101
|
Abstract
Treatment strategies in clinics have been shifting from small molecules to protein drugs due to the promising results of a highly specific mechanism of action and reduced toxicity. Despite their prominent roles in disease treatment, delivery of the protein therapeutics is challenging due to chemical instability, immunogenicity and biological barriers. Peptide hydrogels with spatiotemporally tunable properties have shown an outstanding potential to deliver complex protein therapeutics, maintain drug efficacy and stability over time, mimicking the extracellular matrix, and responding to external stimuli. In this review, we present recent advances in peptide hydrogel design strategies, protein release kinetics and mechanisms for protein drug delivery in cellular engineering, tissue engineering, immunotherapy and disease treatments.
Collapse
|
102
|
Deo KA, Singh KA, Peak CW, Alge DL, Gaharwar AK. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Eng Part A 2020; 26:318-338. [PMID: 32079490 PMCID: PMC7480731 DOI: 10.1089/ten.tea.2019.0298] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
3D bioprinting is an additive manufacturing technique that recapitulates the native architecture of tissues. This is accomplished through the precise deposition of cell-containing bioinks. The spatiotemporal control over bioink deposition permits for improved communication between cells and the extracellular matrix, facilitates fabrication of anatomically and physiologically relevant structures. The physiochemical properties of bioinks, before and after crosslinking, are crucial for bioprinting complex tissue structures. Specifically, the rheological properties of bioinks determines printability, structural fidelity, and cell viability during the printing process, whereas postcrosslinking of bioinks are critical for their mechanical integrity, physiological stability, cell survival, and cell functions. In this review, we critically evaluate bioink design criteria, specifically for extrusion-based 3D bioprinting techniques, to fabricate complex constructs. The effects of various processing parameters on the biophysical and biochemical characteristics of bioinks are discussed. Furthermore, emerging trends and future directions in the area of bioinks and bioprinting are also highlighted. Graphical abstract [Figure: see text] Impact statement Extrusion-based 3D bioprinting is an emerging additive manufacturing approach for fabricating cell-laden tissue engineered constructs. This review critically evaluates bioink design criteria to fabricate complex tissue constructs. Specifically, pre- and post-printing evaluation approaches are described, as well as new research directions in the field of bioink development and functional bioprinting are highlighted.
Collapse
Affiliation(s)
- Kaivalya A. Deo
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Kanwar Abhay Singh
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Charles W. Peak
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Daniel L. Alge
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas
| |
Collapse
|
103
|
Exploring the gel phase of cationic glycylalanylglycine in ethanol/water. I. Rheology and microscopy studies. J Colloid Interface Sci 2020; 564:499-509. [DOI: 10.1016/j.jcis.2019.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/04/2023]
|
104
|
Pandey G, Das PP, Ramakrishnan V. Directive Effect of Chain Length in Modulating Peptide Nano-assemblies. Protein Pept Lett 2020; 27:923-929. [PMID: 32091324 DOI: 10.2174/0929866527666200224114627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications. OBJECTIVES In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly. METHODS We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide. RESULTS Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies. CONCLUSION The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Prem Prakash Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| |
Collapse
|
105
|
Pal VK, Jain R, Roy S. Tuning the Supramolecular Structure and Function of Collagen Mimetic Ionic Complementary Peptides via Electrostatic Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1003-1013. [PMID: 31865708 DOI: 10.1021/acs.langmuir.9b02941] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collagen, the most abundant component of natural ECM, has attracted interest of scientific communities to replicate its multihierarchical self-assembling structure. Recent developments in collagen mimetic peptides were inclined toward the production of self-assembling short peptides capable of mimicking complex higher order structures with tunable mechanical properties. Here, we report for the first time, the crucial molecular design of oppositely charged collagen mimetic shortest bioactive pentapeptide sequences, as a minimalistic building block for development of next-generation biomaterials. Our rational design involves synthesis of two pentapeptides, where the fundamental molecular motif of collagen, that is, Gly-X-Y has been mutated at the central position with positively charged, lysine, and negatively charged, aspartate, residues. Depending on their overall surface charge, these peptides showed high propensity to form self-supporting hydrogel either at acidic or basic pH, which limits their biomedical applications. Interestingly, simple mixing of the two peptides was found to induce the coassembly of these designed peptides, which drives the formation of self-supporting hydrogel at physiological pH and thus enhanced the potential of exploring these peptides for biomedical purposes. This coassembly of ionic peptides was accompanied by the enhancement in the mechanical stiffness of the gels and reduction in overall zeta potential of the combined hydrogel, which provides the evidence for additional electrostatic interactions. Furthermore, the thixotropic nature of these gels offers an additional advantage of exploration of designer biomaterials as injectable gels. The nanofibers of coassembled hydrogel were found to be highly biocompatible to the fibroblast cells compared to the individual peptides, which was evident from their cytotoxicity studies. We anticipate that our rational design of ECM protein mimics in the form of short bioactive peptides will contribute significantly to the development of novel biomaterials and play a crucial role in the field of tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Vijay Kumar Pal
- Institute of Nano Science and Technology , Habitat Centre, Sector 64, Phase 10 , Mohali , Punjab 160062 , India
| | - Rashmi Jain
- Institute of Nano Science and Technology , Habitat Centre, Sector 64, Phase 10 , Mohali , Punjab 160062 , India
| | - Sangita Roy
- Institute of Nano Science and Technology , Habitat Centre, Sector 64, Phase 10 , Mohali , Punjab 160062 , India
| |
Collapse
|
106
|
Haider A, Haider S, Rao Kummara M, Kamal T, Alghyamah AAA, Jan Iftikhar F, Bano B, Khan N, Amjid Afridi M, Soo Han S, Alrahlah A, Khan R. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
107
|
Calvanese L, Brun P, Messina GML, Russo T, Zamuner A, Falcigno L, D’Auria G, Gloria A, Vitagliano L, Marletta G, Dettin M. EAK Hydrogels Cross-Linked by Disulfide Bonds: Cys Number and Position Are Matched to Performances. ACS Biomater Sci Eng 2019; 6:1154-1164. [DOI: 10.1021/acsbiomaterials.9b01556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Grazia M. L. Messina
- Department of Chemical Sciences, University of Catania, Via A. Doria 6, 95125 Catania, Italy
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Viale J.F. Kennedy 54−Mostra d’Oltremare PAD. 20, 80125 Naples, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy
| | - Lucia Falcigno
- Department of Pharmacy, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gabriella D’Auria
- Department of Pharmacy, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Viale J.F. Kennedy 54−Mostra d’Oltremare PAD. 20, 80125 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Giovanni Marletta
- Department of Chemical Sciences, University of Catania, Via A. Doria 6, 95125 Catania, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy
| |
Collapse
|
108
|
Lee S, Trinh TH, Yoo M, Shin J, Lee H, Kim J, Hwang E, Lim YB, Ryou C. Self-Assembling Peptides and Their Application in the Treatment of Diseases. Int J Mol Sci 2019; 20:E5850. [PMID: 31766475 PMCID: PMC6928719 DOI: 10.3390/ijms20235850] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Self-assembling peptides are biomedical materials with unique structures that are formed in response to various environmental conditions. Governed by their physicochemical characteristics, the peptides can form a variety of structures with greater reactivity than conventional non-biological materials. The structural divergence of self-assembling peptides allows for various functional possibilities; when assembled, they can be used as scaffolds for cell and tissue regeneration, and vehicles for drug delivery, conferring controlled release, stability, and targeting, and avoiding side effects of drugs. These peptides can also be used as drugs themselves. In this review, we describe the basic structure and characteristics of self-assembling peptides and the various factors that affect the formation of peptide-based structures. We also summarize the applications of self-assembling peptides in the treatment of various diseases, including cancer. Furthermore, the in-cell self-assembly of peptides, termed reverse self-assembly, is discussed as a novel paradigm for self-assembling peptide-based nanovehicles and nanomedicines.
Collapse
Affiliation(s)
- Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Trang H.T. Trinh
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Miryeong Yoo
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Junwu Shin
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Hakmin Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Jaehyeon Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Euimin Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (E.H.); (Y.-b.L.)
| | - Yong-beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (E.H.); (Y.-b.L.)
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| |
Collapse
|
109
|
Bairagi D, Biswas P, Basu K, Hazra S, Hermida-Merino D, Sinha DK, Hamley IW, Banerjee A. Self-Assembling Peptide-Based Hydrogel: Regulation of Mechanical Stiffness and Thermal Stability and 3D Cell Culture of Fibroblasts. ACS APPLIED BIO MATERIALS 2019; 2:5235-5244. [DOI: 10.1021/acsabm.9b00424] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dipayan Bairagi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6, 6AD, United Kingdom
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
110
|
Chakraborty P, Ghosh M, Schnaider L, Adadi N, Ji W, Bychenko D, Dvir T, Adler-Abramovich L, Gazit E. Composite of Peptide-Supramolecular Polymer and Covalent Polymer Comprises a New Multifunctional, Bio-Inspired Soft Material. Macromol Rapid Commun 2019; 40:e1900175. [PMID: 31347237 PMCID: PMC7616929 DOI: 10.1002/marc.201900175] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Peptide-based supramolecular hydrogels are utilized as functional materials in tissue engineering, axonal regeneration, and controlled drug delivery. The Arg-Gly-Asp (RGD) ligand based supramolecular gels have immense potential in this respect, as this tripeptide is known to promote cell adhesion. Although several RGD-based supramolecular hydrogels have been reported, most of them are devoid of adequate resilience and long-range stability for in vitro cell culture. In a quest to improve the mechanical properties of these tripeptide-based gels and their durability in cell culture media, the Fmoc-RGD hydrogelator is non-covalently functionalized with a biocompatible and biodegradable polymer, chitosan, resulting in a composite hydrogel with enhanced gelation rate, mechanical properties and cell media durability. Interestingly, both Fmoc-RGD and Fmoc-RGD/chitosan composite hydrogels exhibit thixotropic properties. The utilization of the Fmoc-RGD/chitosan composite hydrogel as a scaffold for 2D and 3D cell cultures is demonstrated. The composite hydrogel is found to have notable antibacterial activity, which stems from the inherent antibacterial properties of chitosan. Furthermore, the composite hydrogels are able to produce ultra-small, mono-dispersed, silver nanoparticles (AgNPs) arranged on the fiber axis. Therefore, the authors' approach harnesses the attributes of both the supramolecular-polymer (Fmoc-RGD) and the covalent-polymer (chitosan) component, resulting in a composite hydrogel with excellent potential.
Collapse
Affiliation(s)
- Priyadarshi Chakraborty
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Moumita Ghosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nofar Adadi
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of EngineeringTel Aviv University, Tel Aviv, 6997801, Israel
| | - Wei Ji
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Darya Bychenko
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tal Dvir
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of EngineeringTel Aviv University, Tel Aviv, 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of EngineeringTel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
111
|
Liebesny PH, Mroszczyk K, Zlotnick H, Hung HH, Frank E, Kurz B, Zanotto G, Frisbie D, Grodzinsky AJ. Enzyme Pretreatment plus Locally Delivered HB-IGF-1 Stimulate Integrative Cartilage Repair In Vitro. Tissue Eng Part A 2019; 25:1191-1201. [PMID: 31237484 PMCID: PMC6760182 DOI: 10.1089/ten.tea.2019.0013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/10/2019] [Indexed: 01/20/2023] Open
Abstract
IMPACT STATEMENT A critical attribute for the long-term success of cartilage defect repair is the strong integration between the repair tissue and the surrounding native tissue. Current approaches utilized by physicians fail to achieve this attribute, leading to eventual relapse of the defect. This article demonstrates the concept of a simple, clinically viable approach for enhancing tissue integration via the combination of a safe, transient enzymatic treatment with a locally delivered, retained growth factor through an in vitro hydrogel/cartilage explant model.
Collapse
Affiliation(s)
- Paul H. Liebesny
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Keri Mroszczyk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hannah Zlotnick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Han-Hwa Hung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Eliot Frank
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bodo Kurz
- Anatomical Institute, University of Kiel, Kiel, Germany
| | - Gustavo Zanotto
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado
| | - David Frisbie
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado
| | - Alan J. Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
112
|
Dang-I AY, Kousar A, Liu J, Mukwaya V, Zhao C, Wang F, Hou L, Feng CL. Mechanically Stable C2-Phenylalanine Hybrid Hydrogels for Manipulating Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28657-28664. [PMID: 31321967 DOI: 10.1021/acsami.9b08655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tuning of the viscoelastic properties of supramolecular hydrogels to be used as biological material substrates in tissue engineering has become significantly relevant in recent years due to their ability to influence cell fate. In the quest to enhance the stability and mechanical properties of a derived C2-phenylalanine gelator (LPF), derivatives of the polysaccharide dextran were incorporated as additives to promote hydrogen bonding and π-π stacking with the gelator. Dextran was esterified to yield carboxymethyl dextran (CMDH), which was subsequently amidated to furnish amino dextran (AD), the resulting hybrid hydrogels were denoted as LPF-ADx and LPF-CMDHx, where x represents the amount of AD and CMDH (mg). The LPF gelator interacted with the carboxyl and amino functional groups of the CMDH and AD, respectively, through hydrogen bonding and π-π stacking, resulting in mechanically stable hydrogels. Morphological studies revealed that the hybrid hydrogels were formed as a result of dense highly branched thin and broad fibers for LPF-AD and LPF-CMDH, respectively. Rheological studies confirmed the superiority of the hybrid hydrogels over the neat hydrogel, where LPF-CMDH3 exhibited the best mechanical properties with an improved elastic modulus of 11 654 Pa over 1518 and 140 Pa for LPF-AD4.5 and LPF, respectively. The adhesion and spreading behavior of NIH 3T3 fibroblast cells were significantly improved on the LPF-CMDH3 substrate owing to their enhanced mechanical properties. The tuning of the mechanical properties of the therein hydrogels via the facile incorporation of biodegradable and biocompatible functionalized additives opens up avenues for strengthening the supposed weak supramolecular gelators and hence increasing their potential of being employed largely in the field of tissue engineering.
Collapse
Affiliation(s)
- Auphedeous Y Dang-I
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Dongchuan Rd 800 , 200240 Shanghai , China
| | - Ayesha Kousar
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Dongchuan Rd 800 , 200240 Shanghai , China
| | - Jinying Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Dongchuan Rd 800 , 200240 Shanghai , China
| | - Vincent Mukwaya
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Dongchuan Rd 800 , 200240 Shanghai , China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Dongchuan Rd 800 , 200240 Shanghai , China
| | - Fang Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Dongchuan Rd 800 , 200240 Shanghai , China
| | - Lei Hou
- Department of Cardiology, Tongren Hospital , Shanghai Jiaotong University, School of Medicine , 200336 Shanghai , China
| | - Chuan-Liang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Dongchuan Rd 800 , 200240 Shanghai , China
| |
Collapse
|
113
|
Yang Q, Pinto VMR, Duan W, Paxton EE, Dessauer JH, Ryan W, Lopez MJ. In vitro Characteristics of Heterogeneous Equine Hoof Progenitor Cell Isolates. Front Bioeng Biotechnol 2019; 7:155. [PMID: 31355191 PMCID: PMC6637248 DOI: 10.3389/fbioe.2019.00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Damage to an ectodermal-mesodermal interface like that in the equine hoof and human finger nail bed can permanently alter tissue structure and associated function. The purpose of this study was to establish and validate in vitro culture of primary progenitor cell isolates from the ectodermal-mesodermal tissue junction in equine hooves, the stratum internum, with and without chronic inflammation known to contribute to lifelong tissue defects. The following were evaluated in hoof stratum internum cell isolates up to 5 cell passages (P): expansion capacity by cell doublings and doubling time; plasticity with multi-lineage differentiation and colony-forming unit (CFU) frequency percentage; immunophenotype with immunocytochemistry and flow cytometry; gene expression with RT-PCR; and ultrastructure with transmission electron microscopy. The presence of keratin (K)14, 15 and K19 as well as cluster of differentiation (CD)44 and CD29 was determined in situ with immunohistochemistry. To confirm in vivo extracellular matrix (ECM) formation, cell-scaffold (polyethylene glycol/poly-L-lactic acid and tricalcium phosphate/hydroxyapatite) constructs were evaluated with scanning electron microscopy 9 weeks after implantation in athymic mice. Cultured cells had characteristic progenitor cell morphology, expansion, CFU frequency percentage and adipocytic, osteoblastic, and neurocytic differentiation capacity. CD44, CD29, K14, K15 and K19 proteins were present in native hoof stratum internum. Cultured cells also expressed K15, K19 and desmogleins 1 and 3. Gene expression of CD105, CD44, K14, K15, sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4) was confirmed in vitro. Cultured cells had large, eccentric nuclei, elongated mitochondria, and intracellular vacuoles. Scaffold implants with cells contained fibrous ECM 9 weeks after implantation compared to little or none on acellular scaffolds. In vitro expansion and plasticity and in vivo ECM deposition of heterogeneous, immature cell isolates from the ectodermal-mesodermal tissue interface of normal and chronically inflamed hooves are typical of primary cell isolates from other adult tissues, and they appear to have both mesodermal and ectodermal qualities in vitro. These results establish a unique cell culture model to target preventative and restorative therapies for ectodermal-mesodermal tissue junctions.
Collapse
Affiliation(s)
- Qingqiu Yang
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vanessa Marigo Rocha Pinto
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Wei Duan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Erica E Paxton
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jenna H Dessauer
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - William Ryan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
114
|
Amyloid-like peptide nanofibrils as scaffolds for tissue engineering: Progress and challenges (Review). Biointerphases 2019; 14:040801. [PMID: 31284721 DOI: 10.1116/1.5098332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Networks of amyloid-like nanofibrils assembled from short peptide sequences have the ability to form scaffolds that can encapsulate clinically relevant stem cells encouraging their attachment, growth, and differentiation into various lineages which can be used in tissue engineering applications to treat a range of diseases and traumas. In this review, the author highlights a selection of important proof-of-principle papers that show how this class of self-assembled networks is highly suited to biomaterial scaffold development. The author highlights recent studies which have shown that these scaffolds can be used to promote cell and tissue regeneration both in vitro and in vivo. The author also presents some fundamental knowledge gaps which are preventing the widespread translation of such scaffolds. Finally, the author outlines a selection of studies that elucidate molecular assembly mechanisms and biophysical properties of amyloid-like peptide nanofibrils and suggests how studies like these might lead to the ability to generate nanofibril scaffolds with bespoke properties for tissue engineering.
Collapse
|
115
|
Mahzoon S, Detamore MS. Chondroinductive Peptides: Drawing Inspirations from Cell–Matrix Interactions. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:249-257. [DOI: 10.1089/ten.teb.2018.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salma Mahzoon
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
116
|
Kisiday JD, Colbath AC, Tangtrongsup S. Effect of culture duration on chondrogenic preconditioning of equine bone marrow mesenchymal stem cells in self-assembling peptide hydrogel. J Orthop Res 2019; 37:1368-1375. [PMID: 30095195 DOI: 10.1002/jor.24123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/26/2018] [Indexed: 02/04/2023]
Abstract
Ex vivo induction of chondrogenesis is a promising approach to improve upon the use of bone marrow mesenchymal stem cells (MSCs) for cartilage tissue engineering. This study evaluated the potential to induce chondrogenesis with days of culture in chondrogenic medium for MSCs encapsulated in self-assembling peptide hydrogel. To simulate the transition from preconditioning culture to implantation, MSCs were isolated from self-assembling peptide hydrogel into an individual cell suspension. Commitment to chondrogenesis was evaluated by seeding preconditioned MSCs into agarose and culturing in the absence of the chondrogenic cytokine transforming growth factor beta (TGFβ). Positive controls consisted of undifferentiated MSCs seeded into agarose and cultured in medium containing TGFβ. Three days of preconditioning was sufficient to produce chondrogenic MSCs that accumulated ∼75% more cartilaginous extracellular matrix than positive controls by day 17. However, gene expression of type X collagen was ∼65-fold higher than positive controls, which was attributed to the absence of TGFβ. Potential induction of immunogenicity with preconditioning culture was indicated by expression of major histocompatibility complex class II (MHCII), which was nearly absence in undifferentiated MSCs, and ∼7% positive for preconditioned cells. These data demonstrate the potential to generate chondrogenic MSCs with days of self-assembling peptide hydrogel, and the ability to readily recover an individual cell suspension that is suited for injectable therapies. However, continued exposure to TGFβ may be necessary to prevent hypertrophy indicated by type X collagen expression, while immunogenicity may be a concern for allogeneic applications. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1368-1375, 2019.
Collapse
Affiliation(s)
- John D Kisiday
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Aimee C Colbath
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Suwimol Tangtrongsup
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| |
Collapse
|
117
|
Xiao W, Li J, Qu X, Wang L, Tan Y, Li K, Li H, Yue X, Li B, Liao X. Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:57-67. [DOI: 10.1016/j.msec.2019.01.079] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 01/25/2023]
|
118
|
Effects of Main-chain and Chain-ends on the Organogelation of Stearoyl Appended Pendant Valine Based Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2265-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
119
|
Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc Natl Acad Sci U S A 2019; 116:11259-11264. [PMID: 31110004 DOI: 10.1073/pnas.1903376116] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hydrogels that are self-assembled by peptides have attracted great interest for biomedical applications. However, the link between chemical structures of peptides and their corresponding hydrogel properties is still unclear. Here, we showed a combinational approach to generate a structurally diverse hydrogel library with more than 2,000 peptides and evaluated their corresponding properties. We used a quantitative structure-property relationship to calculate their chemical features reflecting the topological and physicochemical properties, and applied machine learning to predict the self-assembly behavior. We observed that the stiffness of hydrogels is correlated with the diameter and cross-linking degree of the nanofiber. Importantly, we demonstrated that the hydrogels support cell proliferation in culture, suggesting the biocompatibility of the hydrogel. The combinatorial hydrogel library and the machine learning approach we developed linked the chemical structures with their self-assembly behavior and can accelerate the design of novel peptide structures for biomedical use.
Collapse
|
120
|
Baek K, Noblett AD, Ren P, Suggs LJ. Design and Characterization of Nucleopeptides for Hydrogel Self-Assembly. ACS APPLIED BIO MATERIALS 2019; 2:2812-2821. [DOI: 10.1021/acsabm.9b00229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kiheon Baek
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander D. Noblett
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
121
|
Fouani MH, Nikkhah M, Mowla J. Straightforward and Cost-Effective Production of RADA-16I Peptide in Escherichia coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2125. [PMID: 31457058 PMCID: PMC6697845 DOI: 10.21859/ijb.2125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background RADA16I represents one of promising hydrogel forming peptides. Several implementations of RADA16I hydrogels have proven successful in the field of regenerative medicine and tissue engineering. However, RADA16I peptides used in various studies utilize synthetic peptides and so far, only two research articles have been published on RADA16I peptide recombinant production. Moreover, previous studies utilized non- or less routine expression and purification methods to produce RADA16I peptide recombinantly. Objectives The main goal was to produce the self-assembling peptide, RADA16I, in Escherichia coli by exploiting routine and widely used vectors and purification methods, in shake flask. Material and Methods RADA16I coding sequence was inserted in pET31b+, and the construct was transformed into E. coli. Purified fusion constructs were purified using Nickel Sepharose. RADA16I unimers were released using CNBr cleavage. CD and FTIR spectroscopy were used to study recombinant RADA16I's confirmation. TEM was used to confirm fibril formation of recombinant RADA16I. Furthermore, MTT assay was implemented to assess cytocompatibility of recombinant RADA16I. Results The biochemical, biophysical and structural analysis proved the ability of the recombinant RADA16I to form self-assembling peptide nanofibers. Furthermore, the nanofibers exhibited no cytotoxicity and retained their cell adhesive activity. Conclusions We successfully produced RADA16I in acceptable levels and established a basis for future investigation for the production of RADA16I under fermentation conditions.
Collapse
Affiliation(s)
- Mohamad Hassan Fouani
- PhD Candidate, Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Associate Professor, Department of Nanobiotechnology, Tarbiat Modares University, Tehran, Iran
| | - Javad Mowla
- Professor, Faculty of Biological Sciences, Tarbiat Modares University Tehran, Iran
| |
Collapse
|
122
|
Carlini AS, Gaetani R, Braden RL, Luo C, Christman KL, Gianneschi NC. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat Commun 2019; 10:1735. [PMID: 30988291 PMCID: PMC6465301 DOI: 10.1038/s41467-019-09587-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Injectable biopolymer hydrogels have gained attention for use as scaffolds to promote cardiac function and prevent negative left ventricular (LV) remodeling post-myocardial infarction (MI). However, most hydrogels tested in preclinical studies are not candidates for minimally invasive catheter delivery due to excess material viscosity, rapid gelation times, and/or concerns regarding hemocompatibility and potential for embolism. We describe a platform technology for progelator materials formulated as sterically constrained cyclic peptides which flow freely for low resistance injection, and rapidly assemble into hydrogels when linearized by disease-associated enzymes. Their utility in vivo is demonstrated by their ability to flow through a syringe and gel at the site of MI in rat models. Additionally, synthetic functionalization enables these materials to flow through a cardiac injection catheter without clogging, without compromising hemocompatibility or cytotoxicity. These studies set the stage for the development of structurally dynamic biomaterials for therapeutic hydrogel delivery to the MI.
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Simpson Querrey Institute for BioNanotechnology, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Roberto Gaetani
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rebecca L Braden
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Colin Luo
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karen L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Simpson Querrey Institute for BioNanotechnology, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
123
|
Liu R, Hudalla GA. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials. Molecules 2019; 24:E1450. [PMID: 31013712 PMCID: PMC6514692 DOI: 10.3390/molecules24081450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Throughout nature, self-assembly gives rise to functional supramolecular biomaterials that can perform complex tasks with extraordinary efficiency and specificity. Inspired by these examples, self-assembly is increasingly used to fabricate synthetic supramolecular biomaterials for diverse applications in biomedicine and biotechnology. Peptides are particularly attractive as building blocks for these materials because they are based on naturally derived amino acids that are biocompatible and biodegradable; they can be synthesized using scalable and cost-effective methods, and their sequence can be tailored to encode formation of diverse architectures. To endow synthetic supramolecular biomaterials with functional capabilities, it is now commonplace to conjugate self-assembling building blocks to molecules having a desired functional property, such as selective recognition of a cell surface receptor or soluble protein, antigenicity, or enzymatic activity. This review surveys recent advances in using self-assembling peptides as handles to incorporate biologically active molecules into supramolecular biomaterials. Particular emphasis is placed on examples of functional nanofibers, nanovesicles, and other nano-scale structures that are fabricated by linking self-assembling peptides to proteins and carbohydrates. Collectively, this review highlights the enormous potential of these approaches to create supramolecular biomaterials with sophisticated functional capabilities that can be finely tuned to meet the needs of downstream applications.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
124
|
Pugliese R, Maleki M, Zuckermann RN, Gelain F. Self-assembling peptides cross-linked with genipin: resilient hydrogels and self-standing electrospun scaffolds for tissue engineering applications. Biomater Sci 2019; 7:76-91. [PMID: 30475373 DOI: 10.1039/c8bm00825f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembling peptides (SAPs) are synthetic bioinspired biomaterials that can be feasibly multi-functionalized for applications in surgery, drug delivery, optics and tissue engineering (TE). Despite their promising biocompatibility and biomimetic properties, they have never been considered real competitors of polymers and/or cross-linked extracellular matrix (ECM) natural proteins. Indeed, synthetic SAP-made hydrogels usually feature modest mechanical properties, limiting their potential applications, due to the transient non-covalent interactions involved in the self-assembling phenomenon. Cross-linked SAP-hydrogels have been recently introduced to bridge this gap, but several questions remain open. New strategies leading to stiffer gels of SAPs may allow for a full exploitation of the SAP technology in TE and beyond. We have developed and characterized a genipin cross-linking strategy significantly increasing the stiffness and resiliency of FAQ(LDLK)3, a functionalized SAP already used for nervous cell cultures. We characterized different protocols of cross-linking, analyzing their dose and time-dependent efficiency, influencing stiffness, bioabsorption time and molecular arrangements. We choose the best developed protocol to electrospin into nanofibers, for the first time, self-standing, water-stable and flexible fibrous mats and micro-channels entirely made of SAPs. This work may open the door to the development and tailoring of bioprostheses entirely made of SAPs for different TE applications.
Collapse
Affiliation(s)
- Raffaele Pugliese
- IRCSS Casa Sollievo della Sofferenza, Unità di Ingegneria Tissutale, Viale Cappuccini 1, San Giovanni Rotondo, FG 71013, Italy.
| | | | | | | |
Collapse
|
125
|
Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019; 5:E14. [PMID: 30845674 PMCID: PMC6473879 DOI: 10.3390/gels5010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Amphiphilic peptides can be self-assembled by establishing physical cross-links involving hydrogen bonds and electrostatic interactions with divalent ions. The derived hydrogels have promising properties due to their biocompatibility, reversibility, trigger capability, and tunability. Peptide hydrogels can mimic the extracellular matrix and favor the growth of hydroxyapatite (HAp) as well as its encapsulation. Newly designed materials offer great perspectives for applications in the regeneration of hard tissues such as bones, teeth, and cartilage. Furthermore, development of drug delivery systems based on HAp and peptide self-assembly is attracting attention.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luís J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
126
|
Mu M, Li X, Tong A, Guo G. Multi-functional chitosan-based smart hydrogels mediated biomedical application. Expert Opin Drug Deliv 2019; 16:239-250. [PMID: 30753086 DOI: 10.1080/17425247.2019.1580691] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| |
Collapse
|
127
|
Dufour A, Buffier M, Vertu-Ciolino D, Disant F, Mallein-Gerin F, Perrier-Groult E. Combination of bioactive factors and IEIK13 self-assembling peptide hydrogel promotes cartilage matrix production by human nasal chondrocytes. J Biomed Mater Res A 2019; 107:893-903. [PMID: 30650239 DOI: 10.1002/jbm.a.36612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 02/01/2023]
Abstract
Nasal reconstruction remains a challenge for every reconstructive surgeon. Alloplastic implants are proposed to repair nasal cartilaginous defects but they are often associated with high rates of extrusion and infection and poor biocompatibility. In this context, a porous polymeric scaffold filled with an autologous cartilage gel would be advantageous. In this study, we evaluated the capacity of IEIK13 self-assembling peptide (SAP) to serve as support to form such cartilage gel. Human nasal chondrocytes (HNC) were first amplified with FGF-2 and insulin, and then redifferentiated in IEIK13 with BMP-2, insulin, and T3 (BIT). Our results demonstrate that IEIK13 fosters HNC growth and survival. HNC phenotype was assessed by RT-PCR analysis and neo-synthesized extracellular matrix was characterized by western blotting and immunohistochemistry analysis. BIT-treated cells embedded in IEIK13 displayed round morphology and expressed cartilage-specific markers such as type II and type IX collagens and aggrecan. In addition, we did not detect significant production of type I and type X collagens and gene products of dedifferentiated and hypertrophic chondrocytes that are unwanted in hyaline cartilage. The whole of these results indicates that the SAP IEIK13 represents a suitable support for hydrogel-based tissue engineering of nasal cartilage. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 893-903, 2019.
Collapse
Affiliation(s)
- Alexandre Dufour
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS UMR 5305, Institute for Biology and Chemistry of Proteins, Lyon, France
| | | | - Delphine Vertu-Ciolino
- Department of otolaryngology-head and neck surgery, Édouard-Herriot hospital, Lyon, France
| | - François Disant
- Department of otolaryngology-head and neck surgery, Édouard-Herriot hospital, Lyon, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS UMR 5305, Institute for Biology and Chemistry of Proteins, Lyon, France
| | - Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS UMR 5305, Institute for Biology and Chemistry of Proteins, Lyon, France
| |
Collapse
|
128
|
Zhao W, He B, Zhou A, Li Y, Chen X, Yang Q, Chen B, Qiao B, Jiang D. D-RADA16-RGD-Reinforced Nano-Hydroxyapatite/Polyamide 66 Ternary Biomaterial for Bone Formation. Tissue Eng Regen Med 2019; 16:177-189. [PMID: 30989044 DOI: 10.1007/s13770-018-0171-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/11/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nano-hydroxyapatite/polyamide 66 (nHA/PA66) is a composite used widely in the repair of bone defects. However, this material is insufficient bioactivity. In contrast, D-RADA16-RGD self-assembling peptide (D-RADA16-RGD sequence containing all D-amino acids is Ac-RADARADARADARADARGDS-CONH2) shows admirable bioactivity for both cell culture and bone regeneration. Here, we describe the fabrication of a favorable biomaterial material (nHA/PA66/D-RADA16-RGD). METHODS Proteinase K and circular dichroism spectroscopy were employed to test the stability and secondary structural properties of peptide D-RADA16-RGD respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the surface of these materials. Confocal laser scanning (CLS), cell counting kit-8 tests (CCK-8), alizarin red S staining, cell immunofluorescence analysis and Western blotting were involved in vitro. Also biosafety and bioactivity of them have been evaluated in vivo. RESULTS Proteinase K and circular dichroism spectroscopy demonstrated that D-RADA16-RGD in nHA/PA66 was able to form stable-sheet secondary structure. SEM and TEM showed that the D-RADA16-RGD material was 7-33 nm in width and 130-600 nm in length, and the interwoven pore size ranged from 40 to 200 nm. CLS suggests that cells in nHA/PA66/D-RADA16-RGD group were linked to adjacent cells with more actin filaments. CCK-8 analysis showed that nHA/PA66/D-RADA16-RGD revealed good biocompatibility. The results of Alizarin-red S staining and Western blotting as well as vivo osteogenesis suggest nHA/PA66/D-RADA16-RGD exhibits better bioactivity. CONCLUSION This study demonstrates that our nHA/PA66/D-RADA16-RGD composite exhibits reasonable mechanical properties, biocompatibility and bioactivity with promotion of bone formation.
Collapse
Affiliation(s)
- WeiKang Zhao
- 1The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing, 400016 People's Republic of China.,2The Third Affiliated Hospital of Chongqing Medical University, No 1 Shuanghu Road, Yubei District, Chongqing, 401120 People's Republic of China
| | - Bin He
- 1The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Ao Zhou
- 2The Third Affiliated Hospital of Chongqing Medical University, No 1 Shuanghu Road, Yubei District, Chongqing, 401120 People's Republic of China
| | - Yuling Li
- Affiliated Hospital of Northern, Sichuan Medical University, Cultural Road 63, Nanchong City, 637000 Sichuan Province People's Republic of China
| | - Xiaojun Chen
- 2The Third Affiliated Hospital of Chongqing Medical University, No 1 Shuanghu Road, Yubei District, Chongqing, 401120 People's Republic of China
| | - Qiming Yang
- 2The Third Affiliated Hospital of Chongqing Medical University, No 1 Shuanghu Road, Yubei District, Chongqing, 401120 People's Republic of China
| | - Beike Chen
- 1The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing, 400016 People's Republic of China.,2The Third Affiliated Hospital of Chongqing Medical University, No 1 Shuanghu Road, Yubei District, Chongqing, 401120 People's Republic of China
| | - Bo Qiao
- 1The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Dianming Jiang
- 1The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing, 400016 People's Republic of China.,2The Third Affiliated Hospital of Chongqing Medical University, No 1 Shuanghu Road, Yubei District, Chongqing, 401120 People's Republic of China
| |
Collapse
|
129
|
Saunders L, Ma PX. Self-Healing Supramolecular Hydrogels for Tissue Engineering Applications. Macromol Biosci 2019; 19:e1800313. [PMID: 30565872 PMCID: PMC6486376 DOI: 10.1002/mabi.201800313] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Self-healing supramolecular hydrogels have emerged as a novel class of biomaterials that combine hydrogels with supramolecular chemistry to develop highly functional biomaterials with advantages including native tissue mimicry, biocompatibility, and injectability. These properties are endowed by the reversibly cross-linked polymer network of the hydrogel. These hydrogels have great potential for realizing yet to be clinically translated tissue engineering therapies. This review presents methods of self-healing supramolecular hydrogel formation and their uses in tissue engineering as well as future perspectives.
Collapse
Affiliation(s)
- Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, USA
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, USA, Biologic and Materials Science, University of Michigan, Ann Arbor, MI, USA, Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA,
| |
Collapse
|
130
|
Bacterial Amyloids: Biogenesis and Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:113-159. [DOI: 10.1007/978-981-13-9791-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
131
|
|
132
|
Wang S, Li J, Zhou Z, Zhou S, Hu Z. Micro-/Nano-Scales Direct Cell Behavior on Biomaterial Surfaces. Molecules 2018; 24:E75. [PMID: 30587800 PMCID: PMC6337445 DOI: 10.3390/molecules24010075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
Cells are the smallest living units of a human body's structure and function, and their behaviors should not be ignored in human physiological and pathological metabolic activities. Each cell has a different scale, and presents distinct responses to specific scales: Vascular endothelial cells may obtain a normal function when regulated by the 25 µm strips, but de-function if the scale is removed; stem cells can rapidly proliferate on the 30 nm scales nanotubes surface, but stop proliferating when the scale is changed to 100 nm. Therefore, micro and nano scales play a crucial role in directing cell behaviors on biomaterials surface. In recent years, a series of biomaterials surface with micro and/or nano scales, such as micro-patterns, nanotubes and nanoparticles, have been developed to control the target cell behavior, and further enhance the surface biocompatibility. This contribution will introduce the related research, and review the advances in the micro/nano scales for biomaterials surface functionalization.
Collapse
Affiliation(s)
- Shuo Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Zixiao Zhou
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Sheng Zhou
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Zhenqing Hu
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
133
|
Ando K, Imagama S, Kobayashi K, Ito K, Tsushima M, Morozumi M, Tanaka S, Machino M, Ota K, Nishida K, Nishida Y, Ishiguro N. Feasibility and effects of a self-assembling peptide as a scaffold in bone healing: An in vivo study in rabbit lumbar posterolateral fusion and tibial intramedullary models. J Orthop Res 2018; 36:3285-3293. [PMID: 30054932 DOI: 10.1002/jor.24109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023]
Abstract
Spinal fusion and bone defects after injuries, removal of bone tumors, and infections require repair by implantation. In this study, we show self-assembling peptide (SPG-178) hydrogel-induced bone healing in vivo. Posterolateral lumbar fusion and tibial intramedullary models of rabbits were prepared. In the tibia model, micro-CT analysis revealed a significantly higher degree of newly formed bone matrix in the SPG-178 group compared to the other groups. SEM/3D micrographs showed that the cavity filled with SPG-178 had collagen fibers attached to host bone. After 28 days, samples from the SPG-178 group showed significant repair of the defect. In the posterolateral lumbar fusion models, micro-CT showed a tendency for a higher degree of newly formed bone matrix in the SPG-178 group compared to the β-TCP and bone chips only groups. Von Kossa staining showed marked new bone formation attached to the lamina that was most prominent at the implanted SPG-178 composite margin. SPG-178 is a material that is likely to be used in clinical applications because it has several benefits. These include its favorable bone conduction properties, its ability to act as a support for various cells and growth factors, its lack of infection risk compared with materials of animal origin such as ECM, and the ease with which it can be used to fill defects with complex shapes and be combined with a wide range of other materials. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3285-3293, 2018.
Collapse
Affiliation(s)
- Kei Ando
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazuyoshi Kobayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kenyu Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Mikito Tsushima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masayoshi Morozumi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Satoshi Tanaka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kyotaro Ota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Koji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
134
|
Chan KH, Lee WH, Ni M, Loo Y, Hauser CAE. C-Terminal Residue of Ultrashort Peptides Impacts on Molecular Self-Assembly, Hydrogelation, and Interaction with Small-Molecule Drugs. Sci Rep 2018; 8:17127. [PMID: 30459362 PMCID: PMC6244206 DOI: 10.1038/s41598-018-35431-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022] Open
Abstract
Single molecular changes on a tripeptide can have dramatic effects on their self-assembly and hydrogelation. Herein, we explore C-terminal residue variation on two consistent ultrashort peptide backbones, i.e. acetylated-Leu-Ile-Val-Ala-Gly-Xaa and acetylated-Ile-Val-Xaa (Xaa = His, Arg, Asn). The objective of this study is to identify candidates that can form hydrogels for small-molecule drug (SMD) delivery. Haemolysis and cytotoxicity (with human adipose-derived mesenchymal stem cells) assays showed that the new soluble peptides (Xaa = His, Arg) are cytocompatible. Gelation studies showed that all but acetylated-Ile-Val-Arg could gel under physiological conditions. Longer peptidic backbones drive self-assembly more effectively as reflected in field emission scanning electron microscopy (FESEM) and circular dichroism spectroscopy studies. Rheological studies revealed that the resultant hydrogels have varying stiffness and yield stress, depending on the backbone and C-terminal residue. Visible spectroscopy-based elution studies with SMDs (naltrexone, methotrexate, doxorubicin) showed that besides the C-terminal residue, the shape of the SMD also determines the rate and extent of SMD elution. Based on the elution assays, infrared spectroscopy, and FESEM, we propose models for the peptide fibril-SMD interaction. Our findings highlight the importance of matching the molecular properties of the self-assembling peptide and SMD in order to achieve the desired SMD release profile.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Wei Hao Lee
- Department of Chemistry, Krieger School of Arts & Sciences, 3400 North Charles Street, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ming Ni
- School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, 100105, Ecuador
| | - Yihua Loo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
135
|
Chen C, Wang J, Hao R, Wang Z, Hou Z, Zhao Y, Zong C, Xu H. Transglutaminase-Triggered Gelation and Functionalization of Designed Self-Assembling Peptides for Guiding Cell Migration. ACS APPLIED BIO MATERIALS 2018; 1:2110-2119. [PMID: 34996272 DOI: 10.1021/acsabm.8b00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jingxin Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Ruirui Hao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zheng Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhe Hou
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cheng Zong
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
136
|
Yang K, Sun J, Guo Z, Yang J, Wei D, Tan Y, Guo L, Luo H, Fan H, Zhang X. Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior. J Mater Chem B 2018; 6:7543-7555. [PMID: 32254756 DOI: 10.1039/c8tb02314j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For an ideal biomimetic microenvironment to realize reliable cartilage regeneration, the ability to induce mesenchymal stem cell (MSCs) differentiation along the chondrogenic lineage and prevent further dedifferentiation is expected. With native bioactivity, collagen has been proved to be preferential for inducing the chondrogenic differentiation of MSCs. However, the phenotypic maintenance of differentiated chondrocytes in a collagen matrix is still a challenge. Actin traction, which causes drastic contraction of the collagen matrix, is frequently observed and might be an important factor that affects cell fates including chondrogenic differentiation and phenotypic maintenance. In this study, photochemical modification was applied to acquire collagen hydrogels with improved mechanical strength and creep behavior. Accompanied by inherited bioactivity, the photo-crosslinked collagen hydrogel well supported the actin cytoskeleton functionalization while resisting the actin-mediated matrix contraction. Benefitting from this, the hydrogel system promoted MSCs proliferation and chondrogenic differentiation, and more importantly, prevented further dedifferentiation. By exploring the mesenchymal development-related signal transduction markers, it was revealed that the promoted chondrogenesis was achieved through inhibiting the over-expression of MAPK and Wnt/β-catenin signaling pathways that up-regulated dedifferentiated gene expression. The strategy of applying the hydrogel system to cartilage regeneration is foreseeable based on the positive heterotopic and orthotopic chondrogenic differentiation.
Collapse
Affiliation(s)
- Ke Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Lu J, Shen X, Sun X, Yin H, Yang S, Lu C, Wang Y, Liu Y, Huang Y, Yang Z, Dong X, Wang C, Guo Q, Zhao L, Sun X, Lu S, Mikos AG, Peng J, Wang X. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics 2018; 8:5039-5058. [PMID: 30429885 PMCID: PMC6217070 DOI: 10.7150/thno.26981] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023] Open
Abstract
Even small cartilage defects could finally degenerate to osteoarthritis if left untreated, owing to the poor self-healing ability of articular cartilage. Stem cell transplantation has been well implemented as a common approach in cartilage tissue engineering but has technical complexity and safety concerns. The stem cell homing-based technique emerged as an alternative promising therapy for cartilage repair to overcome traditional limitations. In this study, we constructed a composite hydrogel scaffold by combining an oriented acellular cartilage matrix (ACM) with a bone marrow homing peptide (BMHP)-functionalized self-assembling peptide (SAP). We hypothesized that increased recruitment of endogenous stem cells by the composite scaffold could enhance cartilage regeneration. Methods: To test our hypothesis, in vitro proliferation, attachment and chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) were tested to confirm the bioactivities of the functionalized peptide hydrogel. The composite scaffold was then implanted into full-thickness cartilage defects on rabbit knee joints for cartilage repair, in comparison with microfracture or other sample groups. Stem cell recruitment was monitored by dual labeling with CD29 and CD90 under confocal microcopy at 1 week after implantation, followed by chondrogenic differentiation examined by qRT-PCR. Repaired tissue of the cartilage defects was evaluated by histological and immunohistochemistry staining, microcomputed tomography (micro-CT) and magnetic resonance imaging (MRI) at 3 and 6 months post-surgery. Macroscopic and histological scoring was done to evaluate the optimal in vivo repair outcomes of this composite scaffold. Results: The functionalized SAP hydrogels could stimulate rabbit MSC proliferation, attachment and chondrogenic differentiation during in vitro culture. At 7 days after implantation, increased recruitment of MSCs based on CD29+ /CD90+ double-positive cells was found in vivo in the composite hydrogel scaffold, as well as upregulation of cartilage-associated genes (aggrecan, Sox9 and type II collagen). After 3 and 6 months post-surgery, the articular cartilage defect in the composite scaffold-treated group was fully covered with cartilage-like tissue with a smooth surface, which was similar to the surrounding native cartilage, according to the results of histological and immunohistochemistry staining, micro-CT and MRI analysis. Macroscopic and histological scoring confirmed that the quality of cartilage repair was significantly improved with implantation of the composite scaffold at each timepoint, in comparison with microfracture or other sample groups. Conclusion: Our findings demonstrated that the composite scaffold could enhance endogenous stem cell homing and chondrogenic differentiation and significantly improve the therapeutic outcome of chondral defects. The present study provides a promising approach for in vivo cartilage repair without cell transplantation. Optimization of this strategy may offer great potential and benefits for clinical application in the future.
Collapse
Affiliation(s)
- Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xuezhen Shen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Heyong Yin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yifan Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yingqi Huang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zijin Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xianqi Dong
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chenhao Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Antonios G. Mikos
- Department of Bioengineering, Bioscience Research Collaborative, Rice University, Texas 77030, USA
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
138
|
The use of hydrogels for cell-based treatment of chronic kidney disease. Clin Sci (Lond) 2018; 132:1977-1994. [PMID: 30220651 DOI: 10.1042/cs20180434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is a major and growing public health concern with increasing incidence and prevalence worldwide. The therapeutic potential of stem cell therapy, including mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) holds great promise for treatment of CKD. However, there are significant bottlenecks in the clinical translation due to the reduced number of transplanted cells and the duration of their presence at the site of tissue damage. Bioengineered hydrogels may provide a route of cell delivery to enhance treatment efficacy and optimise the targeting effectiveness while minimising any loss of cell function. In this review, we highlight the advances in stem cell therapy targeting kidney disease and discuss the emerging role of hydrogel delivery systems to fully realise the potential of adult stem cells as a regenerative therapy for CKD in humans. MSCs and EPCs mediate kidney repair through distinct paracrine effects. As a delivery system, hydrogels can prolong these paracrine effects by improving retention at the site of injury and protecting the transplanted cells from the harsh inflammatory microenvironment. We also discuss the features of a hydrogel, which may be tuned to optimise the therapeutic potential of encapsulated stem cells, including cell-adhesive epitopes, material stiffness, nanotopography, modes of gelation and degradation and the inclusion of bioactive molecules. This review concludes with a discussion of the challenges to be met for the widespread clinical use of hydrogel delivery system of stem cell therapy for CKD.
Collapse
|
139
|
Goronzy DP, Ebrahimi M, Rosei F, Fang Y, De Feyter S, Tait SL, Wang C, Beton PH, Wee ATS, Weiss PS, Perepichka DF. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS NANO 2018; 12:7445-7481. [PMID: 30010321 DOI: 10.1021/acsnano.8b03513] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding how molecules interact to form large-scale hierarchical structures on surfaces holds promise for building designer nanoscale constructs with defined chemical and physical properties. Here, we describe early advances in this field and highlight upcoming opportunities and challenges. Both direct intermolecular interactions and those that are mediated by coordinated metal centers or substrates are discussed. These interactions can be additive, but they can also interfere with each other, leading to new assemblies in which electrical potentials vary at distances much larger than those of typical chemical interactions. Earlier spectroscopic and surface measurements have provided partial information on such interfacial effects. In the interim, scanning probe microscopies have assumed defining roles in the field of molecular organization on surfaces, delivering deeper understanding of interactions, structures, and local potentials. Self-assembly is a key strategy to form extended structures on surfaces, advancing nanolithography into the chemical dimension and providing simultaneous control at multiple scales. In parallel, the emergence of graphene and the resulting impetus to explore 2D materials have broadened the field, as surface-confined reactions of molecular building blocks provide access to such materials as 2D polymers and graphene nanoribbons. In this Review, we describe recent advances and point out promising directions that will lead to even greater and more robust capabilities to exploit designer surfaces.
Collapse
Affiliation(s)
- Dominic P Goronzy
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Maryam Ebrahimi
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
- Institute for Fundamental and Frontier Science , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Yuan Fang
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| | - Steven De Feyter
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium
| | - Steven L Tait
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Chen Wang
- National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Peter H Beton
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Andrew T S Wee
- Department of Physics , National University of Singapore , 117542 Singapore
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dmitrii F Perepichka
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| |
Collapse
|
140
|
Towards Developing Bioresponsive, Self-Assembled Peptide Materials: Dynamic Morphology and Fractal Nature of Nanostructured Matrices. MATERIALS 2018; 11:ma11091539. [PMID: 30150517 PMCID: PMC6164152 DOI: 10.3390/ma11091539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022]
Abstract
(Arginine-alanine-aspartic acid-alanine)₄ ((RADA)₄) nanoscaffolds are excellent candidates for use as peptide delivery vehicles: they are relatively easy to synthesize with custom bio-functionality, and assemble in situ to allow a focal point of release. This enables (RADA)₄ to be utilized in multiple release strategies by embedding a variety of bioactive molecules in an all-in-one "construct". One novel strategy focuses on the local, on-demand release of peptides triggered via proteolysis of tethered peptide sequences. However, the spatial-temporal morphology of self-assembling nanoscaffolds may greatly influence the ability of enzymes to both diffuse into as well as actively cleave substrates. Fine structure and its impact on the overall effect on peptide release is poorly understood. In addition, fractal networks observed in nanoscaffolds are linked to the fractal nature of diffusion in these systems. Therefore, matrix morphology and fractal dimension of virgin (RADA)₄ and mixtures of (RADA)₄ and matrix metalloproteinase 2 (MMP-2) cleavable substrate modified (RADA)₄ were characterized over time. Sites of high (glycine-proline-glutamine-glycine+isoleucine-alanine-serine-glutamine (GPQG+IASQ), CP1) and low (glycine-proline-glutamine-glycine+proline-alanine-glycine-glutamine (GPQG+PAGQ), CP2) cleavage activity were chosen. Fine structure was visualized using transmission electron microscopy. After 2 h of incubation, nanofiber networks showed an established fractal nature; however, nanofibers continued to bundle in all cases as incubation times increased. It was observed that despite extensive nanofiber bundling after 24 h of incubation time, the CP1 and CP2 nanoscaffolds were susceptible to MMP-2 cleavage. The properties of these engineered nanoscaffolds characterized herein illustrate that they are an excellent candidate as an enzymatically initiated peptide delivery platform.
Collapse
|
141
|
Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. Int J Mol Sci 2018; 19:ijms19082366. [PMID: 30103493 PMCID: PMC6122081 DOI: 10.3390/ijms19082366] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
Articular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice. We also describe potential future directions in this area, including tissue engineering based on scaffolding and/or stem cells as well as a combination of gene and cell therapy. Particular focus is placed on cell-based approaches and the potential of recently characterized chondro-progenitors; progress with induced pluripotent stem cells is also discussed. In this context, we also consider the ability of different types of stem cell to restore hyaline cartilage and the importance of mimicking the environment in vivo during cell expansion and differentiation into mature chondrocytes.
Collapse
|
142
|
Sun H, Huang Y, Zhang L, Li B, Wang X. Co-culture of bone marrow stromal cells and chondrocytes in vivo for the repair of the goat condylar cartilage defects. Exp Ther Med 2018; 16:2969-2977. [PMID: 30214515 PMCID: PMC6125981 DOI: 10.3892/etm.2018.6551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/11/2017] [Indexed: 01/14/2023] Open
Abstract
This study explored the feasibility of inducing the differentiation of BMSCs into chondrocytes through co-culture with chondrocytes in hydrogel constructs (Pluronic F-127 gel) in vivo for the repair of goat mandibular condylar cartilage defects. Chondrocytes and BMSCs were isolated from goat auricular cartilage and bone marrow, respectively, and were mixed at a ratio of 3:7. BMSCs were labelled with green fluorescence protein (GFP) using a retrovirus vector for tracing. Mixed cells were re-suspended in 30% Pluronic F-127 at a concentration of 5×107 cells/ml to form a gel-cell complex. The gel-cell complex was implanted into the temporomandibular joint condylar articular cartilage defects. The whole temporomandibular joint and adjacent tissues were harvested at 4, 8, and 12 weeks after surgery, and gross observation, histology and collagen II expression were evaluated. In the co-culture group, cartilage-like tissues were formed, and abundant type II collagen could be detected by immunohistochemistry in the condylar cartilage defects. Confocal microscopy revealed that implanted GFP-labelled BMSCs were embedded in cartilage-like tissues. The co-culture system described herein provides a chondrogenic microenvironment to induce the chondrogenic differentiation of BMSCs in vivo without any additional cellular factors.
Collapse
Affiliation(s)
- Hao Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Yue Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Biao Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| |
Collapse
|
143
|
Betriu N, Recha-Sancho L, Semino CE. Culturing Mammalian Cells in Three-dimensional Peptide Scaffolds. J Vis Exp 2018. [PMID: 29985312 PMCID: PMC6101701 DOI: 10.3791/57259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A useful technique for culturing cells in a self-assembling nanofiber three-dimensional (3D) scaffold is described. This culture system recreates an environment that closely mimics the structural features of non-polarized tissue. Furthermore, the particular intrinsic nanofiber structure of the scaffold makes it transparent to visual light, which allows for easy visualization of the sample under microscopy. This advantage was largely used to study cell migration, organization, proliferation, and differentiation and thus any development of their particular cellular function by staining with specific dyes or probes. Furthermore, in this work, we describe the good performance of this system to easily study the redifferentiation of expanded human articular chondrocytes into cartilaginous tissue. Cells were encapsulated into self-assembling peptide scaffolds and cultured under specific conditions to promote chondrogenesis. Three-dimensional cultures showed good viability during the 4 weeks of the experiment. As expected, samples cultured with chondrogenic inducers (compared to non-induced controls) stained strongly positive for toluidine blue (which stains glycosaminoglycans (GAGs) that are highly present in cartilage extracellular matrix) and expressed specific molecular markers, including collagen type I, II and X, according to Western Blot analysis. This protocol is easy to perform and can be used at research laboratories, industries and for educational purposes in laboratory courses.
Collapse
Affiliation(s)
- Nausika Betriu
- Tissue Engineering Research Laboratory, Department of Bioengineering, IQS-School of Engineering, Ramon Llull University
| | - Lourdes Recha-Sancho
- Tissue Engineering Research Laboratory, Department of Bioengineering, IQS-School of Engineering, Ramon Llull University
| | - Carlos E Semino
- Tissue Engineering Research Laboratory, Department of Bioengineering, IQS-School of Engineering, Ramon Llull University; Hebe Biolab;
| |
Collapse
|
144
|
RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells. PLoS One 2018; 13:e0197517. [PMID: 29864116 PMCID: PMC5986125 DOI: 10.1371/journal.pone.0197517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four β-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution-pronase-was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed.
Collapse
|
145
|
Wang Z, Li K, Sun H, Wang J, Fu Z, Liu M. Icariin promotes stable chondrogenic differentiation of bone marrow mesenchymal stem cells in self‑assembling peptide nanofiber hydrogel scaffolds. Mol Med Rep 2018; 17:8237-8243. [PMID: 29693145 PMCID: PMC5984004 DOI: 10.3892/mmr.2018.8913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022] Open
Abstract
Icariin, a traditional Chinese medicine, has previously been demonstrated to promote chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) in traditional 2D cell culture. The present study investigated whether icariin has the potential to promote stable chondrogenic differentiation of BMSCs without hypertrophy in a 3D microenvironment. BMSCs were cultivated in a self-assembling peptide nanofiber hydrogel scaffold in chondrogenic medium for 3 weeks. Icariin was added to the medium throughout the culture period at concentrations of 1×10−6 M. Chondrogenic differentiation markers, including collagen II and SRY-type high mobility group box 9 (SOX9) were detected by immunofluorescence, reverse transcription-quantitative polymerase chain reaction and toluidine blue staining. Hypertrophic differentiation was further assessed by detecting collagen X and collagen I gene expression levels and alkaline phosphatase activity. The results demonstrated that icariin significantly enhanced cartilage extracellular matrix synthesis and gene expression levels of collagen II and SOX9, and additionally promoted more chondrocyte-like rounded morphology in BMSCs. Furthermore, chondrogenic medium led to hypertrophic differentiation via upregulation of collagen X and collagen I gene expression levels and alkaline phosphatase activity, which was not potentiated by icariin. In conclusion, these results suggested that icariin treatment may promote chondrogenic differentiation of BMSCs, and inhibit the side effect of growth factor activity, thus preventing further hypertrophic differentiation. Therefore, icariin may be a potential compound for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhicong Wang
- Department of Orthopedic Surgery, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Kaihua Li
- Department of Orthopedic Surgery, General Hospital of Fengfeng Group, Handan, Hebei 056200, P.R. China
| | - Huijun Sun
- Department of Clinical Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ji Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhuodong Fu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mozhen Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
146
|
Aloy-Reverté C, Moreno-Amador JL, Nacher M, Montanya E, Semino CE. Use of RGD-Functionalized Sandwich Cultures to Promote Redifferentiation of Human Pancreatic Beta Cells AfterIn VitroExpansion. Tissue Eng Part A 2018; 24:394-406. [DOI: 10.1089/ten.tea.2016.0493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Caterina Aloy-Reverté
- Department of Bioengineering, Tissue Engineering Laboratory, IQS School of Engineering, Barcelona, Spain
| | - José L. Moreno-Amador
- Hospital Universitari Bellvitge-Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Diabetes and Metabolic Diseases (CIBERDEM), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Montserrat Nacher
- Hospital Universitari Bellvitge-Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Diabetes and Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Eduard Montanya
- Hospital Universitari Bellvitge-Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Diabetes and Metabolic Diseases (CIBERDEM), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Carlos E. Semino
- Department of Bioengineering, Tissue Engineering Laboratory, IQS School of Engineering, Barcelona, Spain
| |
Collapse
|
147
|
Rose JC, De Laporte L. Hierarchical Design of Tissue Regenerative Constructs. Adv Healthc Mater 2018; 7:e1701067. [PMID: 29369541 DOI: 10.1002/adhm.201701067] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Indexed: 02/05/2023]
Abstract
The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| | - Laura De Laporte
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| |
Collapse
|
148
|
Sahoo JK, VandenBerg MA, Webber MJ. Injectable network biomaterials via molecular or colloidal self-assembly. Adv Drug Deliv Rev 2018; 127:185-207. [PMID: 29128515 DOI: 10.1016/j.addr.2017.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/16/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Self-assembly is a powerful tool to create functional materials. A specific application for which self-assembled materials are ideally suited is in creating injectable biomaterials. Contrasting with traditional biomaterials that are implanted through surgical means, injecting biomaterials through the skin offers numerous advantages, expanding the scope and impact for biomaterials in medicine. In particular, self-assembled biomaterials prepared from molecular or colloidal interactions have been frequently explored. The strategies to create these materials are varied, taking advantage of engineered oligopeptides, proteins, and nanoparticles as well as affinity-mediated crosslinking of synthetic precursors. Self-assembled materials typically facilitate injectability through two different mechanisms: i) in situ self-assembly, whereby materials would be administered in a monomeric or oligomeric form and self-assemble in response to some physiologic stimulus, or ii) self-assembled materials that, by virtue of their dynamic, non-covalent interactions, shear-thin to facilitate flow within a syringe and subsequently self-heal into its reassembled material form at the injection site. Indeed, many classes of materials are capable of being injected using a combination of these two mechanisms. Particular utility has been noted for self-assembled biomaterials in the context of tissue engineering, regenerative medicine, drug delivery, and immunoengineering. Given the controlled and multifunctional nature of many self-assembled materials demonstrated to date, we project a future where injectable self-assembled biomaterials afford improved practice in advancing healthcare.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Michael A VandenBerg
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
149
|
Liu Q, Jia Z, Duan L, Xiong J, Wang D, Ding Y. Functional peptides for cartilage repair and regeneration. Am J Transl Res 2018; 10:501-510. [PMID: 29511444 PMCID: PMC5835815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
Cartilage repair after degeneration or trauma continues to be a challenge both in the clinic and for scientific research due to the limited regenerative capacity of this tissue. Cartilage tissue engineering, involving a combination of cells, scaffolds, and growth factors, is increasingly used in cartilage regeneration. Due to their ease of synthesis, robustness, tunable size, availability of functional groups, and activity, peptides have emerged as the molecules with the most potential in drug development. A number of peptides have been engineered to regenerate cartilage by acting as scaffolds, functional molecules, or both. In this paper, we will summarize the application of peptides in cartilage tissue engineering and discuss additional possibilities for peptides in this field.
Collapse
Affiliation(s)
- Qisong Liu
- Department of Orthopedic, Memorial Hospital of Sun Yat-sen UniversityGuangzhou 510120, Guangdong Province, China
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Zhaofeng Jia
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, Guangdong Province, China
| | - Yue Ding
- Department of Orthopedic, Memorial Hospital of Sun Yat-sen UniversityGuangzhou 510120, Guangdong Province, China
| |
Collapse
|
150
|
Handelman A, Lapshina N, Apter B, Rosenman G. Peptide Integrated Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705776. [PMID: 29226468 DOI: 10.1002/adma.201705776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring.
Collapse
Affiliation(s)
- Amir Handelman
- Faculty of Engineering, Holon Institute of Technology, 52 Golomb, 5810201, Holon, Israel
| | - Nadezda Lapshina
- School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Boris Apter
- Faculty of Engineering, Holon Institute of Technology, 52 Golomb, 5810201, Holon, Israel
| | - Gil Rosenman
- School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|