101
|
Gesbert F, Sellers WR, Signoretti S, Loda M, Griffin JD. BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J Biol Chem 2000; 275:39223-30. [PMID: 11010972 DOI: 10.1074/jbc.m007291200] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Deregulation of cell cycle checkpoints is an almost universal abnormality in human cancers and is most often due to loss-of-function mutations of tumor suppressor genes such as Rb, p53, or p16(INK4a). In this study, we demonstrate that BCR/ABL inhibits the expression of a key cell cycle inhibitor, p27(Kip1), by signaling through a pathway involving phosphatidylinositol 3-kinase (PI3K). p27(Kip1) is a widely expressed inhibitor of cdk2, an essential cell cycle kinase regulating entry into S phase. We demonstrate that the decrease of p27(Kip1) is directly due to BCR/ABL in hematopoietic cells by two different approaches. First, induction of BCR/ABL by a tetracycline-regulated promoter is associated with a reversible down-regulation of p27(Kip1). Second, inhibition of BCR/ABL kinase activity with the Abl tyrosine kinase inhibitor STI571 rapidly increases p27(Kip1) levels. The PI3K inhibitor LY-294002 blocks the ability of BCR/ABL to induce p27(Kip1) down-regulation and inhibits BCR/ABL-induced entry into S phase. The serine/threonine kinase AKT/protein kinase B is a known downstream target of PI3K. Transient expression of an activated mutant of AKT was found to decrease expression of p27(Kip1), even when PI3K was inhibited by LY-294002. The mechanism of p27(Kip1) regulation is primarily related to protein stability, since inhibition of proteasome activity increased p27(Kip1) levels in BCR/ABL-transformed cells, whereas very little change in p27 transcription was found. Overall, these data are consistent with a model in which BCR/ABL suppresses p27(Kip1) protein levels through PI3K/AKT, leading to accelerated entry into S phase. This activity is likely to explain in part previous studies showing that activation of PI3K was required for optimum transformation of hematopoietic cells by BCR/ABL in vitro and in vivo.
Collapse
Affiliation(s)
- F Gesbert
- Department of Adult Oncology, Dana Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
102
|
Abstract
Cyclin-dependent kinases are the key regulators of cell-cycle transitions. In mammalian cells, Cdk2, Cdk4, Cdk6 and associated cyclins control the G(1) to S phase transition. Because proper regulation of this transition is critical for an organism's survival, these protein kinases are exquisitely regulated at different mechanistic levels and in response to a large variety of intrinsic and extrinsic signals.
Collapse
Affiliation(s)
- S V Ekholm
- Department of Oncology/Pathology, Cancer Center Karolinska, Karolinska Insitutet, 17176, Stockholm, Sweden
| | | |
Collapse
|
103
|
Zhang S, Lawless VA, Kaplan MH. Cytokine-stimulated T lymphocyte proliferation is regulated by p27Kip1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6270-7. [PMID: 11086062 DOI: 10.4049/jimmunol.165.11.6270] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T lymphocyte growth is regulated by the cyclin-dependent kinase inhibitor p27(Kip1). Mice deficient in p27(Kip1) have increased proliferative responses to multiple cytokines, including IL-2, IL-4, and IL-12, but not to anti-CD3. In the absence of p27(Kip1), T cells proliferate faster than control cells, as evidenced by increased [(3)H]thymidine uptake, increased cell growth and division, and an increased number of cells in S phase. Importantly, this regulation is specific for p27(Kip1) in T cells, because hyperproliferation of T cells from mice deficient in p21(Cip1/Waf1) was not observed. In vivo, there is an expansion of activated/memory CD4(+) cells in p27(Kip1)-deficient mice before and after immunization. Furthermore, Ag-stimulated spleen cells from immunized p27(Kip1)-deficient mice demonstrated increased proliferative responses to IL-2 and increased secretion of IFN-gamma. Although IL-4 stimulated proliferative responses are diminished in Stat6-deficient T cells, activated T cells from mice doubly deficient in both p27(Kip1) and Stat6 recover normal proliferative responses to IL-4. Together, these data firmly support a role for p27(Kip1) as a negative regulator of cytokine-stimulated T cell growth.
Collapse
Affiliation(s)
- S Zhang
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
104
|
Bagui TK, Jackson RJ, Agrawal D, Pledger WJ. Analysis of cyclin D3-cdk4 complexes in fibroblasts expressing and lacking p27(kip1) and p21(cip1). Mol Cell Biol 2000; 20:8748-57. [PMID: 11073976 PMCID: PMC86501 DOI: 10.1128/mcb.20.23.8748-8757.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our studies examined the effects of p27(kip1) and p21(cip1) on the assembly and activity of cyclin D3-cdk4 complexes and determined the composition of the cyclin D3 pool in cells containing and lacking these cyclin-dependent kinase inhibitors. We found that catalytically active cyclin D3-cdk4 complexes were present in fibroblasts derived from p27(kip1)-p21(cip1)-null mice and that immunodepletion of extracts of wild-type cells with antibody to p27(kip1) and/or p21(cip1) removed cyclin D3 protein but not cyclin D3-associated activity. Similar results were observed in experiments assaying cyclin D1-cdk4 activity. Data obtained using mixed cell extracts demonstrated that p27(kip1) interacted with cyclin D3-cdk4 complexes in vitro and that this interaction was paralleled by a loss of cyclin D3-cdk4 activity. In p27(kip1)-p21(cip1)-deficient cells, the cyclin D3 pool consisted primarily of cyclin D3 monomers, whereas in wild-type cells, the majority of cyclin D3 molecules were complexed to cdk4 and either p27(kip1) or p21(cip1) or were monomeric. We conclude that neither p27(kip1) nor p21(cip1) is required for the formation of cyclin D3-cdk4 complexes and that cyclin D3-cdk4 complexes containing p27(kip1) or p21(cip1) are inactive. We suggest that only a minor portion of the total cyclin D3 pool accounts for all of the cyclin D3-cdk4 activity in the cell regardless of whether the cell contains p27(kip1) and p21(cip1).
Collapse
Affiliation(s)
- T K Bagui
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | |
Collapse
|
105
|
Mori S, Nishikawa SI, Yokota Y. Lactation defect in mice lacking the helix-loop-helix inhibitor Id2. EMBO J 2000; 19:5772-81. [PMID: 11060028 PMCID: PMC305805 DOI: 10.1093/emboj/19.21.5772] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2000] [Revised: 08/02/2000] [Accepted: 09/15/2000] [Indexed: 11/14/2022] Open
Abstract
Id proteins are thought to be negative regulators of cell differentiation and positive regulators of cell proliferation. Mammary glands of Id2(-/-) female mice reveal severely impaired lobulo-alveolar development during pregnancy. Id2(-/-) mammary epithelia show no precocious maturation, but instead exhibit intrinsic defects in both cell proliferation and cell survival, implying that the role of Id2 in pregnant mammary epithelia is mainly stimulation of cell proliferation and support of cell viability. Expression studies of genes required for mammary gland development suggest Id2 to be a downstream or parallel factor of these genes. A decrease in the DNA binding activity of Stat5 was also observed in Id2(-/-) mammary glands at 7 days post-coitus. Our results indicate an indispensable role of Id2 in pregnant mammary glands.
Collapse
Affiliation(s)
- S Mori
- Department of Molecular Genetics, Kyoto University Graduate School of Medicine, Shogoin Kawahara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
106
|
Izban KF, Alkan S, Singleton TP, Hsi ED. Multiparameter immunohistochemical analysis of the cell cycle proteins cyclin D1, Ki-67, p21WAF1, p27KIP1, and p53 in mantle cell lymphoma. Arch Pathol Lab Med 2000; 124:1457-62. [PMID: 11035575 DOI: 10.5858/2000-124-1457-miaotc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is characterized by overexpression of cyclin D1, a G1 cyclin that participates in the control of cell cycle progression at the G1 to S phase transition. In addition to cyclin D1, other cell cycle regulatory molecules may be involved in the proliferation and progression of MCL. Mutation of p53, deletion of p16(INK4a), and loss of p21(WAF1) expression have been reported in some cases of blastoid MCL. OBJECTIVE We sought to examine levels of expression of these proteins in typical and blastoid MCL and to determine whether differences were present between these subtypes of lymphomas. DESIGN A retrospective series of typical and blastoid MCLs was evaluated for expression of the cell cycle-related proteins cyclin D1, p21(WAF1), p27(KIP1), Ki-67, and p53, as well as mitotic index. Paraffin-embedded archival tissues from 24 MCL specimens (17 typical, 7 blastoid) were immunostained with antibodies to p21(WAF1), p27(KIP1), p53, Ki-67, and cyclin D1. The percentage of positive cells for each specimen was estimated by counting 1500 cells under oil immersion microscopy. Levels of antigen expression were compared for the typical and blastoid MCLs. The mitotic index was estimated using twenty 100x oil immersion fields (OIFs) for each specimen. RESULTS Cyclin D1 expression was seen in 22/24 specimens (92%). Blastoid MCLs were characterized by a significantly higher mean mitotic index (>20 mitoses/20 OIFs) and Ki-67 index (>45%) when compared with typical MCLs (P <.001 and P <.008, respectively; Fisher's exact test). High expression of p27(KIP1) (>25% staining) was seen more frequently in typical MCLs than in the blastoid variants (P =.03; Fisher's exact test). No significant differences were found between typical and blastoid MCLs for the expression of p21(WAF1) or p53. CONCLUSIONS A significantly higher mitotic index and Ki-67 index were found in blastoid MCLs as compared with typical MCLs. Low p27(KIP1) expression was associated with the blastoid MCL variant. These findings confirm the high proliferative nature of blastoid MCL and suggest a role for p27(KIP1) in the negative regulation of the cell cycle in MCL.
Collapse
Affiliation(s)
- K F Izban
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | | | | | | |
Collapse
|
107
|
Chilosi M, Chiarle R, Lestani M, Menestrina F, Montagna L, Ambrosetti A, Prolla G, Pizzolo G, Doglioni C, Piva R, Pagano M, Inghirami G. Low expression of p27 and low proliferation index do not correlate in hairy cell leukaemia. Br J Haematol 2000; 111:263-71. [PMID: 11091210 DOI: 10.1046/j.1365-2141.2000.02210.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular basis accounting for the peculiar clinical and biological features of hairy cell leukaemia (HCL) is currently unknown. Deregulation of cell cycle genes plays a significant role in oncogenesis and there is considerable evidence suggesting that Cdk inhibitors (Ckis) function as tumour suppressors. We and others have recently demonstrated low expression of Cki p27 in very aggressive neoplasms and high-grade lymphomas. To investigate whether HCL cases express normal p27 protein, as in other low-grade lymphomas with a low proliferation index, 58 cases of HCL were characterized using a sensitive biotin-streptavidin-immunoperoxidase technique and specific antibodies against p27. All HCL cases showed either no or very weak reactivity, in contrast to other types of low-grade B-cell lymphoma [22 cases of chronic lymphocytic leukaemia (CLL), 12 cases of gastric marginal B-cell lymphoma (MALT), 16 cases of follicular lymphomas and two cases of splenic marginal zone lymphomas]. To investigate the possible mechanism(s) accounting for the low p27 expression observed in hairy cells, multiple approaches were used. According to these molecular studies, low levels of p2 7 are not as a result of (1) increased ubiquitin-mediated degradation, (2) decreased levels of p27 transcription or (3) p27 somatic mutations and/or allelic loss. These findings suggest that low p27 protein expression in HCL may be achieved through post-transcriptional regulation. Finally, our data demonstrate that p27 expression in HCL does not correlate with either cell cycle progression or proliferation index, suggesting that low levels of p27 in hairy cells may be associated with their unique stage of B-cell differentiation and/or the activation of as yet unknown pathways.
Collapse
Affiliation(s)
- M Chilosi
- Institute of Anatomic Pathology, University of Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Taipale M, Tiihonen E, Heiskanen A, Laiho M. Accumulation of a form of p27(Kip1) not associated with Cdk-cyclin complexes in transforming growth factor-beta-arrested Mv1Lu cells. Exp Cell Res 2000; 259:107-16. [PMID: 10942583 DOI: 10.1006/excr.2000.4959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The p27(Kip1) cyclin-dependent kinase inhibitor translocates in response to transforming growth factor-beta to a Cdk2-cyclin E complex inhibiting its catalytic activity, but the p27(Kip1) protein levels are unaffected [1]. We show here that transforming growth factor-beta induces the accumulation of a form of p27(Kip1) representing a subpopulation of total p27(Kip1) in growth-arrested Mv1Lu epithelial cells. The inducible p27(Kip1) is detectable only by a specific p27(Kip1) monoclonal antibody recognizing a native form of p27(Kip1). The increase in this subset of p27(Kip1) correlates with G(1) arrest and withdrawal of the cells from the cycle induced by transforming growth factor-beta, serum starvation, or contact inhibition. In contrast to the majority of p27(Kip1) in the cells, the transforming growth factor-beta-inducible p27(Kip1) is devoid of cyclin-dependent kinase/cyclin interactions. The results indicate that growth arresting treatments induce the accumulation of non-cyclin-dependent kinase-bound p27(Kip1), which may function as a reservoir for inhibition of Cdk2-cyclin E activities.
Collapse
Affiliation(s)
- M Taipale
- Department of Virology, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | | | |
Collapse
|
109
|
Millard SS, Vidal A, Markus M, Koff A. A U-rich element in the 5' untranslated region is necessary for the translation of p27 mRNA. Mol Cell Biol 2000; 20:5947-59. [PMID: 10913178 PMCID: PMC86072 DOI: 10.1128/mcb.20.16.5947-5959.2000] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2000] [Accepted: 05/18/2000] [Indexed: 01/01/2023] Open
Abstract
Increased translation of p27 mRNA correlates with withdrawal of cells from the cell cycle. This raised the possibility that antimitogenic signals might mediate their effects on p27 expression by altering complexes that formed on p27 mRNA, regulating its translation. In this report, we identify a U-rich sequence in the 5' untranslated region (5'UTR) of p27 mRNA that is necessary for efficient translation in proliferating and nonproliferating cells. We show that a number of factors bind to the 5'UTR in vitro in a manner dependent on the U-rich element, and their availability in the cytosol is controlled in a growth- and cell cycle-dependent fashion. One of these factors is HuR, a protein previously implicated in mRNA stability, transport, and translation. Another is hnRNP C1 and C2, proteins implicated in mRNA processing and the translation of a specific subset of mRNAs expressed in differentiated cells. In lovastatin-treated MDA468 cells, the mobility of the associated hnRNP C1 and C2 proteins changed, and this correlated with increased p27 expression. Together, these data suggest that the U-rich dependent RNP complex on the 5'UTR may regulate the translation of p27 mRNA and may be a target of antimitogenic signals.
Collapse
Affiliation(s)
- S S Millard
- Graduate Program in Cell Biology and Genetics, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
110
|
Zhao Z, Chang FC, Furneaux HM. The identification of an endonuclease that cleaves within an HuR binding site in mRNA. Nucleic Acids Res 2000; 28:2695-701. [PMID: 10908325 PMCID: PMC102663 DOI: 10.1093/nar/28.14.2695] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2000] [Revised: 05/26/2000] [Accepted: 05/26/2000] [Indexed: 01/16/2023] Open
Abstract
Messenger RNAs (mRNAs) that contain U-rich elements are targeted for rapid decay. Selective inhibition of this decay results in a rapid increase in steady state level. Thus, this is an important regulatory step in gene expression. Previously, we have found that these mRNAs are selectively stabilized by a specific mRNA binding protein called HuR. The mechanism of action of HuR is not well understood. It has been postulated that HuR stabilizes mRNA by the displacement or inhibition of factors that specifically cleave or deadenyl-ate these mRNAs. In this paper, we report the identification and characterization of a novel endo-nuclease that cleaves within an HuR binding site in p27kip1 mRNA. The specificity of this endonuclease and its inhibition by HuR argue for it playing a role in the postranscriptional regulation of gene expression.
Collapse
Affiliation(s)
- Z Zhao
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
111
|
Vairo G, Soos TJ, Upton TM, Zalvide J, DeCaprio JA, Ewen ME, Koff A, Adams JM. Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol Cell Biol 2000; 20:4745-53. [PMID: 10848600 PMCID: PMC85901 DOI: 10.1128/mcb.20.13.4745-4753.2000] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1999] [Accepted: 04/13/2000] [Indexed: 01/20/2023] Open
Abstract
Independent of its antiapoptotic function, Bcl-2 can, through an undetermined mechanism, retard entry into the cell cycle. Cell cycle progression requires the phosphorylation by cyclin-dependent kinases (Cdks) of retinoblastoma protein (pRB) family members to free E2F transcription factors. We have explored whether retarded cycle entry is mediated by the Cdk inhibitor p27 or the pRB family. In quiescent fibroblasts, enforced Bcl-2 expression elevated levels of both p27 and the pRB relative p130. Bcl-2 still slowed G(1) progression in cells deficient in pRB but not in those lacking p27 or p130. Hence, pRB is not required, but both p27 and p130 are essential mediators. The ability of p130 to form repressive complexes with E2F4 is implicated, because the retardation by Bcl-2 was accentuated by coexpressed E2F4. A plausible relevant target of p130/E2F4 is the E2F1 gene, because Bcl-2 expression delayed E2F1 accumulation during G(1) progression and overexpression of E2F1 overrode the Bcl-2 inhibition. Hence, Bcl-2 appears to retard cell cycle entry by increasing p27 and p130 levels and maintaining repressive complexes of p130 with E2F4, perhaps to delay E2F1 expression.
Collapse
Affiliation(s)
- G Vairo
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Zhang X, Wharton W, Donovan M, Coppola D, Croxton R, Cress WD, Pledger WJ. Density-dependent growth inhibition of fibroblasts ectopically expressing p27(kip1). Mol Biol Cell 2000; 11:2117-30. [PMID: 10848633 PMCID: PMC14907 DOI: 10.1091/mbc.11.6.2117] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The cyclin/cyclin-dependent kinase (cdk) inhibitor p27(kip1) is thought to be responsible for the onset and maintenance of the quiescent state. It is possible, however, that cells respond differently to p27(kip1) in different conditions, and using a BALB/c-3T3 cell line (termed p27-47) that inducibly expresses high levels of this protein, we show that the effect of p27(kip1) on cell cycle traverse is determined by cell density. We found that ectopic expression of p27(kip1) blocked the proliferation of p27-47 cells at high density but had little effect on the growth of cells at low density whether exponentially cycling or stimulated from quiescence. Regardless of cell density, the activities of cdk4 and cdk2 were markedly repressed by p27(kip1) expression, as was the cdk4-dependent dissociation of E2F4/p130 complexes. Infection of cells with SV40, a DNA tumor virus known to abrogate formation of p130- and Rb-containing complexes, allowed dense cultures to proliferate in the presence of supraphysiological amounts of p27(kip1) but did not stimulate cell cycle traverse when cultures were cotreated with the potent cdk2 inhibitor roscovitine. Our data suggest that residual levels of cyclin/cdk activity persist in p27(kip1)-expressing p27-47 cells and are sufficient for the growth of low-density cells and of high-density cells infected with SV40, and that effective disruption of p130 and/or Rb complexes is obligatory for the proliferation of high-density cultures.
Collapse
Affiliation(s)
- X Zhang
- Molecular Oncology Program, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
In the cellular program leading to DNA synthesis, signals that drive cells into S-phase converge at the level of CDK activity. The products of at least three different gene families, Ink4, Cip/Kip and the pRb pocket-protein family, suppress S-phase entry. Ink4 proteins act by antagonizing the formation and activation of cyclin D-CDK4 complexes, of which the ultimate downstream target as related to S-phase entry appears to be pRb. Cip/Kip inhibitors impinge upon that pathway by inhibiting CDK2 kinases that participate in the inactivation of pRb and, like cyclin E, may also have roles independent of pRb. How the activities of these three classes of proteins are coordinated remains obscure. In recent years, development of mouse models has accelerated the elucidation of this complex network, showing roles that are sometimes cooperative and sometimes overlapping. We will discuss the interrelationships between Cip/Kip inhibitors and the components of the pRb pathway, and how their activities ultimately regulate cell proliferation.
Collapse
Affiliation(s)
- A Vidal
- Laboratory of Cell Cycle Regulation, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
114
|
Abstract
p27 is a cell cycle inhibitor whose cellular abundance increases in response to many antimitogenic stimuli. In this review, we summarize the current knowledge on p27 function and its regulation by synthesis and by ubiquitin-mediated degradation. Importantly, p27 degradation is enhanced in many aggressive human tumors. The frequency with which this is observed suggests that loss of p27 may confer a growth advantage to these cancers. From a practical point of view, immunodetection of p27 in tumors may prove to be useful in the assessment of prognosis and may ultimately influence the therapy of this disease.
Collapse
Affiliation(s)
- J Slingerland
- Department of Medicine, University of Toronto, Toronto Ontario, Canada
| | | |
Collapse
|
115
|
Abstract
p27 is a cell cycle inhibitor whose cellular abundance increases in response to many antimitogenic stimuli. In this review, we summarize the current knowledge on p27 function and its regulation by synthesis and by ubiquitin-mediated degradation. Importantly, p27 degradation is enhanced in many aggressive human tumors. The frequency with which this is observed suggests that loss of p27 may confer a growth advantage to these cancers. From a practical point of view, immunodetection of p27 in tumors may prove to be useful in the assessment of prognosis and may ultimately influence the therapy of this disease.
Collapse
Affiliation(s)
- J Slingerland
- Department of Medicine, University of Toronto, Toronto Ontario, Canada
| | | |
Collapse
|
116
|
Abstract
In any multi-cellular organism, the balance between cell division and cell death maintains a constant cell number. Both cell division cycle and cell death are highly regulated events. Whether the cell will proceed through the cycle or not, depends upon whether the conditions required at the checkpoints during the cycle are fulfilled. In higher eucaryotic cells, such as mammalian cells, signals that arrest the cycle usually act at a G1 checkpoint. Cells that pass this restriction point are committed to complete the cycle. Regulation of the G1 phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family, cyclin dependent kinases, cyclins, and cyclin kinase inhibitors.
Collapse
Affiliation(s)
- D Donjerkovic
- Department of Immunology, Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD, USA
| | | |
Collapse
|
117
|
Servant MJ, Coulombe P, Turgeon B, Meloche S. Differential regulation of p27(Kip1) expression by mitogenic and hypertrophic factors: Involvement of transcriptional and posttranscriptional mechanisms. J Cell Biol 2000; 148:543-56. [PMID: 10662779 PMCID: PMC2174813 DOI: 10.1083/jcb.148.3.543] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Accepted: 12/29/1999] [Indexed: 12/19/2022] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB) acts as a full mitogen for cultured aortic smooth muscle cells (SMC), promoting DNA synthesis and cell proliferation. In contrast, angiotensin II (Ang II) induces cellular hypertrophy as a result of increased protein synthesis, but is unable to drive cells into S phase. In an effort to understand the molecular basis for this differential growth response, we have examined the downstream effects of PDGF-BB and Ang II on regulators of the cell cycle machinery in rat aortic SMC. Both PDGF-BB and Ang II were found to stimulate the accumulation of G(1) cyclins with similar kinetics. In addition, little difference was observed in the expression level of their catalytic partners, Cdk4 and Cdk2. However, while both factors increased the enzymatic activity of Cdk4, only PDGF-BB stimulated Cdk2 activity in late G(1) phase. The lack of activation of Cdk2 in Ang II-treated cells was causally related to the failure of Ang II to stimulate phosphorylation of the enzyme on threonine and to downregulate p27(Kip1) expression. By contrast, exposure to PDGF-BB resulted in a progressive and dramatic reduction in the level of p27(Kip1) protein. The time course of p27(Kip1) decline was correlated with a reduced rate of synthesis and an increased rate of degradation of the protein. Importantly, the repression of p27(Kip1) synthesis by PDGF-BB was associated with a marked attenuation of Kip1 gene transcription and a corresponding decrease in Kip1 mRNA accumulation. We also show that the failure of Ang II to promote S phase entry is not related to the autocrine production of transforming growth factor-beta1 by aortic SMC. These results identify p27(Kip1) as an important regulator of the phenotypic response of vascular SMC to mitogenic and hypertrophic stimuli.
Collapse
Affiliation(s)
- Marc J. Servant
- Research Centre, Centre hospitalier de l'Université de Montréal and Department of Pharmacology, University of Montreal, Montreal, Quebec, H2W 1T8 Canada
| | - Philippe Coulombe
- Research Centre, Centre hospitalier de l'Université de Montréal and Department of Pharmacology, University of Montreal, Montreal, Quebec, H2W 1T8 Canada
| | - Benjamin Turgeon
- Research Centre, Centre hospitalier de l'Université de Montréal and Department of Pharmacology, University of Montreal, Montreal, Quebec, H2W 1T8 Canada
| | - Sylvain Meloche
- Research Centre, Centre hospitalier de l'Université de Montréal and Department of Pharmacology, University of Montreal, Montreal, Quebec, H2W 1T8 Canada
| |
Collapse
|
118
|
Tsihlias J, Zhang W, Bhattacharya N, Flanagan M, Klotz L, Slingerland J. Involvement of p27Kip1 in G1 arrest by high dose 5 alpha-dihydrotestosterone in LNCaP human prostate cancer cells. Oncogene 2000; 19:670-9. [PMID: 10698512 DOI: 10.1038/sj.onc.1203369] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cell cycle is governed by cyclin dependent kinases (cdks), which are activated by binding of cyclins, inhibited by cdk inhibitors and regulated by phosphorylation and dephosphorylation. Exposure to high dose dihydrotestosterone (DHT) inhibits population growth of the human prostate carcinoma cell line, LNCaP. To determine the mechanism of growth arrest by high dose DHT, we assayed the changes in cell cycle profile and the cell cycle regulators that mediate these effects. Treatment of asynchronously growing LNCaP cells with 100 nM DHT caused a G1 arrest. The proportion of cells in S phase fell from 22 to 2%, while the G1 fraction rose from 74 to 92% by 24 h. Loss of phosphorylation of the retinoblastoma protein was noted and cdk4 and cyclin E/ cdk2 activities fell. Inhibition of these G1 cyclin dependent kinases was not due to loss of either cyclin or cdk proteins nor to increases in the cdk inhibitors p16INK4A and p21CiP1. p21Cip1 protein levels remained constant, and cyclin E-associated p21CiP1 fell, suggesting that p21CiP1 is not relevant to this form of cyclin E/cdk2 inhibition. Of note, total p27KiP1 levels and cyclin E-associated p27Kip1 increased as cells arrested and the amount of the CAK activated cdk2 bound to cyclin E decreased. p27KiP1 immunodepletion experiments demonstrated that the DHT-mediated increase in p27Kip1 was sufficient to fully saturate and inhibit target cyclin E/ cdk2. The inhibition of cyclin E/cdk2 by p27Kip1 contributes to G1 arrest of LNCaP following high dose DHT. p27KiP1 may be a key effector of androgen dependent growth modulation in prostate cancer cells.
Collapse
Affiliation(s)
- J Tsihlias
- Division of Cancer Research, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
119
|
Liu J, Estes ML, Drazba JA, Liu H, Prayson R, Kondo S, Jacobs BS, Barnett GH, Barna BP. Anti-sense oligonucleotide of p21(waf1/cip1) prevents interleukin 4-mediated elevation of p27(kip1) in low grade astrocytoma cells. Oncogene 2000; 19:661-9. [PMID: 10698511 DOI: 10.1038/sj.onc.1203373] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elevation of the cyclin-dependent kinase (cdk) inhibitor, p27(kip1) is necessary for Interleukin (IL)-4-mediated growth arrest of human low grade astrocytoma (RTLGA) cells and occurs at 24 h of treatment. Pathways involved in IL4 alteration of p27(kip1) are unknown, however. Here we investigated whether other cdk inhibitors contributed to the actions of IL-4 on RTLGA cells. By 12 h of IL-4 treatment, both cdk4 and cdk2 kinase activities against the retinoblastoma protein (pRb) were reduced and nuclear entry of pRb was prohibited. Twelve-hour cdk complexes contained elevated p21(waf1/cip1) but not p27(kip1), p15(ink4B) or p16(ink4A). IL-4 increased p21(waf1/cip1) but not p27(kip1) mRNA levels, and stimulated luciferase activity of a p21(waf1/cip1) promoter-luciferase reporter. In p53-mutant WITG3 cells, IL-4 did not alter p21(waf1/cip1) mRNA and promoter-luciferase activity or p27(kipl) protein, suggesting a need for functional p53. STAT6 phosphorylation by IL-4, however, occurred in both p53-mutant WITG3 and p53-functional RTLGA cells. Pre-treatment of RTLGA with anti-sense but not missense p21(waf1/cip1) oligonucleotide prior to IL-4: (a) restored cdk activities; (b) reduced cdk4-associated p21(waf1/cip1) levels; (c) prevented p27(kipl) elevation; and (d) reversed growth arrest. These results are the first to suggest that p21(waf1/cip1) is essential for IL-4-mediated elevation of p27(kip) and growth arrest of astrocytoma cells.
Collapse
Affiliation(s)
- J Liu
- Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Increased proteasome degradation of cyclin-dependent kinase inhibitor p27 is associated with a decreased overall survival in mantle cell lymphoma. Blood 2000. [DOI: 10.1182/blood.v95.2.619] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive neoplasm characterized by the deregulated expression of cyclin D1 by t(11;14). The molecular mechanisms responsible for MCL's clinical behavior remain unclear. The authors have investigated the expression of p53, E2F-1, and the CDK inhibitors p27 and p21 in 110 MCLs, relating their expression to proliferative activity (Ki-67). For comparison, they have similarly analyzed low-grade (12 MALT, 16 CLL/SLL) and high-grade (19 DLCL) lymphomas. p53 was detected more frequently in large-cell MCL (l-MCL; 5 of 7) than in classical MCL (s-MCL; 13 of 103) and DLCL (8 of 19). In MCL and DLCL, the percentage of E2F-1+ nuclei was high, correlating with high Ki-67 expression. Most MCLs (91 of 112) and DLCLs (12 of 19) showed a loss of p27; MALT and CLL/SLL, however, were p27 positive. Reverse transcription–polymerase chain reaction and in vitro protein degradation assays demonstrated that MCLs have normal p27 mRNA expression but increased p27 protein degradation activity via the proteasome pathway. Correlation of MCL p53 and p27 expression with clinical data showed an association between reduced overall survival rates and the overexpression of p53 (P = .001), the loss of p27 (P = .002), or both. Loss of p27 identified patients with a worse clinical outcome among p53 negative cases (P = .002). These findings demonstrated that MCL has a distinct cell cycle protein expression similar to that of high-grade lymphoma. The loss of p27 and the overexpression of p53 in MCL are prognostic markers that identify patients at high risk. The demonstration that low levels of p27 in MCL result from enhanced proteasome-mediated degradation should encourage additional clinical trials. (Blood. 2000;95:619-626)
Collapse
|
121
|
Wang G, Miskimins R, Miskimins WK. Mimosine arrests cells in G1 by enhancing the levels of p27(Kip1). Exp Cell Res 2000; 254:64-71. [PMID: 10623466 DOI: 10.1006/excr.1999.4743] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plant amino acid mimosine, an effective inhibitor of DNA replication, has been demonstrated to arrest cell cycle progression in late G1. To understand further the molecular mechanism by which mimosine affects the cell cycle, we treated quiescent cells with serum in the presence of 800 microM mimosine. The cells did not enter S phase and were completely arrested in G1 phase. Although neither the mitogenic induction of the G1 cyclins nor the protein levels of cdk2 or cdk4 were affected, serum-dependent activation of cdk2 was blocked. This corresponded to elevated levels of the cdk inhibitor p27(Kip1). This was not mediated through inhibition of degradation but rather involved increased synthesis of both p27(Kip1) mRNA and protein. Mimosine did not appear to affect mitogen-dependent signals that normally lead to p27(Kip1) downregulation since the inhibitor was induced to even greater levels in quiescent, unstimulated cells. In the presence of mimosine, actinomycin D treatment for 2 h prevented the increase of p27(Kip1) mRNA, but p27(Kip1) protein levels were still enhanced under these conditions. We propose that mimosine blocks the cell cycle in late G1 phase by upregulation of p27(Kip1) protein levels through transcriptional and posttranscriptional regulatory mechanisms.
Collapse
Affiliation(s)
- G Wang
- Division of Basic Biomedical Sciences, School of Medicine, Vermillion, South Dakota, 57069, USA
| | | | | |
Collapse
|
122
|
Wang G, Miskimins R, Miskimins WK. The cyclin-dependent kinase inhibitor p27Kip1 is localized to the cytosol in Swiss/3T3 cells. Oncogene 1999; 18:5204-10. [PMID: 10498870 DOI: 10.1038/sj.onc.1202912] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
p27Kip1 plays an important role in cell cycle progression by negatively regulating the activity of cyclin-Cdk complexes. To understand how p27Kip1 functions, the level and subcellular location of p27Kip1 in Swiss/3T3 cells following serum stimulation of quiescent cells was examined. Surprisingly, p27Kip1 was observed exclusively in the cytosol throughout G1 and into early S phase. However, as expected, p27Kip1 in the cytosolic fraction was greatly reduced following serum stimulation and reached very low levels by late G1. The decline in the level of p27Kip1 corresponded in time to an increase in the nuclear level of both Cdk2 and cyclin E. In quiescent 3T3 cells Cdk2 was inactive and co-precipitated with p27Kip1. After serum stimulation, both nuclear and cytosolic Cdk2 was activated and this corresponded to the decline in p27Kip1. Overexpression of p27Kip1 allowed accumulation of the inhibitor in the nucleus but inhibited entry of Cdk2 into the nucleus following serum stimulation. The subcellular localization of p27Kip1 was also examined in a variety of other mammalian cells. In all the cell lines examined the preponderance of p27Kip1 was found in the cytosolic fraction. However, a substantial level of nuclear p27Kip1 was observed for several cell lines. In a primary mixed glial cell culture p27Kip1 was localized to the nucleus. The results suggest that cytosolic p27Kip1 has a functional role in regulating cell cycle progression, possibly through inhibiting transport of cyclin E-Cdk 2 complexes into the nucleus.
Collapse
Affiliation(s)
- G Wang
- Division of Basic Biomedical Sciences, Biochemistry and Molecular Biology Group, University of South Dakota School of Medicine, Vermillion, South Dakota, SD 57069, USA
| | | | | |
Collapse
|
123
|
Park MS, Rosai J, Nguyen HT, Capodieci P, Cordon-Cardo C, Koff A. p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc Natl Acad Sci U S A 1999; 96:6382-7. [PMID: 10339596 PMCID: PMC26890 DOI: 10.1073/pnas.96.11.6382] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The commitment of cells to replicate and divide correlates with the activation of cyclin-dependent kinases and the inactivation of Rb, the product of the retinoblastoma tumor suppressor gene. Rb is a target of the cyclin-dependent kinases and, when phosphorylated, is inactivated. Biochemical studies exploring the nature of the relationship between cyclin-dependent kinase inhibitors and Rb have supported the hypothesis that these proteins are on a linear pathway regulating commitment. We have been able to study this relationship by genetic means by examining the phenotype of Rb+/-p27-/- mice. Tumors arise from the intermediate lobe cells of the pituitary gland in p27-/- mice, as well as in Rb+/- mice after loss of the remaining wild-type allele of Rb. Using these mouse models, we examined the genetic interaction between Rb and p27. We found that the development of pituitary tumors in Rb+/- mice correlated with a reduction in p27 mRNA and protein expression. To determine whether the loss of p27 was an indirect consequence of tumor formation or a contributing factor to the development of this tumor, we analyzed the phenotype of Rb+/-p27-/- mice. We found that these mice developed pituitary adenocarcinoma with loss of the remaining wild-type allele of Rb and a high-grade thyroid C cell carcinoma that was more aggressive than the disease in either Rb+/- or p27-/- mice. Importantly, we detected both pituitary and thyroid tumors earlier in the Rb+/-p27-/- mice. We therefore propose that Rb and p27 cooperate to suppress tumor development by integrating different regulatory signals.
Collapse
Affiliation(s)
- M S Park
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
124
|
Mitra J, Dai CY, Somasundaram K, El-Deiry WS, Satyamoorthy K, Herlyn M, Enders GH. Induction of p21(WAF1/CIP1) and inhibition of Cdk2 mediated by the tumor suppressor p16(INK4a). Mol Cell Biol 1999; 19:3916-28. [PMID: 10207115 PMCID: PMC84249 DOI: 10.1128/mcb.19.5.3916] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1998] [Accepted: 02/22/1999] [Indexed: 11/20/2022] Open
Abstract
The tumor suppressor p16(INK4a) inhibits cyclin-dependent kinases 4 and 6. This activates the retinoblastoma protein (pRB) and, through incompletely understood events, arrests the cell division cycle. To permit biochemical analysis of the arrest, we generated U2-OS osteogenic sarcoma cell clones in which p16 transcription could be induced. In these clones, binding of p16 to cdk4 and cdk6 abrogated binding of cyclin D1, p27(KIP1), and p21(WAF1/CIP1). Concomitantly, the total cellular level of p21 increased severalfold via a posttranscriptional mechanism. Most cyclin E-cdk2 complexes associated with p21 and became inactive, expression of cyclin A was curtailed, and DNA synthesis was strongly inhibited. Induction of p21 alone, in a sibling clone, to the level observed during p16 induction substantially reproduced these effects. Overexpression of either cyclin E or A prevented p16 from mediating arrest. We then extended these studies to HCT 116 colorectal carcinoma cells and a p21-null clone derived by homologous recombination. In the parental cells, p16 expression also augmented total cellular and cdk2-bound p21. Moreover, p16 strongly inhibited DNA synthesis in the parental cells but not in the p21-null derivative. These findings indicate that p21-mediated inhibition of cdk2 contributes to the cell cycle arrest imposed by p16 and is a potential point of cooperation between the p16/pRB and p14(ARF)/p53 tumor suppressor pathways.
Collapse
Affiliation(s)
- J Mitra
- Departments of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 1999; 13:1181-9. [PMID: 10323868 PMCID: PMC316946 DOI: 10.1101/gad.13.9.1181] [Citation(s) in RCA: 448] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/1999] [Accepted: 03/10/1999] [Indexed: 11/24/2022]
Abstract
The cellular abundance of the cyclin-dependent kinase (Cdk) inhibitor p27 is regulated by the ubiquitin-proteasome system. Activation of p27 degradation is seen in proliferating cells and in many types of aggressive human carcinomas. p27 can be phosphorylated on threonine 187 by Cdks, and cyclin E/Cdk2 overexpression can stimulate the degradation of wild-type p27, but not of a threonine 187-to-alanine p27 mutant [p27(T187A)]. However, whether threonine 187 phosphorylation stimulates p27 degradation through the ubiquitin-proteasome system or an alternative pathway is still not known. Here, we demonstrate that p27 ubiquitination (as assayed in vivo and in an in vitro reconstituted system) is cell-cycle regulated and that Cdk activity is required for the in vitro ubiquitination of p27. Furthermore, ubiquitination of wild-type p27, but not of p27(T187A), can occur in G1-enriched extracts only upon addition of cyclin E/Cdk2 or cyclin A/Cdk2. Using a phosphothreonine 187 site-specific antibody for p27, we show that threonine 187 phosphorylation of p27 is also cell-cycle dependent, being present in proliferating cells but undetectable in G1 cells. Finally, we show that in addition to threonine 187 phosphorylation, efficient p27 ubiquitination requires formation of a trimeric complex with the cyclin and Cdk subunits. In fact, cyclin B/Cdk1 which can phosphorylate p27 efficiently, but cannot form a stable complex with it, is unable to stimulate p27 ubiquitination by G1 extracts. Furthermore, another p27 mutant [p27(CK-)] that can be phosphorylated by cyclin E/Cdk2 but cannot bind this kinase complex, is refractory to ubiquitination. Thus throughout the cell cycle, both phosphorylation and trimeric complex formation act as signals for the ubiquitination of a Cdk inhibitor.
Collapse
Affiliation(s)
- A Montagnoli
- Department of Pathology and Kaplan Comprehensive Cancer Center, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 1999; 126:1581-90. [PMID: 10079221 DOI: 10.1242/dev.126.8.1581] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strict control of cellular proliferation is required to shape the complex structures of the developing embryo. The organ of Corti, the auditory neuroepithelium of the inner ear in mammals, consists of two types of terminally differentiated mechanosensory hair cells and at least four types of supporting cells arrayed precisely along the length of the spiral cochlea. In mice, the progenitors of greater than 80% of both hair cells and supporting cells undergo their terminal division between embryonic day 13 (E13) and E14. As in humans, these cells persist in a non-proliferative state throughout the adult life of the animal. Here we report that the correct timing of cell cycle withdrawal in the developing organ of Corti requires p27(Kip1), a cyclin-dependent kinase inhibitor that functions as an inhibitor of cell cycle progression. p27(Kip1) expression is induced in the primordial organ of Corti between E12 and E14, correlating with the cessation of cell division of the progenitors of the hair cells and supporting cells. In wild-type animals, p27(Kip1) expression is downregulated during subsequent hair cell differentiation, but it persists at high levels in differentiated supporting cells of the mature organ of Corti. In mice with a targeted deletion of the p27(Kip1) gene, proliferation of the sensory cell progenitors continues after E14, leading to the appearance of supernumerary hair cells and supporting cells. In the absence of p27(Kip1), mitotically active cells are still observed in the organ of Corti of postnatal day 6 animals, suggesting that the persistence of p27(Kip1) expression in mature supporting cells may contribute to the maintenance of quiescence in this tissue and, possibly, to its inability to regenerate. Homozygous mutant mice are severely hearing impaired. Thus, p27(Kip1) provides a link between developmental control of cell proliferation and the morphological development of the inner ear.
Collapse
Affiliation(s)
- P Chen
- Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, CA 90057, USA.
| | | |
Collapse
|
127
|
Beumer TL, Kiyokawa H, Roepers-Gajadien HL, van den Bos LA, Lock TM, Gademan IS, Rutgers DH, Koff A, de Rooij DG. Regulatory role of p27kip1 in the mouse and human testis. Endocrinology 1999; 140:1834-40. [PMID: 10098522 DOI: 10.1210/endo.140.4.6638] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p27kip1 is a cyclin-dependent kinase inhibitor that regulates the G1/S transition of the cell cycle. Immunohistochemical analysis showed that during mouse testicular development p27kip1 is induced when the fetal germ cells, gonocytes, become quiescent on day 16 postcoitum, suggesting that p27kip1 is an important factor for the G1/G0 arrest in gonocytes. In the adult mouse and human testis, in general, spermatogonia are proliferating actively, except for undifferentiated spermatogonia that also go through a long G1/G0 arrest. However, none of the different types of germ cells immunohistochemically stained for p27kip1. During development, Sertoli cells are proliferating actively and only occasionally were lightly p27kip1 stained Sertoli cells observed. In contrast, in the adult testis the terminally differentiated Sertoli cells heavily stain for p27kip1. Twenty to 30% of both fetal and adult type Leydig cells lightly stained for p27kip1, possibly indicating the proportion of terminally differentiated cells in the Leydig cell population. In p27kip1 knockout mice, aberrations in the spermatogenic process were observed. First, an increase in the numbers ofA spermatogonia was found, and second, abnormal (pre)leptotene spermatocytes were observed, some of which seemingly tried to enter a mitotic division instead of entering the meiotic prophase. These observations indicate that p27kip1 has a role in the regulation of spermatogonial proliferation, or apoptosis, and the onset of the meiotic prophase in preleptotene spermatocytes. However, as p27kip1 is only expressed in Sertoli cells, the role of p27kip1 in both spermatogonia and preleptotene spermatocytes must be indirect. Hence, part of the supportive and/or regulatory role of Sertoli cells in the spermatogenic process depends on the expression of p27kip1 in these cells. Finally, we show that the expression of p27kip1 transiently increases by a factor of 3 after x-irradiation in whole testicular lysates. Hence, p27kip1 seems to be involved in the cellular response after DNA damage.
Collapse
Affiliation(s)
- T L Beumer
- Department of Cell Biology, Utrecht University Medical School, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Coats S, Whyte P, Fero ML, Lacy S, Chung G, Randel E, Firpo E, Roberts JM. A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells. Curr Biol 1999; 9:163-73. [PMID: 10074425 DOI: 10.1016/s0960-9822(99)80086-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.
Collapse
Affiliation(s)
- S Coats
- Cancer Biology Group Amgen Inc. Thousand Oaks California USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Proliferating cells must increase their mass coordinately with cell division. Recent evidence suggests that coupling of cell growth with cell division might be achieved by making synthesis of activators of cell division particularly sensitive to the capacity of the cell's protein synthesis machinery.
Collapse
Affiliation(s)
- M Polymenis
- MGH Cancer Center, Massachusetts General Hospital Building 149, 13th Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
130
|
Nguyen H, Gitig DM, Koff A. Cell-free degradation of p27(kip1), a G1 cyclin-dependent kinase inhibitor, is dependent on CDK2 activity and the proteasome. Mol Cell Biol 1999; 19:1190-201. [PMID: 9891053 PMCID: PMC116048 DOI: 10.1128/mcb.19.2.1190] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1998] [Accepted: 10/27/1998] [Indexed: 11/20/2022] Open
Abstract
Entry into S phase is dependent on the coordinated activation of CDK4,6 and CDK2 kinases. Once a cell commits to S phase, there must be a mechanism to ensure the irreversibility of this decision. The activity of these kinases is inhibited by their association with p27. In many cells, p27 plays a major role in the withdrawal from the cell cycle in response to environmental cues. Thus, it is likely that p27 is a target of the machinery required to ensure the irreversibility of S-phase entry. We have been interested in understanding the mechanisms regulating p27 at the G1/S transition. In this report, we define a cell-free degradation system which faithfully recapitulates the cell cycle phase-specific degradation of p27. We show that this reaction is dependent on active CDK2 activity, suggesting that CDK2 activity is directly required for p27 degradation. In addition to CDK2, other S-phase-specific factors are required for p27 degradation. At least some of these factors are ubiquitin and proteasome dependent. We discuss the relationships between CDK2 activity, ubiquitin-dependent, and possibly ubiquitin-independent proteasomal activities in S-phase extracts as related to p27.
Collapse
Affiliation(s)
- H Nguyen
- Program in Molecular Biology and Cell Biology and Genetics, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | |
Collapse
|
131
|
Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:313-23. [PMID: 10027389 PMCID: PMC1850003 DOI: 10.1016/s0002-9440(10)65277-7] [Citation(s) in RCA: 438] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/28/1998] [Indexed: 12/23/2022]
Abstract
p27kip1 (p27) is a member of the universal cyclin-dependent kinase inhibitor (CDKI) family. p27 expression is regulated by cell contact inhibition and by specific growth factors, such as transforming growth factor (TGF)-beta. Since the cloning of the p27 gene in 1994, a host of other functions have been associated with this cell cycle protein. In addition to its role as a CDKI, p27 is a putative tumor suppressor gene, regulator of drug resistance in solid tumors, and promoter of apoptosis; acts as a safeguard against inflammatory injury; and has a role in cell differentiation. The level of p27 protein expression decreases during tumor development and progression in some epithelial, lymphoid, and endocrine tissues. This decrease occurs mainly at the post-translational level with protein degradation by the ubiquitin-proteasome pathway. A large number of studies have characterized p27 as an independent prognostic factor in various human cancers, including breast, colon, and prostate adenocarcinomas. Here we review the role of p27 in the regulation of the cell cycle and other cell functions and as a diagnostic and prognostic marker in human neoplasms. We also review studies indicating the increasingly important roles of p27, other CDKIs, and cyclins in endocrine cell hyperplasia and tumor development.
Collapse
Affiliation(s)
- R V Lloyd
- Department of Laboratory Medicine and Pathology, Mayo Foundation and Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
132
|
Levenberg S, Yarden A, Kam Z, Geiger B. p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene 1999; 18:869-76. [PMID: 10023662 DOI: 10.1038/sj.onc.1202396] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study the direct involvement of cadherins in adhesion-mediated growth inhibition was investigated. It is shown here that overexpression of N-cadherin in CHO cells significantly suppresses their growth rate. Interaction of these cells and two additional fibroblastic lines with synthetic beads coated with N-cadherin ligands (recombinant N-cadherin ectodomain or specific antibodies) leads to growth arrest at the G1 phase of the cell cycle. The cadherin-reactive beads inhibit the entry into S phase and the reduction in the levels of cyclin-dependent kinase (cdk) inhibitors p21 and p27, following serum-stimulation of starved cells. In exponentially growing cells these beads induce G1 arrest accompanied by elevation in p27 only. We propose that cadherin-mediated signaling is involved in contact inhibition of growth by inducing cell cycle arrest at the G1 phase and elevation of p27 levels.
Collapse
Affiliation(s)
- S Levenberg
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
133
|
Savinova O, Joshi B, Jagus R. Abnormal levels and minimal activity of the dsRNA-activated protein kinase, PKR, in breast carcinoma cells. Int J Biochem Cell Biol 1999; 31:175-89. [PMID: 10216952 DOI: 10.1016/s1357-2725(98)00140-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interferon induced, dsRNA-activated, protein kinase, PKR, is a key regulator of translational initiation, playing an important role in the regulation of cell proliferation, apoptosis and transformation. PKR levels correlate inversely with proliferative activity in several human tumor systems. This inverse relationship breaks down in human invasive ductal breast carcinomas which exhibit high levels of PKR (Haines et al., Tumor Biol. 17 (1996) 5-12). Consistent with the data from human tumors, the levels of PKR in several breast carcinoma cell lines, MCF7, T47D, BT20, MDAMB231 and MDAMB468, are paradoxically high compared to those found in the normal breast cell lines MCF10A and Hs578Bst. The activity of affinity- or immuno-purified PKR from MCF7, T47D, and BT20 cells appears to be severely attenuated, as judged by its ability to autophosphorylate, or phosphorylate eIF2 alpha. Furthermore, the activity of the kinase from breast carcinoma cells is refractory to stimulation by dsRNA or heparin. However, PKR from breast carcinoma cells remains functional with respect to its ability to bind dsRNA. The activity of PKR from MCF10A cells is reduced by prior incubation with extracts from MCF7 cells, suggesting that MCF7 extracts contain a transdominant inhibitor of PKR. Deregulation of PKR may therefore provide a mechanism for the development or maintenance of a transformed phenotype of human breast carcinomas, mimicking the effects of manipulation of PKR or eIF2 activity observed in experimental systems. Thus, breast carcinomas may provide the first indication of a role for PKR in the pathogenesis of a naturally occurring human cancer.
Collapse
Affiliation(s)
- O Savinova
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, USA
| | | | | |
Collapse
|
134
|
Clurman BE, Porter P. New insights into the tumor suppression function of P27(kip1). Proc Natl Acad Sci U S A 1998; 95:15158-60. [PMID: 9860936 PMCID: PMC33928 DOI: 10.1073/pnas.95.26.15158] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- B E Clurman
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
135
|
Abstract
To maintain a constant size during cellular proliferation, a cell's growth rate must match its rate of division. Factors that govern proliferation must therefore coordinately regulate two distinct processes: the cellular biosynthesis that drives accumulation of mass, and progression through the cell division cycle. Recent work has identified several mechanisms which couple cell division to growth. Different mechanisms are used at different times during development to coordinate growth, cell division, and patterning.
Collapse
Affiliation(s)
- T P Neufeld
- Fred Hutchinson Cancer Research Center Basic Sciences Division 1100 Fairview Avenue North Seattle WA 98109 USA.
| | | |
Collapse
|
136
|
Huang S, Chen CS, Ingber DE. Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol Biol Cell 1998; 9:3179-93. [PMID: 9802905 PMCID: PMC25607 DOI: 10.1091/mbc.9.11.3179] [Citation(s) in RCA: 344] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27(Kip1), and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.
Collapse
Affiliation(s)
- S Huang
- Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
137
|
Nishi K, Schnier JB, Bradbury EM. The accumulation of cyclin-dependent kinase inhibitor p27kip1 is a primary response to staurosporine and independent of G1 cell cycle arrest. Exp Cell Res 1998; 243:222-31. [PMID: 9743582 DOI: 10.1006/excr.1998.4166] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The staurosporine-induced G1 cell cycle arrest was analyzed in a variety of cell lines which includes human tumor cell lines and oncogene-transformed NIH3T3 cell lines. All the cell lines which were sensitive to staurosporine-induced G1 arrest contained a functional retinoblastoma protein (pRB). However, when pRB-lacking fibroblast cells derived from pRB knockout mice were tested they were also sensitive to G1 arrest by staurosporine, indicating that the inactivation of pRB alone is not sufficient for the abrogation of staurosporine-induced G1 arrest. In searching for a common event caused by staurosporine, the cyclin-dependent kinase (CDK) inhibitor protein p27kip1 but not p21cip1 was found to accumulate after staurosporine treatment in all the cell lines examined. This accumulation occurred regardless of the induction of the G1 arrest. The result indicates that the accumulation of p27kip1 is the cell's primary response to staurosporine and that the capability of staurosporine to induce G1 arrest depends on the integrity of cell cycle regulatory components which are downstream of p27kip1.
Collapse
Affiliation(s)
- K Nishi
- School of Medicine, University of California at Davis, Davis, California 95616, USA.
| | | | | |
Collapse
|
138
|
Cordon-Cardo C, Koff A, Drobnjak M, Capodieci P, Osman I, Millard SS, Gaudin PB, Fazzari M, Zhang ZF, Massague J, Scher HI. Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst 1998; 90:1284-91. [PMID: 9731735 DOI: 10.1093/jnci/90.17.1284] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The p27KIP1 gene, whose protein product is a negative regulator of the cell cycle, is a potential tumor suppressor gene; however, no tumor-specific mutations of this gene have been found in humans. This study was undertaken to identify and to assess potential alterations of p27KIP1 gene expression in patients with benign prostatic hyperplasia (BPH) and patients with prostate cancer. METHODS We analyzed 130 prostate carcinomas from primary and metastatic sites, as well as prostate samples from normal subjects and from patients with BPH. Immunohistochemistry and in situ hybridization were used to determine the levels of expression and the microanatomical localization of p27 protein and messenger RNA (mRNA), respectively. Immunoblotting and immunodepletion assays were performed on a subset of the prostate tumors. Associations between alterations in p27KIP1 expression and clinicopathologic variables were evaluated with a nonparametric test. The Kaplan-Meier method and the logrank test were used to compare disease-relapse-free survival. Prostate tissues of p27Kip1 null (i.e., knock-out) and wild-type mice were also evaluated. RESULTS Normal human prostate tissue exhibited abundant amounts of p27 protein and high levels of p27KIP1 mRNA in both epithelial cells and stromal cells. However, p27 protein and p27KIP1 mRNA were almost undetectable in epithelial cells and stromal cells of BPH lesions. Furthermore, p27Kip1 null mice developed enlarged (hyperplastic) prostate glands. In contrast to BPH, prostate carcinomas were found to contain abundant p27KIP1 mRNA but either high or low to undetectable levels of p27 protein. Primary prostate carcinomas expressing lower levels of p27 protein appeared to be biologically more aggressive (two-sided P = .019 [Cox regression analysis]). CONCLUSIONS/IMPLICATIONS On the basis of these results, we infer that loss of p27Kip1 expression in the human prostate may be causally linked to BPH and that BPH is not a precursor to prostate cancer.
Collapse
Affiliation(s)
- C Cordon-Cardo
- Memorial Sloan-Kettering Cancer, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
Daphnane-type diterpene gnidimacrin isolated from the Chinese plant Stellera chamaejasme L. is an antitumor agent that activates protein kinase C (PKC). The mechanism of antitumor action of gnidimacrin and the possible involvement of PKC were examined using sensitive K562 and refractory HLE cells. Gnidimacrin did bind to K562 cells 3 times more than to HLE cells. Immunoblot analyses revealed pronounced PKC betaII expression in gnidimacrin sensitive cell lines including K562 cells, while refractory HLE cells strongly expressed PKC alpha, but not PKC betaII. In a 24-hr exposure of K562 cells to gnidimacrin, G1 phase arrest and inhibition of cdk2 kinase activity was found at growth-inhibitory concentration (0.0005 microg/ml). Complete inhibition of cdk2 activity and maximum G1 phase arrest were observed at 0.005 microg/ml, however, these biological effects were reduced at 0.05 microg/ml (260 times the 50% inhibitory concentration). Cellular PKC after a 24-hr exposure was examined by immunoblot analysis and specific binding of [3H]phorbol-12,13-dibutyrate as a ligand of PKC. Expression and the amount of functional PKC of K562 cells were not changed at 0.002 microg/ml, but down-regulated to less than 1/10th of the control at 0.05 microg/ml. The reduction of biological effects at 0.05 microg/ml is most likely due to PKC down-regulation. Our results suggest that PKC (particularly betaII) is one of the major determinants of the ability of cells to respond to gnidimacrin and that the antitumor action might be associated with cell-cycle regulation through suppression of cdk2 activity.
Collapse
Affiliation(s)
- M Yoshida
- Pharmacology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | |
Collapse
|
140
|
Kokontis JM, Hay N, Liao S. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol 1998; 12:941-53. [PMID: 9658399 DOI: 10.1210/mend.12.7.0136] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanism of androgen-independent growth of prostate cancer after androgen ablation was explored in LNCaP cells. An androgen-dependent clonal subline of the LNCaP human prostate carcinoma cell line, LNCaP 104-S, progressed to a slow growing stage (104-R1) and then to a faster growing stage (104-R2) during more than 2 yr of continuous culture in the absence of androgen. Androgen-induced proliferation of 104-S cells is inhibited by the antiandrogen Casodex, while proliferation of 104-R1 and 104-R2 cells is unaffected by Casodex. This indicates that proliferation of 104-R1 and 104-R2 cells is not supported by low levels of androgen in the culture medium. Compared with LNCaP 104-S cells, both 104-R1 and 104-R2 cells express higher basal levels of androgen receptor (AR), and proliferation of these two cell lines is paradoxically repressed by androgen. After continuous passage in androgen-containing medium, 104-R1 cells reverted back to an androgen-dependent phenotype. The mechanism of androgenic repression of 104-R1 and 104-R2 sublines was further evaluated by examining the role of critical regulatory factors involved in the control of cell cycle progression. At concentrations that repressed growth, androgen transiently induced the expression of the cyclin-dependent kinase (cdk) inhibitor p21waf1/cip1 in 104-R1 cells, while expression of the cdk inhibitor p27Kip1 was persistently induced by androgen in both 104-R1 and 104-R2 cells. Induced expression of murine p27Kip1 in 104-R2 cells resulted in G1 arrest. Specific immunoprecipitates of Cdk2 but not Cdk4 from androgen-treated 104-R1 cells contained both p21waf1/cip1 and p27Kip1. This observation was confirmed by in vitro assay of histone H1 and Rb (retinoblastoma protein) phosphorylation by the proteins associated with the immune complex. Furthermore, inhibition of Cdk2 activity correlated with the accumulation of p27Kip1 and not p21waf1/cip1. From these results we conclude that androgenic repression of LNCaP 104-R1 and 104-R2 cell proliferation is due to the induction of p27Kip1, which in turn inhibits Cdk2, a factor critical for cell cycle progression and proliferation.
Collapse
Affiliation(s)
- J M Kokontis
- Ben May Institute for Cancer Research, University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
141
|
Durand B, Fero ML, Roberts JM, Raff MC. p27Kip1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation. Curr Biol 1998; 8:431-40. [PMID: 9550698 DOI: 10.1016/s0960-9822(98)70177-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In many vertebrate cell lineages, precursor cells divide a limited number of times before they arrest and terminally differentiate into postmitotic cells. It is not known what causes them to stop dividing. We have been studying the 'stopping' mechanism in the proliferating precursor cells that give rise to oligodendrocytes, the cells that make myelin in the central nervous system. We showed previously that the cyclin-dependent kinase inhibitor p27Kip1 (p27) progressively accumulates in cultured precursor cells as they proliferate and that the time course of the increase is consistent with the possibility that p27 accumulation is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation at the appropriate time. RESULTS We now provide direct evidence that p27 is part of the intrinsic timer. We show that although p27-/- precursor cells stop dividing and differentiate almost as fast as wild-type cells when deprived of mitogen, when stimulated by saturating amounts of mitogen they have a normal cell-cycle time but tend to go through one or two more divisions than wild-type cells before they stop and differentiate. Cells that are p27+/- behave in an intermediate way, going through at most one extra division, indicating that the levels of p27 matter in the way the timer works. We also show that p27-/- precursor cells are more sensitive than wild-type cells to the mitogenic effect of platelet-derived growth factor. CONCLUSIONS These findings demonstrate that p27 is part of the normal timer that determines when oligodendrocyte precursor cells stop dividing and differentiate, at least in vitro. It seems likely that p27 plays a similar role in many other cell lineages, which could explain the phenotypes of the p27-/- and p27+/- mice.
Collapse
Affiliation(s)
- B Durand
- Medical Research Council Developmental Neurobiology Programme, MRC Laboratory for Molecular Cell Biology, Biology Department, University College London, London, WC1E 6BT, UK.
| | | | | | | |
Collapse
|
142
|
Kaplan MH, Daniel C, Schindler U, Grusby MJ. Stat proteins control lymphocyte proliferation by regulating p27Kip1 expression. Mol Cell Biol 1998; 18:1996-2003. [PMID: 9528771 PMCID: PMC121429 DOI: 10.1128/mcb.18.4.1996] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1997] [Accepted: 01/15/1998] [Indexed: 02/07/2023] Open
Abstract
The proliferation of lymphocytes in response to cytokine stimulation is essential for a variety of immune responses. Recent studies with signal transducer and activator of transcription 6 (Stat6)-deficient mice have demonstrated that this protein is required for the normal proliferation of lymphocytes in response to interleukin-4 (IL-4). In this report, we show that the impaired IL-4-induced proliferative response of Stat6-deficient lymphocytes is not due to an inability to activate alternate signaling pathways, such as those involving insulin receptor substrates, or to a failure to upregulate IL-4 receptor levels. Cell cycle analysis showed that the percentage of Stat6-deficient lymphocytes that transit from the G1 to the S phase of the cell cycle following IL-4 stimulation is lower than that of control lymphocytes. Although the regulation of many genes involved in the control of cytokine-induced proliferation is normal in Stat6-deficient lymphocytes, protein levels of the cdk inhibitor p27Kip1 were found to be markedly dysregulated. p27Kip1 is expressed at significantly higher levels in Stat6-deficient lymphocytes than in control cells following IL-4 stimulation. The higher level of p27Kip1 expression seen in IL-4-stimulated Stat6-deficient lymphocytes correlates with decreased cdk2-associated kinase activity and is the result of the increased accumulation of protein rather than altered mRNA expression. Similarly, higher levels of p27Kip1 protein expression are also seen following IL-12 stimulation of Stat4-deficient lymphocytes than are seen following stimulation of control cells. These data suggest that Stat proteins may control the cytokine-induced proliferative response of activated T cells by regulating the expression of cell cycle inhibitors so that cyclin-cdk complexes may function to promote transition from the G1 to the S phase of the cell cycle.
Collapse
Affiliation(s)
- M H Kaplan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
143
|
|
144
|
Polymenis M, Schmidt EV. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 1997; 11:2522-31. [PMID: 9334317 PMCID: PMC316559 DOI: 10.1101/gad.11.19.2522] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1997] [Accepted: 08/11/1997] [Indexed: 02/05/2023]
Abstract
The eukaryotic cell cycle is driven by a cascade of cyclins and kinase partners including the G1 cyclin Cln3p in yeast. As the first step in this cascade, Cln3p is uniquely positioned to determine the critical growth-rate threshold for division. To analyze factors regulating CLN3 expression, we identified a short upstream open reading frame (uORF) in the 5' leader of CLN3 mRNA as a translational control element. This control element is critical for the growth-dependent regulation of Cln3p synthesis because it specifically represses CLN3 expression during conditions of diminished protein synthesis or slow growth. Inactivation of the uORF accelerates the completion of Start and entry into the cell cycle suggesting that translational regulation of CLN3 provides a mechanism coupling cell growth and division.
Collapse
Affiliation(s)
- M Polymenis
- MGH Cancer Center, Massachusetts General Hospital, Charlestown 02129, USA
| | | |
Collapse
|
145
|
Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V, Chao MV, Koff A. Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 1997; 11:2335-46. [PMID: 9308962 PMCID: PMC316517 DOI: 10.1101/gad.11.18.2335] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/1997] [Accepted: 07/21/1997] [Indexed: 02/05/2023]
Abstract
During development of the central nervous system, oligodendrocyte progenitor cells (O-2A) undergo an orderly pattern of cell proliferation and differentiation, culminating in the ability of oligodendrocytes to myelinate axons. Here we report that p27(Kip1), a cyclin-dependent kinase inhibitor, is an important component of the decision of O-2A cells to withdraw from the cell cycle. In vitro, accumulation of p27 correlates with differentiation of oligodendrocytes. Furthermore, only a fraction of O-2A cells derived from p27-knockout mice differentiate successfully compared to controls. Inability to differentiate correlates with continued proliferation, suggesting that p27 is an important component of the machinery required for the G1/G0 transition in O-2A cells. In vivo, expansion of O-2A precursors before withdrawal, in part, leads to a greater number of oligodendrocytes. Together these data indicate a role for p27 during the decision to withdraw from the cell cycle in the oligodendrocyte lineage.
Collapse
Affiliation(s)
- P Casaccia-Bonnefil
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|