101
|
Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells. Exp Cell Res 2011; 317:966-75. [DOI: 10.1016/j.yexcr.2010.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/07/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022]
|
102
|
Xie J, Jiang H, Wan YH, Du AY, Guo KJ, Liu T, Ye WY, Niu X, Wu J, Dong XQ, Zhang XJ. Induction of a 55 kDa acetylcholinesterase protein during apoptosis and its negative regulation by the Akt pathway. J Mol Cell Biol 2011; 3:250-9. [PMID: 21377978 DOI: 10.1093/jmcb/mjq047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acetylcholinesterase (AChE) is emerging as an important contributor to apoptosis in various cell types. However, overexpression of AChE does not initiate apoptosis, and cells which express AChE at basal levels grow normally, suggesting that AChE may function differently between normal and apoptotic conditions. In this study, we determined that an AChE-derived protein (∼55 kDa) positively correlated with cellular apoptotic levels. The 55 kDa AChE protein was not a result of a novel splice variant of the AChE primary transcript. Instead, it was determined to be a cleaved fragment of the full-length 68 kDa AChE protein that could not be inhibited by cycloheximide (CHX) but could be suppressed by caspase inhibitors in apoptotic PC-12 cells. Furthermore, activation of the Akt cascade abolished the 55 kDa protein, and both AChE protein forms (68 and 55 kDa) accumulated in the nucleus during apoptosis. In a mouse model for ischemia/reperfusion (I/R)-induced acute renal failure, the 55 kDa AChE protein was detected in the impaired organs but not in the normal ones, and its levels correlated with the genotype of the mice. In summary, a 55 kDa AChE protein resulting from the cleavage of 68 kDa AChE is induced during apoptosis, and it is negatively regulated by the Akt pathway. This study suggests that an alternative form of AChE may play a role in apoptosis.
Collapse
Affiliation(s)
- Jing Xie
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Wu D, Tao J, Xu B, Qing W, Li P, Lu Q, Zhang W. Phosphatidylinositol 3-kinase inhibitor LY294002 suppresses proliferation and sensitizes doxorubicin chemotherapy in bladder cancer cells. Urol Int 2011; 86:346-54. [PMID: 21273759 DOI: 10.1159/000322986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 11/14/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K)-AKT signaling is a well-characterized pathway involved in control of cell proliferation, apoptosis and oncogenesis. LY294002 is a commonly used pharmacologic inhibitor which acts at the ATP-binding site of the PI3K enzyme, and thus selectively inhibits the PI3K-AKT nexus. The purpose of the study was to examine whether PI3K inhibited by LY294002 had effects in human bladder cancer cells. METHODS After treatment with LY294002, MTT assay, a chemosensitivity test, colony formation assay, apoptosis assay and Western blot analysis were conducted in EJ cells. RESULT EJ cells treated with LY294002 showed significant AKT phosphorylation suppressing in a dose-response manner. Additionally, the PI3K/AKT signaling inhibitor LY294002 suppressed cell proliferation and enhanced chemosensitivity to doxorubicin in human bladder cancer EJ cells. Furthermore, LY294002 increased cell apoptosis to doxorubicin. CONCLUSION The augmentation of doxorubicin with the PI3K inhibitor LY294002 may resolve the multidrug resistance of bladder cancer, and this may be a new strategy for achieving tolerance for chemotherapeutic agents in bladder cancer therapy.
Collapse
Affiliation(s)
- Deyao Wu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
104
|
Nourbakhsh M, Golestani A, Zahrai M, Modarressi MH, Malekpour Z, Karami-Tehrani F. Androgens stimulate telomerase expression, activity and phosphorylation in ovarian adenocarcinoma cells. Mol Cell Endocrinol 2010; 330:10-6. [PMID: 20673788 DOI: 10.1016/j.mce.2010.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/17/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Androgens have been implicated in increasing ovarian cancer risk. Most ovarian cancer cells have high telomerase activity which is effective in inducing ovarian carcinogenesis. The purpose of this study was to investigate the effects of testosterone and androstenedione on the viability of an ovarian adenocarcinoma cell line, the activity and expression of telomerase, and the phosphorylation status of its catalytic subunit in these cells. Results showed that androgens significantly increased the viability of ovarian cancer cells and that these hormones induced the expression, activity and phosphorylation of telomerase. This upregulation was blocked by phosphatidylinositol 3-kinase pathway inhibitors. These findings might have implications for understanding the role of androgens in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, 1417613151 Tehran, Iran
| | | | | | | | | | | |
Collapse
|
105
|
Ventura AP, Radhakrishnan S, Green A, Rajaram SK, Allen AN, O'Briant K, Schummer M, Karlan B, Urban N, Tewari M, Drescher C, Knudsen BS. Activation of the MEK-S6 pathway in high-grade ovarian cancers. Appl Immunohistochem Mol Morphol 2010; 18:499-508. [PMID: 20661131 PMCID: PMC2989426 DOI: 10.1097/pai.0b013e3181e53e1c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The primary objective of this study is to show the activation and analyze the regulation of the MEK- S6 kinase pathway in high-grade ovarian cancer. Phospho-ERK (pERK), a direct substrate of MEK and 2 phosphorylation sites on the ribosomal protein, S6, Ser235/236, and Ser240/244, which are both targeted by the MEK and PI3-kinase/AKT pathways, were analyzed in 13 cell lines, 28 primary cancers and 8 cases of cancer cells from ascites. In primary cancers, ERK and S6 phosphorylation was measured by immunohistochemistry (IHC). pERK, pS6, pAKT, and p4EBP1 were also measured by Western blotting (WB). The regulation of S6 phosphorylation by the MEK and PI3-kinase pathways was determined in ovarian cancer cell lines. We observed frequent pERK expression in primary ovarian cancers (100% by WB, 75% by IHC) but not in ovarian cancer cells from ascites (25% of cases by WB). The activation of the AKT pathway, measured by pAKT expression occurred in 7 cases of primary ovarian cancer by WB, but in none of the ascites samples. In ovarian cancer cell lines, the MEK pathway had a greater effect on S6 phosphorylation in cells without hyperactive AKT signaling. Our data suggest that MEK is a potential drug target in high-grade ovarian cancer, however, cancer cells with hyperactive AKT and cancer cells in ascites may be less responsive to MEK inhibition. The phosphorylation of S6 as a specific biomarker for either MEK or PI3-kinase pathway activation should be used with caution.
Collapse
Affiliation(s)
- Aviva P Ventura
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Rankin EB, Fuh KC, Taylor TE, Krieg AJ, Musser M, Yuan J, Wei K, Kuo CJ, Longacre TA, Giaccia AJ. AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res 2010; 70:7570-9. [PMID: 20858715 DOI: 10.1158/0008-5472.can-10-1267] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The receptor tyrosine kinase AXL is thought to play a role in metastasis; however, the therapeutic efficacy of an AXL-targeting agent remains largely untested in metastatic disease. In this study, we defined AXL as a therapeutic target for metastatic ovarian cancer. AXL is primarily expressed in metastases and advanced-stage human ovarian tumors but not in normal ovarian epithelium. Genetic inhibition of AXL in human metastatic ovarian tumor cells is sufficient to prevent the initiation of metastatic disease in vivo. Mechanistically, inhibition of AXL signaling in animals with metastatic disease results in decreased invasion and matrix metalloproteinase activity. Most importantly, soluble human AXL receptors that imposed a specific blockade of the GAS6/AXL pathway had a profound inhibitory effect on progression of established metastatic ovarian cancer without normal tissue toxicity. These results offer the first genetic validation of GAS6/AXL targeting as an effective strategy for inhibition of metastatic tumor progression in vivo. Furthermore, this study defines the soluble AXL receptor as a therapeutic candidate agent for treatment of metastatic ovarian cancer, for which current therapies are ineffective.
Collapse
Affiliation(s)
- Erinn B Rankin
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Center for Clinical Sciences Research, Stanford University, Stanford, California 94305-5152, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Karam AK, Santiskulvong C, Fekete M, Zabih S, Eng C, Dorigo O. Cisplatin and PI3kinase inhibition decrease invasion and migration of human ovarian carcinoma cells and regulate matrix-metalloproteinase expression. Cytoskeleton (Hoboken) 2010; 67:535-44. [PMID: 20607860 PMCID: PMC3001291 DOI: 10.1002/cm.20465] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 06/04/2010] [Indexed: 12/21/2022]
Abstract
Targeting of the PI3K (phosphoinositide3-kinase)/Akt/mTOR pathway in human ovarian cancer cells is a promising novel therapeutic strategy. We investigated the effects of cisplatin and the PI3K inhibitor LY294002 on invasion, migration and the expression of essential matrix metalloproteinases (MMPs) in ovarian cancer cells. SKOV3, OVCAR5 and IGROV1 human ovarian cancer cell lines were treated with cisplatin, LY294002 and a combination of both drugs. Invasion and migration of treated cells was assessed using Matrigel and uncoated PET membrane assays. Expression levels of pro-MMP2, MMP2, TIMP1, TIMP2 and MT1-MMP were determined using Western Blotting. Gel zymography was used to quantitate the functional levels of active MMP2. All three cell lines showed significantly reduced invasion and migration after treatment with cisplatin, LY294002, and the combination of both drugs compared to untreated controls. In SKOV3 cells, cisplatin alone and in combination with LY294002 resulted in a 6.3 and 7.1-fold reduction in the total amount of activated MMP2. TIMP1 expression decreased by 5.0, 6.6 and 28.4-fold with cisplatin, LY294002 and the combination respectively (P < 0.05). In contrast, only cisplatin and the combination of both drugs resulted in a significant, 3.7 and 5.1-fold reduction in the level of TIMP2. Expression levels of MT1-MMP remained unchanged. These observations were corroborated in IGROV1 cell lines that showed similar changes of activated MMP2 and TIMP2 expression, but no significant decrease in TIMP1 levels. Our data suggests that inhibition of ovarian cancer cell motility is mediated via down-regulation of activated MMP2, TIMP1 and TIMP2 expression under these treatment conditions.
Collapse
Affiliation(s)
- Amer K Karam
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Freeman-Cook KD, Autry C, Borzillo G, Gordon D, Barbacci-Tobin E, Bernardo V, Briere D, Clark T, Corbett M, Jakubczak J, Kakar S, Knauth E, Lippa B, Luzzio MJ, Mansour M, Martinelli G, Marx M, Nelson K, Pandit J, Rajamohan F, Robinson S, Subramanyam C, Wei L, Wythes M, Morris J. Design of selective, ATP-competitive inhibitors of Akt. J Med Chem 2010; 53:4615-22. [PMID: 20481595 DOI: 10.1021/jm1003842] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This paper describes the design and synthesis of novel, ATP-competitive Akt inhibitors from an elaborated 3-aminopyrrolidine scaffold. Key findings include the discovery of an initial lead that was modestly selective and medicinal chemistry optimization of that lead to provide more selective analogues. Analysis of the data suggested that highly lipophilic analogues would likely suffer from poor overall properties. Central to the discussion is the concept of optimization of lipophilic efficiency and the ability to balance overall druglike propeties with the careful control of lipophilicity in the lead series. Discovery of the nonracemic amide series and subsequent modification produced an advanced analogue that performed well in advanced preclinical assays, including xenograft tumor growth inhibition studies, and this analogue was nominated for clinical development.
Collapse
Affiliation(s)
- Kevin D Freeman-Cook
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Hill KM, Kalifa S, Das JR, Bhatti T, Gay M, Williams D, Taliferro-Smith L, De Marzo AM. The role of PI 3-kinase p110beta in AKT signally, cell survival, and proliferation in human prostate cancer cells. Prostate 2010; 70:755-64. [PMID: 20058239 DOI: 10.1002/pros.21108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Class IA PI 3-kinases produce phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3 is bound by AKT which facilities its activation by PDK1. Activated AKT promotes cell survival and stimulates cell proliferation. Class IA PI 3-kinases are heterodimers consisting of a regulatory subunit p85 and a catalytic subunit p110. The p110alpha isoform has been shown to be mutated in a number of tumor types. A number of recent studies suggest that the p110beta isoform may be functionally relevant in prostate cancer. In this study we extend this work to include the examination of the expression and functional properties of p110alpha and p110beta in three different prostate cancer cell lines, DU145, LNCaP, PC3, as well as the non-tumorigenic but immortalized RWPE1 prostate epithelial cell line. METHODS Western blot analysis was used to measure protein expression and quantitative real-time PCR was used to measure mRNA levels. After targeted knockdown using isoform-specific siRNAs to reduce PI 3-kinase p110alpha or p110beta isoform expression, we measured downstream signally events such as phosphorylation of AKT, ERK 1/2, PDK, and FOXO, as well as biological consequences such as changes in apoptosis, and alterations in cell cycle progression. RESULTS In all three prostate cancer cell lines examined, targeted knockdown of p110beta, and not p110alpha, resulted in significantly reduced AKT, PDK, and FOXO phosphorylation. While knockdown of either p110 isoform resulted in an increase in apoptosis and a cell cycle arrest in G1 in the remaining non-apoptotic cells, these effects were much more pronounced with knockdown of p110beta. CONCLUSIONS Our results support the concept that p110beta appears to be the predominant functional class I PI 3-kinase isoform in prostate cancer cells.
Collapse
Affiliation(s)
- Karen M Hill
- Department of Pharmacology, Howard University College of Medicine, Washington, District of Columbia 20059, USA.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Johnson SM, Gulhati P, Rampy BA, Han Y, Rychahou PG, Doan HQ, Weiss HL, Evers BM. Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg 2010; 210:767-76, 776-8. [PMID: 20421047 PMCID: PMC2895913 DOI: 10.1016/j.jamcollsurg.2009.12.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway plays a critical role in the growth and progression of colorectal cancer (CRC). The purpose of our study was 2-fold: (1) to determine the expression levels of several key components of this pathway, including p85alpha, Akt1, Akt2, p-mTOR(Ser2448), and p-p70S6K(Thr389) in CRCs; and (2) to correlate the expression of these proteins with cancer stage and location (left versus right side). STUDY DESIGN Immunohistochemistry for p85alpha, Akt1, Akt2, p-mTOR(Ser2448), and p-p70S6K(Thr389) was performed on normal colon and CRCs from 154 patients. RESULTS All proteins investigated were significantly overexpressed in CRCs compared with matched normal colonic tissue from the same patient (p < 0.0001). PI3K pathway component proteins were moderately correlated across normal and malignant colon tissues; correlations tended to be stronger in normal tissues as compared with the same correlations in cancers. Expression levels of p85alpha were significantly higher in stage IV cancers than in stage I to III cancers (p = 0.0005). p85alpha expression was also significantly increased in the adjacent normal colonic mucosa of patients with stage IV CRC compared with earlier stages (p = 0.003). Finally, expression of Akt1, Akt2, and p-p70S6K(Thr389) was higher in left-sided CRCs compared with CRCs in the right colon (p = 0.007, p = 0.0008, and p = 0.04, respectively). CONCLUSIONS The PI3K/Akt/mTOR pathway components, p85alpha, Akt1, Akt2, p-mTOR(Ser2448), and p-p70S6K(Thr389) are highly overexpressed in CRCs, providing the rationale for targeting this pathway therapeutically in CRC patients. The increased expression of p85alpha in the adjacent normal mucosa of stage IV patients suggests an important field defect, which may contribute to the growth and progression of these cancers.
Collapse
Affiliation(s)
- Sara M Johnson
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
| | - Pat Gulhati
- MD/PhD Program, The University of Texas Medical Branch, Galveston, TX
- Department of Surgery, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Bill A Rampy
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX
| | - Yimei Han
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, TX
| | - Piotr G Rychahou
- Department of Surgery, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Hung Q Doan
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- MD/PhD Program, The University of Texas Medical Branch, Galveston, TX
| | - Heidi L Weiss
- Department of Biostatistics, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - B Mark Evers
- Department of Surgery, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| |
Collapse
|
111
|
|
112
|
Zhou T, Bao Y, Ye S, Weng D, Chen G, Lu Y, Ma D, Wang S. Effect of spindle checkpoint on Akt2-mediated paclitaxel-resistance in A2780 ovarian cancer cells. ACTA ACUST UNITED AC 2010; 30:206-11. [PMID: 20407875 DOI: 10.1007/s11596-010-0215-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Indexed: 12/21/2022]
Abstract
Recent evidence has suggested that Akt2 plays an important role in the protection of cells from paclitaxel (PTX)-induced apoptosis and control of the cell cycle. In addition, some scholars suggested that the PTX sensitivity depends on a functional spindle assembly checkpoint. In the present study, we investigated the role of the Akt2/Bub1 cross-talking in apoptosis and cell cycle after exposure of the A2780 ovarian cancer cells to paclitaxel (PTX). Recombinant expression plasmid WT-Akt2 was transfected into A2780 cells by lipofectamine2000, and then the expression level of Akt2 gene was detected by using RT-PCR and Western blotting. Cell apoptosis and cell cycle were detected by flow cytometry and Hoechst 33342 staining after treatment with PTX. Moreover, we compared the expression level of Bub1 in different groups by Western blotting. Our study showed that up-regulation of Akt2 contributed to A2780 ovarian cancer cells overriding PTX-induced G(2)/M arrest, and inhibited Bub1 expression. Our findings might shed light on the molecular mechanism of PTX-induced resistance in ovarian cancer and help develop novel anti-neoplastic strategies.
Collapse
Affiliation(s)
- Ting Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Foley NH, Bray IM, Tivnan A, Bryan K, Murphy DM, Buckley PG, Ryan J, O'Meara A, O'Sullivan M, Stallings RL. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer 2010; 9:83. [PMID: 20409325 PMCID: PMC2864218 DOI: 10.1186/1476-4598-9-83] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/21/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. RESULTS We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. CONCLUSIONS MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.
Collapse
Affiliation(s)
- Niamh H Foley
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Cherrin C, Haskell K, Howell B, Jones R, Leander K, Robinson R, Watkins A, Bilodeau M, Hoffman J, Sanderson P, Hartman G, Mahan E, Prueksaritanont T, Jiang G, She QB, Rosen N, Sepp-Lorenzino L, Defeo-Jones D, Huber HE. An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo. Cancer Biol Ther 2010; 9:493-503. [PMID: 20139722 PMCID: PMC2987445 DOI: 10.4161/cbt.9.7.11100] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The PI3K-Akt pathway is dysregulated in the majority of solid tumors. Pharmacological inhibition of Akt is a promising strategy for treating tumors resistant to growth factor receptor antagonists due to mutations in PI3K or PTEN. We have developed allosteric, isozyme-specific inhibitors of Akt activity and activation, as well as ex vivo kinase assays to measure inhibition of individual Akt isozymes in tissues. Here we describe the relationship between PK, Akt inhibition, hyperglycemia and tumor efficacy for a selective inhibitor of Akt1 and Akt2 (AKTi). In nude mice, AKTi treatment caused transient insulin resistance and reversible, dose-dependent hyperglycemia and hyperinsulinemia. Akt1 and Akt2 phosphorylation was inhibited in mouse lung with EC50 values of 1.6 and 7 μM, respectively, and with similar potency in other tissues and xenograft tumors. Weekly subcutaneous dosing of AKTi resulted in dose-dependent inhibition of LNCaP prostate cancer xenografts, an AR-dependent tumor with PTEN deletion and constitutively activated Akt. Complete tumor growth inhibition was achieved at 200 mpk, a dose that maintained inhibition of Akt1 and Akt2 of greater than 80% and 50%, respectively, for at least 12 hours in xenograft tumor and mouse lung. Hyperglycemia could be controlled by reducing C(max), while maintaining efficacy in the LNCaP model, but not by insulin administration. AKTi treatment was well tolerated, without weight loss or gross toxicities. These studies supported the rationale for clinical development of allosteric Akt inhibitors and provide the basis for further refining of pharmacokinetic properties and dosing regimens of this class of inhibitors.
Collapse
Affiliation(s)
- Craig Cherrin
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Kathleen Haskell
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Bonnie Howell
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Raymond Jones
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Karen Leander
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Ronald Robinson
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Aubrey Watkins
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Mark Bilodeau
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486
| | - Jacob Hoffman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486
| | - Philip Sanderson
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486
| | - George Hartman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486
| | - Elizabeth Mahan
- Department of Drug Metabolism, Merck Research Laboratories, West Point, PA 19486
| | | | - Guoqiang Jiang
- Department of Metabolic Disorders, Merck Research Laboratories, Rahway, NJ 07065
| | - Qing-Bai She
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Neal Rosen
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Laura Sepp-Lorenzino
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Deborah Defeo-Jones
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | - Hans E. Huber
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| |
Collapse
|
115
|
Increased expression of Akt2 and activity of PI3K and cell proliferation with the ascending of tumor grade of human gliomas. Clin Neurol Neurosurg 2010; 112:324-7. [PMID: 20116920 DOI: 10.1016/j.clineuro.2010.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study the expression of Akt2 and activation of PI3K in different grades of human gliomas and correlate the Akt2 expression with the proliferation activity of gliomas. METHODS Akt2 expression and PI3K activity were examined in 48 different grades of human glioma specimens and six normal brain tissue samples by immunohistochemistry and Western blot analysis. The proliferation activity of tumors was evaluated by Ki-67 nuclear antigen labeling index (Ki-67 LI) using immunostaining. RESULTS In contrast to the normal brain tissues, Akt2 expression and PI3K activity were greatly increased with the ascending of tumor grade and correlated positively with the proliferation activity of gliomas. CONCLUSION Akt2 may play a critical role in the development of gliomas and present a potential therapeutic target for malignant gliomas.
Collapse
|
116
|
Abstract
PURPOSE OF REVIEW Clinically and on a molecular level, ovarian cancer is a unique and complex disease. The explosion in potential molecular targets over the last decade has led to the arrival of many novel therapies into oncology. In the present article, we review the most promising of these agents in ovarian cancer. RECENT FINDINGS Targeted therapies, such as epidermal growth factor receptor inhibitors, that have worked well in other cancers have shown only moderate success in ovarian cancer, whereas other treatment approaches have yielded surprisingly positive outcomes. An example is anti-vascular endothelial growth factor and proapoptotic strategies, which are effective in both primary and relapsed ovarian cancer. Use of poly (ADP-ribose)-polymerase inhibitors has shown that targeting one form of DNA repair profoundly affects cell survival in those with a hereditary failure to mend DNA damage using another mechanism. This can be extrapolated to patients with sporadic ovarian cancers, with or without the 'BRCAness' phenotype. SUMMARY Using targeted agents in ovarian cancer, we are discovering not only how these novel therapies work but are also unveiling the complex 'wiring' of the disease itself, and the interconnections between what were previously believed to be distinct molecular pathways. The addition of targeted agents to our therapeutic armoury is likely to significantly and positively impact on patient survival.
Collapse
|
117
|
Kirkegaard T, Witton CJ, Edwards J, Nielsen KV, Jensen LB, Campbell FM, Cooke TG, Bartlett JMS. Molecular alterations inAKT1,AKT2andAKT3detected in breast and prostatic cancer by FISH. Histopathology 2010; 56:203-11. [DOI: 10.1111/j.1365-2559.2009.03467.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
118
|
Akt2 inhibition enables the forkhead transcription factor FoxO3a to have a repressive role in estrogen receptor alpha transcriptional activity in breast cancer cells. Mol Cell Biol 2009; 30:857-70. [PMID: 19933843 DOI: 10.1128/mcb.00824-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Estrogen receptor alpha (ER) and the insulin-like growth factor I receptor (IGF-IR) pathways are engaged in a functional cross talk in breast cancer, promoting tumor progression and increased resistance to anticancer treatments and radiotherapy. Here, we introduce new mechanisms through which proteins of the IGF-I/IGF-IR signaling pathway may regulate ER function in the absence of ligand. Our results indicate that in ER-positive breast cancer cells, Akt2 modulates ER transcriptional activity at multiple levels, including (i) the regulation of ER expression and its nuclear retention and (ii) the activation of one of its downstream targets, the Forkhead transcription factor FoxO3a. FoxO3a colocalizes and coprecipitates with ER in the nucleus, where it binds to Forkhead-responsive sequences on the ER target pS2/TFF-1 promoter; in addition, FoxO3a silencing leads to an increase of ER transcriptional activity, suggesting a repressive role of the Forkhead transcription factor in ER function. Moreover, 17beta-estradiol upregulates FoxO3a levels, which could represent the basis for an ER-mediated homeostatic mechanism. These findings provide further evidence of the importance of mediators of the growth factor signaling in ER regulation, introducing the Akt2/FoxO3a axis as a pursuable target in therapy for ER-positive breast cancer.
Collapse
|
119
|
Fortin SP, Ennis MJ, Savitch BA, Carpentieri D, McDonough WS, Winkles JA, Loftus JC, Kingsley C, Hostetter G, Tran NL. Tumor necrosis factor-like weak inducer of apoptosis stimulation of glioma cell survival is dependent on Akt2 function. Mol Cancer Res 2009; 7:1871-81. [PMID: 19861406 DOI: 10.1158/1541-7786.mcr-09-0194] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and significant technical advances in surgical and radiation treatment, the impact on clinical outcome for patients with malignant gliomas is disappointing. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell survival via binding to the Fn14 receptor, activation of the NF-kappaB pathway, and upregulation of BCL-X(L) gene expression. Here, we show that TWEAK treatment of glioma cells leads to phosphorylation of Akt and BAD. TWEAK stimulation results in the phosphorylation of both Akt1 and Akt2. However, small interfering RNA (siRNA)-mediated depletion of either Akt1 or Akt2 showed that BAD serine 136 phosphorylation is dependent specifically on Akt2 function. Depletion of Akt2 expression by siRNA also abrogates TWEAK-stimulated glioma cell survival, whereas no effect on glioma cell survival was observed after siRNA-mediated depletion of Akt1 expression. Surprisingly, although siRNA-mediated depletion of BAD in glioma cells abrogates cytotoxic- and chemotherapy-induced apoptosis, TWEAK still displays a strong protective effect, suggesting that BAD serine 136 phosphorylation plays a minor role in TWEAK-Akt2-induced glioma cell survival. We also report here that AKT2 gene expression levels increased with glioma grade and inversely correlate with patient survival. Additionally, immunohistochemical analysis showed that Akt2 expression positively correlates with Fn14 expression in glioblastoma multiforme specimens. We hypothesize that the TWEAK-Fn14 signaling axis functions, in part, to enhance glioblastoma cell survival by activation of the Akt2 serine/threonine protein kinase.
Collapse
Affiliation(s)
- Shannon P Fortin
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Timakhov RA, Tan Y, Rao M, Liu Z, Altomare DA, Pei J, Wiest DL, Favorova OO, Knepper JE, Testa JR. Recurrent chromosomal rearrangements implicate oncogenes contributing to T-cell lymphomagenesis in Lck-MyrAkt2 transgenic mice. Genes Chromosomes Cancer 2009; 48:786-94. [PMID: 19530243 PMCID: PMC2739734 DOI: 10.1002/gcc.20683] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogene v-akt was isolated from a retrovirus that induced naturally occurring thymic lymphomas in AKR mice. We hypothesized that constitutive activation of Akt2 could serve as a first hit for the clonal expansion of malignant T-cells by promoting cell survival and genomic instability, leading to chromosome alterations. Furthermore, genes that cooperate with Akt2 to promote malignant transformation may reside at translocation/inversion junctions found in spontaneous thymic lymphomas from transgenic mice expressing constitutively active Akt2 specifically in T cells. Cytogenetic analysis revealed that thymic tumors from multiple founder lines exhibited either of two recurrent chromosomal rearrangements, inv(6)(A2B1) or t(14;15)(C2;D1). Fluorescence in situ hybridization, array CGH, and PCR analysis were used to delineate the inv(6) and t(14;15) breakpoints. Both rearrangements involved T-cell receptor loci. The inv(6) results in robust upregulation of the homeobox/transcription factor gene Dlx5 because of its relocation near the Tcrb enhancer. The t(14;15) places the Tcra enhancer in the vicinity of the Myc proto-oncogene, resulting in upregulated Myc expression. These findings suggest that activation of the Akt pathway can act as the initial hit to promote cell survival and genomic instability, whereas the acquisition of T-cell-specific overexpression of Dlx5 or Myc leads to lymphomagenesis.
Collapse
Affiliation(s)
- Roman A. Timakhov
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Molecular Biology, Russian State Medical University, Moscow, Russia
| | - Yinfei Tan
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mamta Rao
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biology, Villanova University, Villanova, PA USA
| | - Zemin Liu
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Jianming Pei
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David L. Wiest
- Blood Cell Development & Cancer Keystone Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Olga O. Favorova
- Department of Molecular Biology, Russian State Medical University, Moscow, Russia
| | - Janice E. Knepper
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biology, Villanova University, Villanova, PA USA
| | - Joseph R. Testa
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
121
|
Watson JL, Greenshields A, Hill R, Hilchie A, Lee PW, Giacomantonio CA, Hoskin DW. Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol Carcinog 2009; 49:13-24. [DOI: 10.1002/mc.20571] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
122
|
Huang BX, Kim HY. Probing Akt-inhibitor interaction by chemical cross-linking and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1504-13. [PMID: 19446470 PMCID: PMC2750033 DOI: 10.1016/j.jasms.2009.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 05/27/2023]
Abstract
The serine/threonine kinase Akt is a critical enzyme that regulates cell survival. As high Akt activity has been shown to contribute to the pathogenesis of various human malignancies, inhibition of Akt activation is a promising therapeutic strategy for cancers. We have previously demonstrated that changes in Akt interdomain arrangements from a closed to open conformation occur upon Akt-membrane interaction, which in turn allows Akt phosphorylation/activation. In the present study, we demonstrate a novel strategy to discern mechanisms for Akt inhibition based on Akt conformational changes using chemical cross-linking and (18)O labeling mass spectrometry. By quantitative comparison of two interdomain cross-linked peptides, which represent the proximity of the domains involved, we found that the binding of Akt to an inhibitor (PI analog) caused the open interdomain conformation where the PH and regulatory domains moved away from the kinase domain, even before interacting with membranes, subsequently preventing translocation of Akt to the plasma membrane. In contrast, the interdomain conformation remained unchanged after incubating with another type of inhibitor (peptide TCL1). Subsequent interaction with unilamellar vesicles suggested that TCL1 impaired particularly the opening of the PH domain for exposing T308 for phosphorylation at the plasma membrane. This novel approach based on the conformation-based molecular interaction mechanism should be potentially useful for drug discovery efforts for specific Akt inhibitors or anti-tumor agents.
Collapse
Affiliation(s)
- Bill X. Huang
- Laboratory of Molecular Signaling, NIAAA, NIH, Bethesda, MD, 20892-9410 USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, NIAAA, NIH, Bethesda, MD, 20892-9410 USA
| |
Collapse
|
123
|
Guo JP, Shu SK, He L, Lee YC, Kruk PA, Grenman S, Nicosia SV, Mor G, Schell MJ, Coppola D, Cheng JQ. Deregulation of IKBKE is associated with tumor progression, poor prognosis, and cisplatin resistance in ovarian cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:324-33. [PMID: 19497997 PMCID: PMC2708818 DOI: 10.2353/ajpath.2009.080767] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 03/16/2009] [Indexed: 01/16/2023]
Abstract
I-kappa-B kinase e (IKBKE; IKKepsilon) has been recently identified as a breast cancer oncogene, and its alteration appears to be an early event in breast cancer development. In this study, we demonstrated that IKKepsilon is frequently overexpressed and activated in human ovarian cancer cell lines and primary tumors. Of 96 ovarian cancer specimens examined, 63 exhibited elevated levels of IKKepsilon. Furthermore, alterations of IKKepsilon were associated with late-stage and high-grade tumors, suggesting a role of IKKepsilon in ovarian tumor progression rather than in tumor initiation. Overall survival in patients with elevated levels of IKKepsilon was significantly lower than patients whose tumors expressed normal levels of IKKepsilon. Moreover, both early and late-stage tumors that overexpressed IKKepsilon conferred a poor prognosis, as compared with those that did not possess elevated IKKepsilon levels. Notably, overexpression of IKKepsilon rendered cells resistant to cisplatin, whereas knockdown of IKKepsilon overcame cisplatin resistance in both A2780CP and C13 cells, which express high levels of endogenous IKKepsilon. Therefore, these data demonstrate for the first time that deregulation of IKKepsilon is a highly recurrent event in human ovarian cancer and could play a pivotal role in tumor progression and cisplatin resistance. IKKepsilon could also serve as a prognostic marker and potential therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Jian-Ping Guo
- Departments of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Zhang HY, Zhang PN, Sun H. Aberration of the PI3K/AKT/mTOR signaling in epithelial ovarian cancer and its implication in cisplatin-based chemotherapy. Eur J Obstet Gynecol Reprod Biol 2009; 146:81-6. [PMID: 19540648 DOI: 10.1016/j.ejogrb.2009.04.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 01/18/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study was to investigate the role of the PI3K/AKT/mTOR signaling in epithelial ovarian cancer development and its mechanism in cisplatin-based chemotherapy. STUDY DESIGN Western blot and RT-PCR were used to determine the expression of PI3K-p85 subunit at protein and mRNA levels in normal and cancerous ovarian epithelium. SKOV3/DDP cells and SKOV3/MCA (multicellular aggregates) were constructed as chemo-resistant models. The role and mechanism of AKT specific inhibitor or shRNA in different models before and after cisplatin treatment were determined by multiple cellular and molecular approaches such as cell growth assay, flow cytometry, and western blot. RESULTS PI3K-p85 subunit was detected in 33 out of 39 epithelial ovarian cancer specimens at protein level, but not detected in normal ovarian epithelium. A significant over-expression of PI3K-p85 subunit at mRNA level was observed in tumor tissues, and an increasing trend in advanced stage was also observed. Elevated activation of the AKT/mTOR/Survivin signaling was detected in SKOV3/DDP cells and SKOV3/MCA. Down-regulation of AKT by triciribine or shRNA transfection could attenuate cisplatin resistance through mTOR/Survivin signaling. CONCLUSIONS The PI3K/AKT/mTOR signaling was involved in epithelial ovarian cancer development and cisplatin-based chemotherapy, and down-regulation of AKT could be an effective adjuvant antitumor therapy.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, No. 419 Fangxie Road, Shanghai, PR China
| | | | | |
Collapse
|
125
|
Abstract
Bufalin is the active ingredient of the Chinese medicine Chan Su, and it has been reported that bufalin induces apoptosis in some human leukemia and solid cancer cell lines. The exact mechanism of bufalin-induced apoptosis is, however, still not clear. In this study, we demonstrated that bufalin inhibited the proliferation of gastric cancer MGC803 cells in a dose-dependent and time-dependent manner. At a low concentration (20 nmol/l), bufalin induced M-phase cell cycle arrest, whereas at a high concentration (80 nmol/l) it induced apoptosis in MGC803 cells. Bufalin increased the Bax/Bcl-2 ratio and activated caspase-3 during the apoptotic process of MGC803 cells. It should be noted that bufalin transiently activated the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and then inhibited it completely, and upregulated the Casitas B-lineage lymphoma (Cbl) family of ubiquitin ligases, upstream modulators of PI3K. A combination of bufalin and LY294002, a PI3K-specific inhibitor, enhanced apoptosis, but PD98059, an extracellular-regulated protein kinase-specific inhibitor, had no significant effect on bufalin-induced apoptosis. These results suggested that the PI3K/Akt pathway might play a key role in bufalin-induced apoptosis in gastric cancer MGC803 cells.
Collapse
|
126
|
Xu XY, Zhang Z, Su WH, Zhang Y, Feng C, Zhao HM, Zong ZH, Cui C, Yu BZ. Involvement of the p110α isoform of PI3K in early development of mouse embryos. Mol Reprod Dev 2009; 76:389-98. [DOI: 10.1002/mrd.20978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
127
|
Lorenzi PL, Reinhold WC, Varma S, Hutchinson AA, Pommier Y, Chanock SJ, Weinstein JN. DNA fingerprinting of the NCI-60 cell line panel. Mol Cancer Ther 2009; 8:713-24. [PMID: 19372543 PMCID: PMC4020356 DOI: 10.1158/1535-7163.mct-08-0921] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The National Cancer Institute's NCI-60 cell line panel, the most extensively characterized set of cells in existence and a public resource, is frequently used as a screening tool for drug discovery. Because many laboratories around the world rely on data from the NCI-60 cells, confirmation of their genetic identities represents an essential step in validating results from them. Given the consequences of cell line contamination or misidentification, quality control measures should routinely include DNA fingerprinting. We have, therefore, used standard DNA microsatellite short tandem repeats to profile the NCI-60, and the resulting DNA fingerprints are provided here as a reference. Consistent with previous reports, the fingerprints suggest that several NCI-60 lines have common origins: the melanoma lines MDA-MB-435, MDA-N, and M14; the central nervous system lines U251 and SNB-19; the ovarian lines OVCAR-8 and OVCAR-8/ADR (also called NCI/ADR); and the prostate lines DU-145, DU-145 (ATCC), and RC0.1. Those lines also show that the ability to connect two fingerprints to the same origin is not affected by stable transfection or by the development of multidrug resistance. As expected, DNA fingerprints were not able to distinguish different tissues-of-origin. The fingerprints serve principally as a barcodes.
Collapse
Affiliation(s)
- Philip L. Lorenzi
- Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - William C. Reinhold
- Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Sudhir Varma
- Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Amy A. Hutchinson
- Core Genotyping Facility, NCI/Division of Cancer Epidemiology and Genetics, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Yves Pommier
- Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - John N. Weinstein
- Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
- Department of Bioinformatics and Computational Biology, M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
128
|
Abstract
Ovarian cancer is the leading cause of death from gynaecological malignancies in the Western world. Despite the evolution of surgical techniques and meticulously designed chemotherapy regimens, relapse remains almost inevitable in patients with advanced disease. In an age when great advances have been made in understanding the genetics and molecular biology of this heterogeneous disease, it is likely that the introduction of novel targeted therapies will have a major impact on the management of ovarian cancer. Importantly, such strategies might allow selection of treatments based on the molecular characteristics of tumours and bring us closer to an era of personalized medicine.
Collapse
Affiliation(s)
- Timothy A Yap
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | | | | |
Collapse
|
129
|
Al-Bazz YO, Underwood JC, Brown BL, Dobson PR. Prognostic significance of Akt, phospho-Akt and BAD expression in primary breast cancer. Eur J Cancer 2009; 45:694-704. [DOI: 10.1016/j.ejca.2008.11.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
130
|
Affiliation(s)
- Wafic M Elmasri
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
131
|
Rosen DG, Yang G, Liu G, Mercado-Uribe I, Chang B, Xiao XS, Zheng J, Xue FX, Liu J. Ovarian cancer: pathology, biology, and disease models. FRONT BIOSCI-LANDMRK 2009; 14:2089-102. [PMID: 19273186 PMCID: PMC2858969 DOI: 10.2741/3364] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epithelial ovarian cancer, which comprises several histologic types and grades, is the most lethal cancer among women in the United States. In this review, we summarize recent progress in understanding the pathology and biology of this disease and in development of models for preclinical research. Our new understanding of this disease suggests new targets for therapeutic intervention and novel markers for early detection of disease.
Collapse
Affiliation(s)
- Daniel G Rosen
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77005-4095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Couto SS, Cao M, Duarte PC, Banach-Petrosky W, Wang S, Romanienko P, Wu H, Cardiff RD, Abate-Shen C, Cunha GR. Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer. Differentiation 2009; 77:103-11. [PMID: 19281769 PMCID: PMC2828345 DOI: 10.1016/j.diff.2008.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor suppressor gene PTEN is important in the initiation and progression of human prostate carcinoma, whereas the role of TP53 remains controversial. Since Pten/Trp53 double conditional knockout mice show earlier onset and fast progression of prostate cancer when compared to Pten knockout mice, we asked whether heterozygosity of these two tumor suppressor genes was sufficient to accelerate prostatic tumorigenesis. To answer this question we examined prostatic lesion progression of Pten/Trp53 double heterozygous mice and a series of controls such as Pten heterozygous, Pten conditional knockout, Trp53 heterozygous and Trp53 knockout mice. Tissue recombination of adult prostatic epithelium coupled with embryonic rat seminal vesicle mesenchyme was used as a tool to stimulate prostatic epithelial proliferation. In our study, high-grade prostatic intraepithelial neoplasia (PIN) was found with high frequency at 8 weeks post-tissue recombination transplantation. PIN lesions in Pten/Trp53 double heterozygous mice were more severe than those seen in Pten heterozygous alone. Furthermore, morphologic features attributable to Pten or Trp53 loss appeared to be enhanced in double heterozygous tissues. LOH analysis of Pten and Trp53 in genomic DNA collected from high-grade PIN lesions in Pten heterozygous and Pten/Trp53 double heterozygous mice showed an intact wild-type allele for both genes in all samples examined. In conclusion, simultaneous heterozygosity of Pten and Trp53 accelerates prostatic tumorigenesis in this mouse model of prostate cancer independently of loss of heterozygosity of either gene.
Collapse
Affiliation(s)
- Suzana S Couto
- Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Sher I, Adham SA, Petrik J, Coomber BL. Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. Int J Cancer 2008; 124:553-61. [PMID: 19004006 DOI: 10.1002/ijc.23963] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epithelial ovarian carcinoma (EOC) patients are usually diagnosed at an advanced stage, characterized by interperitoneal carcinomatosis and production of large volumes of ascites. Vascular endothelial growth factor-A (VEGF-A) and its main signaling receptor VEGFR2 (KDR) are coexpressed in primary ovarian tumors, ascitic cells and metastases, suggesting the existence of an autocrine VEGF-A/KDR loop in EOC cells. In the present study, we examined this possibility and explored the role of this autocrine loop in protecting EOC cells from apoptosis under anchorage free growth conditions (anoikis). We found that 3 different EOC cell lines (Caov3, OVCAR3, SKOV3) express both VEGF-A and its receptors, including KDR. In these cells, KDR is constitutively phosphorylated and is detected both in the cell plasma membrane and in the nucleus. Treating EOC cells with specific internal inhibitors of KDR kinase activity or a VEGF-A neutralizing antibody abolished KDR autophosphorylation and resulted in significant increase in apoptosis when cells were grown in single-cell, anchorage-free conditions. By contrast, these blocking reagents had no effect on cell viability when EOC cells were grown in adhesive monolayers. In summary, our results indicate that an autocrine VEGF-A/KDR loop exists in EOC cells and that it plays a role in protecting the cells from anoikis. Our results imply that treating EOC patients with VEGF blocking agents may potentially reduce peritoneal dissemination by decreasing vascular permeability as well as inducing apoptosis of shed ovarian cancer cells in ascites.
Collapse
Affiliation(s)
- Ifat Sher
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
134
|
Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci U S A 2008; 105:20315-20. [PMID: 19075230 DOI: 10.1073/pnas.0810715105] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is the second leading cause of cancer-related deaths in the United States. Understanding the distinct genetic and epigenetic changes contributing to the establishment and growth of metastatic lesions is crucial for the development of novel therapeutic strategies. In a search for key regulators of colorectal cancer metastasis establishment, we have found that the serine/threonine kinase Akt2, a known proto-oncogene, is highly expressed in late-stage colorectal cancer and metastatic tumors. Suppression of Akt2 expression in highly metastatic colorectal carcinoma cells inhibits their ability to metastasize in an experimental liver metastasis model. Overexpression of wild-type Akt1 did not restore metastatic potential in cells with downregulated Akt2, thus suggesting non-redundant roles for the individual Akt isoforms. In contrast, Akt2 overexpression in wild-type PTEN expressing SW480 colorectal cancer cells led to the formation of micrometastases; however, loss of PTEN is required for sustained formation of overt metastasis. Finally, we found that the consequence of PTEN loss and Akt2 overexpression function synergistically to promote metastasis. These results support a role for Akt2 overexpression in metastatic colorectal cancer and establish a mechanistic link between Akt2 overexpression and PTEN mutation in metastatic tumor establishment and growth. Taken together, these data suggest that Akt family members have distinct functional roles in tumor progression and that selective targeting of the PI3K/Akt2 pathway may provide a novel treatment strategy for colorectal cancer metastasis.
Collapse
|
135
|
Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brünner N, Chan DW, Babaian R, Bast RC, Dowell B, Esteva FJ, Haglund C, Harbeck N, Hayes DF, Holten-Andersen M, Klee GG, Lamerz R, Looijenga LH, Molina R, Nielsen HJ, Rittenhouse H, Semjonow A, Shih IM, Sibley P, Sölétormos G, Stephan C, Sokoll L, Hoffman BR, Diamandis EP. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for Use of Tumor Markers in Testicular, Prostate, Colorectal, Breast, and Ovarian Cancers. Clin Chem 2008; 54:e11-79. [DOI: 10.1373/clinchem.2008.105601] [Citation(s) in RCA: 458] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Background: Updated National Academy of Clinical Biochemistry (NACB) Laboratory Medicine Practice Guidelines for the use of tumor markers in the clinic have been developed.
Methods: Published reports relevant to use of tumor markers for 5 cancer sites—testicular, prostate, colorectal, breast, and ovarian—were critically reviewed.
Results: For testicular cancer, α-fetoprotein, human chorionic gonadotropin, and lactate dehydrogenase are recommended for diagnosis/case finding, staging, prognosis determination, recurrence detection, and therapy monitoring. α-Fetoprotein is also recommended for differential diagnosis of nonseminomatous and seminomatous germ cell tumors. Prostate-specific antigen (PSA) is not recommended for prostate cancer screening, but may be used for detecting disease recurrence and monitoring therapy. Free PSA measurement data are useful for distinguishing malignant from benign prostatic disease when total PSA is <10 μg/L. In colorectal cancer, carcinoembryonic antigen is recommended (with some caveats) for prognosis determination, postoperative surveillance, and therapy monitoring in advanced disease. Fecal occult blood testing may be used for screening asymptomatic adults 50 years or older. For breast cancer, estrogen and progesterone receptors are mandatory for predicting response to hormone therapy, human epidermal growth factor receptor-2 measurement is mandatory for predicting response to trastuzumab, and urokinase plasminogen activator/plasminogen activator inhibitor 1 may be used for determining prognosis in lymph node–negative patients. CA15-3/BR27–29 or carcinoembryonic antigen may be used for therapy monitoring in advanced disease. CA125 is recommended (with transvaginal ultrasound) for early detection of ovarian cancer in women at high risk for this disease. CA125 is also recommended for differential diagnosis of suspicious pelvic masses in postmenopausal women, as well as for detection of recurrence, monitoring of therapy, and determination of prognosis in women with ovarian cancer.
Conclusions: Implementation of these recommendations should encourage optimal use of tumor markers.
Collapse
Affiliation(s)
- Catharine M Sturgeon
- Department of Clinical Biochemistry, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Michael J Duffy
- Department of Pathology and Laboratory Medicine, St Vincent’s University Hospital and UCD School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, Helsinki University Central Hospital, Helsinki, Finland
| | - Hans Lilja
- Departments of Clinical Laboratories, Urology, and Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nils Brünner
- Section of Biomedicine, Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Denmark
| | - Daniel W Chan
- Departments of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Richard Babaian
- Department of Urology, The University of Texas Anderson Cancer Center, Houston, TX
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas Anderson Cancer Center, Houston, Texas, USA
| | | | - Francisco J Esteva
- Departments of Breast Medical Oncology, Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston TX
| | - Caj Haglund
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Nadia Harbeck
- Frauenklinik der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Daniel F Hayes
- Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Mads Holten-Andersen
- Section of Biomedicine, Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Denmark
| | - George G Klee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Rolf Lamerz
- Department of Medicine, Klinikum of the University of Munich, Grosshadern, Germany
| | - Leendert H Looijenga
- Laboratory of Experimental Patho-Oncology, Erasmus MC-University Medical Center Rotterdam, and Daniel den Hoed Cancer Center, Rotterdam, the Netherlands
| | - Rafael Molina
- Laboratory of Biochemistry, Hospital Clinico Provincial, Barcelona, Spain
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Copenhagen, Denmark
| | | | - Axel Semjonow
- Prostate Center, Department of Urology, University Clinic Muenster, Muenster, Germany
| | - Ie-Ming Shih
- Departments of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Paul Sibley
- Siemens Medical Solutions Diagnostics, Glyn Rhonwy, Llanberis, Gwynedd, UK
| | | | - Carsten Stephan
- Department of Urology, Charité Hospital, Universitätsmedizin Berlin, Berlin, Germany
| | - Lori Sokoll
- Departments of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Barry R Hoffman
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
136
|
Zimmer S, Kahl P, Buhl TM, Steiner S, Wardelmann E, Merkelbach-Bruse S, Buettner R, Heukamp LC. Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. J Cancer Res Clin Oncol 2008; 135:723-30. [PMID: 19002495 DOI: 10.1007/s00432-008-0509-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 10/20/2008] [Indexed: 01/14/2023]
Abstract
PURPOSE The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) has been linked to activating mutations in the EGFR gene. So far these mutations have been extensively characterized in established cell lines. The aim of this study was to determine the effects of EGFR mutations on downstream signaling in human tumor specimens. METHODS We have looked for mutations of the EGFR gene in specimens of 67 patients with NSCLC and correlated these with EGFR phosphorylation and the activity of its three main downstream signaling cascades Akt, MAPK and Stat3 by immunohistochemistry. RESULTS We show that the phosphorylation of tyrosine residues 922 and 1173, but not 1068, are primarily affected by the activating EGFR mutations. Akt activity was significantly higher in patients with EGFR mutations but we found no difference in Stat3 or MAPK phosphorylation. Our results suggest that EGFR mutations not only increase receptor activity, but also alter responses of downstream signaling cascades in human NSCLCs and that these finding differ from results obtained in cell lines.
Collapse
Affiliation(s)
- Sebastian Zimmer
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Combined functional and molecular analysis of tumor cell signaling defines 2 distinct myeloma subgroups: Akt-dependent and Akt-independent multiple myeloma. Blood 2008; 112:3403-11. [DOI: 10.1182/blood-2007-11-119362] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Although the phosphatidylinositide 3-kinase (PI3K)/Akt pathway has been reported to contribute to the malignant growth of multiple myeloma (MM), the true relevance of Akt kinases for this disease is still unclear. In particular, functional analyses in primary tumor cells and genetic target validation experiments are missing. Here, we used combined functional and molecular analyses to determine the importance of Akt activity in a large panel of primary MM samples and in MM cell lines. Akt down-regulation with isoform-specific siRNA constructs or with an Akt1/2-specific pharmacologic inhibitor strongly induced apoptosis in approximately half of the primary MM samples analyzed. Sensitivity to Akt inhibition strongly correlated with the activation status of Akt as determined by immunohistochemistry, phospho-Akt–specific flow cytometry, and Western analysis. Additional blockade of the MAPK and the IL-6R/STAT3 pathways was often not sufficient to decrease the viability of MM cells resilient to Akt inhibition. Taken together, these experiments led to the identification of 2 myeloma subgroups: Akt-dependent and Akt-independent MM.
Collapse
|
138
|
Pon YL, Zhou HY, Cheung ANY, Ngan HYS, Wong AST. p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res 2008; 68:6524-32. [PMID: 18701475 DOI: 10.1158/0008-5472.can-07-6302] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p70 S6 kinase (p70(S6K)) is a downstream effector of phosphatidylinositol 3-kinase and is frequently activated in human ovarian cancer. Here we show that p70(S6K) functions in epithelial to mesenchymal transition (EMT) responsible for the acquisition of invasiveness during tumor progression. This tumorigenic activity is associated with the ability of p70(S6K) to repress E-cadherin through the up-regulation of Snail. p70(S6K) activation induced phenotypic changes consistent with EMT in ovarian cancer cells: The cells lost epithelial cell morphology, acquired fibroblast-like properties, and showed reduced intercellular adhesion. Western blot showed that p70(S6K) activation led to decreased expression of the epithelial marker E-cadherin and increased expression of mesenchymal markers N-cadherin and vimentin. Inhibition of p70(S6K) by a specific inhibitor or small interfering RNA reversed the shift of EMT markers. Importantly, p70(S6K) activation also stimulated the expression of Snail, a repressor of E-cadherin and an inducer of EMT, but not other family members such as Slug. This induction of Snail was regulated at multiple levels by increasing transcription, inhibiting protein degradation, and enhancing nuclear localization of Snail. RNA interference-mediated knockdown of Snail suppressed p70(S6K)-induced EMT, confirming that the effect was Snail specific. Furthermore, phospho (active)-p70(S6K) staining correlated with higher tumor grade. We also showed a significant positive correlation between p70(S6K) activation and Snail expression in ovarian cancer tissues. These results indicate that p70(S6K) may play a critical role in tumor progression in ovarian cancer through the induction of EMT. Targeting p70(S6K) may thus be a useful strategy to impede cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Yuen L Pon
- School of Biological Sciences, University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
139
|
Matthews LC, Taggart MJ, Westwood M. Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology 2008; 149:5199-208. [PMID: 18583416 DOI: 10.1210/en.2007-1211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The IGFs mediate their effects on cell function through the type I IGF receptor and numerous intracellular signalling molecules, including the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. The type I IGF receptor also binds to the caveolae protein caveolin-1, but the impact of caveolae on IGF/PI-3K/Akt signalling remains controversial. We have examined the effect of complete (knockout) and partial (knockdown) caveolin-1 deficiency on cellular IGF effects mediated via the PI-3K/Akt pathway. Under basal conditions, caveolin-1-deficient mouse embryonic fibroblast cells [MF(-/-)] incorporated significantly more [3H]thymidine than wild-type mouse embryonic fibroblast cells [MF(+/+)]; however, small hairpin RNA-mediated knockdown of caveolin-1 (80% reduction) in 3T3L1 fibroblasts had no effect on basal proliferation. Interestingly, IGF-I induced proliferation was similar in MF(-/-) and MF(+/+) cells, whereas caveolin-1 knockdown promoted a hyperproliferative response to IGF-I [pkDCav3T3L1(80) 12.4+/-0.4-fold; pkDShuffle3T3L1 4.3+/-0.2-fold induction; P<0.01]. Immunoblot analysis showed that caveolin-1 knockdown had no affect on Akt expression or activation. However, in MF(-/-) cells, IGF-I-stimulated phosphorylation of Akt was reduced despite up-regulated Akt levels. Further investigation demonstrated that caveolin knockout up-regulated Akt-2 and Akt-3 isoform expression, but Akt-1 expression was down-regulated; interestingly, coimmunoprecipitation studies revealed Akt-1 as the predominant isoform to be phosphorylated in response to IGF-I. In summary, caveolin-1 deficiency promotes a hyperproliferative response to IGF-I that is unrelated to Akt expression/activation. However, cells that lack caveolin are able to respond appropriately to IGF-I through compensatory changes in Akt isoform expression. These data posit caveolin-1 as a component of the IGF/PI-3K/Akt signalling modulus regulating cellular proliferation with implications for diseases, including cancers, which have altered caveolin expression.
Collapse
Affiliation(s)
- Laura C Matthews
- Maternal and Fetal Health Research Group, University of Manchester, St. Mary's Hospital, Hathersage Road, Manchester M13 0JH, United Kingdom
| | | | | |
Collapse
|
140
|
Yeung BHY, Wong KY, Lin MC, Wong CKC, Mashima T, Tsuruo T, Wong AST. Chemosensitisation by manganese superoxide dismutase inhibition is caspase-9 dependent and involves extracellular signal-regulated kinase 1/2. Br J Cancer 2008; 99:283-93. [PMID: 18594523 PMCID: PMC2480972 DOI: 10.1038/sj.bjc.6604477] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/23/2008] [Accepted: 05/26/2008] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance and therapeutic selectivity are major obstacles to successful chemotherapy of ovarian cancer. Manganese superoxide disumutase (MnSOD) is an important antioxidant enzyme responsible for the elimination of superoxide radicals. We reported here that MnSOD was significantly elevated in ovarian cancer cells and its overexpression was one of the mechanisms that increased resistance to apoptosis in cancer cells. Knockdown of MnSOD by small-interfering RNA (siRNA) led to an increase in superoxide generation and sensitisation of ovarian cancer cells to the two front-line anti-cancer agents doxorubicin and paclitaxel whose action involved free-radical generation. This synergistic effect was not observed in non-transformed ovarian surface epithelial cells. Furthermore, our results revealed that this combination at the cellular level augmented activation of caspase-3 and caspase-9, but not caspase-8, suggesting involvement of an intrinsic apoptotic pathway. Evaluation of signalling pathways showed that MnSOD siRNA enhanced doxorubicin- and paclitaxel-induced phosphorylation of extracellular signal-regulated kinase 1/2. Akt activation was not affected. These results identify a novel chemoresistance mechanism in ovarian cancer, and show that combination of drugs capable of suppressing MnSOD with conventional chemotherapeutic agents may provide a novel strategy with a superior therapeutic index and advantage for the treatment of refractory ovarian cancer.
Collapse
Affiliation(s)
- B H Y Yeung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - K Y Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - M C Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, P.R. China
| | - C K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - T Mashima
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - T Tsuruo
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - A S T Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| |
Collapse
|
141
|
BRCA1 185delAG truncation protein, BRAt, amplifies caspase-mediated apoptosis in ovarian cells. In Vitro Cell Dev Biol Anim 2008; 44:357-67. [DOI: 10.1007/s11626-008-9122-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/08/2008] [Indexed: 01/11/2023]
|
142
|
Zhu QS, Ren W, Korchin B, Lahat G, Dicker A, Lu Y, Mills G, Pollock RE, Lev D. Soft tissue sarcoma cells are highly sensitive to AKT blockade: a role for p53-independent up-regulation of GADD45 alpha. Cancer Res 2008; 68:2895-903. [PMID: 18413758 DOI: 10.1158/0008-5472.can-07-6268] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AKT signaling pathway is activated in soft tissue sarcoma (STS). However, AKT blockade has not yet been studied as a potential targeted therapeutic approach. Here, we examined the in vitro and in vivo effects of AKT inhibition in STS cells. Western blot analysis was used to evaluate the expression of AKT pathway components and the effect of AKT stimulation and inhibition on their phosphorylation. Cell culture assays were used to assess the effect of AKT blockade (using a phosphatidylinositol 3-kinase inhibitor and a specific AKT inhibitor) on STS cell growth, cell cycle, and apoptosis. Oligoarrays were used to determine gene expression changes in response to AKT inhibition. Reverse transcription-PCR was used for array validation. Specific small inhibitory RNA was used to knockdown GADD45 alpha. Human STS xenografts in nude mice were used for in vivo studies, and immunohistochemistry was used to assess the effect of treatment on GADD45 alpha expression, proliferation, and apoptosis. Multiple STS cell lines expressed activated AKT. AKT inhibition decreased STS downstream target phosphorylation and growth in vitro; G(2) cell cycle arrest and apoptosis were also observed. AKT inhibition induced GADD45 alpha mRNA and protein expression in all STS cells treated independent of p53 mutational status. GADD45 alpha knockdown attenuated the G(2) arrest induced by AKT inhibition. In vivo, AKT inhibition led to decreased STS xenograft growth. AKT plays a critical role in survival and proliferation of STS cells. Modulation of AKT kinase activity may provide a novel molecularly based strategy for STS-targeted therapies.
Collapse
Affiliation(s)
- Quan-Sheng Zhu
- Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Xing H, Cao Y, Weng D, Tao W, Song X, Wang W, Meng L, Xu G, Zhou J, Wang S, Ma D. Fibronectin-mediated activation of Akt2 protects human ovarian and breast cancer cells from docetaxel-induced apoptosis via inhibition of the p38 pathway. Apoptosis 2008; 13:213-23. [PMID: 18158623 DOI: 10.1007/s10495-007-0158-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although multiple mechanisms have been implicated in chemoresistance, recent evidence has suggested that the attachment of cells to extracellular matrix proteins such as fibronectin (FN) may mediate the signals that participate in cell survival and resistance to apoptosis. We established previously that human ovarian cancer cells and breast cancer cells adhering to FN acquire a survival advantage through activation of the PI3-kinase/Akt2 pathway. However, the mechanism by which Akt2 regulates chemoresistance in adherent cells is unknown. In the present study, we have investigated the role of the interaction between the Akt2/survivin survivial pathway and the ASK1/p38 apoptotic pathway in the phenomenon of resistance to docetaxel. We show here that the resistance of FN-adhered A2780 or MDA-MB-231 cells to docetaxel requires survivin, and we present evidence that attenuation of the antiapoptotic activity of survivin is p38-dependent. The activation of p38 kinase in response to docetaxel, on the other hand, is abolished by FN adhesion. We further demonstrate that FN adhesion-mediated inhibition of p38 activation was governed by Akt2 via the promotion of direct protein association of ASK1 with p38. Our results indicate for the first time that p38 plays a critical role in FN adhesion-mediated resistance to docetaxel. The present findings may help us to understand the formation of FN adhesion-mediated chemoresistance and facilitate development of novel antineoplastic strategies.
Collapse
Affiliation(s)
- Hui Xing
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Shtilbans V, Wu M, Burstein DE. Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann Diagn Pathol 2008; 12:153-60. [DOI: 10.1016/j.anndiagpath.2007.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
145
|
Dinh P, Harnett P, Piccart-Gebhart MJ, Awada A. New therapies for ovarian cancer: cytotoxics and molecularly targeted agents. Crit Rev Oncol Hematol 2008; 67:103-12. [PMID: 18342536 DOI: 10.1016/j.critrevonc.2008.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer, although a chemo-sensitive disease, is associated with high morbidity and mortality due to its often-late presentation. Platinums and taxanes have improved the prognosis over recent years but median overall survival is still unacceptably low (24-60 months). Apart from the manipulation of doses, schedules, mode of delivery, and combinations of existing drugs, new cytotoxics and molecularly targeted agents with different mechanisms of action must be evaluated in this patient population. This article will review the most recent clinical trials data pertaining to these new cytotoxic drugs including patupilone, telcyta, and trabectedin, as well as those of small molecules and inhibitors of the EGFR and VEGF receptor families. It will also discuss other potential signal transduction targets worthy of further evaluation in future trials.
Collapse
Affiliation(s)
- Phuong Dinh
- Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium.
| | | | | | | |
Collapse
|
146
|
LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 2008; 11:32-50. [PMID: 18166498 PMCID: PMC2442829 DOI: 10.1016/j.drup.2007.11.003] [Citation(s) in RCA: 618] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 12/15/2022]
Abstract
The PI3K/Akt/mTOR pathway is a prototypic survival pathway that is constitutively activated in many types of cancer. Mechanisms for pathway activation include loss of tumor suppressor PTEN function, amplification or mutation of PI3K, amplification or mutation of Akt, activation of growth factor receptors, and exposure to carcinogens. Once activated, signaling through Akt can be propagated to a diverse array of substrates, including mTOR, a key regulator of protein translation. This pathway is an attractive therapeutic target in cancer because it serves as a convergence point for many growth stimuli, and through its downstream substrates, controls cellular processes that contribute to the initiation and maintenance of cancer. Moreover, activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy, and is a poor prognostic factor for many types of cancers. This review will provide an update on the clinical progress of various agents that target the pathway, such as the Akt inhibitors perifosine and PX-866 and mTOR inhibitors (rapamycin, CCI-779, RAD-001) and discuss strategies to combine these pathway inhibitors with conventional chemotherapy, radiotherapy, as well as newer targeted agents. We will also discuss how the complex regulation of the PI3K/Akt/mTOR pathway poses practical issues concerning the design of clinical trials, potential toxicities and criteria for patient selection.
Collapse
Affiliation(s)
- Jaclyn LoPiccolo
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889
| | - Gideon M. Blumenthal
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889
| | - Wendy B. Bernstein
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889
| | - Phillip A. Dennis
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889
| |
Collapse
|
147
|
Hepatic stress in hereditary tyrosinemia type 1 (HT1) activates the AKT survival pathway in the fah-/- knockout mice model. J Hepatol 2008; 48:308-17. [PMID: 18093685 DOI: 10.1016/j.jhep.2007.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 02/01/2023]
Abstract
BACKGROUND/AIMS The AKT survival pathway is involved in a wide variety of human cancers. We investigated the implication of this pathway in hereditary tyrosinemia type 1 (HT1), a metabolic disease exhibiting hepatocellular carcinoma (HCC), despite treatment with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexadione (NTBC) which prevents liver damage. HT1 is an autosomal recessive disorder caused by accumulation of toxic metabolites due to a deficiency in fumarylacetoacetate hydrolase (FAH), the last enzyme in the catabolism of tyrosine. METHODS NTBC withdrawal in the murine fah(-/-) knockout model was used to analyze in vivo the correlation between pathophysiological, biochemical and histological features consistent with hepatocarcinogenesis and activation of the AKT survival pathway. RESULTS The HT1 stress initiated by NTBC discontinuation causes a progressive increase of liver and kidney pathophysiology. A stable activation of the AKT survival pathway is observed in the liver but not in kidneys of fah(-/-) mice. Hepatic survival is reinforced by inhibition of mitochondrial-mediated apoptosis through inactivation of Bad and induction of BCl-X(L) and BCl-2. CONCLUSIONS The chronic stress induced by liver disease in HT1 activates the AKT survival signal and inhibits intrinsic apoptosis to confer cell death resistance in vivo and favor hepatocarcinogenesis.
Collapse
|
148
|
Fraser M, Bai T, Tsang BK. Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 2008; 122:534-46. [PMID: 17918180 DOI: 10.1002/ijc.23086] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Resistance to cisplatin-based chemotherapy is a major cause of treatment failure in human ovarian cancer. Wild-type TP53 status is often, but not always, associated with cisplatin sensitivity, suggesting that additional factors may be involved. Overexpression/activation of the phosphatidylinositol-3-kinase/Akt pathway is commonly observed in ovarian cancer, and Akt activation is a determinant of chemoresistance in ovarian cancer cells, an effect that may be due, in part, to its inhibitory actions on p53-dependent apoptosis. To that end, we examined the role and regulation of p53 in chemosensitive ovarian cancer cells, as well as in their chemoresistant counterparts, and investigated if and how Akt influences this pathway. Cisplatin induced apoptosis in chemosensitive, but not chemoresistant cells, and this was inhibited by downregulation of p53. Cisplatin upregulated PUMA in a p53-dependent manner, and the presence of PUMA was necessary, but not sufficient for cisplatin-induced apoptosis. p53 was phosphorylated on numerous N-terminal residues, including Ser15, Ser20, in response to cisplatin in chemosensitive, but not chemoresistant cells. Furthermore, activation of Akt inhibited the cisplatin-induced upregulation of PUMA, and suppressed cisplatin-induced p53 phosphorylation, while inhibition of Akt increased total and phospho-p53 contents and sensitized p53 wild-type, chemoresistant cells to cisplatin-induced apoptosis. Finally, mutation of Ser15 and/or Ser20, but not of Ser37, to alanine significantly attenuated the ability of p53 to facilitate CDDP-induced apoptosis, and this was independent of PUMA expression. These results support the hypothesis that p53 is a determinant of CDDP sensitivity, and suggest that Akt contributes to chemoresistance, in part, by attenuating p53-mediated PUMA upregulation and phosphorylation of p53, which are essential, but independent determinants of sensitivity to CDDP-induced apoptosis.
Collapse
Affiliation(s)
- Michael Fraser
- Reproductive Biology Unit and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
149
|
Xing H, Weng D, Chen G, Tao W, Zhu T, Yang X, Meng L, Wang S, Lu Y, Ma D. Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett 2008; 261:108-19. [PMID: 18171600 DOI: 10.1016/j.canlet.2007.11.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 11/01/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to investigate the possible role of PI-3K/Akt2 pathway in docetaxel-induced apoptosis. Here we showed that transfection of full-length Akt2 into breast and ovarian cancer cells could provoke Akt phosphorylation and induce an enhanced resistance to docetaxel. FN adhesion promoted Akt phosphorylation in highly metastatic cancer cells A2780 and MDAMB231, and further brought on significant protection for tumor cells against docetaxel-induced apoptosis. Inhibition of Akt2 activity by co-transfection with two shRNA vectors targeting the same Akt2 mRNA or simply by administration with PI 3-Kinase inhibitor Ly294002 counteracted the ability of FN to protect cells from undergoing apoptosis induced by docetaxel. We further showed that Akt2 activation protected against docetaxel-induced apoptosis by regulating survivin levels in a PI 3-Kinase-dependent manner. We conclude that FN/PI-3K/Akt2 pathway might play an important role in inducing resistance to docetaxel in breast and ovarian cancer cells. Our results therefore indicate that the activation of Akt2, promoted by FN attachment, might be critical in determining whether cells survive or undergo apoptosis. Targeting the PI-3K/Akt2 pathway might be a promising strategy for enhancing sensitivity to docetaxel in breast or ovarian cancer.
Collapse
Affiliation(s)
- Hui Xing
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Nitrosylcobalamin potentiates the anti-neoplastic effects of chemotherapeutic agents via suppression of survival signaling. PLoS One 2007; 2:e1313. [PMID: 18074035 PMCID: PMC2117345 DOI: 10.1371/journal.pone.0001313] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/22/2007] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Nitrosylcobalamin (NO-Cbl) is a chemotherapeutic pro-drug derived from vitamin B12 that preferentially delivers nitric oxide (NO) to tumor cells, based upon increased receptor expression. NO-Cbl induces Apo2L/TRAIL-mediated apoptosis and inhibits survival signaling in a variety of malignant cell lines. Chemotherapeutic agents often simultaneously induce an apoptotic signal and activation of NF-kappaB, which has the undesired effect of promoting cell survival. The specific aims of this study were to 1) measure the anti-tumor effects of NO-Cbl alone and in combination with conventional chemotherapeutic agents, and to 2) examine the mechanism of action of NO-Cbl as a single agent and in combination therapy. METHODOLOGY Using anti-proliferative assays, electrophoretic mobility shift assay (EMSA), immunoblot analysis and kinase assays, we demonstrate an increase in the effectiveness of chemotherapeutic agents in combination with NO-Cbl as a result of suppressed NF-kappaB activation. RESULTS Eighteen chemotherapeutic agents were tested in combination with NO-Cbl, in thirteen malignant cell lines, resulting in a synergistic anti-proliferative effect in 78% of the combinations tested. NO-Cbl pre-treatment resulted in decreased NF-kappaB DNA binding activity, inhibition of IkappaB kinase (IKK) enzymatic activity, decreased AKT activation, increased caspase-8 and PARP cleavage, and decreased cellular XIAP protein levels. CONCLUSION The use of NO-Cbl to inhibit survival signaling may enhance drug efficacy by preventing concomitant activation of NF-kappaB or AKT.
Collapse
|