
Background The roles of age at menarche and age at menopause in the etiology of lung and colorectal cancers are unclear. Objective We aimed to investigate potential causal associations between age at menarche, age at natural menopause, and risk of lung and colorectal cancers using a Mendelian randomization (MR) approach. Methods From the Trøndelag Health Study in Norway, we defined two cohorts of 35 477 and 17 118 women to study the effects of age at menarche and age at natural menopause, respectively. We ran univariable MR to evaluate the potential causal associations. We performed multivariable MR adjusting for genetic variants of adult body mass index (BMI) to estimate the direct effect of age at menarche. Results Genetically predicted 1-year increase in age at menarche was associated with a lower risk of lung cancer overall (hazard ratio [HR, 0.64; 95% CI, 0.48-0.86), lung adenocarcinoma (HR, 0.61; 95% CI, 0.38-0.99), and lung non-adenocarcinoma (HR, 0.66; 95% CI, 0.45-0.95). After adjusting for adult BMI using a multivariable MR model, the direct effect estimates reduced to HR 0.72 (95% CI, 0.54-0.95) for lung cancer overall, HR 0.67 (95% CI, 0.43-1.03) for lung adenocarcinoma, and HR 0.77 (95% CI, 0.54-1.09) for lung non-adenocarcinoma. Age at menarche was not associated with colorectal cancer. Moreover, genetically predicted age at natural menopause was not associated with lung and colorectal cancers. Conclusion Our MR study suggested that later age at menarche was causally associated with a decreased risk of lung cancer overall and its subtypes, and adult BMI might be a mediator.
Collapse
Affiliation(s)
- Marion Denos
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Yi-Qian Sun
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, 7030 Trondheim, Norway
- Center for Oral Health Services and Research Mid-Norway (TkMidt), 7030 Trondheim, Norway
| | - Lin Jiang
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Ben Michael Brumpton
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Xiao-Mei Mai
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| |
Collapse
|
142
|
Shekari S, Stankovic S, Gardner EJ, Hawkes G, Kentistou KA, Beaumont RN, Mörseburg A, Wood AR, Prague JK, Mishra GD, Day FR, Baptista J, Wright CF, Weedon MN, Hoffmann ER, Ruth KS, Ong KK, Perry JRB, Murray A. Penetrance of pathogenic genetic variants associated with premature ovarian insufficiency. Nat Med 2023; 29:1692-1699. [PMID: 37349538 DOI: 10.1038/s41591-023-02405-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023]
Abstract
Premature ovarian insufficiency (POI) affects 1% of women and is a leading cause of infertility. It is often considered to be a monogenic disorder, with pathogenic variants in ~100 genes described in the literature. We sought to systematically evaluate the penetrance of variants in these genes using exome sequence data in 104,733 women from the UK Biobank, 2,231 (1.14%) of whom reported at natural menopause under the age of 40 years. We found limited evidence to support any previously reported autosomal dominant effect. For nearly all heterozygous effects on previously reported POI genes, we ruled out even modest penetrance, with 99.9% (13,699 out of 13,708) of all protein-truncating variants found in reproductively healthy women. We found evidence of haploinsufficiency effects in several genes, including TWNK (1.54 years earlier menopause, P = 1.59 × 10-6) and SOHLH2 (3.48 years earlier menopause, P = 1.03 × 10-4). Collectively, our results suggest that, for the vast majority of women, POI is not caused by autosomal dominant variants either in genes previously reported or currently evaluated in clinical diagnostic panels. Our findings, plus previous studies, suggest that most POI cases are likely oligogenic or polygenic in nature, which has important implications for future clinical genetic studies, and genetic counseling for families affected by POI.
Collapse
Affiliation(s)
- Saleh Shekari
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Stasa Stankovic
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Alexander Mörseburg
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Andrew R Wood
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Julia K Prague
- Exeter Centre of Excellence for Diabetes Research, University of Exeter, Exeter, UK
- Macleod Diabetes and Endocrinology Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, UK
| | - Gita D Mishra
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Felix R Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Julia Baptista
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Eva R Hoffmann
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katherine S Ruth
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Anna Murray
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
143
|
Choi JM, Vuppala S, Park MJ, Kim J, Jegal ME, Han YS, Kim YJ, Jang J, Jeong MH, Joo BS. Computer simulation approach to the identification of visfatin-derived angiogenic peptides. PLoS One 2023; 18:e0287577. [PMID: 37384629 PMCID: PMC10309634 DOI: 10.1371/journal.pone.0287577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Angiogenesis plays an essential role in various normal physiological processes, such as embryogenesis, tissue repair, and skin regeneration. Visfatin is a 52 kDa adipokine secreted by various tissues including adipocytes. It stimulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis. However, there are several issues in developing full-length visfatin as a therapeutic drug due to its high molecular weight. Therefore, the purpose of this study was to develop peptides, based on the active site of visfatin, with similar or superior angiogenic activity using computer simulation techniques.Initially, the active site domain (residues 181∼390) of visfatin was first truncated into small peptides using the overlapping technique. Subsequently, the 114 truncated small peptides were then subjected to molecular docking analysis using two docking programs (HADDOCK and GalaxyPepDock) to generate small peptides with the highest affinity for visfatin. Furthermore, molecular dynamics simulations (MD) were conducted to investigate the stability of the protein-ligand complexes by computing root mean square deviation (RSMD) and root mean square fluctuation(RMSF) plots for the visfatin-peptide complexes. Finally, peptides with the highest affinity were examined for angiogenic activities, such as cell migration, invasion, and tubule formation in human umbilical vein endothelial cells (HUVECs). Through the docking analysis of the 114 truncated peptides, we screened nine peptides with a high affinity for visfatin. Of these, we discovered two peptides (peptide-1: LEYKLHDFGY and peptide-2: EYKLHDFGYRGV) with the highest affinity for visfatin. In an in vitrostudy, these two peptides showed superior angiogenic activity compared to visfatin itself and stimulated mRNA expressions of visfatin and VEGF-A. These results show that the peptides generated by the protein-peptide docking simulation have a more efficient angiogenic activity than the original visfatin.
Collapse
Affiliation(s)
- Ji Myung Choi
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- Department of Microbiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Srimai Vuppala
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Min Jung Park
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jaeyoung Kim
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Myeong-Eun Jegal
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Yu-Seon Han
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Yung-Jin Kim
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Bo Sun Joo
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| |
Collapse
|
144
|
Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, Vivo ID, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, et alKentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, Vivo ID, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, Hickey M, Hooning MJ, Hoppe R, Hopper JL, Hottenga JJ, Hu FB, Hübner H, Hunter DJ, ABCTB Investigators, Jernström H, John EM, Karasik D, Khusnutdinova EK, Kristensen VN, Lacey JV, Lambrechts D, Launer LJ, Lind PA, Lindblom A, Magnusson PKE, Mannermaa A, McCarthy MI, Meitinger T, Menni C, Michailidou K, Millwood IY, Milne RL, Montgomery GW, Nevanlinna H, Nolte IM, Nyholt DR, Obi N, O’Brien KM, Offit K, Oldehinkel AJ, Ostrowski SR, Palotie A, Pedersen OB, Peters A, Pianigiani G, Plaseska-Karanfilska D, Pouta A, Pozarickij A, Radice P, Rennert G, Rosendaal FR, Ruggiero D, Saloustros E, Sandler DP, Schipf S, Schmidt CO, Schmidt MK, Small K, Spedicati B, Stampfer M, Stone J, Tamimi RM, Teras LR, Tikkanen E, Turman C, Vachon CM, Wang Q, Winqvist R, Wolk A, Zemel BS, Zheng W, van Dijk KW, Alizadeh BZ, Bandinelli S, Boerwinkle E, Boomsma DI, Ciullo M, Chenevix-Trench G, Cucca F, Esko T, Gieger C, Grant SFA, Gudnason V, Hayward C, Kolčić I, Kraft P, Lawlor DA, Martin NG, Nøhr EA, Pedersen NL, Pennell CE, Ridker PM, Robino A, Snieder H, Sovio U, Spector TD, Stöckl D, Sudlow C, Timpson NJ, Toniolo D, Uitterlinden A, Ulivi S, Völzke H, Wareham NJ, Widen E, Wilson JF, The Lifelines Cohort Study, The Danish Blood Donor study, The Ovarian Cancer Association Consortium, The Breast Cancer Association Consortium, The Biobank Japan Project, The China Kadoorie Biobank Collaborative Group, Pharoah PDP, Li L, Easton DF, Njølstad P, Sulem P, Murabito JM, Murray A, Manousaki D, Juul A, Erikstrup C, Stefansson K, Horikoshi M, Chen Z, Farooqi IS, Pitteloud N, Johansson S, Day FR, Perry JRB, Ong KK. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.14.23291322. [PMID: 37503126 PMCID: PMC10371120 DOI: 10.1101/2023.06.14.23291322] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, NO-0213, Oslo, Norway
| | - Edson M de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Andrea Messina
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alexander S Busch
- Department of General Pediatrics, University of Münster, Münster, Germany
- Deptartment of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Federico Santon
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yassine Zouaghi
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirik Bratland
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Raina Jia
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Margie Riggan
- Department of Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Jonath P Bradfield
- Quantinuum Research, Wayne, PA, USA
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Diana L Cousminer
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lude H Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giorgia Girotto
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Chunyan He
- Department of Epidemiology and Biostatistics, Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Departments of Medical Oncology and Hematology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Institute of Health Sciences, P.O.Box 5000, FI-90014 University of Oulu, Finland
- Biocenter Oulu, P.O.Box 5000, Aapistie 5A, FI-90014 University of Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O.Box 20, FI-90220 Oulu, 90029 OYS, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Kathryn L Lunetta
- Boston University School of Public Health, Department of Biostatistics. Boston, Massachusetts 02118, USA
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’ Foundation Trust, London, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Augsburg, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Susan M Ring
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - Albert V Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - Gonneke Willemsen
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
| | - Marek Zygmunt
- Clinic of Gynaecology and Obstetrics, University Medicine Greifswald, Germany
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital Toronto, Ontario, Canada
- Department of Molecular Genetics University of Toronto Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute University of California Irvine Irvine, CA, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center Medical College of Wisconsin Milwaukee, WI, USA
| | - Catriona LK Barnes
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Amy Berrington
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Federico Canzian
- Genomic Epidemiology Group German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, PA, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Liana Ferreli
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Pascal Guénel
- Team “Exposome and Heredity”, CESP, Gustave Roussy INSERM, University Paris-Saclay, UVSQ Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology at the University of Melbourne and The Royal Women’s Hospital, Victoria, Australia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
| | - Jouke-Jan Hottenga
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health School of Public Health, Boston, Massachusetts 02115, USA
| | - Hanna Hübner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - ABCTB Investigators
- Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine Stanford, CA, USA
- Department of Medicine, Division of Oncology Stanford Cancer Institute, Stanford University School of Medicine Stanford, CA, USA
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, & Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katie M O’Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, NC, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan Kettering Cancer Center New York, NY, USA
- Clinical Genetics Service, Department of Medicine Memorial Sloan Kettering Cancer Center New York, NY, USA
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet - University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of health and medical sciences, University of Copenhagen, Denmark
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of health and medical sciences, University of Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giulia Pianigiani
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov” MASA Skopje Republic of North Macedonia
| | - Anneli Pouta
- National Institute for Health and Welfare, Finland
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion, Faculty of Medicine, Haifa, Israel
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, NC, USA
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Kerrin Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Meir Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia Perth, Western Australia, Australia
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Population Health Sciences Weill Cornell Medicine New York, NY, USA
| | - Lauren R Teras
- Department of Population Science American Cancer Society Atlanta, GA, USA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology Mayo Clinic Rochester, MN, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine Nashville, TN, USA
| | - Ko W van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
- Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Marina Ciullo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan FA Grant
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ellen A Nøhr
- Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics & Gynecology, Odense University Hospital, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales 2305, Australia
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulla Sovio
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Doris Stöckl
- Gesundheitsamt Fürstenfeldbruck, Regierung von Oberbayern, Fürstenfeldbruck, Germany
| | - Cathie Sudlow
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh
| | - Nic J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | | | | | | | | | | | | | - Paul DP Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Pål Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Pediatrics and Adolescents, Haukeland University Hospital, NO-5021, Bergen, Norway
| | | | - Joanne M Murabito
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
- Boston University Chobanian & Avedisian School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA 02118, USA
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, RILD Level 3, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Nelly Pitteloud
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - John RB Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
145
|
Rajagopal VM, Watanabe K, Mbatchou J, Ayer A, Quon P, Sharma D, Kessler MD, Praveen K, Gelfman S, Parikshak N, Otto JM, Bao S, Chim SM, Pavlopoulos E, Avbersek A, Kapoor M, Chen E, Jones MB, Leblanc M, Emberson J, Collins R, Torres J, Morales PK, Tapia-Conyer R, Alegre J, Berumen J, Shuldiner AR, Balasubramanian S, Abecasis GR, Kang HM, Marchini J, Stahl EA, Jorgenson E, Sanchez R, Liedtke W, Anderson M, Cantor M, Lederer D, Baras A, Coppola G. Rare coding variants in CHRNB2 reduce the likelihood of smoking. Nat Genet 2023:10.1038/s41588-023-01417-8. [PMID: 37308787 DOI: 10.1038/s41588-023-01417-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the β2 subunit of the α4β2 nicotine acetylcholine receptor. Rare predicted loss-of-function and likely deleterious missense variants in CHRNB2 in aggregate were associated with a 35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence interval (CI) = 0.56-0.76, P = 1.9 × 10-8). An independent common variant association in the protective direction ( rs2072659 ; OR = 0.96; CI = 0.94-0.98; P = 5.3 × 10-6) was also evident, suggesting an allelic series. Our findings in humans align with decades-old experimental observations in mice that β2 loss abolishes nicotine-mediated neuronal responses and attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting CHRNB2 in the brain for the treatment of nicotine addiction.
Collapse
Affiliation(s)
| | | | | | - Ariane Ayer
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Peter Quon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | | | | | | | | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | - Jonathan Emberson
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jason Torres
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pablo Kuri Morales
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM), Mexico, Mexico
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
| | - Roberto Tapia-Conyer
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Jesus Alegre
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Jaime Berumen
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | | | | | | | - Hyun M Kang
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | - Eli A Stahl
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA.
| | | |
Collapse
|
146
|
Lankester J, Li J, Salfati ELI, Stefanick ML, Chan KHK, Liu S, Crandall CJ, Clarke SL, Assimes TL. Genetic evidence for causal relationships between age at natural menopause and the risk of ageing-associated adverse health outcomes. Int J Epidemiol 2023; 52:806-816. [PMID: 36409989 PMCID: PMC10244052 DOI: 10.1093/ije/dyac215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A later age at natural menopause (ANM) has been linked to several ageing-associated traits including an increased risk of breast and endometrial cancer and a decreased risk of lung cancer, osteoporosis and Alzheimer disease. However, ANM is also related to several proxies for overall health that may confound these associations. METHODS We investigated the causal association of ANM with these clinical outcomes using Mendelian randomization (MR). Participants and outcomes analysed were restricted to post-menopausal females. We conducted a one-sample MR analysis in both the Women's Health Initiative and UK Biobank. We further analysed and integrated several additional data sets of post-menopausal women using a two-sample MR design. We used ≤55 genetic variants previously discovered to be associated with ANM as our instrumental variable. RESULTS A 5-year increase in ANM was causally associated with a decreased risk of osteoporosis [odds ratio (OR) = 0.80, 95% CI (0.70-0.92)] and fractures (OR = 0.76, 95% CI, 0.62-0.94) as well as an increased risk of lung cancer (OR = 1.35, 95% CI, 1.06-1.71). Other associations including atherosclerosis-related outcomes were null. CONCLUSIONS Our study confirms that the decline in bone density with menopause causally translates into fractures and osteoporosis. Additionally, this is the first causal epidemiological analysis to our knowledge to find an increased risk of lung cancer with increasing ANM. This finding is consistent with molecular and epidemiological studies suggesting oestrogen-dependent growth of lung tumours.
Collapse
Affiliation(s)
- Joanna Lankester
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jin Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Thermofisher Scientific, South San Francisco, CA, USA
| | - Elias Levy Itshak Salfati
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marcia L Stefanick
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kei Hang Katie Chan
- Departments of Biomedical Sciences and Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
- Department of Medicine & Department of Surgery, Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Carolyn J Crandall
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shoa L Clarke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
147
|
Mazouzi A, Moser SC, Abascal F, van den Broek B, Del Castillo Velasco-Herrera M, van der Heijden I, Hekkelman M, Drenth AP, van der Burg E, Kroese LJ, Jalink K, Adams DJ, Jonkers J, Brummelkamp TR. FIRRM/C1orf112 mediates resolution of homologous recombination intermediates in response to DNA interstrand crosslinks. SCIENCE ADVANCES 2023; 9:eadf4409. [PMID: 37256941 PMCID: PMC10413679 DOI: 10.1126/sciadv.adf4409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Sarah C. Moser
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Bram van den Broek
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
- BioImaging Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Ingrid van der Heijden
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten Hekkelman
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anne Paulien Drenth
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eline van der Burg
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lona J. Kroese
- Animal Modeling Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kees Jalink
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Jos Jonkers
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R. Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
148
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
149
|
Liu C, Xu M, Guan Y, Li L, Liu W, Guo B, Sheng X, Zhang Y, Zhou J, Zhen X, Yan G, Sun H, Ding L. Decreased LONP1 expression contributes to DNA damage and meiotic defects in oocytes. Mol Reprod Dev 2023; 90:358-368. [PMID: 37392095 DOI: 10.1002/mrd.23694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/16/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Meiotic defects in oocytes are the primary reason for decreased female fertility with advanced maternal age. In this study, we revealed that decreased expression of ATP-dependent Lon peptidase 1 (LONP1) in aged oocytes and oocyte-specific depletion of LONP1 disrupt oocyte meiotic progression accompanying with mitochondrial dysfunction. In addition, LONP1 downregulation increased oocyte DNA damage. Moreover, we demonstrated that splicing factor proline and glutamine rich directly interacts with LONP1 and mediate the effect of LONP1 depletion on meiotic progression in oocytes. In summary, our data suggest that decreased expression of LONP1 is involved in advanced maternal age-related meiosis defects and that LONP1 represents a new therapeutic target to improve aged oocyte quality.
Collapse
Affiliation(s)
- Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Manlin Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yajie Guan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lilin Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Wenwen Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Bichun Guo
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, China
- Clinical Center for Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
150
|
Hartkopf AD, Fehm TN, Welslau M, Müller V, Schütz F, Fasching PA, Janni W, Witzel I, Thomssen C, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Wöckel A, Kolberg HC, Harbeck N, Stickeler E, Bartsch R, Schneeweiss A, Ettl J, Würstlein R, Krug D, Taran FA, Lüftner D. Update Breast Cancer 2023 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:653-663. [PMID: 37916183 PMCID: PMC10617391 DOI: 10.1055/a-2074-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 11/03/2023] Open
Abstract
With abemaciclib (monarchE study) and olaparib (OlympiA study) gaining approval in the adjuvant treatment setting, a significant change in the standard of care for patients with early stage breast cancer has been established for some time now. Accordingly, some diverse developments are slowly being transferred from the metastatic to the adjuvant treatment setting. Recently, there have also been positive reports of the NATALEE study. Other clinical studies are currently investigating substances that are already established in the metastatic setting. These include, for example, the DESTINY Breast05 study with trastuzumab deruxtecan and the SASCIA study with sacituzumab govitecan. In this review paper, we summarize and place in context the latest developments over the past months.
Collapse
Affiliation(s)
- Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Department of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| | - Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Johannes Ettl
- Klinik für Frauenheilkunde und Gynäkologie, Klinikum Kempten, Klinikverbund Allgäu, Kempten, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinkum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florin-Andrei Taran
- Department of Gynecology and Obstetrics, University Hospital Freiburg, Freiburg, Germany
| | - Diana Lüftner
- Medical University of Brandenburg Theodor-Fontane, Immanuel Hospital Märkische Schweiz, Buckow, Germany
| |
Collapse
|