101
|
Berk JM, Maitra S, Dawdy AW, Shabanowitz J, Hunt DF, Wilson KL. O-Linked β-N-acetylglucosamine (O-GlcNAc) regulates emerin binding to barrier to autointegration factor (BAF) in a chromatin- and lamin B-enriched "niche". J Biol Chem 2013; 288:30192-30209. [PMID: 24014020 DOI: 10.1074/jbc.m113.503060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerin, a membrane component of nuclear "lamina" networks with lamins and barrier to autointegration factor (BAF), is highly O-GlcNAc-modified ("O-GlcNAcylated") in mammalian cells. Mass spectrometry analysis revealed eight sites of O-GlcNAcylation, including Ser-53, Ser-54, Ser-87, Ser-171, and Ser-173. Emerin O-GlcNAcylation was reduced ~50% by S53A or S54A mutation in vitro and in vivo. O-GlcNAcylation was reduced ~66% by the triple S52A/S53A/S54A mutant, and S173A reduced O-GlcNAcylation of the S52A/S53A/S54A mutant by ~30%, in vivo. We separated two populations of emerin, A-type lamins and BAF; one population solubilized easily, and the other required sonication and included histones and B-type lamins. Emerin and BAF associated only in histone- and lamin-B-containing fractions. The S173D mutation specifically and selectively reduced GFP-emerin association with BAF by 58% and also increased GFP-emerin hyper-phosphorylation. We conclude that β-N-acetylglucosaminyltransferase, an essential enzyme, controls two regions in emerin. The first region, defined by residues Ser-53 and Ser-54, flanks the LEM domain. O-GlcNAc modification at Ser-173, in the second region, is proposed to promote emerin association with BAF in the chromatin/lamin B "niche." These results reveal direct control of a conserved LEM domain nuclear lamina component by β-N-acetylglucosaminyltransferase, a nutrient sensor that regulates cell stress responses, mitosis, and epigenetics.
Collapse
Affiliation(s)
- Jason M Berk
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Sushmit Maitra
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Andrew W Dawdy
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Jeffrey Shabanowitz
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Donald F Hunt
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Katherine L Wilson
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and.
| |
Collapse
|
102
|
Barton LJ, Pinto BS, Wallrath LL, Geyer PK. The Drosophila nuclear lamina protein otefin is required for germline stem cell survival. Dev Cell 2013; 25:645-54. [PMID: 23806619 DOI: 10.1016/j.devcel.2013.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/11/2013] [Accepted: 05/23/2013] [Indexed: 01/27/2023]
Abstract
LEM domain (LEM-D) proteins are components of an extensive protein network that assembles beneath the inner nuclear envelope. Defects in LEM-D proteins cause tissue-restricted human diseases associated with altered stem cell homeostasis. Otefin (Ote) is a Drosophila LEM-D protein that is intrinsically required for female germline stem cell (GSC) maintenance. Previous studies linked Ote loss with transcriptional activation of the key differentiation gene bag-of-marbles (bam), leading to the model in which Ote tethers the bam gene to the nuclear periphery for gene silencing. Using genetic and phenotypic analyses of multiple ote(-/-) backgrounds, we obtained evidence that is inconsistent with this model. We show that bam repression is maintained in ote(-/-) GSCs and that germ cell loss persists in ote(-/-), bam(-/-) mutants, together demonstrating that GSC loss is independent of bam transcription. We show that the primary defect in ote(-/-) GSCs is a block of differentiation, which ultimately leads to germ cell death.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
103
|
Dramićanin M, Ramón-Maiques S. MuB gives a new twist to target DNA selection. Mob Genet Elements 2013; 3:e27515. [PMID: 24478936 PMCID: PMC3894238 DOI: 10.4161/mge.27515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/12/2013] [Indexed: 11/27/2022] Open
Abstract
Transposition target immunity is a phenomenon observed in some DNA transposons that are able to distinguish the host chromosome from their own DNA sequence, thus avoiding self-destructive insertions. The first molecular insight into target selection and immunity mechanisms came from the study of phage Mu transposition, which uses the protein MuB as a barrier to self-insertion. MuB is an ATP-dependent non-specific DNA binding protein that regulates the activity of the MuA transposase and captures target DNA for transposition. However, a detailed mechanistic understanding of MuB functioning was hindered by the poor solubility of the MuB-ATP complexes. Here we comment on the recent discovery that MuB is an AAA+ ATPase that upon ATP binding assembles into helical filaments that coat the DNA. Remarkably, the helical parameters of the MuB filament do not match those of the bound DNA. This intriguing mismatch symmetry led us to propose a model on how MuB targets DNA for transposition, favoring DNA bending and recognition by the transposase at the filament edge. We also speculate on a different protective role of MuB during immunity, where filament stickiness could favor the condensation of the DNA into a compact state that occludes it from the transposase.
Collapse
Affiliation(s)
- Marija Dramićanin
- Structural Bases of Genome Integrity Group; Structural Biology and Biocomputing Programme; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| | - Santiago Ramón-Maiques
- Structural Bases of Genome Integrity Group; Structural Biology and Biocomputing Programme; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| |
Collapse
|
104
|
Ibrahim N, Wicklund A, Jamin A, Wiebe MS. Barrier to autointegration factor (BAF) inhibits vaccinia virus intermediate transcription in the absence of the viral B1 kinase. Virology 2013; 444:363-73. [PMID: 23891157 DOI: 10.1016/j.virol.2013.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/01/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
Barrier to autointegration factor (BAF/BANF1) is a cellular DNA-binding protein found in the nucleus and cytoplasm. Cytoplasmic BAF binds to foreign DNA and can act as a defense against vaccinia DNA replication. To evade BAF, vaccinia expresses the B1 kinase, which phosphorylates BAF and blocks its ability to bind DNA. Interestingly, B1 is also needed for viral intermediate gene expression via an unknown mechanism. Therefore, we evaluated the impact of B1-BAF signaling on vaccinia transcription. Strikingly, the decrease in vaccinia transcription caused by loss of B1 can be rescued by depletion of BAF. The repressive action of BAF is greatest on a viral promoter, and is more modest when non-vaccinia promoters are employed, which suggests BAF acts in a gene specific manner. These studies expand our understanding of the role of the B1 kinase during infection and provide the first evidence that BAF is a defense against viral gene expression.
Collapse
Affiliation(s)
- Nouhou Ibrahim
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | | | | | | |
Collapse
|
105
|
Clever M, Mimura Y, Funakoshi T, Imamoto N. Regulation and coordination of nuclear envelope and nuclear pore complex assembly. Nucleus 2013; 4:105-14. [PMID: 23412657 PMCID: PMC3621742 DOI: 10.4161/nucl.23796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In metazoans with “open” mitosis, cells undergo structural changes involving the complete disassembly of the nuclear envelope (NE). In post-mitosis, the dividing cell faces the difficulty to reassemble NE structures in a highly regulated fashion around separated chromosomes. The de novo formation of nuclear pore complexes (NPCs), which are gateways between the cytoplasm and nucleoplasm across the nuclear membrane, is an archetype of macromolecular assembly and is therefore of special interest. The reformation of a functional NE further involves the reassembly and organization of other NE components, the nuclear membrane and NE proteins, around chromosomes in late mitosis.
Here, we discuss the function of NE components, such as lamins and INM proteins, in NE reformation and highlight recent results on coordination of NPC and NE assembly.
Collapse
Affiliation(s)
- Michaela Clever
- Cellular Dynamics Laboratory, RIKEN Advanced Science Institute 2-1 Hirosawa, Wako, Japan
| | | | | | | |
Collapse
|
106
|
Abstract
Integration of viral DNA into cellular DNA is an essential step in the replication cycle of HIV and other retroviruses. The first antiviral drugs that target integrase, the viral enzyme that catalyzes DNA integration, have recently been approved and more are in the pipeline. These drugs bind to an intermediate in DNA integration called the intasome, in which a pair of viral DNA ends are synapsed by a tetramer of integrase, rather than free integrase enzyme. We discuss the biochemical mechanism of integration, which is now quite well understood, and recent progress towards obtaining atomic-resolution structures of HIV intasomes in complex with inhibitors. Such structures are ultimately required to understand the detailed mechanism of inhibition and the mechanisms by which mutations in integrase confer resistance. The path from early biochemical studies to therapeutic inhibitors of integrase highlights the value of basic science in fighting human diseases.
Collapse
Affiliation(s)
- Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD 20892-0560, USA, Tel.: +1 301 496 4081, ,
| |
Collapse
|
107
|
Abstract
The nuclear envelope in eukaryotic cells has important roles in chromatin organization. The inner nuclear membrane contains over 60 transmembrane proteins. LEM [LAP2 (lamina-associated polypeptide 2)/emerin/MAN1] domain-containing proteins of the inner nuclear membrane are involved in tethering chromatin to the nuclear envelope and affect gene expression. They contain a common structural, bihelical motif, the so-called LEM domain, which mediates binding to a conserved chromatin protein, BAF (barrier to autointegration factor). Interestingly, this domain is highly related to other bihelical motifs, termed HeH (helix-extension-helix) and SAP {SAF (scaffold attachment factor)/acinus/PIAS [protein inhibitor of activated STAT (signal transducer and activator of transcription)]} motifs, which are directly linked to DNA. In the present paper, we summarize evidence that the LEM motif evolved from the HeH and SAP domains concomitantly with BAF. In addition, we discuss the potential evolution of HeH/SAP and LEM domain-containing proteins and their role in chromatin tethering and gene regulation from unicellular eukaryotes to mammals.
Collapse
|
108
|
Dittrich CM, Kratz K, Sendoel A, Gruenbaum Y, Jiricny J, Hengartner MO. LEM-3 - A LEM domain containing nuclease involved in the DNA damage response in C. elegans. PLoS One 2012; 7:e24555. [PMID: 22383942 PMCID: PMC3285610 DOI: 10.1371/journal.pone.0024555] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/12/2011] [Indexed: 11/20/2022] Open
Abstract
The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf) mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor) mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage – possibly by promoting the reorganization of damaged chromatin.
Collapse
Affiliation(s)
- Christina M. Dittrich
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences PhD program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Katja Kratz
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Ataman Sendoel
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael O. Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
109
|
Brachner A, Braun J, Ghodgaonkar M, Castor D, Zlopaša L, Ehrlich V, Jiricny J, Gotzmann J, Knasmüller S, Foisner R. The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo. J Cell Sci 2012; 125:1048-57. [PMID: 22399800 PMCID: PMC4335191 DOI: 10.1242/jcs.098392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LEM domain (for lamina-associated polypeptide, emerin, MAN1 domain) defines a group of nuclear proteins that bind chromatin through interaction of the LEM motif with the conserved DNA crosslinking protein, barrier-to-autointegration factor (BAF). Here, we describe a LEM protein annotated in databases as 'Ankyrin repeat and LEM domain-containing protein 1' (Ankle1). We show that Ankle1 is conserved in metazoans and contains a unique C-terminal GIY-YIG motif that confers endonuclease activity in vitro and in vivo. In mammals, Ankle1 is predominantly expressed in hematopoietic tissues. Although most characterized LEM proteins are components of the inner nuclear membrane, ectopic Ankle1 shuttles between cytoplasm and nucleus. Ankle1 enriched in the nucleoplasm induces DNA cleavage and DNA damage response. This activity requires both the catalytic C-terminal GIY-YIG domain and the LEM motif, which binds chromatin via BAF. Hence, Ankle1 is an unusual LEM protein with a GIY-YIG-type endonuclease activity in higher eukaryotes.
Collapse
Affiliation(s)
- Andreas Brachner
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Juliane Braun
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Medini Ghodgaonkar
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Dennis Castor
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Livija Zlopaša
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Veronika Ehrlich
- Institute of Cancer Research, Inner Medicine I, Medical University of Vienna, Austria
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Josef Gotzmann
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Siegfried Knasmüller
- Institute of Cancer Research, Inner Medicine I, Medical University of Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| |
Collapse
|
110
|
de Las Heras JI, Batrakou DG, Schirmer EC. Cancer biology and the nuclear envelope: a convoluted relationship. Semin Cancer Biol 2012; 23:125-37. [PMID: 22311402 DOI: 10.1016/j.semcancer.2012.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 12/23/2022]
Abstract
Although its properties have long been used for both typing and prognosis of various tumors, the nuclear envelope (NE) itself and its potential roles in tumorigenesis are only beginning to be understood. Historically viewed as merely a protective barrier, the nuclear envelope is now linked to a wide range of functions. Nuclear membrane proteins connect the nucleus to the cytoskeleton on one side and to chromatin on the other. Several newly identified nuclear envelope functions associated with these connections intersect with cancer pathways. For example, the nuclear envelope could affect genome stability by tethering chromatin. Some nuclear envelope proteins affect cell cycle regulation by directly binding to the master regulator pRb, others by interacting with TGF-ß and Smad signaling cascades, and others by affecting the mitotic spindle. Finally, the NE directly affects cytoskeletal organization and can also influence cell migration in metastasis. In this review we discuss the link between the nuclear envelope and cellular defects that are common in cancer cells, and we show that NE proteins are often aberrantly expressed in tumors. The NE represents a potential reservoir of diagnostic and prognostic markers in cancer.
Collapse
Affiliation(s)
- Jose I de Las Heras
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
111
|
Montes de Oca R, Andreassen PR, Wilson KL. Barrier-to-Autointegration Factor influences specific histone modifications. Nucleus 2011; 2:580-90. [PMID: 22127260 DOI: 10.4161/nucl.2.6.17960] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Defects in the nuclear envelope or nuclear 'lamina' networks cause disease and can perturb histone posttranslational (epigenetic) regulation. Barrier-to-Autointegration Factor (BAF) is an essential but enigmatic lamina component that binds lamins, LEM-domain proteins, DNA and histone H3 directly. We report that BAF copurified with nuclease-digested mononucleosomes and associated with modified histones in vivo. BAF overexpression significantly reduced global histone H3 acetylation by 18%. In cells that stably overexpressed BAF 3-fold, silencing mark H3-K27-Me1/3 and active marks H4-K16-Ac and H4-Ac5 decreased significantly. Significant increases were also seen for silencing mark H3-K9-Me3, active marks H3-K4-Me2, H3-K9/K14-Ac and H4-K5-Ac and a mark (H3-K79-Me2) associated with both active and silent chromatin. Other increases (H3-S10-P, H3-S28-P and silencing mark H3-K9-Me2) did not reach statistical significance. BAF overexpression also significantly influenced cell cycle distribution. Moreover, BAF associated in vivo with SET/I2PP2A (protein phosphatase 2A inhibitor; blocks H3 dephosphorylation) and G9a (H3-K9 methyltransferase), but showed no detectable association with HDAC1 or HATs. These findings reveal BAF as a novel epigenetic regulator and are discussed in relation to BAF deficiency phenotypes, which include a hereditary progeria syndrome and loss of pluripotency in embryonic stem cells.
Collapse
Affiliation(s)
- Rocío Montes de Oca
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
112
|
Huang Y, Cai M, Clore GM, Craigie R. No interaction of barrier-to-autointegration factor (BAF) with HIV-1 MA, cone-rod homeobox (Crx) or MAN1-C in absence of DNA. PLoS One 2011; 6:e25123. [PMID: 21966431 PMCID: PMC3178605 DOI: 10.1371/journal.pone.0025123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022] Open
Abstract
Barrier-to-autointegration factor is a cellular protein that protects retroviral DNA from autointegration. Its cellular role is not well understood, but genetic studies show that it is essential and depletion or knockout results in lethal nuclear defects. In addition to binding DNA, BAF interacts with the LEM domain, a domain shared among a family of lamin-associated polypeptides. BAF has also been reported to interact with several other viral and cellular proteins suggesting that these interactions may be functionally relevant. We find that, contrary to previous reports, BAF does not interact with HIV-1 MA, cone-rod homeobox (Crx) or MAN1-C. The reported interactions can be explained by indirect association through DNA binding and are unlikely to be biologically relevant. A mutation that causes a premature aging syndrome lies on the previously reported MAN1-C binding surface of BAF. The absence of direct binding of BAF to MAN1-C eliminates disruption of this interaction as the cause of the premature aging phenotype.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
113
|
Abstract
In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing, and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
114
|
Molecular characterization of the host defense activity of the barrier to autointegration factor against vaccinia virus. J Virol 2011; 85:11588-600. [PMID: 21880762 DOI: 10.1128/jvi.00641-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The barrier to autointegration factor (BAF) is an essential cellular protein with functions in mitotic nuclear reassembly, retroviral preintegration complex stability, and transcriptional regulation. Molecular properties of BAF include the ability to bind double-stranded DNA in a sequence-independent manner, homodimerize, and bind proteins containing a LEM domain. These capabilities allow BAF to compact DNA and assemble higher-order nucleoprotein complexes, the nature of which is poorly understood. Recently, it was revealed that BAF also acts as a potent host defense against poxviral DNA replication in the cytoplasm. Here, we extend these observations by examining the molecular mechanism through which BAF acts as a host defense against vaccinia virus replication and cytoplasmic DNA in general. Interestingly, BAF rapidly relocalizes to transfected DNA from a variety of sources, demonstrating that BAF's activity as a host defense factor is not limited to poxviral infection. BAF's relocalization to cytoplasmic foreign DNA is highly dependent upon its DNA binding and dimerization properties but does not appear to require its LEM domain binding activity. However, the LEM domain protein emerin is recruited to cytoplasmic DNA in a BAF-dependent manner during both transfection and vaccinia virus infection. Finally, we demonstrate that the DNA binding and dimerization capabilities of BAF are essential for its function as an antipoxviral effector, while the presence of emerin is not required. Together, these data provide further mechanistic insight into which of BAF's molecular properties are employed by cells to impair the replication of poxviruses or respond to foreign DNA in general.
Collapse
|
115
|
Liu HP, Chen RY, Zhang QX, Peng H, Wang KJ. Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:716-724. [PMID: 21396955 DOI: 10.1016/j.dci.2011.02.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 05/30/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most important viral pathogens in crustaceans. During WSSV infection, multiple cell signaling cascades are activated, leading to the generation of antiviral molecules and initiation of programmed cell death of the virus infected cells. To gain novel insight into cell signaling mechanisms employed in WSSV infection, we have used suppression subtractive hybridization (SSH) to elucidate the cellular response to WSSV challenge at the gene level in red claw crayfish haematopoietic tissue (Hpt) stem cell cultures. Red claw crayfish Hpt cells were infected with WSSV for 1h (L1 library) and 12h (L12 library), respectively, after which the cell RNA was prepared for SSH using uninfected cells as drivers. By screening the L1 and L12 forward libraries, we have isolated the differentially expressed genes of crayfish Hpt cells upon WSSV infection. Among these genes, the level of many key molecules showed clearly up-regulated expression, including the genes involved in immune responses, cytoskeletal system, signal transduction molecules, stress, metabolism and homestasis related genes, and unknown genes in both L1 and L12 libraries. Importantly, of the 2123 clones screened, 176 novel genes were found the first time to be up-regulated in WSSV infection in crustaceans. To further confirm the up-regulation of differentially expressed genes, the semi-quantitative RT-PCR were performed to test twenty randomly selected genes, in which eight of the selected genes exhibited clear up-regulation upon WSSV infection in red claw crayfish Hpt cells, including DNA helicase B-like, multiprotein bridging factor 1, apoptosis-linked gene 2 and an unknown gene-L1635 from L1 library; coatomer gamma subunit, gabarap protein gene, tripartite motif-containing 32 and an unknown gene-L12-254 from L2 library, respectively. Taken together, as well as in immune and stress responses are regulated during WSSV infection of crayfish Hpt cells, our results also light the significance of cytoskeletal system, signal transduction and other unknown genes in the regulation of antiviral signals during WSSV infection.
Collapse
Affiliation(s)
- Hai-peng Liu
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, Fujian, PR China.
| | | | | | | | | |
Collapse
|
116
|
Fakhouri THI, Stevenson J, Chisholm AD, Mango SE. Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA. PLoS Genet 2010; 6:e1001060. [PMID: 20714352 PMCID: PMC2920861 DOI: 10.1371/journal.pgen.1001060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023] Open
Abstract
Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development.
Collapse
Affiliation(s)
- Tala H. I. Fakhouri
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jeff Stevenson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew D. Chisholm
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Susan E. Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
117
|
Suzuki Y, Ogawa K, Koyanagi Y, Suzuki Y. Functional disruption of the moloney murine leukemia virus preintegration complex by vaccinia-related kinases. J Biol Chem 2010; 285:24032-43. [PMID: 20511217 DOI: 10.1074/jbc.m110.116640] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviral integration is executed by the preintegration complex (PIC), which contains viral DNA together with a number of proteins. Barrier-to-autointegration factor (BAF), a cellular component of Moloney murine leukemia virus (MMLV) PICs, has been demonstrated to protect viral DNA from autointegration and stimulate the intermolecular integration activity of the PIC by its DNA binding activity. Recent studies reveal that the functions of BAF are regulated by phosphorylation via a family of cellular serine/threonine kinases called vaccinia-related kinases (VRK), and VRK-mediated phosphorylation causes a loss of the DNA binding activity of BAF. These results raise the possibility that BAF phosphorylation may influence the integration activities of the PIC through removal of BAF from viral DNA. In the present study, we report that VRK1 was able to abolish the intermolecular integration activity of MMLV PICs in vitro. This was accompanied by an enhancement of autointegration activity and dissociation of BAF from the PICs. In addition, in vitro phosphorylation of BAF by VRK1 abrogated the activity of BAF in PIC function. Among the VRK family members, VRK1 as well as VRK2, which catalyze hyperphosphorylation of BAF, could abolish PIC function. We also found that treatment of PICs with certain nucleotides such as ATP resulted in the inhibition of the intermolecular integration activity of PICs through the dissociation of BAF. More importantly, the ATP-induced disruption was not observed with the PICs from VRK1 knockdown cells. Our in vitro results therefore suggest the presence of cellular kinases including VRKs that can inactivate the retroviral integration complex via BAF phosphorylation.
Collapse
Affiliation(s)
- Yasutsugu Suzuki
- Laboratory for Host Factors, Center for Emerging Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | |
Collapse
|
118
|
Abstract
The nuclear periphery is a specialized environment in the nucleus that contributes to genome organization and correspondingly to gene regulation. Mammalian chromosomes and certain genes occupy defined positions within the nucleus that are heritable and tissue specific. Genes located at the nuclear periphery tend to be inactive and this negative regulation can be reversed when they are released from the periphery in certain differentiation systems. Recent work using specially designed systems has shown that genes can be artificially tethered to the nuclear periphery by an affinity mechanism. The next important step will be to identify the endogenous NE (nuclear envelope) and chromatin proteins that participate in affinity-driven NE tethering and determine how they are regulated.
Collapse
|
119
|
Ge J, Lou Z, Harshey RM. Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein. Mob DNA 2010; 1:8. [PMID: 20226074 PMCID: PMC2837660 DOI: 10.1186/1759-8753-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 02/01/2010] [Indexed: 01/11/2023] Open
Abstract
We describe a new immunity mechanism that protects actively replicating/transposing Mu from self-integration. We show that this mechanism is distinct from the established cis-immunity mechanism, which operates by removal of MuB protein from DNA adjacent to Mu ends. MuB normally promotes integration into DNA to which it is bound, hence its removal prevents use of this DNA as target. Contrary to what might be expected from a cis-immunity mechanism, strong binding of MuB was observed throughout the Mu genome. We also show that the cis-immunity mechanism is apparently functional outside Mu ends, but that the level of protection offered by this mechanism is insufficient to explain the protection seen inside Mu. Thus, both strong binding of MuB inside and poor immunity outside Mu testify to a mechanism of immunity distinct from cis-immunity, which we call 'Mu genome immunity'. MuB has the potential to coat the Mu genome and prevent auto-integration as previously observed in vitro on synthetic A/T-only DNA, where strong MuB binding occluded the entire bound region from Mu insertions. The existence of two rival immunity mechanisms within and outside the Mu genome, both employing MuB, suggests that the replicating Mu genome must be segregated into an independent chromosomal domain. We propose a model for how formation of a 'Mu domain' may be aided by specific Mu sequences and nucleoid-associated proteins, promoting polymerization of MuB on the genome to form a barrier against self-integration.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
120
|
Abstract
PURPOSE OF REVIEW Most of the studies investigating inhibition of human immunodeficiency virus integration have focused on blocking the enzymatic functions of HIV integrase, with the predominant judgment that integration inhibitors need to block at least one of the integrase-catalyzed reactions. Recent studies, however, have highlighted the importance of other proteins and their contacts with integrase in the preintegration complex, and their involvement in chromosomal integration of the viral DNA. RECENT FINDINGS Promising results of clinical trials for two new integrase inhibitors were announced recently, providing the proof of the concept for using HIV-1 integrase inhibitors as antiretroviral therapy. Two strategies are currently employed for the development of novel inhibitors of HIV integrase: synthesis of hybrid molecules comprising core structures of two or more known inhibitors, and three-dimensional pharmacophore searches based on previously discovered compounds. By highlighting the role of the cellular cofactor LEDGF/p75 in HIV integration, novel approaches are indicated that aim to develop compounds altering contact between HIV integrase and integration cofactors. SUMMARY By the discovery of novel inhibitors and targets for HIV integration, coupled with recent studies in characterizing preintegration complex formation, new insight is provided for the rational design of anti-HIV integration inhibitors.
Collapse
|
121
|
Abstract
Barrier-to-autointegration factor (BAF) is a protein that has been proposed to compact retroviral DNA, making it inaccessible as a target for self-destructive integration into itself (autointegration). BAF also plays an important role in nuclear organization. We studied the mechanism of DNA condensation by BAF using total internal reflection fluorescence microscopy. We found that BAF compacts DNA by a looping mechanism. Dissociation of BAF from DNA occurs with multiphasic kinetics; an initial fast phase is followed by a much slower dissociation phase. The mechanistic basis of the broad timescale of dissociation is discussed. This behavior mimics the dissociation of BAF from retroviral DNA within preintegration complexes as monitored by functional assays. Thus the DNA binding properties of BAF may alone be sufficient to account for its association with the preintegration complex.
Collapse
|
122
|
Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One 2009; 4:e7050. [PMID: 19759913 PMCID: PMC2739719 DOI: 10.1371/journal.pone.0007050] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/10/2009] [Indexed: 01/06/2023] Open
Abstract
Nuclear lamin filaments and associated proteins form a nucleoskeletal (“lamina”) network required for transcription, replication, chromatin organization and epigenetic regulation in metazoans. Lamina defects cause human disease (“laminopathies”) and are linked to aging. Barrier-to-autointegration factor (BAF) is a mobile and essential component of the nuclear lamina that binds directly to histones, lamins and LEM-domain proteins, including the inner nuclear membrane protein emerin, and has roles in chromatin structure, mitosis and gene regulation. To understand BAF's mechanisms of action, BAF associated proteins were affinity-purified from HeLa cell nuclear lysates using BAF-conjugated beads, and identified by tandem mass spectrometry or independently identified and quantified using the iTRAQ method. We recovered A- and B-type lamins and core histones, all known to bind BAF directly, plus four human transcription factors (Requiem, NonO, p15, LEDGF), disease-linked proteins (e.g., Huntingtin, Treacle) and several proteins and enzymes that regulate chromatin. Association with endogenous BAF was independently validated by co-immunoprecipitation from HeLa cells for seven candidates including Requiem, poly(ADP-ribose) polymerase 1 (PARP1), retinoblastoma binding protein 4 (RBBP4), damage-specific DNA binding protein 1 (DDB1) and DDB2. Interestingly, endogenous BAF and emerin each associated with DDB2 and CUL4A in a UV- and time-dependent manner, suggesting BAF and emerin have dynamic roles in genome integrity and might help couple DNA damage responses to the nuclear lamina network. We conclude this proteome is a rich source of candidate partners for BAF and potentially also A- and B-type lamins, which may reveal how chromatin regulation and genome integrity are linked to nuclear structure.
Collapse
|
123
|
Capo-chichi CD, Cai KQ, Testa JR, Godwin AK, Xu XX. Loss of GATA6 leads to nuclear deformation and aneuploidy in ovarian cancer. Mol Cell Biol 2009; 29:4766-77. [PMID: 19581290 PMCID: PMC2725711 DOI: 10.1128/mcb.00087-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/23/2009] [Accepted: 06/25/2009] [Indexed: 12/12/2022] Open
Abstract
A prominent hallmark of most human cancer is aneuploidy, which is a result of the chromosomal instability of cancer cells and is thought to contribute to the initiation and progression of most carcinomas. The developmentally regulated GATA6 transcription factor is commonly lost in ovarian cancer, and the loss of its expression is closely associated with neoplastic transformation of the ovarian surface epithelium. In the present study, we found that reduction of GATA6 expression with small interfering RNA (siRNA) in human ovarian surface epithelial cells resulted in deformation of the nuclear envelope, failure of cytokinesis, and formation of polyploid and aneuploid cells. We further discovered that loss of the nuclear envelope protein emerin may mediate the consequences of GATA6 suppression. The nuclear phenotypes were reproduced by direct suppression of emerin with siRNA. Thus, we conclude that diminished expression of GATA6 leads to a compromised nuclear envelope that is causal for polyploidy and aneuploidy in ovarian tumorigenesis. The loss of emerin may be the basis of nuclear morphological deformation and subsequently the cause of aneuploidy in ovarian cancer cells.
Collapse
Affiliation(s)
- Callinice D Capo-chichi
- Sylvester Comprehensive Cancer Center, Department of Medicine, and Department of Obstetrics and Gynecology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
124
|
Ryan M, Diekhans M, Lien S, Liu Y, Karchin R. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures. ACTA ACUST UNITED AC 2009; 25:1431-2. [PMID: 19369493 DOI: 10.1093/bioinformatics/btp242] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SUMMARY LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. AVAILABILITY LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.
Collapse
Affiliation(s)
- Michael Ryan
- Department of Bioinformatics, George Mason University, Fairfax, VA, USA
| | | | | | | | | |
Collapse
|
125
|
Meyerzon M, Gao Z, Liu J, Wu JC, Malone CJ, Starr DA. Centrosome attachment to the C. elegans male pronucleus is dependent on the surface area of the nuclear envelope. Dev Biol 2009; 327:433-46. [PMID: 19162001 PMCID: PMC2668512 DOI: 10.1016/j.ydbio.2008.12.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/13/2008] [Accepted: 12/19/2008] [Indexed: 01/11/2023]
Abstract
A close association must be maintained between the male pronucleus and the centrosomes during pronuclear migration. In C. elegans, simultaneous depletion of inner nuclear membrane LEM proteins EMR-1 and LEM-2, depletion of the nuclear lamina proteins LMN-1 or BAF-1, or the depletion of nuclear import components leads to embryonic lethality with small pronuclei. Here, a novel centrosome detachment phenotype in C. elegans zygotes is described. Zygotes with defects in the nuclear envelope had small pronuclei with a single centrosome detached from the male pronucleus. ZYG-12, SUN-1, and LIS-1, which function at the nuclear envelope with dynein to attach centrosomes, were observed at normal concentrations on the nuclear envelope of pronuclei with detached centrosomes. Analysis of time-lapse images showed that as mutant pronuclei grew in surface area, they captured detached centrosomes. Larger tetraploid or smaller histone::mCherry pronuclei suppressed or enhanced the centrosome detachment phenotype respectively. In embryos fertilized with anucleated sperm, only one centrosome was captured by small female pronuclei, suggesting the mechanism of capture is dependent on the surface area of the outer nuclear membrane available to interact with aster microtubules. We propose that the limiting factor for centrosome attachment to the surface of abnormally small pronuclei is dynein.
Collapse
Affiliation(s)
- Marina Meyerzon
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Zhizhen Gao
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Jin Liu
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Jui-Ching Wu
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Christian J. Malone
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
126
|
Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 2009; 43:393-418. [PMID: 19037758 DOI: 10.1080/10409230802528488] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
127
|
Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 2008; 5:114. [PMID: 19091057 PMCID: PMC2615046 DOI: 10.1186/1742-4690-5-114] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/17/2008] [Indexed: 01/12/2023] Open
Abstract
Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1). This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.
Collapse
|
128
|
Abstract
The nuclear lamina represents a protein network required for nuclear structure and function. One family of lamina proteins is defined by an approximately 40-aa LAP2, Emerin, and MAN1 (LEM) domain (LEM-D) that binds the nonspecific DNA-binding protein, barrier-to-autointegration factor (BAF). Through interactions with BAF, LEM-D proteins serve as a bridge between chromosomes and the nuclear envelope. Mutations in genes encoding LEM-D proteins cause human laminopathies that are associated with tissue-restricted pathologies. Drosophila has five genes that encode proteins with LEM homology. Using yeast two-hybrid analyses, we demonstrate that four encode proteins that bind Drosophila (d)BAF. In addition to dBAF, dMAN1 associates with lamins, the LEM-D protein Bocksbeutel, and the receptor-regulated Smads, demonstrating parallel protein interactions with vertebrate homologs. P-element mobilization was used to generate null dMAN1 alleles. These mutants showed decreased viability, with surviving adults displaying male sterility, decreased female fertility, wing patterning and positioning defects, flightlessness, and locomotion difficulties that became more severe with age. Increased phospho-Smad staining in dMAN1 mutant wing discs is consistent with a role in transforming growth factor (TGF)-beta/bone morphogenic protein (BMP) signaling. The tissue-specific, age-enhanced dMAN1 mutant phenotypes are reminiscent of human laminopathies, suggesting that studies in Drosophila will provide insights into lamina dysfunction associated with disease.
Collapse
|
129
|
Schirmer EC. The epigenetics of nuclear envelope organization and disease. Mutat Res 2008; 647:112-21. [PMID: 18722388 DOI: 10.1016/j.mrfmmm.2008.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/16/2008] [Accepted: 07/23/2008] [Indexed: 01/09/2023]
Abstract
Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics.
Collapse
Affiliation(s)
- Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
130
|
Haraguchi T, Kojidani T, Koujin T, Shimi T, Osakada H, Mori C, Yamamoto A, Hiraoka Y. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J Cell Sci 2008; 121:2540-54. [PMID: 18628300 DOI: 10.1242/jcs.033597] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Assembly of the nuclear envelope (NE) in telophase is essential for higher eukaryotic cells to re-establish a functional nucleus. Time-lapse, FRAP and FRET analyses in human cells showed that barrier-to-autointegration factor (BAF), a DNA-binding protein, assembled first at the distinct ;core' region of the telophase chromosome and formed an immobile complex by directly binding with other core-localizing NE proteins, such as lamin A and emerin. Correlative light and electron microscopy after live cell imaging, further showed that BAF formed an electron-dense structure on the chromosome surface of the core, close to spindle microtubules (MTs) prior to the attachment of precursor NE membranes, suggesting that MTs may mediate core assembly of BAF. Disruption of the spindle MTs consistently abolished BAF accumulation at the core. In addition, RNAi of BAF eliminated the core assembly of lamin A and emerin, caused abnormal cytoplasmic accumulation of precursor nuclear membranes and resulted in a significant delay of NE assembly. These results suggest that the MT-mediated BAF accumulation at the core facilitates NE assembly at the end of mitosis.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- CREST Research Project, Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Quantitative analysis of the interactions between HIV-1 integrase and retroviral reverse transcriptases. Biochem J 2008; 412:163-70. [DOI: 10.1042/bj20071279] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The RT (reverse transcriptase) of HIV-1 interacts with HIV-1 IN (integrase) and inhibits its enzymatic activities. However, the molecular mechanisms underling these interactions are not well understood. In order to study these mechanisms, we have analysed the interactions of HIV-1 IN with HIV-1 RT and with two other related RTs: those of HIV-2 and MLV (murine-leukaemia virus). All three RTs inhibited HIV-1 IN, albeit to a different extent, suggesting a common site of binding that could be slightly modified for each one of the studied RTs. Using surface plasmon resonance technology, which monitors direct protein–protein interactions, we performed kinetic analyses of the binding of HIV-1 IN to these three RTs and observed interesting binding patterns. The interaction of HIV-1 RT with HIV-1 IN was unique and followed a two-state reaction model. According to this model, the initial IN–RT complex formation was followed by a conformational change in the complex that led to an elevation of the total affinity between these two proteins. In contrast, HIV-2 and MLV RTs interacted with IN in a simple bi-molecular manner, without any apparent secondary conformational changes. Interestingly, HIV-1 and HIV-2 RTs were the most efficient inhibitors of HIV-1 IN activity, whereas HIV-1 and MLV RTs showed the highest affinity towards HIV-1 IN. These modes of direct protein interactions, along with the apparent rate constants calculated and the correlations of the interaction kinetics with the capacity of the RTs to inhibit IN activities, are all discussed.
Collapse
|
132
|
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 2008; 7:369-405. [PMID: 16824021 DOI: 10.1146/annurev.genom.7.080505.115732] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most inherited diseases are associated with mutations in a specific gene. Often, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. Mutations in the Lamin A gene (LMNA), which encodes largely ubiquitously expressed nuclear proteins (A-type lamins), are associated with at least eight different diseases, collectively called the laminopathies. Studies examining how different tissue-specific diseases arise from unique LMNA mutations are providing unanticipated insights into the structural organization of the nucleus, and how disruption of this organization relates to novel mechanisms of disease.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
133
|
Shaklai S, Somech R, Gal-Yam EN, Deshet-Unger N, Moshitch-Moshkovitz S, Hirschberg K, Amariglio N, Simon AJ, Rechavi G. LAP2zeta binds BAF and suppresses LAP2beta-mediated transcriptional repression. Eur J Cell Biol 2008; 87:267-78. [PMID: 18403046 DOI: 10.1016/j.ejcb.2008.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/20/2008] [Accepted: 01/31/2008] [Indexed: 11/15/2022] Open
Abstract
Proteins of the nuclear envelope have been implicated as participating in gene silencing. BAF, a DNA- and LEM domain-binding protein, has been suggested to link chromatin to the nuclear envelope. We have previously shown that LAP2beta, a LEM-domain inner nuclear membrane protein, represses transcription through binding to HDAC3 and induction of histone H4 deacetylation. We now show that LAP2zeta, the smallest LAP2 family member, is also involved in regulation of transcription. We show that similar to other LEM-domain proteins LAP2zeta interacts with BAF. LAP2zeta-YFP and BAF co-localize in the cytoplasm, and overexpression of LAP2zeta leads to reduction of nucleoplasmic BAF. Mutations in the LAP2zeta-YFP LEM domain decrease its interaction with BAF retaining the nucleo-cytoplasmic distribution of BAF. Co-expression of LAP2beta and LAP2zeta results in inhibition of LAP2beta-induced gene silencing while overexpression of LAP2zeta alone leads to a small increase in transcriptional activity of various transcription factors. Our results suggest that LAP2zeta is a transcriptional regulator acting predominantly to inhibit LAP2beta-mediated repression. LAP2zeta may function by decreasing availability of BAF. These findings could have implications in the study of nuclear lamina-associated diseases and BAF-dependent retroviral integration.
Collapse
Affiliation(s)
- Sigal Shaklai
- Sheba Cancer Research Center and the Institute of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 746] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
135
|
Brady TL, Fuerst PG, Dick RA, Schmidt C, Voytas DF. Retrotransposon target site selection by imitation of a cellular protein. Mol Cell Biol 2008; 28:1230-9. [PMID: 18086891 PMCID: PMC2258757 DOI: 10.1128/mcb.01502-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/19/2007] [Accepted: 11/27/2007] [Indexed: 11/20/2022] Open
Abstract
Mobile elements rely on cellular processes to replicate, and therefore, mobile element proteins frequently interact with a variety of cellular factors. The integrase (IN) encoded by the retrotransposon Ty5 interacts with the heterochromatin protein Sir4, and this interaction determines Ty5's preference to integrate into heterochromatin. We explored the hypothesis that Ty5's targeting mechanism arose by mimicking an interaction between Sir4 and another cellular protein(s). Mutational analyses defined the requirements for the IN-Sir4 interaction, providing criteria to screen for cellular analogues. Esc1, a protein associated with the inner nuclear membrane, interacted with the same domain of Sir4 as IN, and 75% of mutations that disrupted IN-Sir4 interactions also abrogated Esc1-Sir4 interactions. A small motif critical for recognizing Sir4 was identified in Esc1. The functional equivalency of this motif and the Sir4-interacting domain of IN was demonstrated by swapping these motifs and showing that the chimeric IN and Esc1 proteins effectively target integration and partition DNA, respectively. We conclude that Ty5 targets integration by imitating the Esc1-Sir4 interaction and suggest molecular mimicry as a general mechanism that enables mobile elements to interface with cellular processes.
Collapse
Affiliation(s)
- Troy L Brady
- 1035A Roy J. Carver Co-Laboratory, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
136
|
HIV‐1 Integrase Inhibitors: Update and Perspectives. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:199-228. [DOI: 10.1016/s1054-3589(07)56007-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
137
|
Singh RK, Liburd J, Wardle SJ, Haniford DB. The nucleoid binding protein H-NS acts as an anti-channeling factor to favor intermolecular Tn10 transposition and dissemination. J Mol Biol 2007; 376:950-62. [PMID: 18191147 DOI: 10.1016/j.jmb.2007.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 11/24/2022]
Abstract
Dissemination of the bacterial transposon Tn10 is limited by target site channeling, a process wherein the transposon ends are forced to interact with and insert into a target site located within the transposon. Integration host factor (IHF) promotes this self-destructive event by binding to the transpososome and forming a DNA loop close to one or both transposon ends; this loop imposes geometric and topological constraints that are responsible for channeling. We demonstrate that a second 'host' protein, histone-like nucleoid structuring protein (H-NS), acts as an anti-channeling factor to limit self-destructive intramolecular transposition events in vitro. Evidence that H-NS competes with IHF for binding to the Tn10 transpososome to block channeling and that this event is relatively insensitive to the level of DNA supercoiling present in the Tn10-containing substrate plasmid are presented. This latter observation is atypical for H-NS, as H-NS binding to other DNA sequences, such as promoters, is generally affected by subtle changes in DNA structure.
Collapse
Affiliation(s)
- Randeep K Singh
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
138
|
Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP, Cramb G. Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol Genomics 2007; 31:385-401. [PMID: 17666525 DOI: 10.1152/physiolgenomics.00059.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In euryhaline teleosts, osmoregulation is a fundamental and dynamic process that is essential for the maintenance of ion and water balance, especially when fish migrate between fresh water (FW) and sea water (SW) environments. The European eel has proved to be an excellent model species to study the molecular and physiological adaptations associated with this osmoregulatory plasticity. The life cycle of the European eel includes two migratory periods, the second being the migration of FW eels back to the Sargasso Sea for reproduction. Various anatomical and physiological changes allow the successful transition to SW. The aim of this study was to use a microarray approach to screen the osmoregulatory tissues of the eel for changes in gene expression following acclimation to SW. Tissues were sampled from fish at selected intervals over a 5-mo period following FW/SW transfer, and RNA was isolated. Suppressive subtractive hybridization was used for enrichment of differentially expressed genes. Microarrays comprising 6,144 cDNAs from brain, gill, intestine, and kidney libraries were hybridized with appropriate targets and analyzed; 229 differentially expressed clones with unique sequences were identified. These clones represented the sequences for 95 known genes, with the remaining sequences (59%) being unknown. The results of the microarray analysis were validated by quantification of 28 differentially expressed genes by Northern blotting. A number of the differentially expressed genes were already known to be involved in osmoregulation, but the functional roles of many others, not normally associated with ion or water transport, remain to be characterized.
Collapse
|
139
|
Furukawa K, Aida T, Nonaka Y, Osoda S, Juarez C, Horigome T, Sugiyama S. BAF as a caspase-dependent mediator of nuclear apoptosis in Drosophila. J Struct Biol 2007; 160:125-34. [PMID: 17904382 DOI: 10.1016/j.jsb.2007.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/18/2007] [Accepted: 07/03/2007] [Indexed: 01/27/2023]
Abstract
BAF is a double-stranded DNA binding protein required for proper nuclear morphology and function in Drosophila development. Imaginal discs of Drosophila baf-null mutants were found to exist only in younger larvae as small degenerative tissues. Immunohistochemical analyses showed diffuse lamin distribution, DNA fragmentation, and activation of caspase drICE in these tissues, suggesting that apoptotic events can be induced by the loss of baf. We therefore investigated the fate of BAF after induction of the pro-apoptotic hid transgene, and found that the loss of DNA binding forms of BAF preceded that of non-DNA binding forms of BAF. Furthermore, the DNA binding forms of BAF disappeared from nuclei before DNA fragmentation and NPC clustering were detected, showing that the loss of BAF occurs at the initial stages of nuclear apoptosis. This BAF loss was not detected before drICE activation and was inhibited by Ac-DEVD-CHO caspase inhibitors. In summary, BAF disappears at an early stage due to caspase activity when apoptosis is induced by hid, and its depletion in mutants is sufficient in itself to induce cell death, suggesting it is an apoptotic mediator.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan.
| | | | | | | | | | | | | |
Collapse
|
140
|
Margalit A, Neufeld E, Feinstein N, Wilson KL, Podbilewicz B, Gruenbaum Y. Barrier to autointegration factor blocks premature cell fusion and maintains adult muscle integrity in C. elegans. J Cell Biol 2007; 178:661-73. [PMID: 17698609 PMCID: PMC2064472 DOI: 10.1083/jcb.200704049] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/13/2007] [Indexed: 11/22/2022] Open
Abstract
Barrier to autointegration factor (BAF) binds double-stranded DNA, selected histones, transcription regulators, lamins, and LAP2-emerin-MAN1 (LEM) domain proteins. During early Caenorhabditis elegans embryogenesis, BAF-1 is required to organize chromatin, capture segregated chromosomes within the nascent nuclear envelope, and assemble lamin and LEM domain proteins in reforming nuclei. In this study, we used C. elegans with a homozygous deletion of the baf-1 gene, which survives embryogenesis and larval stages, to report that BAF-1 regulates maturation and survival of the germline, cell migration, vulva formation, and the timing of seam cell fusion. In the seam cells, BAF-1 represses the expression of the EFF-1 fusogen protein, but fusion still occurs in C. elegans lacking both baf-1 and eff-1. This suggests the existence of an eff-1-independent mechanism for cell fusion. BAF-1 is also required to maintain the integrity of specific body wall muscles in adult animals, directly implicating BAF in the mechanism of human muscular dystrophies (laminopathies) caused by mutations in the BAF-binding proteins emerin and lamin A.
Collapse
Affiliation(s)
- Ayelet Margalit
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
141
|
Bradley CM, Jones S, Huang Y, Suzuki Y, Kvaratskhelia M, Hickman AB, Craigie R, Dyda F. Structural basis for dimerization of LAP2alpha, a component of the nuclear lamina. Structure 2007; 15:643-53. [PMID: 17562312 DOI: 10.1016/j.str.2007.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/20/2007] [Accepted: 04/18/2007] [Indexed: 01/20/2023]
Abstract
Lamina-associated polypeptides (LAPs) are important components of the nuclear lamina, the dense network of filaments that supports the nuclear envelope and also extends into the nucleoplasm. The main protein constituents of the nuclear lamina are the constitutively expressed B-type lamins and the developmentally regulated A- and C-type lamins. LAP2alpha is the only non-membrane-associated member of the LAP family. It preferentially binds lamin A/C, has been implicated in cell-cycle regulation and chromatin organization, and has also been found to be a component of retroviral preintegration complexes. As an approach to understanding the role of LAP2alpha in cellular pathways, we have determined the crystal structure of the C-terminal domain of LAP2alpha, residues 459-693. The C-terminal domain is dimeric and possesses an extensive four-stranded, antiparallel coiled coil. The surface involved in binding lamin A/C is proposed based on results from alanine-scanning mutagenesis and a solid-phase overlay binding assay.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Wheeler MA, Davies JD, Zhang Q, Emerson LJ, Hunt J, Shanahan CM, Ellis JA. Distinct functional domains in nesprin-1α and nesprin-2β bind directly to emerin and both interactions are disrupted in X-linked Emery–Dreifuss muscular dystrophy. Exp Cell Res 2007; 313:2845-57. [PMID: 17462627 DOI: 10.1016/j.yexcr.2007.03.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/14/2007] [Accepted: 03/18/2007] [Indexed: 11/20/2022]
Abstract
Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1alpha and -2beta which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1alpha and residues 126 to 219 of nesprin-2beta, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously been implicated in binding to F-actin, beta-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1alpha and -2beta isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Matthew A Wheeler
- The Randall Division of Cell and Molecular Biophysics, King's College, New Hunts House, Guy's Campus, London, UK
| | | | | | | | | | | | | |
Collapse
|
143
|
Haraguchi T, Koujin T, Osakada H, Kojidani T, Mori C, Masuda H, Hiraoka Y. Nuclear localization of barrier-to-autointegration factor is correlated with progression of S phase in human cells. J Cell Sci 2007; 120:1967-77. [PMID: 17519288 DOI: 10.1242/jcs.03461] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Barrier-to-autointegration factor (BAF) is a conserved metazoan protein that plays a critical role in retrovirus infection. To elucidate its role in uninfected cells, we first examined the localization of BAF in both mortal and immortal or cancerous human cell lines. In mortal cell lines (e.g. TIG-1, WI-38 and IMR-90 cells) BAF localization depended on the age of the cell, localizing primarily in the nucleus of >90% of young proliferating cells but only 20-25% of aged senescent cells. In immortal cell lines (e.g. HeLa, SiHa and HT1080 cells) BAF showed heterogeneous localization between the nucleus and cytoplasm. This heterogeneity was lost when the cells were synchronized in S phase. In S-phase-synchronized populations, the percentage of cells with predominantly nuclear BAF increased from 30% (asynchronous controls) to ∼80%. In HeLa cells, RNAi-induced downregulation of BAF significantly increased the proportion of early S-phase cells that retained high levels of cyclin D3 and cyclin E expression and slowed progression through early S phase. BAF downregulation also caused lamin A to mislocalize away from the nuclear envelope. These results indicate that BAF is required for the integrity of the nuclear lamina and normal progression of S phase in human cells.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- CREST Research Project, Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | | | | | | | | | | | |
Collapse
|
144
|
Dorner D, Gotzmann J, Foisner R. Nucleoplasmic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. FEBS J 2007; 274:1362-73. [PMID: 17489094 DOI: 10.1111/j.1742-4658.2007.05695.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lamins are major structural components of the nuclear envelope in multicellular eukaryotes. Particularly A-type lamins are also located in the nucleoplasm, likely involving a specific binding partner, lamina-associated polypeptide 2alpha (LAP2alpha). LAP2alpha-lamins A/C complexes in the nucleoplasm have been implicated in the regulation of gene expression by various means. They bind chromatin proteins and chromatin modifying enzymes, and can thus participate in epigenetic control pathways. Furthermore, binding of lamins A/C complexes to specific transcription factors and repressors may directly affect their transcriptional activity. LAP2alpha-lamins A/C also regulate retinoblastoma protein and influence cell cycle progression and differentiation, which could have important implications for molecular mechanisms of laminopathic diseases, linked to lamins A/C mutations.
Collapse
Affiliation(s)
- Daniela Dorner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | |
Collapse
|
145
|
Wiebe MS, Traktman P. Poxviral B1 kinase overcomes barrier to autointegration factor, a host defense against virus replication. Cell Host Microbe 2007; 1:187-97. [PMID: 18005698 PMCID: PMC1978190 DOI: 10.1016/j.chom.2007.03.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 02/12/2007] [Accepted: 03/25/2007] [Indexed: 11/19/2022]
Abstract
Barrier to autointegration factor (BAF) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. Herein, we demonstrate a cytoplasmic role for BAF in host defense during poxviral infections. Vaccinia is the prototypic poxvirus, a family of DNA viruses that replicate exclusively in the cytoplasm of infected cells. Mutations in the vaccinia B1 kinase (B1) compromise viral DNA replication, but the mechanism by which B1 achieves this has remained elusive. We now show that BAF acts as a potent inhibitor of poxvirus replication unless its DNA-binding activity is blocked by B1-mediated phosphorylation. These data position BAF as the effector of an innate immune response that prevents replication of exogenous viral DNA in the cytoplasm. To enable the virus to evade this defense, the poxviral B1 has evolved to usurp a signaling pathway employed by the host cell.
Collapse
Affiliation(s)
- Matthew S Wiebe
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
146
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
147
|
Margalit A, Brachner A, Gotzmann J, Foisner R, Gruenbaum Y. Barrier-to-autointegration factor – a BAFfling little protein. Trends Cell Biol 2007; 17:202-8. [PMID: 17320395 DOI: 10.1016/j.tcb.2007.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/22/2007] [Accepted: 02/09/2007] [Indexed: 11/16/2022]
Abstract
Barrier-to-autointegration factor (BAF) is an abundant, highly conserved, small and essential protein that binds to dsDNA, chromatin, nuclear lamina proteins, histones and various transcription factors. It was discovered as a cellular component of retrovirus pre-integration complex that inhibits their autointegration in vitro. BAF is also required for many cellular functions, including the higher-order organization of chromatin and the transcription of specific genes. Recent findings suggest further roles for BAF, including nuclear envelope assembly, regulating specific developmental processes and regulating retrovirus infectivity. At least some of these roles are controlled by phosphorylation of the BAF N-terminus by the vaccinia-related kinase. Here, we give an overview of recent advances in the field of BAF with special emphasis on evolution, interacting partners and functions.
Collapse
Affiliation(s)
- Ayelet Margalit
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
148
|
Abstract
Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute HHSC 1310c, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
149
|
Isaji M, Iwata H, Harayama H, Miyake M. The localization of LAP2 beta during pronuclear formation in bovine oocytes after fertilization or activation. ZYGOTE 2007; 14:157-67. [PMID: 16719951 DOI: 10.1017/s0967199406003613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/22/2005] [Indexed: 11/07/2022]
Abstract
We have shown that the assembly of lamin-associated polypeptide (LAP) 2beta was detected surrounding the chromatin mass around the time of extrusion of the second polar body (PB) in some fertilized oocytes, but not in most activated oocytes, by using A23187 and cycloheximide (CaA + CH). Here, we immunohistologically analysed the correlation between LAP2beta assembly and chromatin condensation in fertilized and activated oocytes during the second meiosis. In bovine cumulus cells, the onset of LAP2beta assembly was observed around anaphase chromosomes with strongly phosphorylated histone H3. No LAP2beta assembled around the chromosomes in the first and second polar bodies and the alternative oocyte chromatin (oCh) if histone H3 was phosphorylated. Only histone H3 of oCh was completely dephosphorylated during the telophase II/G1 transition (Tel II/G1), and then LAP2beta assembled around only the oCh without phosphorylated histone H3. In the oocytes activated by CaA + CH, LAP2beta did not assemble around the condensed oCh during the Tel II/G1 transition, although their histone H3 dephosphorylation occurred rather rapidly compared with that of the fertilized oocytes. The patterns of histone H3 dephosphorylation and LAP2beta assembly in oocytes activated by CaA alone showed greater similarity to those in fertilized oocytes than to those in oocytes activated by CaA + CH. These results show that LAP2beta assembles around only oCh after complete dephosphorylation of histone H3 after fertilization and activation using CaA alone, and that the timing of histone H3 dephosphorylation and LAP2beta assembly in these oocytes is different from that of somatic cells. The results also indicate that CH treatment inhibits LAP2beta assembly around oCh but not histone H3 dephosphorylation.
Collapse
Affiliation(s)
- Mamiko Isaji
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
150
|
de Visser M. Myopathies with early contractures. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:35-59. [PMID: 18808994 DOI: 10.1016/s0072-9752(07)86002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|