101
|
Sun G, Yang L, Zhan W, Chen S, Song M, Wang L, Jiang L, Guo L, Wang K, Ye X, Gou M, Zheng X, Yang J, Yan Z. HFR1, a bHLH Transcriptional Regulator from Arabidopsis thaliana, Improves Grain Yield, Shade and Osmotic Stress Tolerances in Common Wheat. Int J Mol Sci 2022; 23:ijms231912057. [PMID: 36233359 PMCID: PMC9569703 DOI: 10.3390/ijms231912057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Common wheat, Triticum aestivum, is the most widely grown staple crop worldwide. To catch up with the increasing global population and cope with the changing climate, it is valuable to breed wheat cultivars that are tolerant to abiotic or shade stresses for density farming. Arabidopsis LONG HYPOCOTYL IN FAR-RED 1 (AtHFR1), a photomorphogenesis-promoting factor, is involved in multiple light-related signaling pathways and inhibits seedling etiolation and shade avoidance. We report that overexpression of AtHFR1 in wheat inhibits etiolation phenotypes under various light and shade conditions, leading to shortened plant height and increased spike number relative to non-transgenic plants in the field. Ectopic expression of AtHFR1 in wheat increases the transcript levels of TaCAB and TaCHS as observed previously in Arabidopsis, indicating that the AtHFR1 transgene can activate the light signal transduction pathway in wheat. AtHFR1 transgenic seedlings significantly exhibit tolerance to osmotic stress during seed germination compared to non-transgenic wheat. The AtHFR1 transgene represses transcription of TaFT1, TaCO1, and TaCO2, delaying development of the shoot apex and heading in wheat. Furthermore, the AtHFR1 transgene in wheat inhibits transcript levels of PHYTOCHROME-INTERACTING FACTOR 3-LIKEs (TaPIL13, TaPIL15-1B, and TaPIL15-1D), downregulating the target gene STAYGREEN (TaSGR), and thus delaying dark-induced leaf senescence. In the field, grain yields of three AtHFR1 transgenic lines were 18.2–48.1% higher than those of non-transgenic wheat. In summary, genetic modification of light signaling pathways using a photomorphogenesis-promoting factor has positive effects on grain yield due to changes in plant architecture and resource allocation and enhances tolerances to osmotic stress and shade avoidance response.
Collapse
Affiliation(s)
- Guanghua Sun
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Luhao Yang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Weimin Zhan
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shizhan Chen
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijian Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liangliang Jiang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (J.Y.); (Z.Y.)
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (J.Y.); (Z.Y.)
| |
Collapse
|
102
|
Yang Z, Yan H, Wang J, Nie G, Feng G, Xu X, Li D, Huang L, Zhang X. DNA hypermethylation promotes the flowering of orchardgrass during vernalization. PLANT PHYSIOLOGY 2022; 190:1490-1505. [PMID: 35861426 PMCID: PMC9516772 DOI: 10.1093/plphys/kiac335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Vernalization, influenced by environmental factors, is an essential process associated with the productivity of temperate crops, during which epigenetic regulation of gene expression plays an important role. Although DNA methylation is one of the major epigenetic mechanisms associated with the control of gene expression, global changes in DNA methylation in the regulation of gene expression during vernalization-induced flowering of temperate plants remain largely undetermined. To characterize vernalization-associated DNA methylation dynamics, we performed whole-genome bisulfite-treated sequencing and transcriptome sequencing in orchardgrass (Dactylis glomerata) during vernalization. The results revealed that increased levels of genome DNA methylation during the early vernalization of orchardgrass were associated with transcriptional changes in DNA methyltransferase and demethylase genes. Upregulated expression of vernalization-related genes during early vernalization was attributable to an increase in mCHH in the promoter regions of these genes. Application of an exogenous DNA methylation accelerator or overexpression of orchardgrass NUCLEAR POLY(A) POLYMERASE (DgPAPS4) promoted earlier flowering, indicating that DNA hypermethylation plays an important role in vernalization-induced flowering. Collectively, our findings revealed that vernalization-induced hypermethylation is responsible for floral primordium initiation and development. These observations provide a theoretical foundation for further studies on the molecular mechanisms underlying the control of vernalization in temperate grasses.
Collapse
Affiliation(s)
| | | | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | | | | |
Collapse
|
103
|
Wang H, Han X, Fu X, Sun X, Chen H, Wei X, Cui S, Liu Y, Guo W, Li X, Xing J, Zhang Y. Overexpression of TaLBD16-4D alters plant architecture and heading date in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:911993. [PMID: 36212357 PMCID: PMC9533090 DOI: 10.3389/fpls.2022.911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Lateral organ boundaries domain (LBD) proteins, a class of plant-specific transcription factors with a special domain of lateral organ boundaries (LOB), play essential roles in plant growth and development. However, there is little known about the functions of these genes in wheat to date. Our previous study demonstrated that TaLBD16-4D is conducive to increasing lateral root number in wheat. In the present work, we further examined important agronomical traits of the aerial part of transgenic wheat overexpressing TaLBD16-4D. Interestingly, it was revealed that overexpressing TaLBD16-4D could lead to early heading and multiple alterations of plant architecture, including decreased plant height, increased flag leaf size and stem diameter, reduced spike length and tillering number, improved spike density and grain width, and decreased grain length. Moreover, auxin-responsive experiments demonstrated that the expression of TaLBD16-4D in wild-type (WT) wheat plants showed a significant upregulation through 2,4-D treatment. TaLBD16-4D-overexpression lines displayed a hyposensitivity to 2,4-D treatment and reduced shoot gravitropic response. The expressions of a set of auxin-responsive genes were markedly different between WT and transgenic plants. In addition, overexpressing TaLBD16-4D affected the transcript levels of flowering-related genes (TaGI, TaCO1, TaHd1, TaVRN1, TaVRN2, and TaFT1). Notably, the expression of TaGI, TaCO1, TaHd1, TaVRN1, and TaFT1 displayed significant upregulation under IAA treatment. Collectively, our observations indicated that overexpressing TaLBD16-4D could affect aerial architecture and heading time possibly though participating in the auxin pathway.
Collapse
Affiliation(s)
- Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaofan Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaofeng Fu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xinling Sun
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Hailong Chen
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xirui Wei
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Shubin Cui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yiguo Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
104
|
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling HQ, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
Affiliation(s)
- Jun Xiao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, 130024, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Fei Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyun Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xuelei Lin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kunpu Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fangpu Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Yiping Tong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiyong Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- CIMMYT China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
105
|
Preston JC, Fjellheim S. Flowering time runs hot and cold. PLANT PHYSIOLOGY 2022; 190:5-18. [PMID: 35274728 PMCID: PMC9434294 DOI: 10.1093/plphys/kiac111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 05/16/2023]
Abstract
Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
| |
Collapse
|
106
|
Wu J, Qiao L, Liu Y, Fu B, Nagarajan R, Rauf Y, Jia H, Yan L. Rapid identification and deployment of major genes for flowering time and awn traits in common wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:992811. [PMID: 36092425 PMCID: PMC9459131 DOI: 10.3389/fpls.2022.992811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Molecular markers are developed to accelerate deployment of genes for desirable traits segregated in a bi-parental population of recombinant inbred lines (RILs) or doubled haplotype (DH) lines for mapping. However, it would be the most effective if such markers for multiple traits could be identified in an F2 population. In this study, single nucleotide polymorphisms (SNP) chips were used to identify major genes for heading date and awn in an F2 population without developing RILs or DH lines. The population was generated from a cross between a locally adapted spring wheat cultivar "Ningmaizi119" and a winter wheat cultivar "Tabasco" with a diverse genetic background. It was found that the dominant Vrn-D1 allele could make Ningmaizi119 flowered a few months earlier than Tabasco in the greenhouse and without vernalization. The observed effects of the allele were validated in F3 populations. It was also found that the dominant Ali-A1 allele for awnless trait in Tabasco or the recessive ali-A1 allele for awn trait in Ningmaizi119 was segregated in the F2 population. The allelic variation in the ALI-A1 gene relies not only on the DNA polymorphisms in the promoter but also on gene copy number, with one copy ali-A1 in Ningmaizi119 but two copies Ali-A1 in Tabasco based on RT-PCR results. According to wheat genome sequences, cultivar "Mattis" has two copies Ali-A1 and cultivar "Spelta" has four copies Ali-A in a chromosome that was uncharacterized (ChrUN), in addition to one copy on chromosome 5A. This study rapidly characterized the effects of the dominant Vrn-D1 allele and identified the haplotype of Ali-A1 in gene copy number in the F2 segregation population of common wheat will accelerate their deployment in cycling lines in breeding.
Collapse
Affiliation(s)
- Jizhong Wu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Linyi Qiao
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Ying Liu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Bisheng Fu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahya Rauf
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
- The Applied Plant Genomics Laboratory, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
107
|
Benaouda S, Dadshani S, Koua P, Léon J, Ballvora A. Identification of QTLs for wheat heading time across multiple-environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2833-2848. [PMID: 35776141 PMCID: PMC9325850 DOI: 10.1007/s00122-022-04152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE The genetic response to changing climatic factors selects consistent across the tested environments and location-specific thermo-sensitive and photoperiod susceptible alleles in lower and higher altitudes, respectively, for starting flowering in winter wheat. Wheat breeders select heading date to match the most favorable conditions for their target environments and this is favored by the extensive genetic variation for this trait that has the potential to be further explored. In this study, we used a germplasm with broad geographic distribution and tested it in multi-location field trials across Germany over three years. The genotypic response to the variation in the climatic parameters depending on location and year uncovered the effect of photoperiod and spring temperatures in accelerating heading date in higher and lower latitudes, respectively. Spring temperature dominates other factors in inducing heading, whereas the higher amount of solar radiation delays it. A genome-wide scan of marker-trait associations with heading date detected two QTL: an adapted allele at locus TaHd102 on chromosome 5A that has a consistent effect on HD in German cultivars in multiple environments and a non-adapted allele at locus TaHd044 on chromosome 3A that accelerates flowering by 5.6 days. TaHd102 and TaHd044 explain 13.8% and 33% of the genetic variance, respectively. The interplay of the climatic variables led to the detection of environment specific association responding to temperature in lower latitudes and photoperiod in higher ones. Another locus TaHd098 on chromosome 5A showed epistatic interactions with 15 known regulators of flowering time when non-adapted cultivars from outside Germany were included in the analysis.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany
| | - Said Dadshani
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany
| | - Patrice Koua
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
108
|
Yan X, Wang LJ, Zhao YQ, Jia GX. Expression Patterns of Key Genes in the Photoperiod and Vernalization Flowering Pathways in Lilium longiflorum with Different Bulb Sizes. Int J Mol Sci 2022; 23:ijms23158341. [PMID: 35955483 PMCID: PMC9368551 DOI: 10.3390/ijms23158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lilium longiflorum is a wild Lilium, and its flowering transition requires a long period of cold exposure to meet the demand of vernalization. The responses of different sized bulbs to cold exposure and photoperiod are different, and the floral transition pathways of small and large bulbs are different. In this study, small and large bulbs were placed in cold storage for different weeks and then cultured at a constant ambient temperature of 25 °C under long day (LD) and short day (SD) conditions. Then, the flowering characteristics and expression patterns of key genes related to the vernalization and photoperiod pathways in different groups were calculated and analyzed. The results showed that the floral transition of Lilium longiflorum was influenced by both vernalization and photoperiod, that vernalization and LD conditions can significantly improve the flowering rate of Lilium longiflorum, and that the time from planting to visible flowering buds’ appearance was decreased. The flowering time and rate of large bulbs were greatly influenced by cold exposure, and the vernalization pathway acted more actively at the floral transition stage. The floral transition of small bulbs was affected more by the photoperiod pathway. Moreover, it was speculated that cold exposure may promote greater sensitivity of the small bulbs to LD conditions. In addition, the expression of LlVRN1, LlFKF1, LlGI, LlCO5, LlCO7, LlCO16, LlFT1, LlFT3 and LlSOC1 was high during the process of floral transition, and LlCO13, LlCO14 and LlCO15 were highly expressed in the vegetative stage. The expression of LlCO13 and LlCO14 was different under different lighting conditions, and the flowering induction function of LlCO9 and LlFT3 was related to vernalization. Moreover, LlFKF1, LlGI, LlCO5, LlCO16, LlSOC1 and LlFT2 were involved in the entire growth process of plants, while LlCO6, LlCO16 and LlFT1 are involved in the differentiation and formation of small bulblets of plants after the inflorescence stage, and this process is also closely related to LD conditions. This study has great significance for understanding the molecular mechanisms of the vernalization and photoperiod flowering pathways of Lilium longiflorum.
Collapse
|
109
|
Pleiotropic Effect of the compactum Gene and Its Combined Effects with Other Loci for Spike and Grain-Related Traits in Wheat. PLANTS 2022; 11:plants11141837. [PMID: 35890471 PMCID: PMC9316965 DOI: 10.3390/plants11141837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Club wheat (Triticum aestivum ssp. compactum) with a distinctly compact spike morphology was conditioned by the dominant compactum (C) locus on chromosome 2D and resulted in a redistribution of spike yield components. The disclosure of the genetic basis of club wheat was a prerequisite for the development of widely adapted, agronomically competitive club wheat cultivars. In this study, we used a recombinant inbred line population derived from a cross between club wheat Hiller and modern cultivar Yangmai 158 to construct a genetic linkage map and identify quantitative trait loci associated with 15 morphological traits. The club allele acted in a semi-dominant manner and the C gene was mapped to 370.12–406.29 Mb physical region on the long arm of 2D. Apart from compact spikes, C exhibited a pleiotropic effect on ten other agronomic traits, including plant height, three spike-related traits and six grain-related traits. The compact spike phenotype was correlated with decreased grain size and weight, but with an increase in floret fertility and grain number. These pleiotropic effects make club wheat have compatible spike weight with a normal spike from common wheat. The genetic effects of various gene combinations of C with four yield-related genes, including Ppd-D1, Vrn-D3, Rht-B1b and Rht8, were evaluated. C had no epistatic interaction with any of these genes, indicating that their combinations would have an additive effect on other agronomically important traits. Our research provided a theoretical foundation for the potentially effective deployment of C gene into modern breeding varieties in combination with other favorable alleles.
Collapse
|
110
|
Nagy I, Veeckman E, Liu C, Bel MV, Vandepoele K, Jensen CS, Ruttink T, Asp T. Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genomics 2022; 23:505. [PMID: 35831814 PMCID: PMC9281035 DOI: 10.1186/s12864-022-08697-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The availability of chromosome-scale genome assemblies is fundamentally important to advance genetics and breeding in crops, as well as for evolutionary and comparative genomics. The improvement of long-read sequencing technologies and the advent of optical mapping and chromosome conformation capture technologies in the last few years, significantly promoted the development of chromosome-scale genome assemblies of model plants and crop species. In grasses, chromosome-scale genome assemblies recently became available for cultivated and wild species of the Triticeae subfamily. Development of state-of-the-art genomic resources in species of the Poeae subfamily, which includes important crops like fescues and ryegrasses, is lagging behind the progress in the cereal species. RESULTS Here, we report a new chromosome-scale genome sequence assembly for perennial ryegrass, obtained by combining PacBio long-read sequencing, Illumina short-read polishing, BioNano optical mapping and Hi-C scaffolding. More than 90% of the total genome size of perennial ryegrass (approximately 2.55 Gb) is covered by seven pseudo-chromosomes that show high levels of collinearity to the orthologous chromosomes of Triticeae species. The transposon fraction of perennial ryegrass was found to be relatively low, approximately 35% of the total genome content, which is less than half of the genome repeat content of cultivated cereal species. We predicted 54,629 high-confidence gene models, 10,287 long non-coding RNAs and a total of 8,393 short non-coding RNAs in the perennial ryegrass genome. CONCLUSIONS The new reference genome sequence and annotation presented here are valuable resources for comparative genomic studies in grasses, as well as for breeding applications and will expedite the development of productive varieties in perennial ryegrass and related species.
Collapse
Affiliation(s)
- Istvan Nagy
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| | - Elisabeth Veeckman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- Present address: DLF Seeds A/S, Denmark, Højerupvej 31, Store Heddinge, DK-4660 Denmark
| | - Chang Liu
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Eberhard Karls Universität, Auf der Morgenstelle 32, Tübingen, 72076 Germany
- Present address: Institut für Biologie, Universität Hohenheim, Garbenstr. 30, Stuttgart, 70599 Germany
| | - Michiel Van Bel
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | - Klaas Vandepoele
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | | | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| |
Collapse
|
111
|
Bhati PK, Juliana P, Singh RP, Joshi AK, Vishwakarma MK, Poland J, Govindan V, Shrestha S, Crespo-Herrera L, Mondal S, Huerta-Espino J, Kumar U. Dissecting the Genetic Architecture of Phenology Affecting Adaptation of Spring Bread Wheat Genotypes to the Major Wheat-Producing Zones in India. FRONTIERS IN PLANT SCIENCE 2022; 13:920682. [PMID: 35873987 PMCID: PMC9298574 DOI: 10.3389/fpls.2022.920682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Spring bread wheat adaptation to diverse environments is supported by various traits such as phenology and plant architecture. A large-scale genome-wide association study (GWAS) was designed to investigate and dissect the genetic architecture of phenology affecting adaptation. It used 48 datasets from 4,680 spring wheat lines. For 8 years (2014-2021), these lines were evaluated for days to heading (DH) and maturity (DM) at three sites: Jabalpur, Ludhiana, and Samastipur (Pusa), which represent the three major Indian wheat-producing zones: the Central Zone (CZ), North-Western Plain Zone (NWPZ), and North-Eastern Plain Zone (NEPZ), respectively. Ludhiana had the highest mean DH of 103.8 days and DM of 148.6 days, whereas Jabalpur had the lowest mean DH of 77.7 days and DM of 121.6 days. We identified 119 markers significantly associated with DH and DM on chromosomes 5B (76), 2B (18), 7D (10), 4D (8), 5A (1), 6B (4), 7B (1), and 3D (1). Our results clearly indicated the importance of the photoperiod-associated gene (Ppd-B1) for adaptation to the NWPZ and the Vrn-B1 gene for adaptation to the NEPZ and CZ. A maximum variation of 21.1 and 14% was explained by markers 2B_56134146 and 5B_574145576 linked to the Ppd-B1 and Vrn-B1 genes, respectively, indicating their significant role in regulating DH and DM. The results provide important insights into the genomic regions associated with the two phenological traits that influence adaptation to the major wheat-producing zones in India.
Collapse
Affiliation(s)
- Pradeep Kumar Bhati
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
- Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
- Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Arun Kumar Joshi
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
- Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Manish Kumar Vishwakarma
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
- Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Sandesh Shrestha
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | | | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México-INIFAP, Carretera los Reyes-Texcoco, Texcoco, Mexico
| | - Uttam Kumar
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
- Borlaug Institute for South Asia (BISA), New Delhi, India
| |
Collapse
|
112
|
Williams O, Vander Schoor JK, Butler JB, Ridge S, Sussmilch FC, Hecht VFG, Weller JL. The genetic architecture of flowering time changes in pea from wild to crop. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3978-3990. [PMID: 35383838 PMCID: PMC9238443 DOI: 10.1093/jxb/erac132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Change in phenology has been an important component in crop evolution, and selection for earlier flowering through a reduction in environmental sensitivity has helped broaden adaptation in many species. Natural variation for flowering in domesticated pea (Pisum sativum L.) has been noted and studied for decades, but there has been no clear account of change relative to its wild progenitor. Here we examined the genetic control of differences in flowering time between wild P. sativum ssp. humile and a typical late-flowering photoperiodic P. s. sativum accession in a recombinant inbred population under long and short photoperiods. Our results confirm the importance of the major photoperiod sensitivity locus Hr/PsELF3a and identify two other loci on chromosomes 1 (DTF1) and 3 (DTF3) that contribute to earlier flowering in the domesticated line under both photoperiods. The domesticated allele at a fourth locus on chromosome 6 (DTF6) delays flowering under long days only. Map positions, inheritance patterns, and expression analyses in near-isogenic comparisons imply that DTF1, DTF3, and DTF6 represent gain-of-function alleles of the florigen/antiflorigen genes FTa3, FTa1, and TFL1c/LF, respectively. This echoes similar variation in chickpea and lentil, and suggests a conserved route to reduced photoperiod sensitivity and early phenology in temperate pulses.
Collapse
Affiliation(s)
- Owen Williams
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | | | - Jakob B Butler
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Stephen Ridge
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Frances C Sussmilch
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Valerie F G Hecht
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| |
Collapse
|
113
|
Fjellheim S, Young DA, Paliocha M, Johnsen SS, Schubert M, Preston JC. Major niche transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT domain genes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4079-4093. [PMID: 35394528 PMCID: PMC9232202 DOI: 10.1093/jxb/erac149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The external cues that trigger timely flowering vary greatly across tropical and temperate plant taxa, the latter relying on predictable seasonal fluctuations in temperature and photoperiod. In the grass family (Poaceae) for example, species of the subfamily Pooideae have become specialists of the northern temperate hemisphere, generating the hypothesis that their progenitor evolved a flowering response to long days from a short-day or day-neutral ancestor. Sampling across the Pooideae, we found support for this hypothesis, and identified several secondary shifts to day-neutral flowering and one to short-day flowering in a tropical highland clade. To explain the proximate mechanisms for the secondary transition back to short-day-regulated flowering, we investigated the expression of CCT domain genes, some of which are known to repress flowering in cereal grasses under specific photoperiods. We found a shift in CONSTANS 1 and CONSTANS 9 expression that coincides with the derived short-day photoperiodism of our exemplar species Nassella pubiflora. This sets up the testable hypothesis that trans- or cis-regulatory elements of these CCT domain genes were the targets of selection for major niche shifts in Pooideae grasses.
Collapse
Affiliation(s)
| | - Darshan A Young
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Martin Paliocha
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Sylvia Sagen Johnsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Marian Schubert
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
114
|
Zhang H, Xue X, Guo J, Huang Y, Dai X, Li T, Hu J, Qu Y, Yu L, Mai C, Liu H, Yang L, Zhou Y, Li H. Association of the Recessive Allele vrn-D1 With Winter Frost Tolerance in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:879768. [PMID: 35734247 PMCID: PMC9207342 DOI: 10.3389/fpls.2022.879768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Winter frost has been considered the primary limiting factor in wheat production. Shimai 12 is an elite wheat cultivar grown in central and southern Hebei province of China, but sensitive to winter frost. In this study, the winter frost tolerant cultivar Lunxuan 103 was bred by introducing the recessive allele vrn-D1 from winter wheat Shijiazhuang 8 (frost tolerance) into Shimai 12 using marker-assisted selection (MAS). Different from Shimai 12, Lunxuan 103 exhibited a winter growth habit with strong winter frost tolerance. In the Shimai 12 × Shijiazhuang 8 population, the winter progenies (vrn-D1vrn-D1) had significantly lower winter-killed seedling/tiller rates than spring progenies (Vrn-D1aVrn-D1a), and the consistent result was observed in an association population. Winter frost damage caused a significant decrease in grain yield and spike number/m2 in Shimai 12, but not in Lunxuan 103 and Shijiazhuang 8. The time-course expression analysis showed that the transcript accumulation levels of the cold-responsive genes were higher in Lunxuan 103 and Shijiazhuang 8 than in Shimai 12. Lunxuan 103 possessed the same alleles as its parents in the loci for plant height, vernalization, and photoperiod, except for the vernalization gene Vrn-D1. An analysis of genomic composition showed that the two parents contributed similar proportions of genetic compositions to Lunxuan 103. This study provides an example of the improvement of winter frost tolerance by introducing the recessive vernalization gene in bread wheat.
Collapse
Affiliation(s)
- Hongjun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| | - Xinhui Xue
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Jie Guo
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Yiwen Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| | - Xuran Dai
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Teng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| | - Jinghuang Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| | - Yunfeng Qu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| | - Liqiang Yu
- Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Chunyan Mai
- Xinxiang Innovation Center for Breeding Technology of Dwarf-Male-Sterile Wheat, Xinxiang, China
| | - Hongwei Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| | - Li Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| | - Yang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| | - Hongjie Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Crop Molecular Breeding, Beijing, China
| |
Collapse
|
115
|
Ishikawa G, Sakai H, Mizuno N, Solovieva E, Tanaka T, Matsubara K. Developing core marker sets for effective genomic-assisted selection in wheat and barley breeding programs. BREEDING SCIENCE 2022; 72:257-266. [PMID: 36408318 PMCID: PMC9653188 DOI: 10.1270/jsbbs.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 06/16/2023]
Abstract
Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are widely cultivated temperate crops. In breeding programs with these crops in Japan, effective genomic-assisted selection was performed by selecting core marker sets from thousands of genome-wide amplicon sequencing markers. The core sets consist of 768 and 960 markers for barley and wheat, respectively. These markers are distributed evenly across the genomes and effectively detect widely distributed polymorphisms in the chromosomes. The core set utility was assessed using 1,032 barley and 1,798 wheat accessions across the country. Minor allele frequency and chromosomal distributions showed that the core sets could effectively capture polymorphisms across the entire genome, indicating that the core sets are applicable to highly-related advanced breeding materials. Using the core sets, we also assessed the trait value predictability. As observed via fivefold cross-validation, the prediction accuracies of six barley traits ranged from 0.56-0.74 and 0.62 on average, and the corresponding values for eight wheat traits ranged from 0.44-0.83 and 0.65 on average. These data indicate that the established core marker sets enable breeding processes to be accelerated in a cost-effective manner and provide a strong foundation for further research on genomic selection in crops.
Collapse
Affiliation(s)
- Goro Ishikawa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Hiroaki Sakai
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Nobuyuki Mizuno
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Elena Solovieva
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Tsuyoshi Tanaka
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Kazuki Matsubara
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
116
|
Accounting for heading date gene effects allows detection of small-effect QTL associated with resistance to Septoria nodorum blotch in wheat. PLoS One 2022; 17:e0268546. [PMID: 35588401 PMCID: PMC9119491 DOI: 10.1371/journal.pone.0268546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
In humid and temperate areas, Septoria nodorum blotch (SNB) is a major fungal disease of common wheat (Triticum aestivum L.) in which grain yield is reduced when the pathogen, Parastagonospora nodorum, infects leaves and glumes during grain filling. Foliar SNB susceptibility may be associated with sensitivity to P. nodorum necrotrophic effectors (NEs). Both foliar and glume susceptibility are quantitative, and the underlying genetics are not understood in detail. We genetically mapped resistance quantitative trait loci (QTL) to leaf and glume blotch using a double haploid (DH) population derived from the cross between the moderately susceptible cultivar AGS2033 and the resistant breeding line GA03185-12LE29. The population was evaluated for SNB resistance in the field in four successive years (2018–2021). We identified major heading date (HD) and plant height (PH) variants on chromosomes 2A and 2D, co-located with SNB escape mechanisms. Five QTL with small effects associated with adult plant resistance to SNB leaf and glume blotch were detected on 1A, 1B, and 6B linkage groups. These QTL explained a relatively small proportion of the total phenotypic variation, ranging from 5.6 to 11.8%. The small-effect QTL detected in this study did not overlap with QTL associated with morphological and developmental traits, and thus are sources of resistance to SNB.
Collapse
|
117
|
Tinker NA, Wight CP, Bekele WA, Yan W, Jellen EN, Renhuldt NT, Sirijovski N, Lux T, Spannagl M, Mascher M. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun Biol 2022; 5:474. [PMID: 35585176 PMCID: PMC9117302 DOI: 10.1038/s42003-022-03256-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Oat (Avena sativa L.) is an important and nutritious cereal crop, and there is a growing need to identify genes that contribute to improved oat varieties. Here we utilize a newly sequenced and annotated oat reference genome to locate and characterize quantitative trait loci (QTLs) affecting agronomic and grain-quality traits in five oat populations. We find strong and significant associations between the positions of candidate genes and QTL that affect heading date, as well as those that influence the concentrations of oil and β-glucan in the grain. We examine genome-wide recombination profiles to confirm the presence of a large, unbalanced translocation from chromosome 1 C to 1 A, and a possible inversion on chromosome 7D. Such chromosome rearrangements appear to be common in oat, where they cause pseudo-linkage and recombination suppression, affecting the segregation, localization, and deployment of QTLs in breeding programs. Tinker et al. identified the position and effects of major QTLs relative to a new fully annotated reference genome in five recombinant inbred line populations representing nine diverse oat (Avena sativa) varieties. They also characterized two major chromosome rearrangements that may impact breeding targets affected by QTL that are located in these regions.
Collapse
Affiliation(s)
- Nicholas A Tinker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada.
| | - Charlene P Wight
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Wubishet A Bekele
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Weikai Yan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Eric N Jellen
- Department of Plant and Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, 84602, Utah, USA
| | - Nikos Tsardakas Renhuldt
- Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden
| | - Nick Sirijovski
- Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden.,CropTailor AB, c/o Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden.,Oatly AB, Food Science, Scheelevägen 19, 223 63, Lund, Sweden
| | - Thomas Lux
- Helmholtz Center Munich - Research Center for Environmental Health, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Center Munich - Research Center for Environmental Health, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Domestication Genomics, Corrensstrasse 3, 06466, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
| |
Collapse
|
118
|
Chen Z, Ke W, He F, Chai L, Cheng X, Xu H, Wang X, Du D, Zhao Y, Chen X, Xing J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:920-933. [PMID: 34978137 PMCID: PMC9055817 DOI: 10.1111/pbi.13773] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 05/31/2023]
Abstract
The spikelet number and heading date are two crucial and correlated traits for yield in wheat. Here, a quantitative trait locus (QTL) analysis was conducted in F8 recombinant inbred lines (RILs) derived from crossing two common wheats with different spikelet numbers. A total of 15 stable QTL influencing total spikelet number (TSN) and heading date (HD) were detected. Notably, FT-D1, a well-known flowering time gene in wheat, was located within the finely mapped interval of a major QTL on 7DS (QTsn/Hd.cau-7D). A causal indel of one G in the third exon of FT-D1 was significantly associated with total spikelet number and heading date. Consistently, CRISPR/Cas9 mutant lines with homozygous mutations in FT-D1 displayed an increase in total spikelet number and heading date when compared with wild type. Moreover, one simple and robust marker developed according to the polymorphic site of FT-D1 revealed that this one G indel had been preferentially selected to adapt to different environments. Collectively, these data provide further insights into the genetic basis of spikelet number and heading date, and the diagnostic marker of FT-D1 will be useful for marker-assisted pyramiding in wheat breeding.
Collapse
Affiliation(s)
- Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Wensheng Ke
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Fei He
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJCIC‐MCPCIC‐MCPNanjing Agricultural UniversityNanjingChina
| | - Huanwen Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Xiaobo Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Dejie Du
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Yidi Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Xiyong Chen
- Hebei Crop Genetic Breeding LaboratoryInstitute of Cereal and Oil CropsHebei Academy of Agriculture and Forestry SciencesShijiazhuangChina
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Zhenqi Su
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- National Plant Gene Research CentreBeijingChina
| |
Collapse
|
119
|
Comparative analysis of buds transcriptome and identification of two florigen gene AkFTs in Amorphophallus konjac. Sci Rep 2022; 12:6782. [PMID: 35473958 PMCID: PMC9043200 DOI: 10.1038/s41598-022-10817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/13/2022] [Indexed: 11/15/2022] Open
Abstract
Leaves and flowers of Amorphophallus konjac do not develop simultaneously thus unique features can be elucidated through study of flowering transformation in A. konjac. In this study, transcriptome libraries of A. konjac leaf buds (LB) and flower buds (FB) were constructed followed by high-throughput sequencing. A total of 68,906 unigenes with an average length of 920 bp were obtained after library assembly. Out of these genes, 24,622 unigenes had annotation information. A total of 6859 differentially expressed genes (DEGs) were identified through differential expression analysis using LB as control. Notably, 2415 DEGs were upregulated whereas 4444 DEGs were downregulated in the two transcriptomes. Go and KEGG analysis showed that the DEGs belonged to 44 functional categories and were implicated in 98 metabolic pathways and 38 DEGs involved in plant hormone signal transduction. Several genes were mined that may be involved in A. konjac flower bud differentiation and flower organ development. Eight DEGs were selected for verification of RNA-seq results using qRT-PCR analysis. Two FLOWERING LOCUS T (FT) genes named AkFT1 and AkFT2 were identified though homologous analysis may be the florigen gene implicated in modulation of A. konjac flowering. These genes were significantly upregulated in flower buds compared with the expression levels on leaf buds. Overexpression of AkFT genes though heterologous expression in Arabidopsis showed that the transgenics flowered at a very early stage relative to wild type plants. These findings indicate that AkFT1 and AkFT2 function as regulation genes in A. konjac flowering development and the two genes may present similar functions during flowering transition.
Collapse
|
120
|
Fait VI, Balashova IA. Distribution of Photoperiod-Insensitive Alleles Ppd-D1a, Ppd-B1a, and Ppd-B1c in Winter Common Wheat Cultivars (Triticum aestivum L.) of Various Origin. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
121
|
Katz A, Byrne P, Reid S, Bratschun S, Haley S, Pearce S. Identification and validation of a QTL for spikelet number on chromosome arm 6BL of common wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:17. [PMID: 37309457 PMCID: PMC10248590 DOI: 10.1007/s11032-022-01288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
To provide food security for a growing world population, it will be necessary to increase yields of staple crops such as wheat (Triticum aestivum L.). Yield is a complex, polygenic trait influenced by grain weight and number, which are negatively correlated with one another. Spikelet number is an important determinant of grain number, but allelic variants impacting its expression are often associated with heading date, constraining their use in wheat germplasm that must be adapted for specific environments. Identification and characterization of genetic variants affecting spikelet number will increase selection efficiency through their deployment in breeding programs. In this study, a quantitative trait locus (QTL) on chromosome arm 6BL for spikelet number was identified and validated using an association mapping panel, a recombinant inbred line population, and seven derived heterogeneous inbred families. The superior allele, QSn.csu-6Bb, was associated with an increase of 0.248 to 0.808 spikelets per spike across multiple environments that varied for mean spikelet number. Despite epistatic interactions between QSn.csu-6B and three other loci (WAPO-A1, VRN-D3, and PPD-B1), genotypes with a greater number of superior alleles at these loci consistently exhibit higher spikelet number. The frequency of superior alleles at these loci varies among winter wheat varieties adapted to different latitudes of the US Great Plains, revealing opportunities for breeders to select for increased spikelet number using simple molecular markers. This work lays the foundation for the positional cloning of the genetic variant underlying the QSn.csu-6B QTL to strengthen our understanding of spikelet number determination in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01288-7.
Collapse
Affiliation(s)
- Andrew Katz
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Patrick Byrne
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Scott Reid
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Sarah Bratschun
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Scott Haley
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
122
|
Debernardi JM, Woods DP, Li K, Li C, Dubcovsky J. MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PLoS Genet 2022; 18:e1010157. [PMID: 35468125 PMCID: PMC9037917 DOI: 10.1371/journal.pgen.1010157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.
Collapse
Affiliation(s)
- Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
123
|
Raissig MT, Woods DP. The wild grass Brachypodium distachyon as a developmental model system. Curr Top Dev Biol 2022; 147:33-71. [PMID: 35337454 DOI: 10.1016/bs.ctdb.2021.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arrival of cheap and high-throughput sequencing paired with efficient gene editing technologies allows us to use non-traditional model systems and mechanistically approach biological phenomena beyond what was conceivable just a decade ago. Venturing into different model systems enables us to explore for example clade-specific environmental responses to changing climates or the genetics and development of clade-specific organs, tissues and cell types. We-both early career researchers working with the wild grass model Brachypodium distachyon-want to use this review to (1) highlight why we think B. distachyon is a fantastic grass developmental model system, (2) summarize the tools and resources that have enabled discoveries made in B. distachyon, and (3) discuss a handful of developmental biology vignettes made possible by using B. distachyon as a model system. Finally, we want to conclude by (4) relating our personal stories with this emerging model system and (5) share what we think is important to consider before starting work with an emerging model system.
Collapse
Affiliation(s)
- Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany; Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, CA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
124
|
Fernández-Calleja M, Ciudad FJ, Casas AM, Igartua E. Hybrids Provide More Options for Fine-Tuning Flowering Time Responses of Winter Barley. FRONTIERS IN PLANT SCIENCE 2022; 13:827701. [PMID: 35432439 PMCID: PMC9011329 DOI: 10.3389/fpls.2022.827701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Crop adaptation requires matching resource availability to plant development. Tight coordination of the plant cycle with prevailing environmental conditions is crucial to maximizing yield. It is expected that winters in temperate areas will become warmer, so the vernalization requirements of current cultivars can be desynchronized with the environment's vernalizing potential. Therefore, current phenological ideotypes may not be optimum for future climatic conditions. Major genes conferring vernalization sensitivity and phenological responses in barley (Hordeum vulgare L.) are known, but some allelic combinations remain insufficiently evaluated. Furthermore, there is a lack of knowledge about flowering time in a hybrid context. To honor the promise of increased yield potentials, hybrid barley phenology must be studied, and the knowledge deployed in new cultivars. A set of three male and two female barley lines, as well as their six F1 hybrids, were studied in growth chambers, subjected to three vernalization treatments: complete (8 weeks), moderate (4 weeks), and low (2 weeks). Development was recorded up to flowering, and expression of major genes was assayed at key stages. We observed a gradation in responses to vernalization, mostly additive, concentrated in the phase until the initiation of stem elongation, and proportional to the allele constitution and dosage present in VRN-H1. These responses were further modulated by the presence of PPD-H2. The duration of the late reproductive phase presented more dominance toward earliness and was affected by the rich variety of alleles at VRN-H3. Our results provide further opportunities for fine-tuning total and phasal growth duration in hybrid barley, beyond what is currently feasible in inbred cultivars.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station - Spanish National Research Council (EEAD-CSIC), Zaragoza, Spain
| | - Francisco J. Ciudad
- Agricultural Technology Institute of Castilla and León (ITACYL), Valladolid, Spain
| | - Ana M. Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station - Spanish National Research Council (EEAD-CSIC), Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station - Spanish National Research Council (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
125
|
Nishimura K, Motoki K, Yamazaki A, Takisawa R, Yasui Y, Kawai T, Ushijima K, Nakano R, Nakazaki T. MIG-seq is an effective method for high-throughput genotyping in wheat ( Triticum spp.). DNA Res 2022; 29:6567359. [PMID: 35412600 PMCID: PMC9035812 DOI: 10.1093/dnares/dsac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
MIG-seq (Multiplexed inter-simple sequence repeats genotyping by sequencing) has been developed as a low cost genotyping technology, although the number of polymorphisms obtained is assumed to be minimal, resulting in the low application of this technique to analyses of agricultural plants. We applied MIG-seq to 12 plant species that include various crops and investigated the relationship between genome size and the number of bases that can be stably sequenced. The genome size and the number of loci, which can be sequenced by MIG-seq, are positively correlated. This is due to the linkage between genome size and the number of simple sequence repeats (SSRs) through the genome. The applicability of MIG-seq to population structure analysis, linkage mapping, and quantitative trait loci (QTL) analysis in wheat, which has a relatively large genome, was further evaluated. The results of population structure analysis for tetraploid wheat showed the differences among collection sites and subspecies, which agreed with previous findings. Additionally, in wheat biparental mapping populations, over 3,000 SNPs/indels with low deficiency were detected using MIG-seq, and the QTL analysis was able to detect recognized flowering-related genes. These results revealed the effectiveness of MIG-seq for genomic analysis of agricultural plants with large genomes, including wheat.
Collapse
Affiliation(s)
- Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, Kizugawa City, Kyoto Prefecture 619-0218, Japan
| | - Ko Motoki
- Graduate School of Agriculture, Kyoto University, Kizugawa City, Kyoto Prefecture 619-0218, Japan
| | - Akira Yamazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa City, Kyoto Prefecture 619-0218, Japan
- Faculty of Agriculture, Kindai University, Nara City, Nara Prefecture 631-8505, Japan
| | - Rihito Takisawa
- Faculty of Agriculture, Ryukoku University, Otsu City, Shiga Prefecture 520-2194, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kizugawa City, Kyoto Prefecture 619-0218, Japan
| | - Takashi Kawai
- Graduate School of Environmental and Life Science, Okayama University, Okayama City, Okayama Prefecture 700-8530, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama City, Okayama Prefecture 700-8530, Japan
| | - Ryohei Nakano
- Graduate School of Agriculture, Kyoto University, Kizugawa City, Kyoto Prefecture 619-0218, Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa City, Kyoto Prefecture 619-0218, Japan
| |
Collapse
|
126
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
127
|
Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang CH, Ma H. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Mol Biol Evol 2022; 39:6521033. [PMID: 35134207 PMCID: PMC8844509 DOI: 10.1093/molbev/msac026] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptation to cool climates has occurred several times in different angiosperm groups. Among them, Pooideae, the largest grass subfamily with ∼3,900 species including wheat and barley, have successfully occupied many temperate regions and play a prominent role in temperate ecosystems. To investigate possible factors contributing to Pooideae adaptive evolution to cooling climates, we performed phylogenetic reconstruction using five gene sets (with 1,234 nuclear genes and their subsets) from 157 transcriptomes/genomes representing all 15 tribes and 24 of 26 subtribes. Our phylogeny supports the monophyly of all tribes (except Diarrheneae) and all subtribes with at least two species, with strongly supported resolution of their relationships. Molecular dating suggests that Pooideae originated in the late Cretaceous, with subsequent divergences under cooling conditions first among many tribes from the early middle to late Eocene and again among genera in the middle Miocene and later periods. We identified a cluster of gene duplications (CGD5) shared by the core Pooideae (with 80% Pooideae species) near the Eocene–Oligocene transition, coinciding with the transition from closed to open habitat and an upshift of diversification rate. Molecular evolutionary analyses homologs of CBF for cold resistance uncovered tandem duplications during the core Pooideae history, dramatically increasing their copy number and possibly promoting adaptation to cold habitats. Moreover, duplication of AP1/FUL-like genes before the Pooideae origin might have facilitated the regulation of the vernalization pathway under cold environments. These and other results provide new insights into factors that likely have contributed to the successful adaptation of Pooideae members to temperate regions.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinxin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weichen Huang
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
128
|
Xu H, Zhang R, Wang M, Li L, Yan L, Wang Z, Zhu J, Chen X, Zhao A, Su Z, Xing J, Sun Q, Ni Z. Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:389-403. [PMID: 34674009 DOI: 10.1007/s00122-021-03971-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
QHd.cau-7D.1 for heading date was delimited into the physical interval of approximately 17.38 Mb harboring three CONSTANS-like zinc finger genes. Spike morphological traits, plant height and heading date play important roles in yield improvement of wheat. To reveal the genetic factors that controlling spike morphological traits, plant height and heading date on the D genome, we conducted analysis of quantitative traits locus (QTL) using 198 F7:8 recombinant inbred lines (RILs) derived from a cross between the common wheat TAA10 and resynthesized allohexaploid wheat XX329 with similar AABB genomes. A total of 23 environmentally stable QTL on the D sub-genome for spike length (SL), fertile spikelet number per spike (FSN), sterile spikelet number per spike (SSN), total spikelet number per spike (TSN), spike compactness (SC), plant height (PHT) and heading date (HD) were detected, among which eight appeared to be novel QTL. Furthermore, QHd.cau-7D.1 and QPht.cau-7D.2 shared identical confidence interval and were delimited into the physical interval of approximately 17.38 Mb with 145 annotated genes, including three CONSTANS-like zinc finger genes (TraesCS7D02G209000, TraesCS7D02G213000 and TraesCS7D02G220300). This study will help elucidate the molecular mechanism of the seven traits (SL, FSN, SSN, TSN, SC, PHT and HD) and provide a potentially valuable resource for genetic improvement.
Collapse
Affiliation(s)
- Huanwen Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Runqi Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Linghong Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhen Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Jun Zhu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Xiyong Chen
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Zhenqi Su
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
129
|
Time-course transcriptome profiling revealed the specific expression patterns of MADS-box genes associated with the distinct developmental processes between winter and spring wheat. Gene 2022; 809:146030. [PMID: 34673213 DOI: 10.1016/j.gene.2021.146030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022]
Abstract
The shoot apex is a region where new cells are produced and elongate. The developmental state of the wheat shoot apex under low temperature affects its cold resistance. In this study, the morphology of shoot apex before overwintering was characterized for 24 wheat line with different winter and spring characteristics. Our research showed that the shoot apex of autumn-sown spring wheat lines reached the temperature sensitive double-ridge stage before overwintering, whereas shoot apex of winter wheat lines are found in temperature-insensitive vegetative or elongation stages. In order to explore how gene expression is associated with shoot apex differentiation in winter and spring wheat, we used strand-specific RNA sequencing to profile the gene expression patterns at four time-points between 14 after germination and 45 days after germination in the winter wheat cultivar Dongnongdongmai No. 1 (DM1) and in the spring wheat cultivar China Spring (CS). We identified 11,848 differentially expressed genes between the two cultivars. Most up-regulated genes in CS were involved in energy metabolism and transport during the seedling stage, whereas up-regulated genes in DM1 were involved in protein and DNA synthesis. MADS-box genes affect plant growth and development. In this study, MADS-boxes with differential expression between CS and DM1 were screened and evolutionary tree analysis was conducted. During all sampling periods, CS highly expressed MADS-box genes that induce flowering promotion genes such as VRN1, VRT and AG, while lowly expressed MADS-box genes that induce flowering-inhibiting homologous genes such as SVP. TaVRN1 composition in DM1 and CS was vrn-A1, vrn-B1, and Vrn-D1b. Analysis of the sequence of TaVRN1 (TraesCS5A01G391700) from DM1 and CS revealed 5 SNP differences in the promoter regions and 3 SNP deletions in the intron regions. The expression levels of cold resistant genes in DM1 were significantly higher than those in CS at seedling stage (neither DM1 nor CS experienced cold in this study), including CBF, cold induced protein,acid desaturase and proline rich proteins. Additionally, the expression levels of auxin-related genes were significantly higher in CS than those in DM1 at 45 days after germination. Our study identified candidate genes associated with the process of differentiation of the shoot apex in winter and spring wheat at the seedling stage and also raised an internal stress tolerance model for winter wheat to endogenously anticipate the coming stressful conditions in winter.
Collapse
|
130
|
Ochagavía H, Kiss T, Karsai I, Casas AM, Igartua E. Responses of Barley to High Ambient Temperature Are Modulated by Vernalization. FRONTIERS IN PLANT SCIENCE 2022; 12:776982. [PMID: 35145529 PMCID: PMC8822234 DOI: 10.3389/fpls.2021.776982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/15/2021] [Indexed: 06/06/2023]
Abstract
Ambient temperatures are increasing due to climate change. Cereal crops development and production will be affected consequently. Flowering time is a key factor for adaptation of small grain cereals and, therefore, exploring developmental responses of barley to rising temperatures is required. In this work, we studied phasic growth, and inflorescence traits related to yield, in eight near isogenic lines of barley (Hordeum vulgare L.) differing at the VRN-H1, VRN-H2 and PPD-H1 genes, representing different growth habits. The lines were grown in contrasting vernalization treatments, under two temperature regimes (18 and 25°C), in long days. Lines with recessive ppd-H1 presented delayed development compared to lines with the sensitive PPD-H1 allele, across the two growth phases considered. High temperature delayed flowering in all unvernalized plants, and in vernalized spring barleys carrying the insensitive ppd-H1 allele, whilst it accelerated flowering in spring barleys with the sensitive PPD-H1 allele. This finding evidenced an interaction between PPD-H1, temperature and vernalization. At the high temperature, PPD-H1 lines in spring backgrounds (VRN-H1-7) yielded more, whereas lines with ppd-H1 were best in vrn-H1 background. Our study revealed new information that will support breeding high-yielding cultivars with specific combinations of major adaptation genes tailored to future climatic conditions.
Collapse
Affiliation(s)
| | - Tibor Kiss
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
- Center for Research and Development, Food and Wine Center of Excellence, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ildikó Karsai
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Zaragoza, Spain
| | | |
Collapse
|
131
|
Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat Biotechnol 2022; 40:422-431. [PMID: 34725503 PMCID: PMC8926922 DOI: 10.1038/s41587-021-01058-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.
Collapse
|
132
|
Miao Y, Jing F, Ma J, Liu Y, Zhang P, Chen T, Che Z, Yang D. Major Genomic Regions for Wheat Grain Weight as Revealed by QTL Linkage Mapping and Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:802310. [PMID: 35222467 PMCID: PMC8866663 DOI: 10.3389/fpls.2022.802310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/06/2022] [Indexed: 05/21/2023]
Abstract
Grain weight is a key determinant for grain yield potential in wheat, which is highly governed by a type of quantitative genetic basis. The identification of major quantitative trait locus (QTL) and functional genes are urgently required for molecular improvements in wheat grain yield. In this study, major genomic regions and putative candidate genes for thousand grain weight (TGW) were revealed by integrative approaches with QTL linkage mapping, meta-analysis and transcriptome evaluation. Forty-five TGW QTLs were detected using a set of recombinant inbred lines, explaining 1.76-12.87% of the phenotypic variation. Of these, ten stable QTLs were identified across more than four environments. Meta-QTL (MQTL) analysis were performed on 394 initial TGW QTLs available from previous studies and the present study, where 274 loci were finally refined into 67 MQTLs. The average confidence interval of these MQTLs was 3.73-fold less than that of initial QTLs. A total of 134 putative candidate genes were mined within MQTL regions by combined analysis of transcriptomic and omics data. Some key putative candidate genes similar to those reported early for grain development and grain weight formation were further discussed. This finding will provide a better understanding of the genetic determinants of TGW and will be useful for marker-assisted selection of high yield in wheat breeding.
Collapse
Affiliation(s)
- Yongping Miao
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Fanli Jing
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Jingfu Ma
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Yuan Liu
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Zhuo Che
- Plant Seed Master Station of Gansu Province, Gansu, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
- *Correspondence: Delong Yang,
| |
Collapse
|
133
|
Berezhnaya A, Kiseleva A, Leonova I, Salina E. Allelic Variation Analysis at the Vernalization Response and Photoperiod Genes in Russian Wheat Varieties Identified Two Novel Alleles of Vrn-B3. Biomolecules 2021; 11:biom11121897. [PMID: 34944541 PMCID: PMC8699075 DOI: 10.3390/biom11121897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Heading time is an important agronomic trait affecting the adaptability and productivity of common wheat. In this study, 95 common wheat varieties from Russia and the late-maturing breeding line ‘Velut’ were tested for allelic diversity of genes having the strongest effect on heading. In this research, allelic variation at the Ppd-D1, Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 loci was tested. The Vrn-B1 and Vrn-B3 loci provided the largest contribution to genetic diversity. We found two novel allelic variants of the Vrn-B3 gene in the studied varieties. Ten varieties carried a 160 bp insertion in the promoter region, and the breeding line ‘Velut’ carried a 1617 bp insertion. These alleles were designated Vrn-B3e and Vrn-B3d, respectively. The analysis of the sequences showed the recent insertion of a retrotransposon homologous to the LTR retrotransposon (RLX_Hvul_Dacia_ RND-1) in the Vrn-B3d allele. Plants with the Vrn-B3e and the ‘Velut’ line with the Vrn-B3d allele headed later than the plants with the wild-type allele; among these plants, ‘Velut’ is the latest maturing wheat variety. Analysis of the gene expression of two groups of lines differing by the Vrn-B3 alleles (Vrn-B3d or vrn-B3) from the F2 population with ‘Velut’ as a parental line did not reveal a significant difference in the expression level between the groups. Additional research is required to study the reasons for the late maturation of the ‘Velut’ line. However, the studied wheat varieties could be used as a potential source of natural variation in genes controlling heading times.
Collapse
Affiliation(s)
- Alina Berezhnaya
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.K.); (I.L.); (E.S.)
- Correspondence: ; Tel.: +7-(383)-363-49-95
| | - Antonina Kiseleva
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.K.); (I.L.); (E.S.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Irina Leonova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.K.); (I.L.); (E.S.)
| | - Elena Salina
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.K.); (I.L.); (E.S.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
134
|
Kumar U, Singh RP, Dreisigacker S, Röder MS, Crossa J, Huerta-Espino J, Mondal S, Crespo-Herrera L, Singh GP, Mishra CN, Mavi GS, Sohu VS, Prasad SVS, Naik R, Misra SC, Joshi AK. Juvenile Heat Tolerance in Wheat for Attaining Higher Grain Yield by Shifting to Early Sowing in October in South Asia. Genes (Basel) 2021; 12:genes12111808. [PMID: 34828414 PMCID: PMC8622066 DOI: 10.3390/genes12111808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Farmers in northwestern and central India have been exploring to sow their wheat much earlier (October) than normal (November) to sustain productivity by escaping terminal heat stress and to utilize the available soil moisture after the harvesting of rice crop. However, current popular varieties are poorly adapted to early sowing due to the exposure of juvenile plants to the warmer temperatures in the month of October and early November. Therefore, a study was undertaken to identify wheat genotypes suited to October sowing under warmer temperatures in India. A diverse collection of 3322 bread wheat varieties and elite lines was prepared in CIMMYT, Mexico, and planted in the 3rd week of October during the crop season 2012-2013 in six locations (Ludhiana, Karnal, New Delhi, Indore, Pune and Dharwad) spread over northwestern plains zone (NWPZ) and central and Peninsular zone (CZ and PZ; designated as CPZ) of India. Agronomic traits data from the seedling stage to maturity were recorded. Results indicated substantial diversity for yield and yield-associated traits, with some lines showing indications of higher yields under October sowing. Based on agronomic performance and disease resistance, the top 48 lines (and two local checks) were identified and planted in the next crop season (2013-2014) in a replicated trial in all six locations under October sowing (third week). High yielding lines that could tolerate higher temperature in October sowing were identified for both zones; however, performance for grain yield was more promising in the NWPZ. Hence, a new trial of 30 lines was planted only in NWPZ under October sowing. Lines showing significantly superior yield over the best check and the most popular cultivars in the zone were identified. The study suggested that agronomically superior wheat varieties with early heat tolerance can be obtained that can provide yield up to 8 t/ha by planting in the third to fourth week of October.
Collapse
Affiliation(s)
- Uttam Kumar
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India;
- International Maize and Wheat Improvement Center (CIMMYT), NASC Complex, DPS Marg, New Delhi 110012, India
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany;
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico-INIFAP, Carretera los Reyes-Texcoco, Coatlinchan 56250, Mexico;
| | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Leonardo Crespo-Herrera
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), ICAR, Karnal 132001, India; (G.P.S.); (C.N.M.)
| | - Chandra Nath Mishra
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), ICAR, Karnal 132001, India; (G.P.S.); (C.N.M.)
| | - Gurvinder Singh Mavi
- Plant Breeding and Genetics Department, Punjab Agricultural University, Ludhiana 141004, India; (G.S.M.); (V.S.S.)
| | - Virinder Singh Sohu
- Plant Breeding and Genetics Department, Punjab Agricultural University, Ludhiana 141004, India; (G.S.M.); (V.S.S.)
| | | | - Rudra Naik
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Krishi Nagar, Dharwad 580005, India;
| | - Satish Chandra Misra
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune 411004, India;
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India;
- International Maize and Wheat Improvement Center (CIMMYT), NASC Complex, DPS Marg, New Delhi 110012, India
- Correspondence:
| |
Collapse
|
135
|
Stepochkin PI, Stasyuk AI. The interphase period "germination-heading" of 8x and 6x triticale with different dominant Vrn genes. Vavilovskii Zhurnal Genet Selektsii 2021; 25:631-637. [PMID: 34782882 PMCID: PMC8558917 DOI: 10.18699/vj21.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
The existing spring forms of wheat-rye amphiploids are characterized by late maturity due to the long duration
of the interphase period “germination–heading”. The manifestation of this trait is inf luenced by Vrn-1 genes. Their
dominant alleles also determine the spring type of development. The results of studying the interphase period “germination–
heading” of spring octaploid and hexaploid forms of triticale created for use in research and breeding programs
under the conditions of forest-steppe of Western Siberia are given in this article. The interphase period of the primary
forms 8xVrnA1, 8xVrnB1 and 8xVrnD1 obtained by artif icial doubling of the chromosome number of the wheat-rye hybrids
made by pollination of three lines of the soft wheat ‘Triple Dirk’ – donors of different dominant Vrn-1 genes – by a
winter rye variety ‘Korotkostebel’naya 69’ was determined under the f ield conditions in the nursery of octaploid (8x) triticale.
In the nursery of hexaploid triticale, this trait was studied in the populations of hybrids obtained by hybridization
of these three primary forms of octaploid triticale with the hexaploid winter triticale variety ‘Sears 57’. In the offspring
of crossing 8хVrnD1 × ‘Sears 57’, spring genotypes of 6x triticale bearing Vrn-D1 were selected. This fact was determined
by PСR. It means that the genetic material from the chromosome of the f ifth homeologous
group of the D genome of
the bread wheat is included in the plant genotypes. This genome is absent in the winter 6x triticale ‘Sears 57’. The grain
content of spikes of the created hexaploid forms of triticale is superiour to that of the maternal octaploid triticale forms.
It was shown that plants of the hybrid populations 8xVrnA1 × ‘Sears 57’ and 8xVrnD1 × ‘Sears 57’ carrying the dominant
alleles Vrn-A1a and Vrn-D1a, respectively, have a shorter duration of the “germination–heading” interphase period than
the initial parental forms of primary 8x triticale. The short interphase period of “germination–heading” of the 6x triticale
is a valuable breading trait for the creation of early maturing and productive genotypes of triticale.
Collapse
Affiliation(s)
- P I Stepochkin
- Siberian Research Institute of Plant Production and Breeding - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk region, Russia
| | - A I Stasyuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
136
|
Bahrani H, Båga M, Larsen J, Graf RJ, Laroche A, Chibbar RN. The Relationships between Plant Developmental Traits and Winter Field Survival in Rye (Secale cereale L.). PLANTS 2021; 10:plants10112455. [PMID: 34834817 PMCID: PMC8625450 DOI: 10.3390/plants10112455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Overwintering cereals accumulate low temperature tolerance (LTT) during cold acclimation in the autumn. Simultaneously, the plants adjust to the colder season by making developmental changes at the shoot apical meristem. These processes lead to higher winter hardiness in winter rye varieties (Secale cereale L.) adapted to Northern latitudes as compared to other cereal crops. To dissect the winter-hardiness trait in rye, a panel of 96 genotypes of different origins and growth habits was assessed for winter field survival (WFS), LTT, and six developmental traits. Best Linear Unbiased Estimates for WFS determined from five field trials correlated strongly with LTT (r = 0.90, p < 0.001); thus, cold acclimation efficiency was the major contributor to WFS. WFS also correlated strongly (p < 0.001) with final leaf number (r = 0.80), prostrate growth habit (r = 0.61), plant height (r = 0.34), but showed weaker associations with top internode length (r = 0.30, p < 0.01) and days to anthesis (r = 0.25, p < 0.05). The heritability estimates (h2) for WFS-associated traits ranged from 0.45 (prostrate growth habit) to 0.81 (final leaf number) and were overall higher than for WFS (h2 = 0.48). All developmental traits associated with WFS and LTT are postulated to be regulated by phytohormone levels at shoot apical meristem.
Collapse
Affiliation(s)
- Hirbod Bahrani
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (H.B.); (M.B.)
| | - Monica Båga
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (H.B.); (M.B.)
| | - Jamie Larsen
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada;
| | - Robert J. Graf
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (R.J.G.); (A.L.)
| | - Andre Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (R.J.G.); (A.L.)
| | - Ravindra N. Chibbar
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (H.B.); (M.B.)
- Correspondence:
| |
Collapse
|
137
|
In-Depth Sequence Analysis of Bread Wheat VRN1 Genes. Int J Mol Sci 2021; 22:ijms222212284. [PMID: 34830166 PMCID: PMC8626038 DOI: 10.3390/ijms222212284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
The VERNALIZATION1 (VRN1) gene encodes a MADS-box transcription factor and plays an important role in the cold-induced transition from the vegetative to reproductive stage. Allelic variability of VRN1 homoeologs has been associated with large differences in flowering time. The aim of this study was to investigate the genetic variability of VRN1 homoeologs (VRN-A1, VRN-B1 and VRN-D1). We performed an in-depth sequence analysis of VRN1 homoeologs in a panel of 105 winter and spring varieties of hexaploid wheat. We describe the novel allele Vrn-B1f with an 836 bp insertion within intron 1 and show its specific expression pattern associated with reduced heading time. We further provide the complete sequence of the Vrn-A1b allele, revealing a 177 bp insertion in intron 1, which is transcribed into an alternative splice variant. Copy number variation (CNV) analysis of VRN1 homoeologs showed that VRN-B1 and VRN-D1 are present in only one copy. The copy number of recessive vrn-A1 ranged from one to four, while that of dominant Vrn-A1 was one or two. Different numbers of Vrn-A1a copies in the spring cultivars Branisovicka IX/49 and Bastion did not significantly affect heading time. We also report on the deletion of secondary structures (G-quadruplex) in promoter sequences of cultivars with more vrn-A1 copies.
Collapse
|
138
|
Wang M, Yang C, Wei K, Zhao M, Shen L, Ji J, Wang L, Zhang D, Guo J, Zheng Y, Yu J, Zhu M, Liu H, Li YF. Temporal expression study of miRNAs in the crown tissues of winter wheat grown under natural growth conditions. BMC Genomics 2021; 22:793. [PMID: 34736408 PMCID: PMC8567549 DOI: 10.1186/s12864-021-08048-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Winter wheat requires prolonged exposure to low temperature to initiate flowering (vernalization). Shoot apical meristem of the crown is the site of cold perception, which produces leaf primordia during vegetative growth before developing into floral primordia at the initiation of the reproductive phase. Although many essential genes for winter wheat cold acclimation and floral initiation have been revealed, the importance of microRNA (miRNA) meditated post-transcriptional regulation in crowns is not well understood. To understand the potential roles of miRNAs in crown tissues, we performed a temporal expression study of miRNAs in crown tissues at the three-leaf stage, winter dormancy stage, spring green-up stage, and jointing stage of winter wheat grown under natural growth conditions. RESULTS In total, 348 miRNAs belonging to 298 miRNA families, were identified in wheat crown tissues. Among them, 92 differentially expressed miRNAs (DEMs) were found to be significantly regulated from the three-leaf stage to the jointing stage. Most of these DEMs were highly expressed at the three-leaf stage and winter dormancy stage, and then declined in later stages. Six DEMs, including miR156a-5p were markedly induced during the winter dormancy stage. Eleven DEMs, including miR159a.1, miR390a-5p, miR393-5p, miR160a-5p, and miR1436, were highly expressed at the green-up stage. Twelve DEMs, such as miR172a-5p, miR394a, miR319b-3p, and miR9676-5p were highly induced at the jointing stage. Moreover, 14 novel target genes of nine wheat or Pooideae-specific miRNAs were verified using RLM-5' RACE assay. Notably, six mTERFs and two Rf1 genes, which are associated with mitochondrial gene expression, were confirmed as targets of three wheat-specific miRNAs. CONCLUSIONS The present study not only confirmed the known miRNAs associated with phase transition and floral development, but also identified a number of wheat or Pooideae-specific miRNAs critical for winter wheat cold acclimation and floral development. Most importantly, this study provided experimental evidence that miRNA could regulate mitochondrial gene expression by targeting mTERF and Rf1 genes. Our study provides valuable information for further exploration of the mechanism of miRNA mediated post-transcriptional regulation during winter wheat vernalization and inflorescent initiation.
Collapse
Affiliation(s)
- Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.,Present address: National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenhui Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Kangning Wei
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Liqiang Shen
- Jindal School of Management, University of Texas at Dallas, 800 W Campbell RD, Richardson, TX, 75080, USA
| | - Jie Ji
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Daijing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Mo Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Haiying Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China. .,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
139
|
Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations. Int J Mol Sci 2021; 22:ijms222111934. [PMID: 34769361 PMCID: PMC8585063 DOI: 10.3390/ijms222111934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, four large-scale field trials using two doubled haploid wheat populations were conducted in different environments for two years. Grain protein content (GPC) and 21 other yield-related traits were investigated. A total of 227 QTL were mapped on 18 chromosomes, which formed 35 QTL clusters. The potential candidate genes underlying the QTL clusters were suggested. Furthermore, adding to the significant correlations between yield and its related traits, correlation variations were clearly shown within the QTL clusters. The QTL clusters with consistently positive correlations were suggested to be directly utilized in wheat breeding, including 1B.2, 2A.2, 2B (4.9–16.5 Mb), 2B.3, 3B (68.9–214.5 Mb), 4A.2, 4B.2, 4D, 5A.1, 5A.2, 5B.1, and 5D. The QTL clusters with negative alignments between traits may also have potential value for yield or GPC improvement in specific environments, including 1A.1, 2B.1, 1B.3, 5A.3, 5B.2 (612.1–613.6 Mb), 7A.1, 7A.2, 7B.1, and 7B.2. One GPC QTL (5B.2: 671.3–672.9 Mb) contributed by cultivar Spitfire was positively associated with nitrogen use efficiency or grain protein yield and is highly recommended for breeding use. Another GPC QTL without negatively pleiotropic effects on 2A (50.0–56.3 Mb), 2D, 4D, and 6B is suggested for quality wheat breeding.
Collapse
|
140
|
Li T, Deng G, Su Y, Yang Z, Tang Y, Wang J, Qiu X, Pu X, Li J, Liu Z, Zhang H, Liang J, Yang W, Yu M, Wei Y, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3625-3641. [PMID: 34309684 DOI: 10.1007/s00122-021-03918-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 05/27/2023]
Abstract
Two major and stable QTLs for spike compactness and length were detected and validated in multiple genetic backgrounds and environments, and their pleiotropic effects on yield-related traits were analyzed. Spike compactness (SC) and length (SL) are greatly associated with wheat (Triticum aestivum L.) grain yield. To detect quantitative trait loci (QTL) associated with SC and SL, two biparental populations derived from crosses of Chuanmai42/Kechengmai1 and Chuanmai42/Chuannong16 were employed to perform QTL mapping in five environments. A total of 34 QTLs were identified, in which six major QTLs were repeatedly detected in more than four environments and the best linear unbiased prediction datasets, explaining 7.13-33.6% of phenotypic variation. These major QTLs were co-located in two genomic regions on chromosome 5A and 6A, namely QSc/Sl.cib-5A and QSc/Sl.cib-6A, respectively. By developing kompetitive allele-specific PCR (KASP) markers that linked to them, the two loci were validated in different genetic backgrounds, and their interactions were also analyzed. Comparison analysis showed that QSc/Sl.cib-5A was not Vrn-A1 and Q, and QSc/Sl.cib-6A was likely a new locus for SC and SL. Both QSc/Sl.cib-5A and QSc/Sl.cib-6A had pleiotropic effects on other yield-related traits including plant height, thousand grain weight and grain length. Therefore, the two loci combined with the developed KASP markers might be potentially applicable in wheat breeding. Furthermore, based on the spatiotemporal expression patterns, gene annotation, orthologous search and sequence differences, TraesCS5A01G301400 and TraesCS6A01G090300 were considered as potential candidates for QSc/Sl.cib-5A and QSc/Sl.cib-6A, respectively. These results provided valuable information for fine mapping and cloning of the two loci in the future.
Collapse
Affiliation(s)
- Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Su
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanyan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinhui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xvebing Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xi Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
141
|
Li Z, Zheng B, He Y. Understanding the Effects of Growing Seasons, Genotypes, and Their Interactions on the Anthesis Date of Wheat Sown in North China. BIOLOGY 2021; 10:biology10100955. [PMID: 34681054 PMCID: PMC8533131 DOI: 10.3390/biology10100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Wheat anthesis date is an important turning point for wheat from vegetative growth stage to reproductive growth stage, which is crucial for wheat to adapt to environment and increase grain yield. In this study, a panel of adaptive wheat varieties including historical varieties from the 1940s and current varieties was used to understand the contribution of growing season, genotypes and their interaction effects to anthesis date. Based on our results, we can conclude that growing seasons contributed tremendously to the anthesis date of wheat. In future wheat breeding, more consideration should be given to growing seasons, and the gene combination with the strongest adaptability to the growing seasons should be selected. Abstract Quantitative studies on the effects of growing season, genotype (including photoperiod genes and vernalization genes), and their interaction (GGI) on the anthesis date of winter wheat (Triticum aestivum L.) are helpful to provide a scientific reference for selecting or developing adaptive varieties in target environments. In this study, we collected 100 winter wheat varieties with ecological adaptability in North China and identified the anthesis date under field conditions for three consecutive years from 2016 to 2019 with mapped photoperiod and vernalization alleles. Our results showed that the number of the photoperiod-insensitive Ppd-D1a allele increased with variety replacement, while the haplotype Ppd-A1b + Ppd-D1b + vrn-D1 (A4B2) decreased from the 1940s to 2000s. The anthesis date of A4B2 was significantly delayed due to the photoperiod-insensitive alleles Ppd-A1b and Ppd-D1b. The additive main effect and multiplicative interaction (AMMI) model and GGI biplot analysis were used for data analysis. A large portion of the total variation was explained by growing seasons (66.3%), while genotypes and GGIs explained 21.9% and 10.1% of the anthesis dates, respectively. The varieties from the 1940s and before had a great influence on the anthesis date, suggesting these germplasms tend to avoid premature anthesis and could facilitate the development of phenological resilient varieties.
Collapse
Affiliation(s)
- Ziwei Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia;
| | - Yong He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence:
| |
Collapse
|
142
|
Wang L, Zhu T, Rodriguez JC, Deal KR, Dubcovsky J, McGuire PE, Lux T, Spannagl M, Mayer KFX, Baldrich P, Meyers BC, Huo N, Gu YQ, Zhou H, Devos KM, Bennetzen JL, Unver T, Budak H, Gulick PJ, Galiba G, Kalapos B, Nelson DR, Li P, You FM, Luo MC, Dvorak J. Aegilops tauschii genome assembly Aet v5.0 features greater sequence contiguity and improved annotation. G3-GENES GENOMES GENETICS 2021; 11:6369516. [PMID: 34515796 PMCID: PMC8664484 DOI: 10.1093/g3journal/jkab325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023]
Abstract
Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and an important genetic resource. The reference-quality genome sequence Aet v4.0 for Ae. tauschii acc. AL8/78 was therefore an important milestone for wheat biology and breeding. Further advances in sequencing acc. AL8/78 and release of the Aet v5.0 sequence assembly are reported here. Two new optical maps were constructed and used in the revision of pseudomolecules. Gaps were closed with Pacific Biosciences long-read contigs, decreasing the gap number by 38,899. Transposable elements and protein-coding genes were reannotated. The number of annotated high-confidence genes was reduced from 39,635 in Aet v4.0 to 32,885 in Aet v5.0. A total of 2245 biologically important genes, including those affecting plant phenology, grain quality, and tolerance of abiotic stresses in wheat, was manually annotated and disease-resistance genes were annotated by a dedicated pipeline. Disease-resistance genes encoding nucleotide-binding site domains, receptor-like protein kinases, and receptor-like proteins were preferentially located in distal chromosome regions, whereas those encoding transmembrane coiled-coil proteins were dispersed more evenly along the chromosomes. Discovery, annotation, and expression analyses of microRNA (miRNA) precursors, mature miRNAs, and phasiRNAs are reported, including miRNA target genes. Other small RNAs, such as hc-siRNAs and tRFs, were characterized. These advances enhance the utility of the Ae. tauschii genome sequence for wheat genetics, biotechnology, and breeding.
Collapse
Affiliation(s)
- Le Wang
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Juan C Rodriguez
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Patricia Baldrich
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.,University of Missouri, Columbia, Division of Plant Sciences, Columbia, Missouri 65211, USA
| | - Naxin Huo
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, California 94710, USA
| | - Yong Q Gu
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, California 94710, USA
| | - Hongye Zhou
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics (Dept. of Crop & Soil Sciences) and Dept. of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara 06374, Turkey
| | - Hikmet Budak
- Montana BioAg Inc., Missoula, Montana 59801, USA
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Gabor Galiba
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary.,Department of Environmental Sustainability, IES, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Balázs Kalapos
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - David R Nelson
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Pingchuan Li
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C5, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C5, Canada
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
143
|
Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu YG. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3083-3109. [PMID: 34142166 DOI: 10.1007/s00122-021-03881-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/02/2021] [Indexed: 05/20/2023]
Abstract
Based on the large-scale integration of meta-QTL and Genome-Wide Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered. Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Di Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongmao Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfang Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
144
|
Penfield S, Warner S, Wilkinson L. Molecular responses to chilling in a warming climate and their impacts on plant reproductive development and yield. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab375. [PMID: 34409451 DOI: 10.1093/jxb/erab375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Responses to prolonged winter chilling are universal in temperate plants which use seasonal temperature cues in the seed, vegetative and reproductive phases to align development with the earth's orbit. Climate change is driving a decline in reliable winter chill and affecting the sub-tropical extent of cultivation for temperate over-wintering crops. Here we explore molecular aspects of plant responses to winter chill including seasonal bud break and flowering, and how variation in the intensity of winter chilling or de-vernalisation can lead to effects on post-chilling plant development, including that of structures necessary for crop yields.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Samuel Warner
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Laura Wilkinson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
145
|
Yuan X, Wang Q, Yan B, Zhang J, Xue C, Chen J, Lin Y, Zhang X, Shen W, Chen X. Single-Molecule Real-Time and Illumina-Based RNA Sequencing Data Identified Vernalization-Responsive Candidate Genes in Faba Bean ( Vicia faba L.). Front Genet 2021; 12:656137. [PMID: 34290734 PMCID: PMC8287337 DOI: 10.3389/fgene.2021.656137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/07/2021] [Indexed: 12/05/2022] Open
Abstract
Faba bean (Vicia faba L.) is one of the most widely grown cool season legume crops in the world. Winter faba bean normally has a vernalization requirement, which promotes an earlier flowering and pod setting than unvernalized plants. However, the molecular mechanisms of vernalization in faba bean are largely unknown. Discovering vernalization-related candidate genes is of great importance for faba bean breeding. In this study, the whole transcriptome of faba bean buds was profiled by using next-generation sequencing (NGS) and single-molecule, real-time (SMRT) full-length transcriptome sequencing technology. A total of 29,203 high-quality non-redundant transcripts, 21,098 complete coding sequences (CDS), 1,045 long non-coding RNAs (lncRNAs), and 12,939 simple sequence repeats (SSRs) were identified. Furthermore, 4,044 differentially expressed genes (DEGs) were identified through pairwise comparisons. By Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, these differentially expressed transcripts were found to be enriched in binding and transcription factor activity, electron carrier activity, rhythmic process, and receptor activity. Finally, 50 putative vernalization-related genes that played important roles in the vernalization of faba bean were identified; we also found that the levels of vernalization-responsive transcripts showed significantly higher expression levels in cold-treated buds. The expression of VfSOC1, one of the candidate genes, was sensitive to vernalization. Ectopic expression of VfSOC1 in Arabidopsis brought earlier flowering. In conclusion, the abundant vernalization-related transcripts identified in this study will provide a basis for future researches on the vernalization and faba bean breeding and established a reference full-length transcriptome for future studies on faba bean.
Collapse
Affiliation(s)
- Xingxing Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bin Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiong Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
146
|
Xie L, Zhang Y, Wang K, Luo X, Xu D, Tian X, Li L, Ye X, Xia X, Li W, Yan L, Cao S. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. THE NEW PHYTOLOGIST 2021; 231:834-848. [PMID: 31769506 DOI: 10.1111/nph.16339] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
TaVrn1, encoding a MADS-box transcription factor (TF), is the central regulator of wheat vernalization-induced flowering. Considering that the MADS-box TF usually works by forming hetero- or homodimers, we conducted yeast-two-hybrid screening and identified an SVP-like MADS-box protein TaVrt2 interacting with TaVrn1. However, the specific function of TaVrt2 and the biological implication of its interaction with TaVrn1 remained unknown. We validated the function of TaVrt2 and TaVrn1 by wheat transgenic experiments and their interaction through multiple protein-binding assays. Population genetic analysis also was used to display their interplay. Transcriptomic sequencing and chromatin immunoprecipitation assays were performed to identify their common targets. TaVrt2 and TaVrn1 are flowering promoters in the vernalization pathway and interact physically in vitro, in planta and in wheat cells. Additionally, TaVrt2 and TaVrn1 were significantly induced in leaves by vernalization, suggesting their spatio-temporal interaction during vernalization. Genetic analysis indicated that TaVrt2 and TaVrn1 had significant epistatic effects on flowering time. Furthermore, native TaVrn1 was up-regulated significantly in TaVrn1-OE (overexpression) and TaVrt2-OE lines. Moreover, TaVrt2 could bind with TaVrn1 promoter directly. A TaVrt2-mediated positive feedback loop of TaVrn1 during vernalization was proposed, providing additional understanding on the regulatory mechanism underlying vernalization-induced flowering.
Collapse
Affiliation(s)
- Li Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xumei Luo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuling Tian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lingli Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenxue Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
147
|
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1867-1897. [PMID: 33969431 PMCID: PMC8263424 DOI: 10.1007/s00122-021-03824-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
148
|
Isham K, Wang R, Zhao W, Wheeler J, Klassen N, Akhunov E, Chen J. QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2079-2095. [PMID: 33687497 PMCID: PMC8263538 DOI: 10.1007/s00122-021-03806-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/24/2021] [Indexed: 05/07/2023]
Abstract
Four genomic regions on chromosomes 4A, 6A, 7B, and 7D were discovered, each with multiple tightly linked QTL (QTL clusters) associated with two to three yield components. The 7D QTL cluster was associated with grain yield, fertile spikelet number per spike, thousand kernel weight, and heading date. It was located in the flanking region of FT-D1, a homolog gene of Arabidopsis FLOWERING LOCUS T, a major gene that regulates wheat flowering. Genetic manipulation of yield components is an important approach to increase grain yield in wheat (Triticum aestivum). The present study used a mapping population comprised of 181 doubled haploid lines derived from two high-yielding spring wheat cultivars, UI Platinum and LCS Star. The two cultivars and the derived population were assessed for six traits in eight field trials primarily in Idaho in the USA. The six traits were grain yield, fertile spikelet number per spike, productive tiller number per unit area, thousand kernel weight, heading date, and plant height. Quantitative Trait Locus (QTL) analysis of the six traits was conducted using 14,236 single-nucleotide polymorphism (SNP) markers generated from the wheat 90 K SNP and the exome and promoter capture arrays. Of the 19 QTL detected, 14 were clustered in four chromosomal regions on 4A, 6A, 7B and 7D. Each of the four QTL clusters was associated with multiple yield component traits, and these traits were often negatively correlated with one another. As a result, additional QTL dissection studies are needed to optimize trade-offs among yield component traits for specific production environments. Kompetitive allele-specific PCR markers for the four QTL clusters were developed and assessed in an elite spring wheat panel of 170 lines, and eight of the 14 QTL were validated. The two parents contain complementary alleles for the four QTL clusters, suggesting the possibility of improving grain yield via genetic recombination of yield component loci.
Collapse
Affiliation(s)
- Kyle Isham
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Rui Wang
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Weidong Zhao
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Justin Wheeler
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Natalie Klassen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Eduard Akhunov
- Department of Plant Sciences, Kansas State University, Manhattan, KS, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA.
| |
Collapse
|
149
|
Maren N, Zhao F, Aryal R, Touchell D, Liu W, Ranney T, Ashrafi H. Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae). BMC Genomics 2021; 22:483. [PMID: 34182921 PMCID: PMC8237498 DOI: 10.1186/s12864-021-07641-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tripidium ravennae is a cold-hardy, diploid species in the sugarcane complex (Poaceae subtribe Saccharinae) with considerable potential as a genetic resource for developing improved bioenergy and ornamental grasses. An improved understanding of the genetic regulation of reproductive processes (e.g., floral induction, inflorescence development, and seed development) will enable future applications of precision breeding and gene editing of floral and seed development. In particular, the ability to silence reproductive processes would allow for developing seedless forms of valuable but potentially invasive plants. The objective of this research was to characterize the gene expression environment of reproductive development in T. ravennae. RESULTS During the early phases of inflorescence development, multiple key canonical floral integrators and pathways were identified. Annotations of type II subfamily of MADS-box transcription factors, in particular, were over-represented in the GO enrichment analyses and tests for differential expression (FDR p-value < 0.05). The differential expression of floral integrators observed in the early phases of inflorescence development diminished prior to inflorescence determinacy regulation. Differential expression analysis did not identify many unique genes at mid-inflorescence development stages, though typical biological processes involved in plant growth and development expressed abundantly. The increase in inflorescence determinacy regulatory elements and putative homeotic floral development unigenes at mid-inflorescence development coincided with the expression of multiple meiosis annotations and multicellular organism developmental processes. Analysis of seed development identified multiple unigenes involved in oxidative-reductive processes. CONCLUSION Reproduction in grasses is a dynamic system involving the sequential coordination of complex gene regulatory networks and developmental processes. This research identified differentially expressed transcripts associated with floral induction, inflorescence development, and seed development in T. ravennae. These results provide insights into the molecular regulation of reproductive development and provide a foundation for future investigations and analyses, including genome annotation, functional genomics characterization, gene family evolutionary studies, comparative genomics, and precision breeding.
Collapse
Affiliation(s)
- Nathan Maren
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| | - Fangzhou Zhao
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Darren Touchell
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Thomas Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| |
Collapse
|
150
|
Yang Y, Zhang X, Wu L, Zhang L, Liu G, Xia C, Liu X, Kong X. Transcriptome profiling of developing leaf and shoot apices to reveal the molecular mechanism and co-expression genes responsible for the wheat heading date. BMC Genomics 2021; 22:468. [PMID: 34162321 PMCID: PMC8220847 DOI: 10.1186/s12864-021-07797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Wheat is one of the most widely planted crops worldwide. The heading date is important for wheat environmental adaptability, as it not only controls flowering time but also determines the yield component in terms of grain number per spike. Results In this research, homozygous genotypes with early and late heading dates derived from backcrossed progeny were selected to conduct RNA-Seq analysis at the double ridge stage (W2.0) and androgynous primordium differentiation stage (W3.5) of the leaf and apical meristem, respectively. In total, 18,352 differentially expressed genes (DEGs) were identified, many of which are strongly associated with wheat heading date genes. Gene Ontology (GO) enrichment analysis revealed that carbohydrate metabolism, trehalose metabolic process, photosynthesis, and light reaction are closely related to the flowering time regulation pathway. Based on MapMan metabolic analysis, the DEGs are mainly involved in the light reaction, hormone signaling, lipid metabolism, secondary metabolism, and nucleotide synthesis. In addition, 1,225 DEGs were annotated to 45 transcription factor gene families, including LFY, SBP, and MADS-box transcription factors closely related to flowering time. Weighted gene co-expression network analysis (WGCNA) showed that 16, 336, 446, and 124 DEGs have biological connections with Vrn1-5 A, Vrn3-7B, Ppd-1D, and WSOC1, respectively. Furthermore, TraesCS2D02G181400 encodes a MADS-MIKC transcription factor and is co-expressed with Vrn1-5 A, which indicates that this gene may be related to flowering time. Conclusions RNA-Seq analysis provided transcriptome data for the wheat heading date at key flower development stages of double ridge (W2.0) and androgynous primordium differentiation (W3.5). Based on the DEGs identified, co-expression networks of key flowering time genes in Vrn1-5 A, Vrn3-7B, WSOC1, and Ppd-1D were established. Moreover, we discovered a potential candidate flowering time gene, TraesCS2D02G181400. Taken together, these results serve as a foundation for further study on the regulatory mechanism of the wheat heading date. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07797-7.
Collapse
Affiliation(s)
- Yuxin Yang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xueying Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Lifen Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.,Hebei sub-center of National Maize Improvement Center of China, Key Laboratory of Crop Germplasm Resources of Northern China (Ministry of Education), College of Agronomy, Hebei Agricultural University, 071001, Baoding, China
| | - Lichao Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Guoxiang Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Chuan Xia
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xu Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xiuying Kong
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|