101
|
Murakami Y, Tian L, Voss OH, Margulies DH, Krzewski K, Coligan JE. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition. Cell Death Differ 2014; 21:1746-57. [PMID: 25034781 DOI: 10.1038/cdd.2014.86] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 01/15/2023] Open
Abstract
The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway.
Collapse
Affiliation(s)
- Y Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - L Tian
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - O H Voss
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - D H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - K Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - J E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
102
|
Trzonkowski P, Dukat-Mazurek A, Bieniaszewska M, Marek-Trzonkowska N, Dobyszuk A, Juścińska J, Dutka M, Myśliwska J, Hellmann A. Treatment of graft-versus-host disease with naturally occurring T regulatory cells. BioDrugs 2014; 27:605-14. [PMID: 23813436 PMCID: PMC3832760 DOI: 10.1007/s40259-013-0050-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A significant body of evidence suggests that treatment with naturally occurring CD4+CD25+ T regulatory cells (Tregs) is an appropriate therapy for graft-versus-host disease (GvHD). GvHD is a major complication of bone marrow transplantation in which the transplanted immune system recognizes recipient tissues as a non-self and destroys them. In many cases, this condition significantly deteriorates the quality of life of the affected patients. It is also one of the most important causes of death after bone marrow transplantation. Tregs constitute a population responsible for dominant tolerance to self-tissues in the immune system. These cells prevent autoimmune and allergic reactions and decrease the risk of rejection of allotransplants. For these reasons, Tregs are considered as a cellular drug in GvHD. The results of the first clinical trials with these cells are already available. In this review we present important experimental facts which led to the clinical use of Tregs. We then critically evaluate specific requirements for Treg therapy in GvHD and therapies with Tregs currently under clinical investigation, including our experience and future perspectives on this kind of cellular treatment.
Collapse
Affiliation(s)
- Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Ul. Dębinki 1, 80-211, Gdańsk, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Herrmann A, Priceman SJ, Swiderski P, Kujawski M, Xin H, Cherryholmes GA, Zhang W, Zhang C, Lahtz C, Kowolik C, Forman SJ, Kortylewski M, Yu H. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest 2014; 124:2977-87. [PMID: 24892807 DOI: 10.1172/jci73174] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/10/2014] [Indexed: 01/05/2023] Open
Abstract
Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte-associated antigen 4 (CTLA4(apt)) allows gene silencing in exhausted CD8⁺ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8⁺ T cells in the tumor milieu; therefore, CTLA4(apt) fused to a STAT3-targeting siRNA (CTLA4(apt)-STAT3 siRNA) resulted in internalization into tumor-associated CD8⁺ T cells and silencing of STAT3, which activated tumor antigen-specific T cells in murine models. Both local and systemic administration of CTLA4(apt)-STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4(apt)-STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4(apt)-STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4(apt)-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis.
Collapse
MESH Headings
- Animals
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen/genetics
- Cell Line, Tumor
- Gene Silencing
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
|
104
|
Leung AM, Lee AF, Ozao-Choy J, Ramos RI, Hamid O, O'Day SJ, Shin-Sim M, Morton DL, Faries MB, Sieling PA, Lee DJ. Clinical Benefit from Ipilimumab Therapy in Melanoma Patients may be Associated with Serum CTLA4 Levels. Front Oncol 2014; 4:110. [PMID: 24904825 PMCID: PMC4032905 DOI: 10.3389/fonc.2014.00110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/30/2014] [Indexed: 01/01/2023] Open
Abstract
Stage IV metastatic melanoma patients historically have a poor prognosis with 5–10% 5-year survival. Ipilimumab, a monoclonal antibody against cytotoxic T-lymphocyte antigen 4 (CTLA4), is one of the first treatments to provide beneficial durable responses in advanced melanoma. However, less than 25% of those treated benefit, treatment is expensive, and side effects can be fatal. Since soluble (s) CTLA4 may mediate inhibitory effects previously ascribed to the membrane-bound isoform (mCTLA4), we hypothesized patients benefiting from ipilimumab have higher serum levels of sCTLA4. We found that higher sCTLA4 levels correlated both with response and improved survival in patients treated with ipilimumab in a small patient cohort [patients with (n = 9) and without (n = 5) clinical benefit]. sCTLA4 levels were statistically higher in ipilimumab-treated patients with response to ipilimumab. In contrast, sCTLA4 levels did not correlate with survival in patients who did not receive ipilimumab (n = 11). These preliminary observations provide a previously unrecognized link between serum sCTLA4 levels and response to ipilimumab as well as to improved survival in ipilimumab-treated melanoma patients and a potential mechanism by which ipilimumab functions.
Collapse
Affiliation(s)
- Anna M Leung
- Melanoma Research Program, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| | - Agnes Fermin Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| | - Junko Ozao-Choy
- Melanoma Research Program, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| | - Romela Irene Ramos
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| | - Omid Hamid
- Melanoma Center, The Angeles Clinic and Research Institute , Los Angeles, CA , USA
| | - Steven J O'Day
- Department of Hematology and Oncology, Beverly Hills Cancer Center , Beverly Hills, CA , USA
| | - Myung Shin-Sim
- Department of Biostatistics, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| | - Donald L Morton
- Melanoma Research Program, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| | - Mark B Faries
- Melanoma Research Program, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| | - Peter A Sieling
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| | - Delphine J Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, CA , USA
| |
Collapse
|
105
|
Osuna CE, Gonzalez AM, Chang HH, Hung AS, Ehlinger E, Anasti K, Alam SM, Letvin NL. TCR affinity associated with functional differences between dominant and subdominant SIV epitope-specific CD8+ T cells in Mamu-A*01+ rhesus monkeys. PLoS Pathog 2014; 10:e1004069. [PMID: 24743648 PMCID: PMC3990730 DOI: 10.1371/journal.ppat.1004069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.
Collapse
Affiliation(s)
- Christa E. Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ana Maria Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Shi Hung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Ehlinger
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
106
|
Getts DR, McCarthy DP, Miller SD. Exploiting apoptosis for therapeutic tolerance induction. THE JOURNAL OF IMMUNOLOGY 2014; 191:5341-6. [PMID: 24244028 DOI: 10.4049/jimmunol.1302070] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune tolerance remains the most promising yet elusive strategy for treating immune-mediated diseases. An experimental strategy showing promise in phase 1 clinical studies is the delivery of Ag cross-linked to apoptotic leukocytes using ethylene carbodiimide. This approach originated from demonstration of the profound tolerance-inducing ability of i.v. administered Ag-coupled splenocytes (Ag-SP) in mice, which has been demonstrated to treat T cell-mediated disorders including autoimmunity, allergy, and transplant rejection. Recent studies have defined the intricate interplay between the innate and adaptive immune systems in Ag-SP tolerance induction. Innate mechanisms include scavenger receptor-mediated uptake of Ag-SP by host APCs, Ag representation, and the required upregulation of PD-L1 expression and IL-10 production by splenic marginal zone macrophages leading to Ag-specific T cell regulation via the combined effects of cell-intrinsic anergy and regulatory T cell induction. In this paper, we discuss the history, advantages, current mechanistic understanding, and clinical potential of tolerance induction using apoptotic Ag-coupled apoptotic leukocytes.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | | | | |
Collapse
|
107
|
Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME, Sanmamed MF, Melero I. Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol 2014; 27:89-97. [PMID: 24485523 DOI: 10.1016/j.coi.2014.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 12/30/2022]
Abstract
Inhibitory receptors on immune system cells respond to membrane-bound and soluble ligands to abort or mitigate the intensity of immune responses by raising thresholds of activation, halting proliferation, favoring apoptosis or inhibiting/deviating effector function differentiation. Such evolutionarily selected inhibitory mechanisms are termed check-points and therefore check-point inhibitors empower any ongoing anti-cancer immune response that might have been too weak or exhausted. Monoclonal antibodies (mAb) interfering with CTLA-4-CD80/86, PD-1 - PD-L1, TIM-3-GAL9 and LAG3-MHC-II belong to this category of check-point inhibitors. The anti-CTLA-4 mAb ipilimumab has been approved for metastatic melanoma. Anti-PD-1 and anti-PD-L1 mAbs have shown extremely encouraging clinical activity. The potential of combination strategies with these agents has recently been highlighted by clinical observations on CTLA-4+PD-1 combined blockade in melanoma patients.
Collapse
Affiliation(s)
| | - Sara Labiano
- CIMA and Clinica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Melero
- CIMA and Clinica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
108
|
Vasaturo A, Di Blasio S, Peeters DGA, de Koning CCH, de Vries JM, Figdor CG, Hato SV. Clinical Implications of Co-Inhibitory Molecule Expression in the Tumor Microenvironment for DC Vaccination: A Game of Stop and Go. Front Immunol 2013; 4:417. [PMID: 24348481 PMCID: PMC3847559 DOI: 10.3389/fimmu.2013.00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022] Open
Abstract
The aim of therapeutic dendritic cell (DC) vaccines in cancer immunotherapy is to activate cytotoxic T cells to recognize and attack the tumor. T cell activation requires the interaction of the T cell receptor with a cognate major-histocompatibility complex-peptide complex. Although initiated by antigen engagement, it is the complex balance between co-stimulatory and co-inhibitory signals on DCs that results in T cell activation or tolerance. Even when already activated, tumor-specific T cells can be neutralized by the expression of co-inhibitory molecules on tumor cells. These and other immunosuppressive cues in the tumor microenvironment are major factors currently hampering the application of DC vaccination. In this review, we discuss recent data regarding the essential and complex role of co-inhibitory molecules in regulating the immune response within the tumor microenvironment. In particular, possible therapeutic intervention strategies aimed at reversing or neutralizing suppressive networks within the tumor microenvironment will be emphasized. Importantly, blocking co-inhibitory molecule signaling, often referred to as immune checkpoint blockade, does not necessarily lead to an effective activation of tumor-specific T cells. Therefore, combination of checkpoint blockade with other immune potentiating therapeutic strategies, such as DC vaccination, might serve as a synergistic combination, capable of reversing effector T cells immunosuppression while at the same time increasing the efficacy of T cell-mediated immunotherapies. This will ultimately result in long-term anti-tumor immunity.
Collapse
Affiliation(s)
- Angela Vasaturo
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Stefania Di Blasio
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Deborah G A Peeters
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Coco C H de Koning
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands ; Department of Medical Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Stanleyson V Hato
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| |
Collapse
|
109
|
Tosti G, Cocorocchio E, Pennacchioli E. Anti-cytotoxic T lymphocyte antigen-4 antibodies in melanoma. Clin Cosmet Investig Dermatol 2013; 6:245-56. [PMID: 24204168 PMCID: PMC3804494 DOI: 10.2147/ccid.s24246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approaches aimed at enhancement of the tumor specific response have provided proof for the rationale of immunotherapy in cancer, both in animal models and in humans. Ipilimumab, an anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) antibody, is a new generation immunotherapeutic agent that has shown activity in terms of disease free and overall survival in metastatic melanoma patients. Its use was approved by the US Food and Drug Administration in March 2011 to treat patients with late stage melanoma that has spread or that cannot be removed by surgery. The mechanism of action of CTLA-4 antibodies in the activation of an antitumor immune response and selected clinical studies of ipilimumab in advanced melanoma patients are discussed. Ipilimumab treatment has been associated with immune related adverse events due to T-cell activation and proliferation. Most of these serious adverse effects are associated with the gastrointestinal tract and include severe diarrhea and colitis. The relationship between immune related adverse events and antitumor activity associated with ipilimumab was explored in clinical studies. Potential biomarkers predictive for clinical response and survival in patients treated with anti-CTLA-4 therapy are presently under investigation. Besides the conventional patterns of response and stable disease as defined by standard Response Evaluation Criteria in Solid Tumors criteria, in subsets of patients, ipilimumab has shown patterns of delayed clinical activity which were associated with an improved overall survival. For this reason a new set of response criteria for tumor immunotherapy has been proposed, which was termed immune related response criteria. These new criteria are presently used to better analyze clinical activity of immunotherapeutic regimens. Ipilimumab is currently under investigation in combination with other treatments, such as chemotherapy, target agents, radiotherapy, and other immuno-therapeutic regimens.
Collapse
Affiliation(s)
- Giulio Tosti
- Divisione Melanomi e Sarcomi, Istituto Europeo di Oncologia, Milano, Italy
| | | | | |
Collapse
|
110
|
Walker LSK. Treg and CTLA-4: two intertwining pathways to immune tolerance. J Autoimmun 2013; 45:49-57. [PMID: 23849743 PMCID: PMC3989116 DOI: 10.1016/j.jaut.2013.06.006] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023]
Abstract
Both the CTLA-4 pathway and regulatory T cells (Treg) are essential for the control of immune homeostasis. Their therapeutic relevance is highlighted by the increasing use of anti-CTLA-4 antibody in tumor therapy and the development of Treg cell transfer strategies for use in autoimmunity and transplantation settings. The CTLA-4 pathway first came to the attention of the immunological community in 1995 with the discovery that mice deficient in Ctla-4 suffered a fatal lymphoproliferative syndrome. Eight years later, mice lacking the critical Treg transcription factor Foxp3 were shown to exhibit a remarkably similar phenotype. Much of the debate since has centered on the question of whether Treg suppressive function requires CTLA-4. The finding that it does in some settings but not in others has provoked controversy and inevitable polarization of opinion. In this article, I suggest that CTLA-4 and Treg represent complementary and largely overlapping mechanisms of immune tolerance. I argue that Treg commonly use CTLA-4 to effect suppression, however CTLA-4 can also function in the non-Treg compartment while Treg can invoke CTLA-4-independent mechanisms of suppression. The notion that Foxp3 and CTLA-4 direct independent programs of immune regulation, which in practice overlap to a significant extent, will hopefully help move us towards a better appreciation of the underlying biology and therapeutic significance of these pathways.
Collapse
Affiliation(s)
- Lucy S K Walker
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
111
|
Romo-Tena J, Gómez-Martín D, Alcocer-Varela J. CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev 2013; 12:1171-6. [PMID: 23851140 DOI: 10.1016/j.autrev.2013.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/07/2013] [Indexed: 12/23/2022]
Abstract
Cytotoxic T-Lymphocye Antigen 4 (CTLA-4) or CD152 is an inhibitory molecule that plays a critical role in maintenance of tolerance to self-antigens. CTLA-4 is structurally as well as functionally related to CD28, since it shares 31% of homology and binds the B7 family molecules CD80 and CD86 with higher affinity. Nevertheless, CTLA-4 has opposing effects on T cell activation and current evidence shows that its inhibitory role goes beyond the ligand-binding interaction. CTLA-4 competes with CD28 in binding to B7, interacts within the immunological synapsis elements and with clathrin adaptor proteins and tyrosine phosphatases through its cytoplasmic domain to regulate cell trafficking and to set the activation threshold within T cells. Moreover, we have learned from the knock out model that CTLA-4 plays a key role in regulatory T cells and in central tolerance. Because of its importance in maintenance of peripheral tolerance, CTLA-4 has been implicated in several autoimmune diseases, such as systemic lupus erythematosus. Multiple single-nucleotide polymorphisms have been located to human Ctla-4 gene, and their association with autoimmune disease is still a matter of controversy. Despite the promising results of abatacept or CTLA-4-Ig in rheumatoid arthritis and murine lupus nephritis, more clinical randomized trials and standardization of outcomes are needed to prove its efficacy and safety in human lupus nephritis.
Collapse
Affiliation(s)
- Jorge Romo-Tena
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan 14000, Mexico City, Mexico
| | | | | |
Collapse
|
112
|
Schneider DA, Kretowicz AM, von Herrath MG. Emerging immune therapies in type 1 diabetes and pancreatic islet transplantation. Diabetes Obes Metab 2013. [PMID: 23194064 DOI: 10.1111/dom.12046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In type 1 diabetes (T1D) the immune system attacks insulin-producing pancreatic β-cells. Unfortunately, our ability to curb this pathogenic autoimmune response in a disease- and organ-specific manner is still very limited due to the inchoate understanding of the exact nature and the kinetics of the immunological pathomechanisms that lead to T1D. None of the clinical immune interventions thus far, which focused primarily on new-onset disease, were successful in producing lasting remission or curbing recurrent autoimmunity. However, these studies do provide us access to a tremendous amount of clinical data and specimens, which will aid us in revising our therapeutical approaches and defining the highly needed paradigm shift in T1D immunotherapy. Analysing the foundation and the results of the most current T1D immunotherapeutic trials, this article gives an outlook for future directions of the field.
Collapse
Affiliation(s)
- D A Schneider
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|
113
|
Danzer C, Mattner J. Impact of microbes on autoimmune diseases. Arch Immunol Ther Exp (Warsz) 2013; 61:175-186. [PMID: 23417246 PMCID: PMC4134873 DOI: 10.1007/s00005-013-0216-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022]
Abstract
Autoimmune and autoinflammatory diseases arise as a consequence of complex interactions of environmental factors with genetic traits. Although specific allelic variations cluster in predisposed individuals and promote the generation and/or expansion of autoreactive T and B lymphocytes, autoimmunity appears in various disease phenotypes and localizes to diverging tissues. Furthermore, the discovery that allelic variations within genes encoding components of the innate immune system drive self-reactive immune responses as well, led to the distinction of immune responses against host tissues into autoimmune and autoinflammatory diseases. In both categories of disorders, different pathogenic mechanisms and/or subsequent orders of tissue assaults may underlie the target cell specificity of the respective autoimmune attack. Furthermore, the transition from the initial tissue assault to the development of full-blown disease is likely driven by several factors. Thus, the development of specific forms of autoimmunity and autoinflammation reflects a multi-factorial process. The delineation of the specific factors involved in the pathogenic process is hampered by the fact that certain symptoms are assembled under the umbrella of a specific disease, although they might originate from diverging pathogenic pathways. These multi-factorial triggers and pathogenic pathways may also explain the inter-individual divergent courses and outcomes of diseases among humans. Here, we will discuss the impact of different environmental factors in general and microbial pathogens in particular on the regulation/expression of genes encoded within susceptibility alleles, and its consequences on subsequent autoimmune and/or autoinflammatory tissue damage utilizing primarily the chronic cholestatic liver disease primary biliary cirrhosis as model.
Collapse
Affiliation(s)
- Claudia Danzer
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie Und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie Und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany. Division of Cellular and Molecular Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
114
|
Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol 2013; 94:25-39. [PMID: 23625198 DOI: 10.1189/jlb.1212621] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors can avoid immune surveillance by stimulating immune inhibitory receptors that function to turn off established immune responses. By blocking the ability of tumors to stimulate inhibitory receptors on T cells, sustained, anti-tumor immune responses can be generated in animals. Thus, therapeutic blockade of immune inhibitory checkpoints provides a potential method to boost anti-tumor immunity. The CTLA-4 and PD-1Rs represent two T cell-inhibitory receptors with independent mechanisms of action. Preclinical investigations revealed that CTLA-4 enforces an activation threshold and attenuates proliferation of tumor-specific T lymphocytes. In contrast, PD-1 functions primarily as a stop signal that limits T cell effector function within a tumor. The unique mechanisms and sites of action of CTLA-4 and PD-1 suggest that although blockade of either has the potential to promote anti-tumor immune responses, combined blockade of both might offer even more potent anti-tumor activity. See related review At the Bedside: CTLA-4 and PD-1 blocking antibodies in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew M Intlekofer
- Department of Medicine, Cancer Biology and Genetics Program, and Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
115
|
Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood 2013; 121:734-44. [PMID: 23223433 PMCID: PMC3563361 DOI: 10.1182/blood-2012-10-385591] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/19/2012] [Indexed: 02/07/2023] Open
Abstract
The B7 family consists of structurally related, cell-surface proteins that regulate immune responses by delivering costimulatory or coinhibitory signals through their ligands. Eight family members have been identified to date including CD80 (B7-1), CD86 (B7-2), CD274 (programmed cell death-1 ligand [PD-L1]), CD273 (programmed cell death-2 ligand [PD-L2]), CD275 (inducible costimulator ligand [ICOS-L]), CD276 (B7-H3), B7-H4, and B7-H6. B7 ligands are expressed on both lymphoid and nonlymphoid tissues. The importance of the B7 family in regulating immune responses is clear from their demonstrated role in the development of immunodeficiency and autoimmune diseases. Manipulation of the signals delivered by B7 ligands shows great potential in the treatment of cancers including leukemias and lymphomas and in regulating allogeneic T-cell responses after stem cell transplantation.
Collapse
Affiliation(s)
- Paul Greaves
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
116
|
A molecular insight of CTLA-4 in food allergy. Immunol Lett 2013; 149:101-9. [DOI: 10.1016/j.imlet.2012.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/06/2012] [Indexed: 12/31/2022]
|
117
|
Abstract
Immunology offers an unprecedented opportunity for the science-driven development of therapeutics. The successes of antibodies to the immunomodulatory receptor CTLA-4 and blockade of the immunoinhibitory receptor PD-1 in cancer immunotherapy, from gene discovery to patient benefit, have created a paradigm for driving such endeavors.
Collapse
Affiliation(s)
- Drew M Pardoll
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
118
|
Epling-Burnette PK, McDaniel J, Wei S, List AF. Emerging immunosuppressive drugs in myelodysplastic syndromes. Expert Opin Emerg Drugs 2012; 17:519-41. [PMID: 23163589 DOI: 10.1517/14728214.2012.736487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are characterized by dysplastic morphologic features and ineffective hematopoiesis. Pathophysiological characteristics change over time making therapeutic development a major challenge. In early MDS, cytopenias arise or are exacerbated by humoral and cellular immune-mediators that suppress hematopoietic progenitor survival and alter the bone marrow microenvironment. AREAS COVERED In this review, current immunosuppressive regimens are described. To identify new therapies that may enhance immunosuppressive therapy (IST) response and identify pharmacodynamic biomarkers for patient selection, the inflammasome, cytokines, metabolic pathways and signaling events are described. EXPERT OPINION Agents with the potential to induce early, durable hematologic remissions are needed and many new immunosuppressive agents are available for investigation. An immune-mediated mechanism is likely to contribute to MDS early after diagnosis. New approaches that interfere with inflammatory pathways in the bone marrow microenvironment may move closer toward sustained disease control in MDS.
Collapse
Affiliation(s)
- Pearlie K Epling-Burnette
- H. Lee Moffitt Cancer Center & Research Institute, Immunology Department, SRB 23033, 12902 Magnolia Dr, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
119
|
Jabbari A, Petukhova L, Cabral RM, Clynes R, Christiano AM. Genetic basis of alopecia areata: a roadmap for translational research. Dermatol Clin 2012; 31:109-17. [PMID: 23159180 DOI: 10.1016/j.det.2012.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alopecia areata (AA) is a recurrent autoimmune type of hair loss that affects about 5.3 million people in the United States alone. Despite being the most prevalent autoimmune disease, the molecular and cellular mechanisms underlying this complex disease are still poorly understood, and rational treatments are lacking. Further efforts are necessary to clearly pinpoint the causes and molecular pathways leading to this disease and to find evidence-based treatments for AA. The authors focus on the central role of genetics for gaining insight into disease pathogenesis and setting the stage for the rational development of novel effective therapeutic approaches.
Collapse
Affiliation(s)
- Ali Jabbari
- Department of Dermatology, Russ Berrie Medical Science Pavilion, Columbia University, 1150 Saint Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
120
|
Abstract
The cytokines released from Th2 and Th2-like cells are likely to be central to the pathophysiolgy of asthma and allergy, contributing to aberrant IgE production, eosinophilia and, perhaps, mucosal susceptibility to viral infection. IL-4 has emerged as a central target, not only for B cell IgE production, but also in the commitment of both CD4+ and CD8+ T cells to cells with Th2 effector function capable of secreting IL-5 resultlng in eosinophilic inflammation. In view of the central role of this cytokine and the evidence that glucocorticoids are unable to modify many IL-4 dependent effects, Th2 inhibitors may prove to be novel therapies for the treatment of bronchial asthma.
Collapse
|
121
|
Gibson HM, Mishra A, Chan DV, Hake TS, Porcu P, Wong HK. Impaired proteasome function activates GATA3 in T cells and upregulates CTLA-4: relevance for Sézary syndrome. J Invest Dermatol 2012; 133:249-57. [PMID: 22951729 DOI: 10.1038/jid.2012.265] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Highly regulated expression of the negative costimulatory molecule cytotoxic T-lymphocyte antigen-4 (CTLA-4) on T cells modulates T-cell activation and proliferation. CTLA-4 is preferentially expressed in Th2 T cells, whose differentiation depends on the transcriptional regulator GATA3. Sézary syndrome (SS) is a T-cell malignancy characterized by Th2 cytokine skewing, impaired T-cell responses, and overexpression of GATA3 and CTLA-4. GATA3 is regulated by phosphorylation and ubiquitination. In SS cells, we detected increased polyubiquitinated proteins and activated GATA3. We hypothesized that proteasome dysfunction in SS T cells may lead to GATA3 and CTLA-4 overexpression. To test this hypothesis, we blocked proteasome function with bortezomib in normal T cells, and observed sustained GATA3 and CTLA-4 upregulation. The increased CTLA-4 was functionally inhibitory in a mixed lymphocyte reaction (MLR). GATA3 directly transactivated the CTLA-4 promoter, and knockdown of GATA3 messenger RNA and protein inhibited CTLA-4 induction mediated by bortezomib. Finally, knockdown of GATA3 in patient's malignant T cells suppressed CTLA-4 expression. Here we demonstrate a new T-cell regulatory pathway that directly links decreased proteasome degradation of GATA3, CTLA-4 upregulation, and inhibition of T-cell responses. We also demonstrate the requirement of the GATA3/CTLA-4 regulatory pathway in fresh neoplastic CD4+ T cells. Targeting of this pathway may be beneficial in SS and other CTLA-4-overexpressing T-cell neoplasms.
Collapse
Affiliation(s)
- Heather M Gibson
- Division of Dermatology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
122
|
Manikwar P, Kiptoo P, Badawi AH, Büyüktimkin B, Siahaan TJ. Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev 2012; 32:727-64. [PMID: 21433035 PMCID: PMC4441537 DOI: 10.1002/med.20243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a "bull's eye"-like formation of the immunological synapse (IS) at the T-cell-APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from T(H)1 to T(reg) and/or T(H)2 phenotypes, leading to tolerance.
Collapse
Affiliation(s)
- Prakash Manikwar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KA 66047, USA
| | | | | | | | | |
Collapse
|
123
|
CD28 family and chronic rejection: "to belatacept...And beyond!". J Transplant 2012; 2012:203780. [PMID: 22720132 PMCID: PMC3376773 DOI: 10.1155/2012/203780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 12/15/2022] Open
Abstract
Kidneys are one of the most frequently transplanted human organs. Immunosuppressive agents may prevent or reverse most acute rejection episodes; however, the graft may still succumb to chronic rejection. The immunological response involved in the chronic rejection process depends on both innate and adaptive immune response. T lymphocytes have a pivotal role in chronic rejection in adaptive immune response. Meanwhile, we aim to present a general overview on the state-of-the-art knowledge of the strategies used for manipulating the lymphocyte activation mechanisms involved in allografts, with emphasis on T-lymphocyte costimulatory and coinhibitory molecules of the B7-CD28 superfamily. A deeper understanding of the structure and function of these molecules improves both the knowledge of the immune system itself and their potential action as rejection inducers or tolerance promoters. In this context, the central role played by CD28 family, especially the relationship between CD28 and CTLA-4, becomes an interesting target for the development of immune-based therapies aiming to increase the survival rate of allografts and to decrease autoimmune phenomena. Good results obtained by the recent development of abatacept and belatacept with potential clinical use aroused better expectations concerning the outcome of transplanted patients.
Collapse
|
124
|
Lechner MG, Russell SM, Bass RS, Epstein AL. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors. Immunotherapy 2012; 3:1317-40. [PMID: 22053884 DOI: 10.2217/imt.11.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.
Collapse
Affiliation(s)
- Melissa G Lechner
- Department of Pathology, USC Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
125
|
Abstract
CTLA-4 proteins contribute to the suppressor function of regulatory T cells (Tregs), but the mechanism by which they do so remains incompletely understood. In the present study, we assessed CTLA-4 protein function in both Tregs and conventional (Tconv) CD4(+) T cells. We report that CTLA-4 proteins are responsible for all 3 characteristic Treg functions of suppression, TCR hyposignaling, and anergy. However, Treg suppression and anergy only required the external domain of CTLA-4, whereas TCR hyposignaling required its internal domain. Surprisingly, TCR hyposignaling was neither required for Treg suppression nor anergy because costimulatory blockade by the external domain of CTLA-4 was sufficient for both functions. We also report that CTLA-4 proteins were localized in Tregs in submembrane vesicles that rapidly recycled to/from the cell surface, whereas CTLA-4 proteins in naive Tconv cells were retained in Golgi vesicles away from the cell membrane and had no effect on Tconv cell function. However, TCR signaling of Tconv cells released CTLA-4 proteins from Golgi retention and caused activated Tconv cells to acquire suppressor function. Therefore, the results of this study demonstrate the importance of intracellular localization for CTLA-4 protein function and reveal that CTLA-4 protein externalization imparts suppressor function to both regulatory and conventional CD4(+) T cells.
Collapse
|
126
|
Abstract
Although cancer cells can be immunogenic, tumour progression is associated with the evasion of immunosurveillance, the promotion of tumour tolerance and even the production of pro-tumorigenic factors by immune cells. Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) represents a crucial immune checkpoint, the blockade of which can potentiate anti-tumour immunity. CTLA4-blocking antibodies are now an established therapeutic approach for malignant melanoma, and clinical trials with CTLA4-specific antibodies in prostate cancer have also shown clinical activity. This treatment may provide insights into the targets that the immune system recognizes to drive tumour regression, and could potentially improve both outcome and toxicity for patients with prostate cancer.
Collapse
Affiliation(s)
- Serena S Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco CA 94143-0511, USA
| | | | | |
Collapse
|
127
|
Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J 2012; 26:2253-76. [DOI: 10.1096/fj.11-193672] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Klaus G. Schmetterer
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
| | - Alina Neunkirchner
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for ImmunmodulationViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for ImmunmodulationViennaAustria
| |
Collapse
|
128
|
Li D, Zhang Q, Xu F, Fu Z, Yuan W, Li D, Pang D. Association of CTLA-4 gene polymorphisms with sporadic breast cancer risk and clinical features in Han women of northeast China. Mol Cell Biochem 2012; 364:283-90. [PMID: 22249287 DOI: 10.1007/s11010-012-1228-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an inhibitory molecule that plays a pivotal role in downregulating T-cell mediated immune responses. To determine the role of CTLA-4 in tumor immunity, and to validate previous results as well, we investigated four tag single nucleotide polymorphisms (SNPs) of CTLA-4 in a relatively large Chinese Han cohort from northeastern China. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 581 patients and 566 age-matched controls. Our data indicated that compared with the common genotype and allele of each SNP, the -1722 CC genotype and C allele showed an increased risk of breast cancer (P = 0.030, odds ratio (OR) = 1.457, 95% confidence internal (CI) 1.036-2.051; P = 0.024, OR = 1.214, 95% CI 1.026-1.436, respectively). The -1661 GG genotype and G allele were also associated with an increased risk of breast cancer (P = 0.018, OR = 1.396, 95% CI 1.058-1.843; P = 0.013, OR = 1.353, 95% CI 1.066-1.717, respectively). In the haplotype analysis, the CAAA haplotype showed a higher frequency in cases (P = 0.004), and this association remained significant after correcting the P value for multiple testing. Associations were shown between the SNPs of CTLA-4 and lymph node metastasis, estrogen receptor (ER), progesterone receptor (PR) and P53 statuses. These results indicate that some SNPs in the CTLA-4 gene may affect the risk of breast cancer and show that some SNPs are associated with breast cancer characteristics in Han women in northeastern China.
Collapse
Affiliation(s)
- Dalin Li
- Department of Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | | | | | | | | | | | | |
Collapse
|
129
|
Paine A, Kirchner H, Immenschuh S, Oelke M, Blasczyk R, Eiz-Vesper B. IL-2 Upregulates CD86 Expression on Human CD4+ and CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:1620-9. [DOI: 10.4049/jimmunol.1100181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
130
|
Zhuge ZY, Zhu YH, Liu PQ, Yan XD, Yue Y, Weng XG, Zhang R, Wang JF. Effects of Astragalus polysaccharide on immune responses of porcine PBMC stimulated with PRRSV or CSFV. PLoS One 2012; 7:e29320. [PMID: 22253710 PMCID: PMC3253776 DOI: 10.1371/journal.pone.0029320] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/24/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Astragalus polysaccharide (APS) has been used as an immunomodulator that can enhance immune responses, whereas the immunomodulatory effects of APS on porcine peripheral blood mononuclear cells (PBMCs) exposed to porcine reproductive and respiratory syndrome virus (PRRSV) and classical swine fever virus (CSFV) have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS Porcine PBMCs were cultured in complete RPMI media in the presence of the R98-strain of PRRSV (5×10(4) TCID(50)/ml) or C-strain of CSFV (10(3) TCID(50)/ml) with or without APS. The expression of mRNA for CD28, cytotoxic T-lymphocyte antigen 4 (CTLA-4), transforming growth factor-β (TGF-β), interleukin 2 (IL-2) and IL-10 was assayed by TaqMan real-time RT-PCR. The expression of mRNA for CD28 and CTLA-4 increased at 24 h after stimulation of PBMCs with CSFV and the increased production of CTLA-4 was confirmed by western blot analysis, whereas the increases were inhibited by the addition of APS. In addition, APS alone upregulated IL-2 and TGF-β mRNA expression in PBMCs and the addition of APS had the capacity to prevent a further increase in IL-2 mRNA expression in PBMCs during CSFV or PRRSV infection, but had no effect on TGF-β mRNA expression. The production of tumor necrosis factor-alpha (TNF-α) increased at 12 h after stimulation with PRRSV or CSFV, but not with PRRSV plus APS or CSFV plus APS, whereas the addition of APS to PBMCs infected with PRRSV or CSFV promoted IL-10 mRNA expression. CONCLUSIONS We suggested that APS had immunomodulatory effects on cells exposed to PRRSV or CSFV. It might be that APS via different mechanisms affects the activities of immune cells during either PRRSV or CSFV infection. This possibility warrants further studies to evaluate whether APS would be an effective adjuvant in vaccines against PRRSV or CSFV.
Collapse
Affiliation(s)
- Zeng-Yu Zhuge
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao-Hong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pan-Qi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Dong Yan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuan Yue
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Gang Weng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rong Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiu-Feng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
131
|
Walker LSK, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 2011; 11:852-63. [PMID: 22116087 DOI: 10.1038/nri3108] [Citation(s) in RCA: 569] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The T cell protein cytotoxic T lymphocyte antigen 4 (CTLA4) was identified as a crucial negative regulator of the immune system over 15 years ago, but its mechanisms of action are still under debate. It has long been suggested that CTLA4 transmits an inhibitory signal to the cells that express it. However, not all the available data fit with a cell-intrinsic function for CTLA4, and other studies have suggested that CTLA4 functions in a T cell-extrinsic manner. Here, we discuss the data for and against the T cell-intrinsic and -extrinsic functions of CTLA4.
Collapse
Affiliation(s)
- Lucy S K Walker
- MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, UK.
| | | |
Collapse
|
132
|
Auchincloss H, Turka LA. CTLA-4: not all costimulation is stimulatory. THE JOURNAL OF IMMUNOLOGY 2011; 187:3457-8. [PMID: 21934096 DOI: 10.4049/jimmunol.1102316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hugh Auchincloss
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
133
|
Huang X, Yang Y. Targeting co-stimulatory pathways in gene therapy. Front Microbiol 2011; 2:202. [PMID: 22046171 PMCID: PMC3202222 DOI: 10.3389/fmicb.2011.00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/07/2011] [Indexed: 11/13/2022] Open
Abstract
Gene therapy with recombinant viral vectors such as adenovirus and adenovirus-associated virus holds great promise in treating a wide range of diseases because of the high efficiency with which the viruses transfer their genomes into host cells in vivo. However, the activation of the host immune responses remains a major hurdle to successful gene therapy. Studies in the past two decades have elucidated the important role co-stimulation plays in the activation of both T and B cells. This review summarizes our current understanding of T cell co-stimulatory pathways, and strategies targeting these co-stimulatory pathways in gene therapy applications as well as potential future directions.
Collapse
Affiliation(s)
- Xiaopei Huang
- Department of Medicine, Duke University Medical Center Durham, NC, USA
| | | |
Collapse
|
134
|
Idris ZM, Miswan N, Muhi J, Mohd TAA, Kun JF, Noordin R. Association of CTLA4 gene polymorphisms with lymphatic filariasis in an East Malaysian population. Hum Immunol 2011; 72:607-12. [DOI: 10.1016/j.humimm.2011.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 12/24/2022]
|
135
|
Khan AR, Dovedi SJ, Wilkinson RW, Pritchard DI. Tumor infiltrating regulatory T cells: tractable targets for immunotherapy. Int Rev Immunol 2011; 29:461-84. [PMID: 20839911 DOI: 10.3109/08830185.2010.508854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several studies have linked tumor-infiltration by regulatory T cells with poor patient outcome. Targeting the mechanisms by which regulatory T cells traffic to and persist in the tumor may circumvent tumor immune-escape by de-restricting T cell-mediated cytotoxicity. In this review, we describe the principle axes that govern regulatory T cell migration and the mechanisms that underpin their immunosuppressive activity in cancer. Inhibiting either the migration or function of regulatory T cells may enhance host-anti-cancer immune responses and as such are attractive and tractable targets for therapeutic intervention.
Collapse
Affiliation(s)
- Adnan R Khan
- Doctoral Training Centre for Targeted Therapeutics, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
136
|
Cobbold SP. Future therapeutics for the induction of peripheral immune tolerance in autoimmune disease and organ transplantation. Immunotherapy 2011; 1:447-60. [PMID: 20635961 DOI: 10.2217/imt.09.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rodent models of transplantation and autoimmune disease have demonstrated that it is possible to induce lifelong and specific immunological tolerance to both self and graft antigens in the absence of any continued immunosuppression. If this situation could be achieved clinically, it would avoid many of the longer-term complications of immunosuppression, such as the increased risk of infection, cancer and other side effects, such as nephrotoxicity. In this review, we shall consider the interplay between regulatory T cells, dendritic cells and the tissue itself, and the resulting local protective mechanisms that are coordinated to maintain the tolerant state and an acquired local immune privilege. The current status of attempts to apply tolerogenic approaches to the clinical treatment of autoimmune diseases and to induce either tolerance to organ grafts or sufficient immune regulation so that conventional immunosuppression can be minimized will also be considered.
Collapse
Affiliation(s)
- Stephen P Cobbold
- University of Oxford, Therapeutic Immunology Group, Sir William Dunn School of Pathology, South Parks Road, Oxford, UK.
| |
Collapse
|
137
|
Simone R, Barbarat B, Rabellino A, Icardi G, Bagnasco M, Pesce G, Olive D, Saverino D. Ligation of the BT3 molecules, members of the B7 family, enhance the proinflammatory responses of human monocytes and monocyte-derived dendritic cells. Mol Immunol 2010; 48:109-18. [PMID: 20947169 DOI: 10.1016/j.molimm.2010.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 11/26/2022]
Abstract
BT3 is a new family of immunoreceptors belonging to the extended B7 family. BT3 molecules are expressed on the surface of resting and activated monocytes and monocyte-derived dendritic cells (iDC). We show that BT3 cross-linking, in the absence of other survival factors, provides a survival signal for monocytes and iDC and induces up-regulation of costimulatory molecules, such as CD80 and CD86, and HLA-DR. We further analyzed the effects of BT3 cross-linking on various proinflammatory responses on monocytes and iDC. The results obtained showed that BT3 engagement is able to modulate the production of IL8/CXCL8, IL-1β and IL-12/p70. Moreover, we demonstrated a synergistic effect between BT3 and Toll-like receptors ligands on both monocytes and iDC in up-regulating the production of proinflammatory cytokines. Thus, BT3 could be involved in the regulation of the balance between immune activation and suppression. A better understanding of its physiological role of these families of receptors awaits the precise identification of the nature, origin, expression, and distribution of their ligands.
Collapse
Affiliation(s)
- Rita Simone
- Department of Experimental Medicine - Section of Human Anatomy, University of Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Zheng J, Yu X, Jiang L, Xiao M, Bai B, Lu J, Zhou Y. Association between the Cytotoxic T-lymphocyte antigen 4 +49G > A polymorphism and cancer risk: a meta-analysis. BMC Cancer 2010; 10:522. [PMID: 20920330 PMCID: PMC2958938 DOI: 10.1186/1471-2407-10-522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 10/04/2010] [Indexed: 12/04/2022] Open
Abstract
Background As a key gene in the immunosurveillance of cell malignancy, Cytotoxic T-lymphocyte antigen 4 (CTLA-4 is an important negative regulator of T cell activation and proliferation. The CTLA-4 +49G > A polymorphism is one of the most commonly studied polymorphisms in this gene due to its association with cancer risks, but previous results have been conflicting. Methods We preformed a meta-analysis using 22 eligible case-control studies (including 32 datasets) with a total of 11,273 patients and 13,179 controls to summarize the existing data on the association between the CTLA-4 +49G > A polymorphism and cancer risk. Results Compared with the common CTLA-4 +49G > A GG genotype, the carriers of variant genotypes (CTLA-4 +49 GC/CC) had a 1.24-fold elevated risk of cancer (95% CI = 1.18-1.32, P < 0.05) under the dominant genetic model, as estimated using a fixed effect model. The effect of the CTLA-4 +49G > A polymorphism was further evaluated using stratification analysis. In four breast cancer studies, patients with the variant genotypes had a significantly increased risk of breast cancer (OR = 1.31, 95% CI = 1.17-1.48, P < 0.00001). A similar result was found in three skin cancer studies (OR = 1.30, 95% CI = 1.10-1.52, P = 0.001). In 26 solid tumor studies, subjects with the variant genotypes had a significantly higher risk of developing solid tumors (OR = 1.25, 95% CI = 1.18-1.33, P < 0.00001) compared with the 6 non-solid tumor studies (OR = 1.08, 95% CI = 0.79-1.48, P = 0.62). Patients with variant genotypes had significantly increased risk of non-epithelial tumors and epithelial tumors, with ORs of 1.23 (95% CI = 1.14-1.32, P < 0.00001) and 1.29 (95% CI = 1.17-1.41, P < 0.00001), respectively. It was also demonstrated that the increased risk of cancer associated with CTLA-4 +49G > A variant genotypes was more pronounced in Caucasians (OR = 1.29, 95% CI = 1.13-1.47, P = 0.0002), Asians (OR = 1.23, 95% CI = 1.16-1.32, P < 0.00001) and Chinese (OR = 1.23, 95% CI = 1.15-1.31, P < 0.00001). Conclusion Our meta-analysis suggests that the CTLA-4 +49G > A polymorphism genotypes (GA + AA) might be associated with an increased risk of cancer, especially in Caucasians and Chinese.
Collapse
Affiliation(s)
- Jian Zheng
- Soochow University Laboratory of Cancer Molecular Genetics, School of Basic Medicine & Biological Sciences, Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
139
|
Bouchlaka MN, Redelman D, Murphy WJ. Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects. Immunotherapy 2010; 2:399-418. [PMID: 20635904 PMCID: PMC3492055 DOI: 10.2217/imt.10.20] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a particularly important treatment for hematologic malignancies. Unfortunately, following allogeneic HSCT, graft-versus-host disease, immunosuppression and susceptibility to opportunistic infections remain among the most substantial problems restricting the efficacy and use of this procedure, particularly for cancer. Adoptive immunotherapy and/or manipulation of the graft offer ways to attack residual cancer as well as other transplant-related complications. Recent exciting discoveries have demonstrated that HSCT could be expanded to solid tissue cancers with profound effects on the effectiveness of adoptive immunotherapy. This review will provide a background regarding HSCT, discuss the complications that make it such a complex treatment procedure following up with current immunotherapeutic strategies and discuss emerging approaches in applying immunotherapy in HSCT for cancer.
Collapse
Affiliation(s)
- Myriam N Bouchlaka
- Department of Microbiology & Immunology, University of Nevada, Reno, NV, USA
| | - Doug Redelman
- Department of Physiology & Cell Biology, University of Nevada, Reno, NV, USA
| | - William J Murphy
- Author for correspondence: Department of Dermatology & Internal Medicine, University of California Davis, Sacramento, CA 95816, USA Tel.: +1 916 703 5662, Fax: +1 916 703 5670,
| |
Collapse
|
140
|
Xiao M, Qi F, Chen X, Luo Z, Zhang L, Zheng C, Hu S, Jiang X, Zhou M, Tang J. Functional polymorphism ofcytotoxic T-lymphocyte antigen 4and nasopharyngeal carcinoma susceptibility in a Chinese population. Int J Immunogenet 2010; 37:27-32. [DOI: 10.1111/j.1744-313x.2009.00888.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
141
|
Sugamata R, Suetake H, Kikuchi K, Suzuki Y. Teleost B7 expressed on monocytes regulates T cell responses. THE JOURNAL OF IMMUNOLOGY 2009; 182:6799-806. [PMID: 19454675 DOI: 10.4049/jimmunol.0803371] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mammals, professional APCs induce adaptive immunity via the activation of T cells. During this process, B7 family molecules present upon APCs are known to play crucial roles in optimal T cell stimulation. In contrast, the confirmation of APCs in a nonmammalian vertebrate has yet to be achieved. To obtain further insights into the evolutionary origin of APCs, we have identified three members of the B7 family in the teleost Takifugu rubripes (fugu): B7-H1/DC, B7-H3, and B7-H4. The three fugu B7s were expressed on the surface of blood monocytes. The B7(+) monocytes, which are composed of at least two distinct populations, expressed the MHC class II component gene. The fugu B7 molecules bound to activated T cells, indicating that putative B7 receptors were expressed upon T cells. Fugu B7-H1/DC inhibited T cell proliferation concomitant with increasing levels of both IL-10 and IFN-gamma expression, whereas both B7-H3 and B7-H4 promoted T cell growth following IL-2 induction and the suppression of IL-10. These observations indicate that fugu B7s regulate T cell responses via receptors upon T cells. We suggest that fish B7(+) monocytes are APCs and that a costimulatory system has already developed in fish via the evolutionary process.
Collapse
Affiliation(s)
- Ryuichi Sugamata
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Japan
| | | | | | | |
Collapse
|
142
|
Abstract
SUMMARY Despite the expression of antigens by tumor cells, spontaneous immune-mediated rejection of cancer seems to be a rare event. T-cell receptor engagement by peptide/major histocompatibility complexes constitutes the main signal for the activation of naive T cells but is not sufficient to initiate a productive generation and maintenance of effector cells. Full activation of T cells requires additional signals driven by costimulatory molecules present on activated antigen-presenting cells but rarely on tumors. Following the discovery of B7-1 (CD80), several other costimulatory molecules have been shown to contribute to T-cell activation and have relevance for improving anti-tumor immunity. Moreover, increasing the understanding of coinhibitory receptors has highlighted key additional pathways that can dominantly inhibit anti-tumor T-cell function. Improving positive costimulation, and interfering with negative regulation, continues to represent an attractive immunotherapeutic approach for the treatment of cancer. This review focuses upon those pathways with the highest potential for clinical application in human cancer patients.
Collapse
Affiliation(s)
- Gregory Driessens
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Justin Kline
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Thomas F. Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
143
|
Abstract
The activation and expansion of naïve T cells require costimulatory signals provided by CD28 and TNF family members. In contrast, for many years it was believed that memory T cells do not require CD28 costimulation for expansion during secondary responses. This was based on in vitro experiments that suggested the re-activation of memory T cells is somewhat independent of costimulation. Recent in vivo evidence, however, has challenged this and shown that both CD4+ and CD8+ memory T cells require CD28 costimulation for maximal expansion and pathogen clearance. This requirement has important implications for host immunity, vaccine development and immunotherapeutics.
Collapse
Affiliation(s)
- Alina C Boesteanu
- Drexel University College of Medicine, Department of Microbiology and Immunology, 2900 Queen Lane, Philadelphia, PA 19129, United States.
| | | |
Collapse
|
144
|
NEW INSIGHTS INTO CLASSICAL COSTIMULATION OF CD8+ T CELL RESPONSES. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 633:91-111. [DOI: 10.1007/978-0-387-79311-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
145
|
Huber A, Menconi F, Corathers S, Jacobson EM, Tomer Y. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr Rev 2008; 29:697-725. [PMID: 18776148 PMCID: PMC2583387 DOI: 10.1210/er.2008-0015] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes (T1D) and autoimmune thyroid diseases (AITD) frequently occur together within families and in the same individual. The co-occurrence of T1D and AITD in the same patient is one of the variants of the autoimmune polyglandular syndrome type 3 [APS3 variant (APS3v)]. Epidemiological data point to a strong genetic influence on the shared susceptibility to T1D and AITD. Recently, significant progress has been made in our understanding of the genetic association between T1D and AITD. At least three genes have been confirmed as major joint susceptibility genes for T1D and AITD: human leukocyte antigen class II, cytotoxic T-lymphocyte antigen 4 (CTLA-4), and protein tyrosine phosphatase non-receptor type 22. Moreover, the first whole genome linkage study has been recently completed, and additional genes will soon be identified. Not unexpectedly, all the joint genes for T1D and AITD identified so far are involved in immune regulation, specifically in the presentation of antigenic peptides to T cells. One of the lessons learned from the analysis of the joint susceptibility genes for T1D and AITD is that subset analysis is a key to dissecting the etiology of complex diseases. One of the best demonstrations of the power of subset analysis is the CTLA-4 gene in T1D. Although CTLA-4 showed very weak association with T1D, when analyzed in the subset of patients with both T1D and AITD, the genetic effect of CTLA-4 was significantly stronger. Gene-gene and genetic-epigenetic interactions most likely play a role in the shared genetic susceptibility to T1D and AITD. Dissecting these mechanisms will lead to a better understanding of the etiology of T1D and AITD, as well as autoimmunity in general.
Collapse
Affiliation(s)
- Amanda Huber
- Division of Endocrinology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
146
|
Cytotoxic-T-lymphocyte-associated antigen 4 blockade abrogates protection by regulatory T cells in a mouse model of microbially induced innate immune-driven colitis. Infect Immun 2008; 76:5834-42. [PMID: 18824539 DOI: 10.1128/iai.00542-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) expressed at high levels by CD4(+) CD25(+) CD45RB(low) regulatory T cells (Treg) is essential to their homeostatic and immunoregulatory functions. However, its relevance to anti-inflammatory roles of Treg in the context of colitogenic innate immune response during pathogenic bacterial infections has not been examined. We showed earlier in Rag2-deficient 129/SvEv mice that Treg cells are capable of suppressing colitis and colon cancer triggered by Helicobacter hepaticus, a widespread murine enterohepatic pathogen. Using this model, we now examined the effects of antibody blockade of CTLA-4 on Treg function during innate immune inflammatory response. Consistent with our previous findings, we found that a single adoptive transfer of Treg cells prior to infection prevented colitis development despite persistent H. hepaticus infection in recipient mice. However, when infected mice were injected with anti-CTLA-4 antibody along with Treg cell transfer, they developed a severe acute colitis with poor body condition that was not observed in Rag2(-/-) mice without Treg cell transfer. Despite high numbers of Foxp3(+) Treg cells, evident by immunohistochemical analyses in situ, the CTLA-4 antibody-treated mice had severely inflamed colonic mucosa and increased rather than decreased expression levels of cytokines gamma interferon and interleukin-2. These findings indicate that antibody blockade of CTLA-4 clearly abrogates Treg cell ability to suppress innate immune-driven colitis and suggest that Treg cell CTLA-4 cognate interactions may be necessary to maintain homeostasis among cells of innate immunity.
Collapse
|
147
|
Manna R, Cadoni G, Ferri E, Verrecchia E, Giovinale M, Fonnesu C, Calò L, Armato E, Paludetti G. Wegener's granulomatosis: an update on diagnosis and therapy. Expert Rev Clin Immunol 2008; 4:481-95. [PMID: 20477576 DOI: 10.1586/1744666x.4.4.481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wegener's granulomatosis (WG) is a unique clinicopathological disease characterized by necrotizing granulomatous vasculitis of the respiratory tract, pauci-immune necrotizing glomerulonephritis and small-vessel vasculitis. Owing to its wide range of clinical manifestations, WG has a broad spectrum of severity that includes the potential for alveolar hemorrhage or rapidly progressive glomerulonephritis, which are immediately life threatening. WG is associated with the presence of circulating antineutrophil cytoplasm antibodies (c-ANCAs). The most widely accepted pathogenetic model suggests that c-ANCA-activated cytokine-primed neutrophils induce microvascular damage and a rapid escalation of inflammation with recruitment of mononuclear cells. The diagnosis of WG is made on the basis of typical clinical and radiologic findings, by biopsy of involved organ, the presence of c-ANCA and exclusion of all other small-vessel vasculitis. Currently, a regimen consisting of daily cyclophosphamide and corticosteroids is considered standard therapy. A number of trials have evaluated the efficacy of less-toxic immunosuppressants and antibacterials for treating patients with WG, resulting in the identification of effective alternative regimens to induce or maintain remission in certain subpopulations of patients. Recent investigation has focused on other immunomodulatory agents (e.g., TNF-alpha inhibitors and anti-CD20 antibodies), intravenous immunoglobulins and antithymocyte globulins for treating patients with resistant WG.
Collapse
Affiliation(s)
- R Manna
- Clinical Autoimmunity Unit, Department of Internal Medicine, Catholic University of the Sacred Heart, Largo A Gemelli, 8-00168 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Jonson CO, Pihl M, Nyholm C, Cilio CM, Ludvigsson J, Faresjö M. Regulatory T cell-associated activity in photopheresis-induced immune tolerance in recent onset type 1 diabetes children. Clin Exp Immunol 2008; 153:174-81. [PMID: 18549445 DOI: 10.1111/j.1365-2249.2008.03625.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracorporeal photochemotherapy (ECP) has demonstrated immunological effects. The proposed cytotoxic lymphocyte antigen 4 (CTLA-4) involvement, together with forkhead box P3 (FoxP3) and transforming growth factor (TGF)-beta are associated with regulatory T cell activity. The aim of the study was to evaluate the regulatory T cell-associated effect of ECP in recent onset type 1 diabetic (T1D) children. Children (n = 20) with T1D received photopheresis 8-methoxypsoralen + ECP or placebo + shampheresis. Peripheral blood mononuclear cells (PBMC) collected pretreatment (day 1) and post-treatment (day 90) were stimulated with phytohaemagglutinin (PHA) and T1D-associated glutamic acid decarboxylase 65 (GAD(65)) peptide a.a. 247-279. CTLA-4, sCTLA-4, FoxP3 and TGF-beta mRNA transcription was quantified. Photopheresis-treated individuals' relative mRNA expression was generally maintained during the course of the study. Placebo individuals increased in spontaneous CTLA-4 mRNA (P < 0.05) but decreased in expression after stimulation with GAD(65)-peptide (P < 0.05) and PHA (P < 0.05). Spontaneous TGF-beta (P < 0.05) increased whereas PHA- (P < 0.01) and GAD(65)-peptide (P < 0.01)-induced TGF-beta expression decreased in the placebo group, whereas it was maintained in the treated group. Without intervention, expression of CTLA-4 and TGF-beta, stimulated with PHA and GAD(65) peptide, decreased with time, with a parallel reduction of GAD(65)-peptide and PHA-stimulated TGF-beta expression. These parameters were counteracted by ECP. In conclusion, our results indicate that ECP maintains regulatory T cell-associated activity in recent-onset T1D.
Collapse
Affiliation(s)
- C-O Jonson
- Division of Pediatrics and Diabetes Research Centre, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
149
|
Chikanza IC, Fernandes L. Section Review Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis: The current status and future prospects for biological targeted therapies for rheumatoid arthritis. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.7.819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
150
|
Abstract
CTLA-4 was first identified in 1991 as a second receptor for the T cell costimulation ligand B7. Uncertainties about its biological function plagued the early years after its discovery until 1995, when it was confirmed to be an inhibitor of T cell responses. CTLA-4 has since scored in the clinic as a target for antitumor therapy and as a soluble inhibitor of autoimmunity.
Collapse
|