101
|
Yu J, Kohel RJ, Smith CW. The construction of a tetraploid cotton genome wide comprehensive reference map. Genomics 2010; 95:230-40. [PMID: 20171271 DOI: 10.1016/j.ygeno.2010.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/17/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
Integration of multiple genomic maps provides a higher density of markers and greater genome coverage, which not only facilitates the identification and positioning of QTLs and candidate genes, but it also provides a basic structure for the genome sequence assembly. However, the diversity in markers and populations used in individual mapping studies limits the ability to fully integrate the available data. By concentrating on marker orders rather than marker distances, published map data could be used to produce a comprehensive reference map (CRM) that includes a majority of known markers with optimally estimated order of those markers across the genome. In this study, a tetraploid cotton genome-wide CRM was constructed from 28 public cotton genetic maps. The initial CRM contained 7,424 markers and represented over 93% of the combined mapping information from the 28 individual maps. The current output is stored and displayed through CottonDB (http://www.cottondb.org), the public cotton genome database.
Collapse
Affiliation(s)
- Jing Yu
- The Department of Soil and Crop Sciences, Texas A&M University, TX, USA.
| | | | | |
Collapse
|
102
|
Abstract
After polyploid formation, retention or loss of duplicated genes is not random. Genes with some functional domains are convergently restored to 'singleton' state after many independent genome duplications, and have been referred to as 'duplication-resistant' (DR) genes. To further explore the timeframe for their restoration to the singleton state, 27 cotton homologs of genes found to be 'DR' in Arabidopsis were selected based on diagnostic Pfam domains. Their copy numbers were studied using southern hybridization and sequence analysis in five tetraploid species and their ancestral A and D genome diploids. DR genes had significantly lower copy number than gene families hybridizing to randomly selected cotton ESTs. Three DR genes showed complete loss of D genome-derived homoeologs in some or all tetraploid species. Prior analysis has shown gene loss in polyploid cotton to be rare, and herein only one randomly selected gene showed loss of a homoeolog in only one of the five tetraploid species (Gossypium mustelinum). BAC sequencing confirmed two cases of gene loss in tetraploid cotton. Divergence among 5' sequences of DR genes amplified from G. arboreum, G. raimondii, and Gossypioides kirkii was correlated with gene copy number. These results show that genes containing Pfam domains associated with duplication resistance in Arabidopsis have also been preferentially restored to low copy number after a more recent polyploidization event in cotton. In tetraploid cotton, genes from the progenitor D genome seem to experience more gene copy number divergence than genes from the A genome. Together with D subgenome-biased alterations in gene expression, perhaps gene loss may contribute to the relatively larger portion of quantitative trait variation attributable to D than A subgenome chromosomes of tetraploid cotton.
Collapse
|
103
|
QIN YS, LIU RZ, MEI HX, ZHANG TZ, GUO WZ. QTL Mapping for Yield Traits in Upland Cotton ( Gossypium hirsutum L.). ACTA AGRONOMICA SINICA 2009. [DOI: 10.3724/sp.j.1006.2009.01812] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
104
|
Chen H, Qian N, Guo W, Song Q, Li B, Deng F, Dong C, Zhang T. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:605-12. [PMID: 19495722 DOI: 10.1007/s00122-009-1070-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 05/09/2009] [Indexed: 05/10/2023]
Abstract
Fiber strength is an important trait among cotton fiber qualities due to ongoing changes in spinning technology. Major quantitative trait loci (QTL) for fiber quality enable molecular marker-assisted selection (MAS) to effectively improve fiber quality of cotton cultivars. We previously identified a major QTL for fiber strength derived from 7235 in Upland cotton. In the present study, in order to fine-map fiber strength QTL, we chose three recombinant inbred lines (RIL), 7TR-133, 7TR-132, and 7TR-214, developed from a cross between 7235 and TM-1 for backcrossing to TM-1 to develop three large mapping populations. Phenotypic data for fiber strength traits were collected in Nanjing (JES/NAU) and Xinjiang (BES/XJ) in 2006 and 2007. Three simple sequence repeat (SSR) genetic linkage maps on Chro.24(D8) were constructed using these three backcrossed populations. The SSR genetic maps were constructed using 907 individuals in (7TR-133 x TM-1)F(2) (Pop A), 670 in (7TR-132 x TM-1)F(2) (Pop B), and 940 in (7TR-214 x TM-1)F(2) (Pop C). The average distance between SSR loci was 0.62, 1.7, and 0.56 cM for the three maps. MapQTL 5 software detected five-clustered QTL (2.5 < LOD < 29.8) on Chro.D8 for fiber strength following analysis of three RIL backcrossed F(2)/F(2:3) progenies at JES/NAU and BES/XJ over 2 years. Five QTL for fiber strength exhibited a total phenotypic variance (PV) of 28.8-59.6%.
Collapse
Affiliation(s)
- Hong Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Zeng L, Meredith WR, Gutiérrez OA, Boykin DL. Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:93-103. [PMID: 19360391 DOI: 10.1007/s00122-009-1020-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/20/2009] [Indexed: 05/04/2023]
Abstract
Genetic improvement in yield and fiber quality is needed for worldwide cotton production. Identification of molecular markers associated with fiber-related traits can facilitate selection for these traits in breeding. This study was designed to identify associations between SSR markers and fiber traits using an exotic germplasm population, species polycross (SP), derived from multiple crosses among Gossypium tetraploid species. The SP population underwent 11 generations of mixed random mating and selfing followed by 12 generations of selfing. A total of 260 lines were evaluated for fiber-related traits under three environments in 2005 and 2006. Large genotypic variance components in traits were identified relative to components of genotype x environment. Eighty-six primer pairs amplified a total of 314 polymorphic fragments among 260 lines. A total of 202 fragments with above 6% allele frequency were analyzed for associations. Fifty-nine markers were found to have a significant (P < 0.05, 0.01, or 0.001) association with six fiber traits. There were six groups identified within the population using structure analysis. Allele frequency divergence among six groups ranged from 0.11 to 0.27. Of the 59 marker-trait associations, 39 remained significant after correction for population structure and kinship using a mixed linear model. The effect of population sub-structure on associations was most significant in boll weight among the traits analyzed. The sub-structure among the SP lines may be caused by natural selection, the breeding method applied during development of inbred lines, and unknown factors. The identified marker-trait associations can be useful in breeding and help determine genetic mechanisms underlying interrelationships among fiber traits.
Collapse
Affiliation(s)
- Linghe Zeng
- USDA-ARS, Crop Genetics and Production Unit, Stoneville, MS 38776, USA.
| | | | | | | |
Collapse
|
106
|
Anssour S, Krügel T, Sharbel TF, Saluz HP, Bonaventure G, Baldwin IT. Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. ANNALS OF BOTANY 2009; 103:1207-17. [PMID: 19307190 PMCID: PMC2685307 DOI: 10.1093/aob/mcp058] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/19/2009] [Accepted: 02/02/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND METHODS Polyploidy results in genetic turmoil, much of which is associated with new phenotypes that result in speciation. Five independent lines of synthetic allotetraploid N. x obtusiata (N x o) were created from crosses between the diploid N. attenuata (Na) (male) and N. obtusifolia (No) (female) and the autotetraploids of Na (NaT) and No (NoT) were synthesized. Their genetic, genomic and phenotypic changes were then compared with those of the parental diploid species (Na and No) as well as to the natural allotetraploids, N. quadrivalvis (Nq) and N. clevelandii (Nc), which formed 1 million years ago from crosses between ancient Na and No. KEY RESULTS DNA fingerprinting profiles (by UP-PCR) revealed that the five N x o lines shared similar but not identical profiles. Both synthetic and natural polyploidy showed a dosage effect on genome size (as measured in seeds); however, only Nq was associated with a genome upsizing. Phenotypic analysis revealed that at the cellular level, N x o lines had phenotypes intermediate of the parental phenotypes. Both allo- and autotetraploidization had a dosage effect on seed and dry biomass (except for NaT), but not on stalk height at first flower. Nc showed paternal (Na) cellular phenotypes but inherited maternal (No) biomass and seed mass, whereas Nq showed maternal (No) cellular phenotypes but inherited paternal (Na) biomass and seed mass patterns. Principal component analysis grouped Nq with N x o lines, due to similar seed mass, stalk height and genome size. These traits separated Nc, No and Na from Nq and N x o lines, whereas biomass distinguished Na from N x o and Nq lines, and NaT clustered closer to Nq and N x o lines than to Na. CONCLUSIONS Both allo- and autotetraploidy induce considerable morphological, genetic and genomic changes, many of which are retained by at least one of the natural polyploids. It is proposed that both natural and synthetic polyploids are well suited for studying the evolution of adaptive responses.
Collapse
Affiliation(s)
- S. Anssour
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - T. Krügel
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - T. F. Sharbel
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - H. P. Saluz
- Leibniz Institute for Natural Product Research and Infection Biology e.V, Hans-Knöll-Institute (HKI) Beutenbergstr. 11a, 07745 Jena, Germany
| | - G. Bonaventure
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - I. T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
107
|
Ma X, Ding Y, Zhou B, Guo W, Lv Y, Zhu X, Zhang T. QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium. J Genet Genomics 2009; 35:751-62. [PMID: 19103431 DOI: 10.1016/s1673-8527(08)60231-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/05/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
Asiatic cotton (Gossypium arboreum L.) is an Old World cultivated cotton species. The sinense race was planted extensively in China. Due to the advances in spinning technology during the last century, the species was replaced by the New World allotetraploid cotton G. hirsutum L. Gossypium arboreum is still grown in India and Pakistan and also used as an elite in current cotton breeding programs. In addition, G. arboreum serves as a model for genomic research in Gossypium. In the present study, we generated an A-genome diploid cotton intraspecific genetic map including 264 SSR loci with three morphological markers mapped to 13 linkage groups. The map spans 2,508.71 cM with an average distance of 9.4 cM between adjacent loci. A population containing 176 F(2:3) families was used to perform quantitative trait loci (QTL) mapping for 17 phenotypes using Multiple QTL Model (MQM) of MapQTL ver 5.0. Overall, 108 QTLs were detected on 13 chromosomes. Thirty-one QTLs for yield and its components were detected in the F2 population. Forty-one QTLs for yield and its components were detected in the F(2:3) families with a total of 43 QTLs for fiber qualities. Two QTLs for seed cotton weight/plant and lint index and three QTLs for seed index were consistently detected both in F2 and F(2:3). Most QTLs for fiber qualities and yields were located at the same interval or neighboring intervals. These results indicated that the negative correlation between fiber qualities and yield traits may result from either pleiotropic effect of one gene or linkage effects of multiple closely linked genes.
Collapse
Affiliation(s)
- Xuexia Ma
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
108
|
|
109
|
Niu C, Lister HE, Nguyen B, Wheeler TA, Wright RJ. Resistance to Thielaviopsis basicola in the cultivated A genome cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1313-23. [PMID: 18754098 DOI: 10.1007/s00122-008-0865-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/12/2008] [Indexed: 05/24/2023]
Abstract
Black root rot (BRR), incited by the soilborne pathogen Thielaviopsis basicola has the potential to cause significant economic loss in cotton (Gossypium spp.) production. Cultivated tetraploids of cotton (G. hirsutum and G. barbadense) are susceptible although resistant types have been identified in a possible tetraploid progenitor, G. herbaceum. Genetic mapping was used to detect the chromosomal locations of quantitative trait loci (QTL) that confer resistance to the BRR pathogen. A population of F(2) individuals (G. herbaceum x G. arboreum) and F(2:3) progeny families were examined. Phenotypic variation between resistant and susceptible reactions could be explained partly by three QTL. The BRR5.1, BRR9.1, and BRR13.1 QTL each explained 19.1, 10.3 and 8.5% of the total phenotypic variation, respectively. The combination of all three in a single genetic model explained 32.7% of the phenotypic variation. Comparative analysis was conducted on significant QTL regions to deduce the cotton-Arabidopsis synteny relationship and examine the correspondence between BRR QTL and Arabidopsis pathogen defense genes. Totally 20 Arabidopsis synteny segments corresponded within one of three BRR QTL regions. Each synteny segment contains many potential Arabidopsis candidate genes. A total of 624 Arabidopsis genes, including 22 pathogen defense and 36 stress response genes, could be placed within the syntenic regions corresponding to the BRR QTL. Fine mapping is needed to delineate each underlying BRR R-gene and possible Arabidopsis orthologs. Research and breeding activities to examine each QTL and underlying genes in Upland cotton (G. hirsutum) are ongoing.
Collapse
Affiliation(s)
- Chen Niu
- Department of Plant and Soil Science, Texas Tech University, P.O. Box 42122, Lubbock, TX 79409, USA
| | | | | | | | | |
Collapse
|
110
|
Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics 2008; 179:2045-60. [PMID: 18660542 DOI: 10.1534/genetics.107.083840] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macrosynteny and colinearity between Fragaria (strawberry) species showing extreme levels of ploidy have been studied through comparative genetic mapping between the octoploid cultivated strawberry (F. xananassa) and its diploid relatives. A comprehensive map of the octoploid strawberry, in which almost all linkage groups are ranged into the seven expected homoeologous groups was obtained, thus providing the first reference map for the octoploid Fragaria. High levels of conserved macrosynteny and colinearity were observed between homo(eo)logous linkage groups and between the octoploid homoeologous groups and their corresponding diploid linkage groups. These results reveal that the polyploidization events that took place along the evolution of the Fragaria genus and the more recent juxtaposition of two octoploid strawberry genomes in the cultivated strawberry did not trigger any major chromosomal rearrangements in genomes involved in F. xananassa. They further suggest the existence of a close relationship between the diploid Fragaria genomes. In addition, despite the possible existence of residual levels of polysomic segregation suggested by the observation of large linkage groups in coupling phase only, the prevalence of linkage groups in coupling/repulsion phase clearly demonstrates that the meiotic behavior is mainly disomic in the cultivated strawberry.
Collapse
|
111
|
Xu Z, Kohel RJ, Song G, Cho J, Alabady M, Yu J, Koo P, Chu J, Yu S, Wilkins TA, Zhu Y, Yu JZ. Gene-rich islands for fiber development in the cotton genome. Genomics 2008; 92:173-83. [PMID: 18619771 DOI: 10.1016/j.ygeno.2008.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/31/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
Abstract
Cotton fiber is an economically important seed trichome and the world's leading natural fiber used in the manufacture of textiles. As a step toward elucidating the genomic organization and distribution of gene networks responsible for cotton fiber development, we investigated the distribution of fiber genes in the cotton genome. Results revealed the presence of gene-rich islands for fiber genes with a biased distribution in the tetraploid cotton (Gossypium hirsutum L.) genome that was also linked to discrete fiber developmental stages based on expression profiles. There were 3 fiber gene-rich islands associated with fiber initiation on chromosome 5, 3 islands for the early to middle elongation stage on chromosome 10, 3 islands for the middle to late elongation stage on chromosome 14, and 1 island on chromosome 15 for secondary cell wall deposition, for a total of 10 fiber gene-rich islands. Clustering of functionally related gene clusters in the cotton genome displaying similar transcriptional regulation indicates an organizational hierarchy with significant implications for the genetic enhancement of particular fiber quality traits. The relationship between gene-island distribution and functional expression profiling suggests for the first time the existence of functional coupling gene clusters in the cotton genome.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Guo W, Cai C, Wang C, Zhao L, Wang L, Zhang T. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 2008; 9:314. [PMID: 18590573 PMCID: PMC2481271 DOI: 10.1186/1471-2164-9-314] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 07/01/2008] [Indexed: 11/23/2022] Open
Abstract
Background Upland cotton has the highest yield, and accounts for > 95% of world cotton production. Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural, functional, and evolutionary studies of the species. Here, we employed GeneTrek and BAC tagging information approaches to predict the general composition and structure of the allotetraploid cotton genome. Results 142 BAC sequences from Gossypium hirsutum cv. Maxxa were downloaded and confirmed. These BAC sequence analysis revealed that the tetraploid cotton genome contains over 70,000 candidate genes with duplicated gene copies in homoeologous A- and D-subgenome regions. Gene distribution is uneven, with gene-rich and gene-free regions of the genome. Twenty-one percent of the 142 BACs lacked genes. BAC gene density ranged from 0 to 33.2 per 100 kb, whereas most gene islands contained only one gene with an average of 1.5 genes per island. Retro-elements were found to be a major component, first an enriched LTR/gypsy and second LTR/copia. Most LTR retrotransposons were truncated and in nested structures. In addition, 166 polymorphic loci amplified with SSRs developed from 70 BAC clones were tagged on our backbone genetic map. Seventy-five percent (125/166) of the polymorphic loci were tagged on the D-subgenome. By comprehensively analyzing the molecular size of amplified products among tetraploid G. hirsutum cv. Maxxa, acc. TM-1, and G. barbadense cv. Hai7124, and diploid G. herbaceum var. africanum and G. raimondii, 37 BACs, 12 from the A- and 25 from the D-subgenome, were further anchored to their corresponding subgenome chromosomes. After a large amount of genes sequence comparison from different subgenome BACs, the result showed that introns might have no contribution to different subgenome size in Gossypium. Conclusion This study provides us with the first glimpse of cotton genome complexity and serves as a foundation for tetraploid cotton whole genomesequencing in the future.
Collapse
Affiliation(s)
- Wangzhen Guo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | | | |
Collapse
|
113
|
Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton. Genetics 2008; 179:1725-33. [PMID: 18562666 DOI: 10.1534/genetics.108.089656] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A putative advantage of allopolyploidy is the possibility of differential selection of duplicated (homeologous) genes originating from two different progenitor genomes. In this note we explore this hypothesis using a high throughput, SNP-specific microarray technology applied to seed trichomes (cotton) harvested from three developmental time points in wild and modern accessions of two independently domesticated cotton species, Gossypium hirsutum and G. barbadense. We show that homeolog expression ratios are dynamic both developmentally and over the several-thousand-year period encompassed by domestication and crop improvement, and that domestication increased the modulation of homeologous gene expression. In both species, D-genome expression was preferentially enhanced under human selection pressure, but for nonoverlapping sets of genes for the two independent domestication events. Our data suggest that human selection may have operated on different components of the fiber developmental genetic program in G. hirsutum and G. barbadense, leading to convergent rather than parallel genetic alterations and resulting morphology.
Collapse
|
114
|
An C, Saha S, Jenkins JN, Ma DP, Scheffler BE, Kohel RJ, Yu JZ, Stelly DM. Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:1015-26. [PMID: 18338155 DOI: 10.1007/s00122-008-0732-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 02/11/2008] [Indexed: 05/08/2023]
Abstract
R2R3-MYB transcription factors of plants are involved in the regulation of trichome length and density. Several of them are differentially expressed during initiation and elongation of cotton fibers. We report sequence phylogenomic characterization of the six MYB genes, their chromosomal localization, and linkage mapping via SNP marker in AD-genome cotton (2n = 52). Phylogenetic grouping and comparison to At- and Dt-genome putative ancestral diploid species of allotetraploid cotton facilitated differentiation between genome-specific polymorphisms (GSPs) and marker-suitable locus-specific polymorphisms (LSPs). The SNP frequency averaged one per 77 bases overall, and one per 106 and 30 bases in coding and non-coding regions, respectively. SNP-based multivariate relationships conformed to independent evolution of the six MYB homoeologous loci in the four tetraploid species. Nucleotide diversity analysis indicated that the six MYB loci evolved more quickly in the Dt- than At-genome. The greater variation in the Dt-D genome comparisons than that in At-A genome comparisons showed no significant bias among synonymous substitution, non-synonymous substitution, and nucleotide change in non-coding regions. SNPs were concordantly mapped by deletion analysis and linkage mapping, which confirmed their value as candidate gene markers and indicated the reliability of the SNP discovery strategy in tetraploid cotton species. We consider that these SNPs may be useful for genetic dissection of economically important fiber and yield traits because of the role of these genes in fiber development.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
HU WJ. Molecular Tagging and Source Analysis of QTL for Elite Fiber Quality in Upland Cotton. ACTA AGRONOMICA SINICA 2008. [DOI: 10.3724/sp.j.1006.2008.00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
116
|
Ma XX, Zhou BL, Lü YH, Guo WZ, Zhang TZ. Simple sequence repeat genetic linkage maps of A-genome diploid cotton (Gossypium arboreum). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:491-502. [PMID: 18713384 DOI: 10.1111/j.1744-7909.2008.00636.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study introduces the construction of the first intraspecific genetic linkage map of the A-genome diploid cotton with newly developed simple sequence repeat (SSR) markers using 189 F(2) plants derived from the cross of two Asiatic cotton cultivars (Gossypium arboreum L.) Jianglingzhongmian x Zhejiangxiaoshanlüshu. Polymorphisms between the two parents were detected using 6 092 pairs of SSR primers. Two-hundred and sixty-eight pairs of SSR primers with better polymorphisms were picked out to analyze the F(2) population. In total, 320 polymorphic bands were generated and used to construct a linkage map with JoinMap3.0. Two-hundred and sixty-seven loci, including three phenotypic traits were mapped at a logarithms of odds ratio (LOD) > or = 3.0 on 13 linkage groups. The total length of the map was 2 508.71 cM, and the average distance between adjacent markers was 9.40 cM. Chromosome assignments were according to the association of linkages with our backbone tetraploid specific map using the 89 similar SSR loci. Comparisons among the 13 suites of orthologous linkage groups revealed that the A-genome chromosomes are largely collinear with the A(t) and D(t) sub-genome chromosomes. Chromosomes associated with inversions suggested that allopolyploidization was accompanied by homologous chromosomal rearrangement. The inter-chromosomal duplicated loci supply molecular evidence that the A-genome diploid Asiatic cotton is paleopolyploid.
Collapse
Affiliation(s)
- Xue-Xia Ma
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
117
|
Xu Z, Kohel RJ, Song G, Cho J, Yu J, Yu S, Tomkins J, Yu JZ. An integrated genetic and physical map of homoeologous chromosomes 12 and 26 in Upland cotton (G. hirsutum L.). BMC Genomics 2008; 9:108. [PMID: 18307816 PMCID: PMC2270834 DOI: 10.1186/1471-2164-9-108] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 02/28/2008] [Indexed: 11/29/2022] Open
Abstract
Background Upland cotton (G. hirsutum L.) is the leading fiber crop worldwide. Genetic improvement of fiber quality and yield is facilitated by a variety of genomics tools. An integrated genetic and physical map is needed to better characterize quantitative trait loci and to allow for the positional cloning of valuable genes. However, developing integrated genomic tools for complex allotetraploid genomes, like that of cotton, is highly experimental. In this report, we describe an effective approach for developing an integrated physical framework that allows for the distinguishing between subgenomes in cotton. Results A physical map has been developed with 220 and 115 BAC contigs for homeologous chromosomes 12 and 26, respectively, covering 73.49 Mb and 34.23 Mb in physical length. Approximately one half of the 220 contigs were anchored to the At subgenome only, while 48 of the 115 contigs were allocated to the Dt subgenome only. Between the two chromosomes, 67 contigs were shared with an estimated overall physical similarity between the two chromosomal homeologs at 40.0 %. A total of 401 fiber unigenes plus 214 non-fiber unigenes were located to chromosome 12 while 207 fiber unigenes plus 183 non-fiber unigenes were allocated to chromosome 26. Anchoring was done through an overgo hybridization approach and all anchored ESTs were functionally annotated via blast analysis. Conclusion This integrated genomic map describes the first pair of homoeologous chromosomes of an allotetraploid genome in which BAC contigs were identified and partially separated through the use of chromosome-specific probes and locus-specific genetic markers. The approach used in this study should prove useful in the construction of genome-wide physical maps for polyploid plant genomes including Upland cotton. The identification of Gene-rich islands in the integrated map provides a platform for positional cloning of important genes and the targeted sequencing of specific genomic regions.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, 2881 F&B Road, College Station, TX 77845, USA.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Wang HM, Lin ZX, Zhang XL, Chen W, Guo XP, Nie YC, Li YH. Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:174-82. [PMID: 18713439 DOI: 10.1111/j.1744-7909.2007.00612.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Verticillium wilt is one of the most serious constraints to cotton production in almost all of the cotton-growing countries. In this study, "XinLuZao1" (XLZ1), a susceptible cultivar Gossypium hirsutum L. and "Hai7124" (H7124), a resistant line G. barbadense, and their F(2:3) families were used to map and study the disease index induced by verticillium wilt. A total of 430 SSR loci were mapped into 41 linkage groups; the map spanned 3,745.9 cM and the average distance between adjacent loci was 8.71 cM. Four and five quantitative trait loci (QTLs) were detected based on the disease index investigated on July 22 and August 24 in 2004, respectively. These nine QTLs explained 10.63-28.83% of the phenotypic variance, six of them were located on the D sub-genome. Two QTLs located in the same marker intervals may partly explain the significant correlation of the two traits. QTLs explaining large phenotypic variation were identified in this study, which may be quite useful in cotton anti-disease breeding.
Collapse
Affiliation(s)
- Hong-Mei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
119
|
Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar PA, Mehboob-Ur-Rahman, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH. Toward sequencing cotton (Gossypium) genomes. PLANT PHYSIOLOGY 2007; 145:1303-1310. [PMID: 18056866 PMCID: PMC2151711 DOI: 10.1104/pp.107.107672] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 09/10/2007] [Indexed: 02/05/2023]
|
120
|
An C, Saha S, Jenkins JN, Scheffler BE, Wilkins TA, Stelly DM. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton. Mol Genet Genomics 2007; 278:539-53. [PMID: 17724613 DOI: 10.1007/s00438-007-0270-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 06/15/2007] [Indexed: 10/22/2022]
Abstract
The knowledge of biological significance associated with DNA markers is very limited in cotton. SNPs are potential functional marker to tag genes of biological importance. Plant expansins are a group of extracellular proteins that directly modify the mechanical properties of cell walls, enable turgor-driven cell extension, and likely affect length and quality of cotton fibers. Here, we report the expression profiles of EXPANSIN transcripts during fiber elongation and the discovery of SNP markers, assess the SNP characteristics, and localize six EXPANSIN A genes to chromosomes. Transcriptome profiling of cotton fiber oligonucleotide microarrays revealed that seven EXPANSIN transcripts were differentially expressed when there was parallel polar elongation during morphogenesis at early stage of fiber development, suggesting that major and minor isoforms perform discrete functions during polar elongation and lateral expansion. Ancestral and homoeologous relationships of the six EXPANSIN A genes were revealed by phylogenetic grouping and comparison to extant A- and D-genome relatives of contemporary AD-genome cottons. The average rate of SNP per nucleotide was 2.35% (one SNP per 43 bp), with 1.74 and 3.99% occurring in coding and noncoding regions, respectively, in the selected genotypes. An unequal evolutionary rate of the EXPANSIN A genes at the subgenome level of tetraploid cotton was recorded. Chromosomal locations for each of the six EXPANSIN A genes were established by gene-specific SNP markers. Results revealed a strategy for discovering SNP markers in a polyploidy species like cotton. These markers could be useful to associate candidate genes with the complex fiber traits in MAS.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
121
|
Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 2007; 176:2577-88. [PMID: 17565937 PMCID: PMC1950656 DOI: 10.1534/genetics.107.074518] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.
Collapse
Affiliation(s)
- Junkang Rong
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 2007; 176:527-41. [PMID: 17409069 PMCID: PMC1893075 DOI: 10.1534/genetics.107.070375] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mapping of functional genes plays an important role in studies of genome structure, function, and evolution, as well as allowing gene cloning and marker-assisted selection to improve agriculturally important traits. Simple sequence repeats (SSRs) developed from expressed sequence tags (ESTs), EST-SSR (eSSR), can be employed as putative functional marker loci to easily tag corresponding functional genes. In this paper, 2218 eSSRs, 1554 from G. raimondii-derived and 754 from G. hirsutum-derived ESTs, were developed and used to screen polymorphisms to enhance our backbone genetic map in allotetraploid cotton. Of the 1554 G. raimondii-derived eSSRs, 744 eSSRs were able to successfully amplify polymorphisms between our two mapping parents, TM-1 and Hai7124, presenting a polymorphic rate of 47.9%. However, only a 23.9% (159/754) polymorphic rate was produced from G. hirsutum-derived eSSRs. No relationship was observed between the level of polymorphism, motif type, and tissue origin, but the polymorphism appeared to be correlated with repeat type. After integrating these new eSSRs, our enhanced genetic map consists of 1790 loci in 26 linkage groups and covers 3425.8 cM with an average intermarker distance of 1.91 cM. This microsatellite-based, gene-rich linkage map contains 71.96% functional marker loci, of which 87.11% are eSSR loci. There were 132 duplicated loci bridging 13 homeologous At/Dt chromosome pairs. Two reciprocal translocations after polyploidization between A2 and A3, and between A4 and A5, chromosomes were further confirmed. A functional analysis of 975 ESTs producing 1122 eSSR loci tagged in the map revealed that 60% had clear BLASTX hits (<1e(-10)) to the Uniprot database and that 475 were associated mainly with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function; many of the ESTs were associated with two or more category functions. The results presented here will provide new insights for future investigations of functional and evolutionary genomics, especially those associated with cotton fiber improvement.
Collapse
Affiliation(s)
- Wangzhen Guo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:761-75. [PMID: 16889650 PMCID: PMC4367961 DOI: 10.1111/j.1365-313x.2006.02829.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gene expression during the early stages of fiber cell development and in allopolyploid crops is poorly understood. Here we report computational and expression analyses of 32 789 high-quality ESTs derived from Gossypium hirsutum L. Texas Marker-1 (TM-1) immature ovules (GH_TMO). The ESTs were assembled into 8540 unique sequences including 4036 tentative consensus sequences (TCs) and 4504 singletons, representing approximately 15% of the unique sequences in the cotton EST collection. Compared with approximately 178 000 existing ESTs derived from elongating fibers and non-fiber tissues, GH_TMO ESTs showed a significant increase in the percentage of genes encoding putative transcription factors such as MYB and WRKY and genes encoding predicted proteins involved in auxin, brassinosteroid (BR), gibberellic acid (GA), abscisic acid (ABA) and ethylene signaling pathways. Cotton homologs related to MIXTA, MYB5, GL2 and eight genes in the auxin, BR, GA and ethylene pathways were induced during fiber cell initiation but repressed in the naked seed mutant (N1N1) that is impaired in fiber formation. The data agree with the known roles of MYB and WRKY transcription factors in Arabidopsis leaf trichome development and the well-documented phytohormonal effects on fiber cell development in immature cotton ovules cultured in vitro. Moreover, the phytohormonal pathway-related genes were induced prior to the activation of MYB-like genes, suggesting an important role of phytohormones in cell fate determination. Significantly, AA sub-genome ESTs of all functional classifications including cell-cycle control and transcription factor activity were selectively enriched in G. hirsutum L., an allotetraploid derived from polyploidization between AA and DD genome species, a result consistent with the production of long lint fibers in AA genome species. These results suggest general roles for genome-specific, phytohormonal and transcriptional gene regulation during the early stages of fiber cell development in cotton allopolyploids.
Collapse
Affiliation(s)
- S. Samuel Yang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Foo Cheung
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jinsuk J. Lee
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
| | - Misook Ha
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
| | - Ning E. Wei
- Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - David M. Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Peggy Thaxton
- Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi 38776, USA
| | - Barbara Triplett
- USDA-ARS Southern Regional Research Center, New Orleans, Louisiana 70179, USA
| | | | - Z. Jeffrey Chen
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
- Author for correspondence: Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712-0159, USA, Phone: 512-475-9327; Fax: 512-232-3432;
| |
Collapse
|
124
|
Desai A, Chee PW, Rong J, May OL, Paterson AH. Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 2006; 49:336-45. [PMID: 16699553 DOI: 10.1139/g05-116] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Gossypium, which comprises a divergent group of diploid species and several recently formed allotetraploids, offers an excellent opportunity to study polyploid genome evolution. In this study, chromosome structural variation among the A, At, and D genomes of Gossypium was evaluated by comparative genetic linkage mapping. We constructed a fully resolved RFLP linkage map for the diploid A genome consisting of 275 loci using an F2 interspecific Gossypium arboreum x Gossypium herbaceum family. The 13 chromosomes of the A genome are represented by 12 large linkage groups in our map, reflecting an expected interchromosomal translocation between G. arboreum and G. herbaceum. The A-genome chromosomes are largely collinear with the D genomes, save for a few small inversions. Although the 2 diploid mapping parents represent the closest living relatives of the allotetraploid At-genome progenitor, 2 translocations and 7 inversions were observed between the A and At genomes. The recombination rates are similar between the 2 diploid genomes; however, the At genome shows a 93% increase in recombination relative to its diploid progenitors. Elevated recombination in the Dt genome was reported previously. These data on the At genome thus indicate that elevated recombination was a general property of allotetraploidy in cotton.
Collapse
Affiliation(s)
- Aparna Desai
- Coastal Plains Experiement Station, University of Georgia, Tifton, 31793, USA
| | | | | | | | | |
Collapse
|
125
|
|
126
|
Guo W, Wang W, Zhou B, Zhang T. Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1573-81. [PMID: 16596396 DOI: 10.1007/s00122-006-0261-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Accepted: 03/01/2006] [Indexed: 05/08/2023]
Abstract
Diploid species with a common Gossypium origin are highly diverse in morphology and have been classified into eight genomic groups designated A-G and K. In this study, the transferability of 207 Gossypium arboreum-derived expressed sequence tag-simple sequence repeat (EST-SSR) primer pairs was examined among 25 different diploid accessions representing 7 genomes and 23 Gossypium species. We found that 124 of the 207 (60%) primer pairs produced amplification products in all 25 accessions. The remaining 83 (40%) primer pairs produced amplification in only a subset of species, ranging from 13 to 22 species, which is consistent with some genome- and species-specific amplification. The cross-species amplification of these EST-SSRs in 22 diploid species was 96.5% in 4,554 combinations (207 SSRsx22 species), indicative of a high transferability among the Gossypium species. Furthermore, a high level of polymorphism with an average number of 6.53 alleles per SSR marker was detected. No correlation was found between the repeat motif type and cross-species amplification. DNA sequencing showed that the high-level polymorphism findings was mainly due to changes in the number of repeat motifs and that the high transferability can be attributed to a higher-level conservation in the flanking regions among these diploid Gossypium species. The transferability among these different diploid species presented here can increase the efficiency of transferring genetic information across species and further enhance their introgression into cultivated cotton species by the molecular tagging of important genes existing in these diploid species using the EST-SSR markers.
Collapse
Affiliation(s)
- Wangzhen Guo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, 210095 Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | |
Collapse
|
127
|
Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-0557-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
128
|
Saha S, Jenkins JN, Wu J, McCarty JC, Gutiérrez OA, Percy RG, Cantrell RG, Stelly DM. Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits. Genetics 2006; 172:1927-38. [PMID: 16387867 PMCID: PMC1456304 DOI: 10.1534/genetics.105.053371] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 12/22/2005] [Indexed: 11/18/2022] Open
Abstract
Interspecific chromosome substitution is among the most powerful means of introgression and steps toward quantitative trait locus (QTL) identification. By reducing the genetic "noise" from other chromosomes, it greatly empowers the detection of genetic effects by specific chromosomes on quantitative traits. Here, we report on such results for 14 cotton lines (CS-B) with specific chromosomes or chromosome arms from G. barbadense L. substituted into G. hirsutum and chromosome-specific F2 families. Boll size, lint percentage, micronaire, 2.5% span length, elongation, strength, and yield were measured by replicated field experiments in five diverse environments and analyzed under an additive-dominance (AD) genetic model with genotype and environment interaction. Additive effects were significant for all traits and dominance effects were significant for all traits except 2.5% span length. CS-B25 had additive effects increasing fiber strength and fiber length and decreasing micronaire. CS-B16 and CS-B18 had additive effects related to reduced yields. The results point toward specific chromosomes of G. barbadense 3-79 as the probable locations of the genes that significantly affect quantitative traits of importance. Our results provided a scope to analyze individual chromosomes of the genome in homozygous and heterozygous conditions and thus detected novel effects of alleles controlling important QTL.
Collapse
Affiliation(s)
- Sukumar Saha
- United States Department of Agriculture-Agriculture Research Service, Crop Science Research Laboratory, Mississippi State, Mississippi 39762, USA.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Frelichowski JE, Palmer MB, Main D, Tomkins JP, Cantrell RG, Stelly DM, Yu J, Kohel RJ, Ulloa M. Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Genet Genomics 2006; 275:479-91. [PMID: 16501995 DOI: 10.1007/s00438-006-0106-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/14/2006] [Indexed: 10/25/2022]
Abstract
Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala 'Maxxa', 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9% of the coverage was located on the A subgenome while 39.7% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton.
Collapse
|
130
|
Udall JA, Swanson JM, Haller K, Rapp RA, Sparks ME, Hatfield J, Yu Y, Wu Y, Dowd C, Arpat AB, Sickler BA, Wilkins TA, Guo JY, Chen XY, Scheffler J, Taliercio E, Turley R, McFadden H, Payton P, Klueva N, Allen R, Zhang D, Haigler C, Wilkerson C, Suo J, Schulze SR, Pierce ML, Essenberg M, Kim H, Llewellyn DJ, Dennis ES, Kudrna D, Wing R, Paterson AH, Soderlund C, Wendel JF. A global assembly of cotton ESTs. Genome Res 2006; 16:441-50. [PMID: 16478941 PMCID: PMC1415220 DOI: 10.1101/gr.4602906] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Approximately 185,000 Gossypium EST sequences comprising >94,800,000 nucleotides were amassed from 30 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including drought stress and pathogen challenges. These libraries were derived from allopolyploid cotton (Gossypium hirsutum; A(T) and D(T) genomes) as well as its two diploid progenitors, Gossypium arboreum (A genome) and Gossypium raimondii (D genome). ESTs were assembled using the Program for Assembling and Viewing ESTs (PAVE), resulting in 22,030 contigs and 29,077 singletons (51,107 unigenes). Further comparisons among the singletons and contigs led to recognition of 33,665 exemplar sequences that represent a nonredundant set of putative Gossypium genes containing partial or full-length coding regions and usually one or two UTRs. The assembly, along with their UniProt BLASTX hits, GO annotation, and Pfam analysis results, are freely accessible as a public resource for cotton genomics. Because ESTs from diploid and allotetraploid Gossypium were combined in a single assembly, we were in many cases able to bioinformatically distinguish duplicated genes in allotetraploid cotton and assign them to either the A or D genome. The assembly and associated information provide a framework for future investigation of cotton functional and evolutionary genomics.
Collapse
Affiliation(s)
- Joshua A Udall
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:430-9. [PMID: 16341684 DOI: 10.1007/s00122-005-0142-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 10/24/2005] [Indexed: 05/05/2023]
Abstract
In order to construct a saturated genetic map and facilitate marker-assisted selection (MAS) breeding, it is necessary to enhance the current reservoir of known molecular markers in Gossypium. Microsatellites or simple sequence repeats (SSRs) occur in expressed sequence tags (EST) in plants. Many ESTs are publicly available now and represent a good tool in developing EST-SSRs. From 13,505 ESTs developed from our two cotton fiber/ovule cDNA libraries constructed for Upland cotton, 966 (7.15%) contained one or more SSRs and from them, 489 EST-SSR primer pairs were developed. Among the EST-SSRs, 59.1% are trinucleotides, followed by dinucleotides (30%), tetranucleotides (6.4%), pentanucleotides (1.8%), and hexanucleotides (2.7%). AT/TA (18.4%) is the most frequent repeat, followed by CTT/GAA (5.3%), AG/TC (5.1%), AGA/TCT (4.9%), AGT/TCA (4.5%), and AAG/TTC (4.5%). One hundred and thirty EST-SSR loci were produced from 114 informative EST-SSR primer pairs, which generated polymorphism between our two mapping parents. Of these, 123 were integrated on our allotetraploid cotton genetic map, based on the cross [(TM-1xHai7124)TM-1]. EST-SSR markers were distributed over 20 chromosomes and 6 linkage groups in the map. These EST-SSR markers can be used in genetic mapping, identification of quantitative trait loci (QTLs), and comparative genomics studies of cotton.
Collapse
Affiliation(s)
- Zhiguo Han
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, 210095 Nanjing, Jiangsu Province, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
|
133
|
Wu Y, Rozenfeld S, Defferrard A, Ruggiero K, Udall JA, Kim H, Llewellyn DJ, Dennis ES. Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling. Mol Genet Genomics 2005; 274:477-93. [PMID: 16208490 DOI: 10.1007/s00438-005-0049-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Fibres of cotton (Gossypium hirsutum L.) are single elongated epidermal cells that start to develop on the outer surface of cotton ovules on the day of anthesis. Little is known about the control of fibre initiation and development. As a first step towards discovering important genes involved in fibre initiation and development using a genomics approach, we report technical advances aimed at reducing redundancy and increasing coverage for anonymous cDNA microarrays in this study. Cotton ovule cDNA libraries (both normalised and un-normalised) from around the time of fibre initial formation have been prepared and partially characterised by sequencing. Re-association-based normalisation partially reduced library redundancy and increased representation of novel sequences. However, another library generated from in vitro cultured cotton ovules treated with the protein synthesis inhibitor, cycloheximide, showed a significantly altered gene representation including a greater proportion of protein phosphorylation genes, transport genes and transcription factors and a much reduced proportion of protein synthesis genes than were identified in the conventional types of libraries. Over 10,000 expressed sequence tag (EST) clones randomly selected from the three libraries were printed on microarray slides and used to assess gene expression in tissue cultured ovules with and without cycloheximide treatment. The microarray results showed that cycloheximide had a dramatic effect in modifying the pattern of the gene expression in cultured ovules, affecting the same types of genes identified in the preliminary analysis on relative EST abundance in the different ovule cDNA libraries. Cycloheximide clearly provided a simple and useful method for enriching novel gene sequences for genomic studies.
Collapse
Affiliation(s)
- Yingru Wu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Rong J, Pierce GJ, Waghmare VN, Rogers CJ, Desai A, Chee PW, May OL, Gannaway JR, Wendel JF, Wilkins TA, Paterson AH. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1137-46. [PMID: 16075204 DOI: 10.1007/s00122-005-0041-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/02/2005] [Indexed: 05/03/2023]
Abstract
Mapping of genes that play major roles in cotton fiber development is an important step toward their cloning and manipulation, and provides a test of their relationships (if any) to agriculturally-important QTLs. Seven previously identified fiber mutants, four dominant (Li (1), Li (2), N (1) and Fbl) and three recessive (n (2), sma-4(h (a)), and sma-4(fz)), were genetically mapped in six F(2) populations comprising 124 or more plants each. For those mutants previously assigned to chromosomes by using aneuploids or by linkage to other morphological markers, all map locations were concordant except n (2), which mapped to the homoeolog of the chromosome previously reported. Three mutations with primary effects on fuzz fibers (N (1), Fbl, n (2)) mapped near the likelihood peaks for QTLs that affected lint fiber productivity in the same populations, perhaps suggesting pleiotropic effects on both fiber types. However, only Li (1) mapped within the likelihood interval for 191 previously detected lint fiber QTLs discovered in non-mutant crosses, suggesting that these mutations may occur in genes that played early roles in cotton fiber evolution, and for which new allelic variants are quickly eliminated from improved germplasm. A close positional association between sma-4(h ( a )), two leaf and stem-borne trichome mutants (t (1) , t (2)), and a gene previously implicated in fiber development, sucrose synthase, raises questions about the possibility that these genes may be functionally related. Increasing knowledge of the correspondence of the cotton and Arabidopsis genomes provides several avenues by which genetic dissection of cotton fiber development may be accelerated.
Collapse
Affiliation(s)
- Junkang Rong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Rong J, Bowers JE, Schulze SR, Waghmare VN, Rogers CJ, Pierce GJ, Zhang H, Estill JC, Paterson AH. Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res 2005; 15:1198-210. [PMID: 16109973 PMCID: PMC1199534 DOI: 10.1101/gr.3907305] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Both ancient and recent polyploidy, together with post-polyploidization loss of many duplicated gene copies, complicates angiosperm comparative genomics. To explore an approach by which these challenges might be mitigated, genetic maps of extant diploid and tetraploid cottons (Gossypium spp.) were used to infer the approximate order of 3016 loci along the chromosomes of their hypothetical common ancestor. The inferred Gossypium gene order corresponded more closely than the original maps did to a similarly inferred ancestral gene order predating an independent paleopolyploidization (alpha) in Arabidopsis. At least 59% of the cotton map and 53% of the Arabidopsis transcriptome showed correspondence in multilocus gene arrangements based on one or both of two software packages (CrimeStatII, FISH). Genomic regions in which chromosome structural rearrangement has been rapid (obscuring gene order correspondence) have also been subject to greater divergence of individual gene sequences. About 26%-44% of corresponding regions involved multiple Arabidopsis or cotton chromosomes, in some cases consistent with known, more ancient, duplications. The genomic distributions of multiple-locus probes provided early insight into the consequences for chromosome structure of an ancient large-scale duplication in cotton. Inferences that mitigate the consequences of ancient duplications improve leveraging of genomic information for model organisms in the study of more complex genomes.
Collapse
Affiliation(s)
- Junkang Rong
- Plant Genome Mapping Laboratory, Life Sciences Building, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:757-63. [PMID: 15983756 DOI: 10.1007/s00122-005-2063-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 05/02/2005] [Indexed: 05/02/2023]
Abstract
The current study is the first installment of an effort to explore the secondary gene pool for the enhancement of Upland cotton (Gossypium hirsutum L.) germplasm. We developed advanced-generation backcross populations by first crossing G. hirsutum cv. Tamcot 2111 and G. barbadense cv. Pima S6, then independently backcrossing F(1) plants to the G. hirsutum parent for three cycles. Genome-wide mapping revealed introgressed alleles at an average of 7.3% of loci in each BC(3)F(1) plant, collectively representing G. barbadense introgression over about 70% of the genome. Twenty-four BC(3)F(1) plants were selfed to generate 24 BC(3)F(2) families of 22-172 plants per family (totaling 2,976 plants), which were field-tested for fiber elongation and genetically mapped. One-way analysis of variance detected 22 non-overlapping quantitative trail loci (QTLs) distributed over 15 different chromosomes. The percentage of variance explained by individual loci ranged from 8% to 28%. Although the G. barbadense parent has lower fiber elongation than the G. hirsutum parent, the G. barbadense allele contributed to increased fiber elongation at 64% of the QTLs. Two-way analysis of variance detected significant (P<0.001) among-family genotype effects and genotypexfamily interactions in two and eight regions, respectively, suggesting that the phenotypic effects of some introgressed chromosomal segments are dependent upon the presence/absence of other chromosomal segments.
Collapse
Affiliation(s)
- Peng Chee
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Allopolyploidy in Wheat Induces Rapid and Heritable Alterations in DNA Methylation Patterns of Cellular Genes and Mobile Elements. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0177-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
138
|
Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:764-71. [PMID: 15995865 DOI: 10.1007/s00122-005-2061-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 05/02/2005] [Indexed: 05/03/2023]
Abstract
A backcross-self population from a cross between Gossypium hirsutum and G. barbadense was used to dissect the molecular basis of genetic variation governing two parameters reflecting lint fiber fineness and to compare the precision of these two measurements. By applying a detailed restriction fragment length polymorphism (RFLP) map to 3,662 BC(3)F(2) plants from 24 independently derived BC(3) families, we were able to detect 32 and nine quantitative trait loci (QTLs) for fiber fineness and micronaire (MIC), respectively. The discovery of larger numbers of QTLs in this study than previously found in other studies based on F(2) populations grown in favorable environments reflects the ability of the backcross-self design to resolve smaller QTL effects. Although the two measurements differed dramatically in the number of QTLs detected, seven of the nine MIC QTLs were also associated with fiber fineness. This supports other data in suggesting that fiber fineness more accurately reflects the underlying physical properties of cotton fibers and, consequently, is a preferable trait for selection. "Negative transgression," with the majority of BC(3)F(2) families showing average phenotypes that were poorer than that of the inferior parent, suggests that many of the new gene combinations formed by interspecific hybridization are maladaptive and may contribute to the lack of progress in utilizing G. barbadense in conventional breeding programs to improve upland cotton.
Collapse
Affiliation(s)
- Xavier Draye
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Waghmare VN, Rong J, Rogers CJ, Pierce GJ, Wendel JF, Paterson AH. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:665-76. [PMID: 16044266 DOI: 10.1007/s00122-005-2032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 04/07/2005] [Indexed: 05/03/2023]
Abstract
The existence of five tetraploid species that derive from a common polyploidization event about 1 million years ago makes Gossypium (cotton) an attractive genus in which to study polyploid evolution and offers opportunities for crop improvement through introgression. To date, only crosses (HB) between the cultivated tetraploid cottons Gossypium hirsutum and G. barbadense have been genetically mapped. Genetic analysis of a cross (HT) between G. hirsutum and the Hawaiian endemic G. tomentosum is reported here. Overall, chromosomal lengths are closely correlated between the HB and HT maps, although there is generally more recombination in HT, consistent with a closer relationship between the two species. Interspecific differences in local recombination rates are observed, perhaps involving a number of possible factors. Our data corroborate cytogenetic evidence that chromosome arm translocations have not played a role in the divergence of polyploid cottons. However, one terminal inversion on chromosome (chr.) 3 does appear to differentiate G. tomentosum from G. barbadense; a few other apparent differences in marker order fall near gaps in the HT map and/or lack the suppression of recombination expected of inversions, and thus remain uncertain. Genetic analysis of a discrete trait that is characteristic of G. tomentosum, nectarilessness, mapped not to the classically reported location on chr. 12 but to the homoeologous location on chr. 26. We propose some hypotheses for further study to explore this incongruity. Preliminary quantitative trait locus (QTL) analysis of this small population, albeit with a high probability of false negatives, suggests a different genetic control of leaf morphology in HT than in HB, which also warrants further investigation.
Collapse
Affiliation(s)
- Vijay N Waghmare
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
140
|
Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:772-81. [PMID: 15983757 DOI: 10.1007/s00122-005-2062-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 05/02/2005] [Indexed: 05/03/2023]
Abstract
A backcross-self population from a cross between Gossypium hirsutum and G. barbadense was used to dissect the molecular basis of genetic variation governing 15 parameters that reflect fiber length. Applying a detailed restriction fragment length polymorphism (RFLP) map to 3,662 BC(3)F(2) plants from 24 independently derived BC(3) families, we detected 28, nine, and eight quantitative trait loci (QTLs) for fiber length, length uniformity, and short fiber content, respectively. For eight, six, and two chromosomal regions containing quantitative trait loci (QTLs) for fiber length, length uniformity, and short fiber content (respectively), two-way analysis of variance showed a significant (P<0.001) among-family genotypic effect. A total of 13, two, and four loci showed genotype x family interaction, illustrating some of the complexities that are likely to be faced in introgression of exotic germplasm into the gene pool of cultivated cotton. Co-location of many QTLs for fiber length, length uniformity, and short fiber content accounted for correlations among these traits, while the discovery of many QTLs unique to each trait suggests that maximum genetic gain will require breeding efforts that target each trait (or an index including all three). The availability of DNA markers linked to G. barbadense QTLs identified in this and other studies promise to assist breeders in transferring and maintaining valuable traits from exotic sources during cultivar development.
Collapse
Affiliation(s)
- Peng W Chee
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Jørgensen S, Mauricio R. Hybridization as a source of evolutionary novelty: leaf shape in a Hawaiian composite. Genetica 2005; 123:171-9. [PMID: 15881689 DOI: 10.1007/s10709-003-2740-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hybridization is increasingly recognized as a significant creative force in evolution. Interbreeding among species can lead to the creation of novel genotypes and morphologies that lead to adaptation. On the Hawaiian island of O'ahu, populations of two species of plants in the endemic genus Lipochaeta grow at similar elevations in the northern Wai'anae Mountains. These two species represent extremes of the phenotypic distribution of leaf shape: the leaves of Lipochaeta tenuifolia individuals are compound and highly dissected while leaves of L. tenuis are simple. Based primarily on leaf shape morphology, a putative hybrid population of Lipochaeta located at Pu'u Kawiwi was identified. Individuals in this population exhibit a range of leaf shapes intermediate in varying degrees between the leaf shapes of the putative parental species. We analyzed individuals from pure populations of L. tenuifolia, L. tenuis and the putative hybrids using 133 AFLP markers. Genetic analysis of these neutral markers provided support for the hybrid origin of this population. The correlation between genetic background and leaf morphology in the hybrids suggested that the genome of the parental species with simple leaves might have significantly contributed to the evolution of a novel, compound leaf morphology.
Collapse
Affiliation(s)
- Stacy Jørgensen
- Department of Geography, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
142
|
Song X, Wang K, Guo W, Zhang J, Zhang T. A comparison of genetic maps constructed from haploid and BC1mapping populations from the same crossing betweenGossypium hirsutumL. andGossypium barbadenseL. Genome 2005; 48:378-90. [PMID: 16121235 DOI: 10.1139/g04-126] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Simple sequence repeat (SSR) genetic maps have been separately constructed based on doubled haploid (DH) and (or) haploid and BC1populations from the same cross between Gossypium hirsutum L. 'TM-1' and Gossypium barbadense L. 'Hai7124'. The BC1population was produced by pollinating individual plants of the 'TM-1' × 'Hai7124' F1with 'TM-1', whereas the DH and (or) haploid population developed from the offspring of Vsg × ('TM-1' × 'Hai7124'). Vsg is a virescently marked semigamy line of Gossypium barbadense L. Pima. The BC1map included 34 linkage groups with an average distance between markers of 9.80 cM (Kosambi, K) and covered 4331.2 cM (K) or approximately 78.7% of the tetraploid cotton genome constructed using 440 SSR and 2 morphological marker genes. Among them, 26 were assigned to 20 chromosomes, 7 to A or D subgenomes, and 1 was unassigned. The haploid map comprised 444 SSR markers mapped to 40 linkage groups with an average distance of 7.35 cM (K) between markers, covering 3262.9 cM (K) or approximately 60.0% of the tetraploid genome. Twenty-nine linkage groups were assigned to all 19 identified chromosomes, 10 to A or D subgenomes, and 1 was unassigned. Fairly good collinearity of marker order was observed along most of the chromosomes or linkage groups. Significant differences in recombination between maps was observed at the chromosomal and genomic level and possible reasons were discussed. Map comparison and combined data provided an essential basis for further mapping of interested genes and QTLs and for studies of diversity, population structure, and phylogeny in Gossypium species.Key words: cotton, SSR, comparative mapping, semigamy.
Collapse
Affiliation(s)
- Xianliang Song
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
143
|
Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. PLANT MOLECULAR BIOLOGY 2005; 58:367-84. [PMID: 16021401 DOI: 10.1007/s11103-005-5102-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 04/05/2005] [Indexed: 05/03/2023]
Abstract
Heterosis was defined as the advantage of hybrid performance over its parents in terms of growth and productivity. Previous studies showed that differential gene expression between hybrids and their parents is responsible for the heterosis; however, information on systematic identification and characterization of the differentially expressed genes are limited. In this study, an interspecific hybrid between common wheat (Triticum aestivum. L., 2n = 6x = 42, AABBDD) line 3338 and spelt (Triticum spelta L. 2n = 6x = 42, AABBDD) line 2463 was found to be highly heterotic in both aerial growth and root related traits, and was then used for expression assay. A modified suppression subtractive hybridization (SSH) was used to generate four subtracted cDNA libraries, and 748 nonreduandant cDNAs were obtained, among which 465 had high sequence similarity to the GenBank entries and represent diverse of functional categories, such as metabolism, cell growth and maintenance, signal transduction, photosynthesis, response to stress, transcription regulation and others. The expression patterns of 68.2% SSH-derived cDNAs were confirmed by reverse Northern blot, and semi-quantitative RT-PCR exhibited the similar results (72.2%). And it was concluded that the genes differentially expressed between hybrids and their parents involved in diverse physiological process pathway, which might be responsible for the observed heterosis.
Collapse
Affiliation(s)
- Yingyin Yao
- Department of Plant Genetics and Breeding, Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing, China Agricultural University, 100094 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
The finding that even the smallest of plant genomes has incurred multiple genome-wide chromatin duplication events, some of which may predate the origins of the angiosperms and therefore shape all of flowering plant biology, adds new importance to the molecular analysis of polyploidization/diploidization cycles and their phenotypic consequences. Early clues as to the possible phenotypic consequences of polyploidy derive from recent QTL mapping efforts in a number of diverse crop plants of recent and well-defined polyploid origins. A small sampling examples of the role(s) of polyploidy in conferring crop adaptation from human needs include examples of (1) dosage effects of multiple alleles in autopolyploids, and (2) 'intergenomic heterosis' conferring novel traits or transgressive levels of existing traits, associated with merging divergent genomes in a common allopolyploid nucleus. A particularly interesting manifestation of #2 is the evolution of complementary alleles at corresponding ('homoeologous') loci in divergent polyploid taxa derived from a common ancestor. Burgeoning genomic data for both botanical models and major crops offer new avenues for investigation of the molecular and phenotypic consequences of polyploidy, promising new insights into the role of this important process in the evolution of botanical diversity.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
145
|
Humphries JA, Walker AR, Timmis JN, Orford SJ. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. PLANT MOLECULAR BIOLOGY 2005; 57:67-81. [PMID: 15821869 DOI: 10.1007/s11103-004-6768-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/25/2004] [Indexed: 05/20/2023]
Abstract
Cotton fibres are single, highly elongated cells derived from the outer epidermis of ovules, and are developmentally similar to the trichomes of Arabidopsis thaliana. To identify genes involved in the molecular control of cotton fibre initiation, we isolated four putative homologues of the Arabidopsis trichome-associated gene TRANSPARENT TESTA GLABRA1 (TTG1). All four WD-repeat genes are derived from the ancestral D diploid genome of tetraploid cotton and are expressed in many tissues throughout the plant, including ovules and growing fibres. Two of the cotton genes were able to restore trichome formation in ttg1 mutant Arabidopsis plants. Both these genes also complemented the anthocyanin defect in a white-flowered Matthiola incana ttg1 mutant. These results demonstrate parallels in differentiation between trichomes in cotton and Arabidopsis, and indicate that these cotton genes may be functional homologues of AtTTG1.
Collapse
MESH Headings
- Amino Acid Sequence
- Anthocyanins/biosynthesis
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Brassicaceae/genetics
- Brassicaceae/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Flowers/genetics
- Flowers/metabolism
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Gossypium/genetics
- Gossypium/growth & development
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Mutation
- Phenotype
- Plant Proteins/genetics
- Plants, Genetically Modified
- Protein Isoforms/genetics
- Repetitive Sequences, Amino Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- John A Humphries
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide SA 5005, Australia
| | | | | | | |
Collapse
|
146
|
Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park CH, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 2004; 166:389-417. [PMID: 15020432 PMCID: PMC1470701 DOI: 10.1534/genetics.166.1.389] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report genetic maps for diploid (D) and tetraploid (AtDt) Gossypium genomes composed of sequence-tagged sites (STS) that foster structural, functional, and evolutionary genomic studies. The maps include, respectively, 2584 loci at 1.72-cM ( approximately 600 kb) intervals based on 2007 probes (AtDt) and 763 loci at 1.96-cM ( approximately 500 kb) intervals detected by 662 probes (D). Both diploid and tetraploid cottons exhibit negative crossover interference; i.e., double recombinants are unexpectedly abundant. We found no major structural changes between Dt and D chromosomes, but confirmed two reciprocal translocations between At chromosomes and several inversions. Concentrations of probes in corresponding regions of the various genomes may represent centromeres, while genome-specific concentrations may represent heterochromatin. Locus duplication patterns reveal all 13 expected homeologous chromosome sets and lend new support to the possibility that a more ancient polyploidization event may have predated the A-D divergence of 6-11 million years ago. Identification of SSRs within 312 RFLP sequences plus direct mapping of 124 SSRs and exploration for CAPS and SNPs illustrate the "portability" of these STS loci across populations and detection systems useful for marker-assisted improvement of the world's leading fiber crop. These data provide new insights into polyploid evolution and represent a foundation for assembly of a finished sequence of the cotton genome.
Collapse
Affiliation(s)
- Junkang Rong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Han ZG, Guo WZ, Song XL, Zhang TZ. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 2004; 272:308-27. [PMID: 15368122 DOI: 10.1007/s00438-004-1059-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 08/25/2004] [Indexed: 11/27/2022]
Abstract
To increase the numbers of microsatellites available for use in constructing a genetic map, and facilitate the use of functional genomics to elucidate fiber development and breeding in cotton, we sampled microsatellite sequences from expressed sequence tags (ESTs) transcribed during fiber elongation in the A-genome species Gossypium arboreum to evaluate their frequency of occurrence, level of polymorphism and distribution in the At and Dt subgenomes of tetraploid cotton. From among ESTs derived from G. arboreum fibers at 7-10 days post anthesis (dpa), 931 ESTs were found to contain simple sequence repeats (SSRs); 544 (58.4%) EST-SSR primer pairs were developed, and 468 (86%) amplified PCR products from allotetraploid cotton (G. hirsutumcv. TM-1 and G. barbadense cv. Hai7124). However, only 99 (18.2%) of these were found to be polymorphic and segregating in our interspecific BC1 mapping population [(TM-1xHai7124)xTM-1]. In these amplified and informative EST-SSRs, hexa- and tri-nucleotide repeat motifs were the most frequent, representing 40.1 and 30%, respectively, of the total. A total of 111 loci detected with these 99 EST-SSRs were integrated into our backbone map including 511 SSR loci. The distribution of the EST-SSRs appeared to be non-random, since 72 loci were anchored to the At and 37 to the Dt subgenome of allotetraploid cotton based on linkage tests. Interestingly, out of the 10 pairs of duplicate loci amplified, seven were mapped to the corresponding homologous linkage groups and/or chromosomes. BLASTX analysis revealed that 69 of the 99 ESTs showed significant similarities to known genes. Some genes important for fiber development, such as sucrose synthase, were mapped to corresponding chromosomes. These EST-SSRs provide structural and functional genomic information that will be useful for understanding cotton fiber development.
Collapse
Affiliation(s)
- Z-G Han
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, 210095 Nanjing, China
| | | | | | | |
Collapse
|
148
|
SANG TAO, PAN JIN, ZHANG DAMING, FERGUSON DIANE, WANG CHAO, PAN KAIYU, HONG DEYUAN. Origins of polyploids: an example from peonies (Paeonia) and a model for angiosperms. Biol J Linn Soc Lond 2004. [DOI: 10.1111/j.1095-8312.2004.00341.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
149
|
Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D. A microsatellite map of white clover. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:596-608. [PMID: 15103407 DOI: 10.1007/s00122-004-1658-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 03/08/2004] [Indexed: 05/24/2023]
Abstract
The white clover ( Trifolium repens) nuclear genome (n = 2x = 16) is an important yet under-characterised genetic environment. We have developed simple sequence repeat (SSR) genetic markers for the white clover genome by mining an expressed sequence tag (EST) database and by isolation from enriched genomic libraries. A total of 2,086 EST-derived SSRs (EST-SSRs) were identified among 26,480 database accessions. Evaluation of 792 EST-SSR primer pairs resulted in 566 usable EST-SSRs. Of these, 335 polymorphic EST-SSRs, used in concert with 30 genomic SSRs, detected 493 loci in the white clover genome using 92 F1 progeny from a pair cross between two highly heterozygous genotypes--364/7 and 6525/5. Map length, as estimated using the joinmap algorithm, was 1,144 cM and spanned all 16 homologues. The R (red leaf) locus was mapped to linkage group B1 and is tightly linked to the microsatellite locus prs318c. The eight homoeologous pairs of linkage groups within the white clover genome were identified using 96 homoeologous loci. Segregation distortion was detected in four areas (groups A1, D1, D2 and H2). Marker locus density varied among and within linkage groups. This is the first time EST-SSRs have been used to build a whole-genome functional map and to describe subgenome organisation in an allopolyploid species, and T. repens is the only Trifolieae species to date to be mapped exclusively with SSRs. This gene-based microsatellite map will enable the resolution of quantitative traits into Mendelian characters, the characterisation of syntenic relationships with other genomes and acceleration of white clover improvement programmes.
Collapse
Affiliation(s)
- B Barrett
- AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
ZENG CHANG, WANG JIAN, LIU AI, WU XIAO. Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species. ANNALS OF BOTANY 2004; 93:555-66. [PMID: 15037452 PMCID: PMC4242321 DOI: 10.1093/aob/mch080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Seed coat morphology is known to be an excellent character for taxonomic and evolutionary studies, thus understanding its structure and development has been an important goal for biologists. This research aimed to identify the developmental differences of seed coats between amphidiploids and their putative parents in Brassica. METHODS Scanning electron microscope (SEM) studies were carried out on six species (12 accessions), three amphidiploids and their three diploid parents. KEY RESULTS Twelve types of basic ornamentation patterns were recognized during the whole developmental process of the seed coat. Six types of seed coat patterns appeared in three accessions of Brassica rapa, five types in B. oleracea, B. nigra and B. carinata, seven types in B. napus, and eight types in B. juncea. There was less difference among seed coat patterns of the three accessions of B. rapa. The reticulate and blister types were two of the most common patterns during the development of seeds in the six species, the blister-pimple and the pimple-foveate patterns were characteristic of B. rapa, and the ruminate of B. oleracea and B. nigra. The development of seed coat pattern in amphidiploids varied complicatedly. Some accessions showed intermediate patterns between the two putative parents, while others resembled only one of the two parents. CONCLUSIONS The variation in the patterns of seed coat development could be used to provide a new and more effective way to analyse the close relationship among amphidiploids and their ancestral parents.
Collapse
Affiliation(s)
- CHANG‐LI ZENG
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- College of Medicine and Life Sciences, Jianghan University, Wuhan, 430056, China
| | - JIAN‐BO WANG
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - AI‐HUA LIU
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - XIAO‐MING WU
- Oil Crops Research Institute and The Chinese Agricultural Academy of Sciences, Wuhan, 430062, China
| |
Collapse
|