101
|
Zhou L, Cheng ZQ, Li N, Ge YX, Xie HX, Zhu K, Zhou A, Zhang J, Wang KM, Jiang CS. A highly sensitive endoplasmic reticulum-targeting fluorescent probe for the imaging of endogenous H 2S in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118578. [PMID: 32534426 DOI: 10.1016/j.saa.2020.118578] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) as an important signaling biomolecule participates in a series of complex physiological and pathological processes. In situ and rapid detection of H2S levels in endoplasmic reticulum (ER) is of great importance for the in-depth study of its virtual functional roles. However, the ER-targeting fluorescent probe for the detection of H2S in live cells is still quite rare. Herein, a new ER-targeting fluorescent probe (FER-H2S) for detecting H2S in live cells was characterized in the present study. This probe FER-H2S was built from the hybridization of three parts, including fluorescein-based skeleton, p-toluenesulfonamide as ER-specific group, and 2,4-nitrobenzene sulfonate as a response site for H2S. The response mechanism of the probe FER-H2S to H2S is on the basis of the ring-opening and ring-closing processes in fluorescein moiety. Moreover, the probe FER-H2S was successfully used for the imaging of exogenous and endogenous H2S in ER of live cells.
Collapse
Affiliation(s)
- Lei Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kongkai Zhu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Aiqin Zhou
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
102
|
Wang J, Huo F, Yue Y, Yin C. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H 2 S since 2015. LUMINESCENCE 2020; 35:1156-1173. [PMID: 32954618 DOI: 10.1002/bio.3831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The topics of human health and disease are always the focus of much attention. Hydrogen sulfide (H2 S), as a double-edged sword, plays an important role in biological systems. Studies have revealed that endogenous H2 S is important to maintain normal physiological functions. Conversely, abnormal levels of H2 S may contribute to various diseases. Due to the importance of H2 S in physiology and pathology, research into the effects of H2 S has been active in recent years. Fluorescent probes with red/near-infrared (NIR) emissions (620-900 nm) are more suitable for imaging applications in vivo, because of their negligible photodamage, deep tissue penetration, and maximum lack of interference from background autofluorescence. H2 S, an 'evil and positive' molecule, is not only toxic, but also produces significant effects; a 'greedy' molecule, is not only a strong nucleophile under physiological conditions, but also undergoes a continuous double nucleophilic reaction. Therefore, in this tutorial review, we will highlight recent advances made since 2015 in the development and application of red/NIR fluorescent probes based on nucleophilic reactions of H2 S.
Collapse
Affiliation(s)
- JunPing Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
103
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
104
|
Mahato SK, Bhattacherjee D, Bhabak KP. The biothiol-triggered organotrisulfide-based self-immolative fluorogenic donors of hydrogen sulfide enable lysosomal trafficking. Chem Commun (Camb) 2020; 56:7769-7772. [PMID: 32555887 DOI: 10.1039/d0cc00613k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biothiol-reactive organotrisulfide-based self-immolative fluorogenic donors of H2S are rationally designed for the efficient monitoring of intracellular and lysosomal trafficking of H2S with a concomitant turn-on fluorescence. The non-toxic nature of the donors with a sustained release of H2S will certainly be helpful for their biomedical applications in the future.
Collapse
Affiliation(s)
- Sulendar K Mahato
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
105
|
Ma B, Guo W, Shan M, Zhang N, Ma B, Sun G. BRCA1 subcellular localization regulated by PI3K signaling pathway in triple-negative breast cancer MDA-MB-231 cells and hormone-sensitive T47D cells. Open Life Sci 2020; 15:501-510. [PMID: 33817238 PMCID: PMC7874579 DOI: 10.1515/biol-2020-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
This study is to investigate the effect of the PI3K/Akt signaling pathway on the regulation of BRCA1 subcellular localization in triple-negative breast cancer (TNBC) MDA-MB-231 cells and hormone-sensitive T47D cells. We found that heregulin-activated T47D cells showed more nuclear localization of BRCA1, but BRCA1 nuclear localization decreased after the inhibition of the PI3K signaling pathway. In MDA-MB-231 cells, activation or inhibition of the PI3K signaling pathway did not significantly affect cell apoptosis and BRCA1 nuclear translocation (P > 0.05). However, in T47D cells, the activation of the PI3K pathway significantly increased cell apoptosis (P < 0.05). In the heregulin-activated MDA-MB-231 and T47D cells, the phosphorylation of Akt and BRCA1 was significantly increased (P < 0.05), while that was significantly reduced after PI3K pathway inhibition (P < 0.05). The changing trends of the mRNA levels of Akt and BRCA1 in MDA-MB-231 and T47D cells after PI3K pathway activation or inhibition were consistent with the trends of their proteins. In both MDA-MB-231 and T47D cells, BRCA1 phosphorylation is regulated by the PI3K signaling pathway, but the nuclear localization of BRCA1 is different in these two cell lines. Moreover, the apoptosis rates of these two cell lines are different.
Collapse
Affiliation(s)
- Bin Ma
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| | - Wenjia Guo
- Xinjiang Uygur Autonomous Region Cancer Research Institute, Urumqi 830011, Xinjiang, P. R. China
| | - Meihui Shan
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| | - Nan Zhang
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| | - Binlin Ma
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| | - Gang Sun
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| |
Collapse
|
106
|
Gross-Amat O, Guillen M, Gimeno JP, Salzet M, Lebonvallet N, Misery L, Auxenfans C, Nataf S. Molecular Mapping of Hydrogen Sulfide Targets in Normal Human Keratinocytes. Int J Mol Sci 2020; 21:E4648. [PMID: 32629886 PMCID: PMC7369889 DOI: 10.3390/ijms21134648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although sulfur-rich thermal waters have ancestrally been used in the context of dermatological conditions, a global mapping of the molecular effects exerted by H2S on human keratinocytes is still lacking. To fill this knowledge gap, we subjected cultured human keratinocytes to distinct amounts of the non-gaseous hydrogen sulfur donor NaHS. We first checked that H2S accumulated in the cytoplasm of keratinocytes under our experimental conditions andused a combination of proteomics, genomics and biochemical approaches to unravel functionally relevant H2S targets in human keratinocytes. We found that the identified targets fall into two main categories: (i) the oxidative stress response molecules superoxide dismutase 2 (SOD2), NAD(P)H quinone dehydrogenase 1 (NQO1) and culin 3 (CUL3) and (ii) the chemokines interleukin-8 (IL-8) and CXCL2. Interestingly, NaHS also stimulated the caspase-1 inflammasome pathway, leading to increased secretion of the pro-inflammatory molecule interleukin-18 (IL-18). Interestingly, the secretion of interleukin-1 beta (IL-1β) was only modestly impacted by NaHS exposure despite a significant accumulation of IL-1β pro-form. Finally, we observed that NaHS significantly hampered the growth of human keratinocyte progenitors and stem cells cultured under clonogenic conditions or as epidermal cell sheets. We conclude that H2S exerts specific molecular effects on normal human keratinocytes.
Collapse
Affiliation(s)
- Olivia Gross-Amat
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, 69600 Oullins, France
| | - Marine Guillen
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
| | - Jean-Pascal Gimeno
- Inserm, CHRU Lille, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, F-59000 Lille, France; (J.-P.G.); (M.S.)
| | - Michel Salzet
- Inserm, CHRU Lille, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, F-59000 Lille, France; (J.-P.G.); (M.S.)
| | - Nicolas Lebonvallet
- Laboratory of Epithelial-Neural Interactions, University of Brest, LIEN, 29200 Brest, France; (N.L.); (L.M.)
| | - Laurent Misery
- Laboratory of Epithelial-Neural Interactions, University of Brest, LIEN, 29200 Brest, France; (N.L.); (L.M.)
- Department of dermatology, Brest University Hospital (CHU de Brest), 29200 Brest, France
| | - Céline Auxenfans
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305, 69007 Lyon, France
| | - Serge Nataf
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, 69600 Oullins, France
| |
Collapse
|
107
|
Ahmad A, Druzhyna N, Szabo C. Effect of 3-mercaptopyruvate Sulfurtransferase Deficiency on the Development of Multiorgan Failure, Inflammation, and Wound Healing in Mice Subjected to Burn Injury. J Burn Care Res 2020; 40:148-156. [PMID: 30649358 DOI: 10.1093/jbcr/irz007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gaseous transmitter hydrogen sulfide (H2S) has been implicated in various forms of critical illness. Here, we have compared the outcome of scald burn injury in wild-type mice and in mice deficient in 3-mercaptopyruvate sulfurtransferase (3-MST), a mammalian H2S-generating enzyme. Outcome variables included indices of organ injury, clinical chemistry parameters, and plasma levels of inflammatory mediators. Plasma levels of H2S significantly increased in response to burn in wild-type mice, but remained unchanged in 3-MST-/- mice. The capacity of tissue homogenates to produce H2S from 3-mercaptopyruvate was unaffected by burn injury. In 3-MST-/- mice, compared to wild-type controls, there was a significant enhancement in the accumulation of polymorphonuclear cells (as assessed by the quantification of myeloperoxidase) in the liver (but not heart, lung, or skin) at 7 days postburn. Oxidative tissue damage (as assessed by malon dialdehyde content) was comparable between wild-type and 3-MST-deficient mice in all tissues studied. 3-MST-/- and wild-type mice exhibited comparable burn-induced elevations in circulating plasma levels of hepatic injury; however, 3-MST-/- mice exhibited a higher degree of renal injury (as reflected by elevated blood urea nitrogen levels) at 7 days postburn. Inflammatory mediators (eg, TNF-α, IL-1β, IL-2, IL-6, IL-10, and IL-12) increased in burn injury, but without significant differences between the 3-MST-/- and wild-type groups. The healing of the burn wound was also unaffected by 3-MST deficiency. In conclusion, the absence of the H2S-producing enzyme 3-MST slightly exacerbates the development of multiorgan dysfunction but does not affect inflammatory mediator production or wound healing in a murine model of burn injury.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston
| | - Nadiya Druzhyna
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston.,Shriners Hospital for Children, Galveston, Texas.,Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Switzerland
| |
Collapse
|
108
|
Zhang M, Qiao R, Hu J. Engineering Metal-Organic Frameworks (MOFs) for Controlled Delivery of Physiological Gaseous Transmitters. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1134. [PMID: 32521709 PMCID: PMC7353332 DOI: 10.3390/nano10061134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) comprising metal ions or clusters coordinated to organic ligands have become a class of emerging materials in the field of biomedical research due to their bespoke compositions, highly porous nanostructures, large surface areas, good biocompatibility, etc. So far, many MOFs have been developed for imaging and therapy purposes. The unique porous nanostructures render it possible to adsorb and store various substances, especially for gaseous molecules, which is rather challenging for other types of delivery vectors. In this review, we mainly focus on the recent development of MOFs for controlled release of three gaseous transmitters, namely, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Although these gaseous molecules have been known as air pollutants for a long time, much evidence has been uncovered regarding their important physiological functions as signaling molecules. These signaling molecules could be either physically absorbed onto or covalently linked to MOFs, allowing for the release of loaded signaling molecules in a spontaneous or controlled manner. We highlight the designing concept by selective examples and display their potential applications in many fields such as cancer therapy, wound healing, and anti-inflammation. We hope more effort could be devoted to this emerging fields to develop signaling molecule-releasing MOFs with practical applications.
Collapse
Affiliation(s)
- Mengdan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| |
Collapse
|
109
|
Burguera EF, Vela-Anero Á, Gato-Calvo L, Vaamonde-García C, Meijide-Faílde R, Blanco FJ. Hydrogen sulfide biosynthesis is impaired in the osteoarthritic joint. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:997-1010. [PMID: 31734816 DOI: 10.1007/s00484-019-01823-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and it is a leading cause of disability in the elderly. Its complete etiology is not known although there are several metabolic, genetic, epigenetic, and local contributing factors involved. At the moment, there is no cure for this pathology and treatment alternatives to retard or stop its progression are intensively being sought. Hydrogen sulfide (H2S) is a small gaseous molecule and is present in sulfurous mineral waters as its active component. Data from recent clinical trials shows that balneotherapy (immersion in mineral and/or thermal waters from natural springs) in sulfurous waters can improve OA symptoms, in particular, pain and function. Yet, the underlying mechanisms are poorly known. Hydrogen sulfide is also considered, with NO and CO, an endogenous signaling gasotransmitter. It is synthesized endogenously with the help of three enzymes, cystathionine gamma-lyase (CTH), cystathionine beta-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MPST). Here, the expression of these three enzymes was demonstrated by quantitative real-time polymerase chain reaction (qRT-PCR) and their protein abundance [by immunohistochemistry and Western blot (WB)] in human articular cartilage. No significant differences were found in CBS or CTH expression or abundance, but mRNA and protein levels of 3-MPST were significantly reduced in cartilage form OA donors. Also, the biosynthesis of H2S from OA cartilage, measured with a specific microelectrode, was significantly lower than in OA-free tissue. Yet, no differences were found in H2S concentration in serum from OA patients and OA-free donors. The current results suggest that reduced levels of the mitochondrial enzyme 3-MPST in OA cartilage might be, at least in part, responsible for a reduction in H2S biosynthesis in this tissue and that impaired H2S biosynthesis in the joint might be a contributing factor to OA. This could contribute to explain why exogenous supplementation of H2S, for instance with sulfurous thermal water, has positive effects in OA patients.
Collapse
Affiliation(s)
- Elena F Burguera
- Grupo de Investigación en Reumatología (GIR), Agrupación Estratégica CICA-INIBIC, Complexo Hospitalario Universitario A Coruña, Sergas, Instituto de Investigación Biomédica A Coruña-INIBIC, As Xubias 84, 15006, A Coruña, Spain.
- CIBER-BBN, Madrid, Spain.
| | - Ángela Vela-Anero
- CIBER-BBN, Madrid, Spain
- Grupo de Terapia Celular e Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Sergas, Universidad de A Coruña, A Coruña, Spain
| | - Lucía Gato-Calvo
- Grupo de Investigación en Reumatología (GIR), Agrupación Estratégica CICA-INIBIC, Complexo Hospitalario Universitario A Coruña, Sergas, Instituto de Investigación Biomédica A Coruña-INIBIC, As Xubias 84, 15006, A Coruña, Spain
| | - Carlos Vaamonde-García
- Grupo de Terapia Celular e Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Sergas, Universidad de A Coruña, A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular e Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Sergas, Universidad de A Coruña, A Coruña, Spain
| | - Francisco J Blanco
- Grupo de Investigación en Reumatología (GIR), Agrupación Estratégica CICA-INIBIC, Complexo Hospitalario Universitario A Coruña, Sergas, Instituto de Investigación Biomédica A Coruña-INIBIC, As Xubias 84, 15006, A Coruña, Spain.
- Grupo de Investigación en Reumatología (GIR), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Sergas, Universidad de A Coruña, A Coruña, Spain.
- ProteoRed/ISCIII, Madrid, Spain.
| |
Collapse
|
110
|
Chung CL, Lin YS, Chan NJ, Chen YY, Hsu CC. Hypersensitivity of Airway Reflexes Induced by Hydrogen Sulfide: Role of TRPA1 Receptors. Int J Mol Sci 2020; 21:ijms21113929. [PMID: 32486252 PMCID: PMC7312894 DOI: 10.3390/ijms21113929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
The activation of capsaicin-sensitive lung vagal (CSLV) afferents can elicit airway reflexes. Hypersensitivity of these afferents is known to contribute to the airway hypersensitivity during airway inflammation. Hydrogen sulfide (H2S) has been suggested as a potential therapeutic agent for airway hypersensitivity diseases, such as asthma, because of its relaxing effect on airway smooth muscle and anti-inflammatory effect. However, it is still unknown whether H2S affects airway reflexes. Our previous study demonstrated that exogenous application of H2S sensitized CSLV afferents and enhanced Ca2+ transients in CSLV neurons. The present study aimed to determine whether the H2S-induced sensitization leads to functional changes in airway reflexes and elevates the electrical excitability of the CSLV neurons. Our results showed that, first and foremost, in anesthetized, spontaneously breathing rats, the inhalation of aerosolized sodium hydrosulfide (NaHS, a donor of H2S; 5 mg/mL, 3 min) caused an enhancement in apneic response evoked by several stimulants of the CSLV afferents. This enhancement effect was found 5 min after NaHS inhalation and returned to control 30 min later. However, NaHS no longer enhanced the apneic response after perineural capsaicin treatment on both cervical vagi that blocked the conduction of CSLV fibers. Furthermore, the enhancing effect of NaHS on apneic response was totally abolished by pretreatment with intravenous HC-030031 (a TRPA1 antagonist; 8 mg/kg), whereas the potentiating effect was not affected by the pretreatment with the vehicle of HC-030031. We also found that intracerebroventricular infusion pretreated with HC-030031 failed to alter the potentiating effect of NaHS on the apneic response. Besides, the cough reflex elicited by capsaicin aerosol was enhanced by inhalation of NaHS in conscious guinea pigs. Nevertheless, this effect was entirely eliminated by pretreatment with HC-030031, not by its vehicle. Last but not least, voltage-clamp electrophysiological analysis of isolated rat CSLV neurons showed a similar pattern of potentiating effects of NaHS on capsaicin-induced inward current, and the involvement of TRPA1 receptors was also distinctly shown. In conclusion, these results suggest that H2S non-specifically enhances the airway reflex responses, at least in part, through action on the TRPA1 receptors expressed on the CSLV afferents. Therefore, H2S should be used with caution when applying for therapeutic purposes in airway hypersensitivity diseases.
Collapse
Affiliation(s)
- Chi-Li Chung
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - You Shuei Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (N.-J.C.); (Y.-Y.C.)
| | - Nai-Ju Chan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (N.-J.C.); (Y.-Y.C.)
| | - Yueh-Yin Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (N.-J.C.); (Y.-Y.C.)
| | - Chun-Chun Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (N.-J.C.); (Y.-Y.C.)
- Correspondence:
| |
Collapse
|
111
|
Thymoquinone inhibits biofilm formation and virulence properties of periodontal bacteria. Arch Oral Biol 2020; 115:104744. [PMID: 32416351 DOI: 10.1016/j.archoralbio.2020.104744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To evaluate the effects of thymoquinone (TQ) on biofilm formation, hemolysis, hydrogen sulfide (H2S) production and expression of virulence factors of Fusobacterium nucleatum and Porphyromonas gingivalis. MATERIALS AND METHODS Reference strains of F. nucleatum ATCC 25586 and P. gingivalis A7436 were tested in our study. The minimum inhibitory concentration (MIC) of TQ was determined by broth microdilution method. The impacts of TQ on virulence properties of the periodontal bacteria including biofilm formation, hemolysis and H2S activities were studied. Quantitative RT-PCR was performed to evaluate the expression levels of key virulence factors including outer membrane proteins (aim-1, fadA) in F. nucleatum as well as cysteine proteinases or gingipains (rgpA, rgpB, kgp) and fimbriae (fimA, mfa1) in P. gingivalis. RESULTS The MIC of TQ were 12.5 and 1.56 μg/mL in F. nucleatum and P. gingivalis, respectively. The sub-MIC concentrations of TQ could prevent biofilm formation and hemolysis activities of both bacteria. TQ also inhibited H2S production which is highly associated with oral malodour. Scanning electron microscopy revealed that TQ could disrupt bacterial membrane and led to cell lysis. Furthermore, TQ reduced the expression of major virulence factors tested in F. nucleatum and P. gingivalis. CONCLUSIONS The TQ had potent antibacterial effect and could attenuate virulence properties of F. nucleatum and P. gingivalis. Therefore, TQ has the potential to be developed and used in periodontal treatments, especially to prevent the progression of periodontitis.
Collapse
|
112
|
|
113
|
Yuan DS, Huang YQ, Fu YJ, Xie J, Huang YL, Zhou SS, Sun PY, Tang XQ. Hydrogen sulfide alleviates cognitive deficiency and hepatic dysfunction in a mouse model of acute liver failure. Exp Ther Med 2020; 20:671-677. [PMID: 32509026 DOI: 10.3892/etm.2020.8680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute liver failure (ALF) is a devastating clinical syndrome with a high mortality rate if not treated promptly. Previous studies have demonstrated the beneficial effects of hydrogen sulfide (H2S) on the brain and liver. The present study aimed to investigate the potential protective effects of H2S in ALF. A mouse model of ALF was established following treatment with thioacetamide (TAA). Mice with TAA-induced ALF were intraperitoneally injected with 30 or 100 µmol/kg/day sodium hydrosulfide (NaHS; a H2S donor drug) for two weeks. According to results from novel object recognition and Y-maze tests, in the present study, NaHS treatment alleviated cognitive deficiency and preserved spatial orientation learning ability in TAA-induced ALF mice compared with those of untreated mice. In addition, NaHS treatment reduced serum levels of aspartate transaminase (AST), alanine transaminase (ALT) and the concentration of ammonia compared with those that received control treatment, resulting in weight loss prevention. These findings suggested a beneficial effect of H2S on liver function. In conclusion, results from the present study suggested that H2S treatment may alleviate cognitive deficiency and hepatic dysfunction in mice with ALF, indicating the potential therapeutic benefits of applying H2S for the treatment of ALF.
Collapse
Affiliation(s)
- Da-Sen Yuan
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue-Qi Huang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Ji Fu
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Xie
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Lu Huang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shi-Shan Zhou
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Pei-Yuan Sun
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Qing Tang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
114
|
Glorieux G, Gryp T, Perna A. Gut-Derived Metabolites and Their Role in Immune Dysfunction in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12040245. [PMID: 32290429 PMCID: PMC7232434 DOI: 10.3390/toxins12040245] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Several of the uremic toxins, which are difficult to remove by dialysis, originate from the gut bacterial metabolism. This opens opportunities for novel targets trying to decrease circulating levels of these toxins and their pathophysiological effects. The current review focuses on immunomodulatory effects of these toxins both at their side of origin and in the circulation. In the gut end products of the bacterial metabolism such as p-cresol, trimethylamine and H2S affect the intestinal barrier structure and function while in the circulation the related uremic toxins stimulate cells of the immune system. Both conditions contribute to the pro-inflammatory status of patients with chronic kidney disease (CKD). Generation and/or absorption of these toxin precursors could be targeted to decrease plasma levels of their respective uremic toxins and to reduce micro-inflammation in CKD.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Division, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium;
- Correspondence: ; Tel.: +32-9-3324511
| | - Tessa Gryp
- Nephrology Division, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium;
| | - Alessandra Perna
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| |
Collapse
|
115
|
Sodium Tanshinone IIA Sulfonate Attenuates Erectile Dysfunction in Rats with Hyperlipidemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7286958. [PMID: 32215177 PMCID: PMC7081035 DOI: 10.1155/2020/7286958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Hyperlipidemia is considered one of the most important risk factors for erectile dysfunction (ED). To determine the effect of sodium tanshinone IIA sulfonate (STS) as an antioxidant agent on ED in high-fat diet- (HFD-) induced hyperlipidemia in rats and to investigate if STS administration could improve erectile function via hydrogen sulfide (H2S) production by inhibition of oxidative stress. Hyperlipidemia was induced in Sprague-Dawley rats by feeding HFD for 16 weeks. The rats were randomly divided into 3 groups: control, HFD, and HFD treated with STS (10 mg/kg/day for 12 weeks, intraperitoneal injection). Erectile function including intracavernosal pressure (ICP), H2S production, and antioxidant capacity was assessed. In addition, cavernosal smooth muscle cells (CSMC) isolated from SD rats were pretreated with STS in vitro and exposed to H2O2. Expressions of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), activity of antioxidant enzymes, and H2S-generating enzymes within CSMC were examined. ICP was significantly decreased in HFD rats compared with control. In addition, decreased H2S production and expression of cystathionine ɣ-lyase (CSE) and cystathionine β-synthase (CBS) associated with increased oxidative stress were observed in the penile tissue of HFD rats. However, all these changes were reversed by 16 weeks after STS administration. STS also increased antioxidant defense as evidenced by increased expression of Nrf2/HO-1 in the penile tissue of HFD rats. In CSMC, pretreatment with STS attenuated the decreased expression of CSE and CBS and H2S production by H2O2. STS exerted similar protective antioxidative effect as shown in the in vivo hyperlipidemia model. The present study demonstrated the redox effect of STS treatment on ED via increased H2S production in HFD-induced hyperlipidemia rat model by increased antioxidant capacity via activation of the Nrf2/HO-1 pathway, which provides STS potential clinical application in the treatment of hyperlipidemia-related ED.
Collapse
|
116
|
Feng X, Zhang H, Shi M, Chen Y, Yang T, Fan H. Toxic effects of hydrogen sulfide donor NaHS induced liver apoptosis is regulated by complex IV subunits and reactive oxygen species generation in rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:322-332. [PMID: 31680430 DOI: 10.1002/tox.22868] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In recent years, the protective effect of hydrogensulfide donor sodium hydrosulfide(NaHS) on multiple organs has been widely reported. The study aimed to explorethe effect of commonly used concentration of NaHS on theliver and its potential damage mechanism. Rats divided into 4 groups: control, NaHS I (1 mg/kg), II (3 mg/kg) and III(5 mg/kg) groups, and each group is divided into four-timepoints (2, 6, 12, and 24 hours). Results showed that H2S concentration increased, mitochondrial complex IV activity inhibited, the COX I and IV subunits and mitochondrial apoptosis pathway-related proteins expression increased in atime- and dose-dependent manner. We confirmed that 1 mg/kg NaHS had no injuryeffect on the liver, 3 and 5 mg/kg NaHS inhibitsthe activity of mitochondrial complex IV by promoting COX I and IV subunits expression, leading to the increase in ROS and ultimately inducing apoptosis and liver injury.
Collapse
Affiliation(s)
- Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haiyang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingxian Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
117
|
Wang H, Li X, Zhu Z, Wang H, Wei B, Bai X. Hydrogen sulfide promotes lipopolysaccharide-induced apoptosis of osteoblasts by inhibiting the AKT/NF-κB signaling pathway. Biochem Biophys Res Commun 2020; 524:832-838. [PMID: 32037087 DOI: 10.1016/j.bbrc.2020.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 12/27/2022]
Abstract
Apoptosis of osteoblasts plays a crucial role in osteomyelitis. Hydrogen sulfide (H2S) levels are increased in the pathophysiological processes of osteomyelitis. However, the effect of H2S on the apoptosis of osteoblasts remains unclear. To investigate the specific role of H2S in osteoblast apoptosis, MC3T3-E1 and hFOB cells were treated with NaHS or Na2S, a donor of H2S, and lipopolysaccharide (LPS), during osteomyelitis. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, flow cytometry analysis, western blotting, immunofluorescence, polymerase chain reaction, and Alizarin red staining were performed to examine the effects of H2S on osteoblast cell apoptosis, cell osteogenic differentiation, and AKT kinase (AKT)/nuclear factor kappa B (NF-κB) signaling. Hydrogen sulfide increased cell apoptosis, and inhibited the proliferation and osteogenic differentiation of osteoblast cells impaired by LPS. H2S increased apoptosis through upregulation of the FAS ligand (FASL) signaling pathway. H2S-induced apoptosis was alleviated using a FAS/FASL signaling pathway inhibitor. Treatment with NaHS also increased cell apoptosis by downregulating AKT/NF-κB signaling. In addition, treatment with an AKT signaling pathway activator decreased apoptosis and reversed the inhibitory effects of H2S on osteogenic differentiation. Hydrogen sulfide promotes LPS-induced apoptosis of osteoblast cells by inhibiting AKT/NF-κB signaling.
Collapse
Affiliation(s)
- Hanshi Wang
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, 110016, People's Republic of China
| | - Xi Li
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, 110016, People's Republic of China
| | - Zhiyong Zhu
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, 110016, People's Republic of China
| | - Huisheng Wang
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, 110016, People's Republic of China
| | - Bo Wei
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xizhuang Bai
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
118
|
Loiselle JJ, Yang G, Wu L. Hydrogen sulfide and hepatic lipid metabolism - a critical pairing for liver health. Br J Pharmacol 2020; 177:757-768. [PMID: 30499137 PMCID: PMC7024709 DOI: 10.1111/bph.14556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) is the most recently recognized gasotransmitter, influencing a wide range of physiological processes. As a critical regulator of metabolism, H2 S has been suggested to be involved in the pathology of many diseases, particularly obesity, diabetes and cardiovascular disorders. Its involvement in liver health has been brought to light more recently, particularly through knockout animal models, which show severe hepatic lipid accumulation upon ablation of H2 S metabolic pathways. A complex relationship between H2 S and lipid metabolism in the liver is emerging, which has significant implications for liver disease establishment and/or progression, regardless of the disease-causing agent. In this review, we discuss the critical importance of H2 S in hepatic lipid metabolism. We then describe the animal models so far related with H2 S and lipid-associated liver disease, as well as H2 S-based treatments available. Finally, we highlight important considerations for future studies and identify areas in which much still remains to be determined. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Julie J Loiselle
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- School of Human KineticsLaurentian UniversitySudburyCanada
- Health Sciences North Research InstituteSudburyCanada
| | - Guangdong Yang
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- Department of Chemistry and BiochemistryLaurentian UniversitySudburyCanada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research UnitLaurentian UniversitySudburyCanada
- School of Human KineticsLaurentian UniversitySudburyCanada
- Health Sciences North Research InstituteSudburyCanada
| |
Collapse
|
119
|
Liu L, Zhou M, Zhu R, Zhou J, Ni L, Wang Z, Liu N, Zhu F, Shi T, Deng Z, Wang Y, Tian Y, Li R, Yang H, Wang Z, Jiang J, Xu Y. Hydrogen sulfide protects against particle-induced inflammatory response and osteolysis via SIRT1 pathway in prosthesis loosening. FASEB J 2020; 34:3743-3754. [PMID: 31943384 DOI: 10.1096/fj.201900393rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/16/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023]
Abstract
Wear debris-induced osteolysis and ensuing aseptic loosening is the main cause of implant failure and revision surgery. Wear debris-induced inflammatory response plays key roles in peri-implant osteolysis. Recently, substantial of evidence suggests that hydrogen sulfide (H2 S), the third gasotransmitter, is a critical player regulating inflammation. However, the role and therapeutic potential of H2 S in wear debris-induced inflammation and osteolysis remains to be defined. In the present study, we investigated the effect of H2 S on wear debris-induced pro-inflammatory cytokines expression and osteolysis in vitro and in vivo. With a slow-releasing H2 S donor GYY4137, our study demonstrated that H2 S attenuated wear debris-induced osteolysis and osteoclastogenesis in murine calvaria resorption models. The expression of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) that stimulated by wear particles were significantly reduced by GYY4137. Further, the level of sirtuin 1 (SIRT1), which possesses anti-inflammation property, was examined in vivo and in macrophages. And we found that wear debris decreased the expression of SIRT1. Cotreated macrophages with GYY4137 in part reversed the decline of SIRT1. More importantly, with the SIRT1 recombinant lentivirus and small interfering RNAs (siRNA) against SIRT1, our data indicated that SIRT1 mediated the inhibitory effects of GYY4137 on wear debris-induced inflammation. Collectively, these results suggested that exogenous H2 S production (via H2 S donors) may represent a potential approach for the treatment of wear particle-induced osteolysis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China.,Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Ming Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China.,Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Ruofu Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Li Ni
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Zhidong Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Naicheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Feng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow, Soochow, China
| | - Zhantao Deng
- Division of Orthopedics Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Wang
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yixing Tian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Rongqun Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Zhenheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Jiannong Jiang
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,The Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow, China
| |
Collapse
|
120
|
Detection of hydrogen sulfide using BODIPY based colorimetric and fluorescent on-off chemosensor. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1724-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
121
|
Han Y, Li Y, Hu Z, Wang X, Liu J, Ren X, Yu Y, Li Y, Li W, Sun Y. Hydrogen sulfide-mediated resistance against water avoidance stress-induced gastritis by maintenance of gastric microbial homeostasis. Microbiologyopen 2020; 9:e00951. [PMID: 31642186 PMCID: PMC6957437 DOI: 10.1002/mbo3.951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic persistent stress is an important cause of gastritis, but the underlying mechanism remains to be further researched, especially the role of the gastric microbiota in this process. Here, we used the water avoidance stress (WAS) test in mouse models for chronic stress-induced gastritis to investigate the underlying mechanisms of this disease. The effect of stress on the gastric microbiota was analyzed based on 16S rRNA sequencing; the changes in hydrogen sulfide (H2 S) and inflammatory cytokine levels in gastric tissues were detected by Western blotting, ELISA, immunofluorescence, and qRT-PCR. Hematoxylin and eosin staining was used as an indicator of the gastritis histological score. This finding is consistent with previous studies showing that gastric H2 S is negatively associated with the inflammatory index and might protect the gastrointestinal tract from inflammation. WAS-induced gastritis was associated with a reduction in H2 S release, which appeared to affect the homeostasis of the gastric microbiota of mice. Inflammation and microbial dysbiosis were partially reversed by sodium hydrosulfide (NaHS) and vitamin B6 (VB6) supplementation, suggesting the therapeutic potential of VB6 supplementation for the treatment of stress-induced gastritis. Gastritis has a serious impact on health and quality of life. An increasing number of people are suffering from chronic gastritis linked to a high-stress lifestyle, and our research provides clues for the prevention and treatment of stress-induced gastritis.
Collapse
Affiliation(s)
- Yingnan Han
- Department of MicrobiologyKey Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunology of Shandong ProvinceSchool of Basic MedicineShandong UniversityJinanChina
- Shandong Center for Disease Control and PreventionJinanChina
| | - Ya Li
- Department of MicrobiologyKey Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunology of Shandong ProvinceSchool of Basic MedicineShandong UniversityJinanChina
| | - Zhekai Hu
- Department of MicrobiologyKey Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunology of Shandong ProvinceSchool of Basic MedicineShandong UniversityJinanChina
| | - Xiao Wang
- Department of PathologySchool of Basic MedicineShandong UniversityJinanChina
| | - Junze Liu
- Department of MicrobiologyKey Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunology of Shandong ProvinceSchool of Basic MedicineShandong UniversityJinanChina
| | - Xue Ren
- Department of MicrobiologyKey Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunology of Shandong ProvinceSchool of Basic MedicineShandong UniversityJinanChina
| | - Yanbo Yu
- Department of GastroenterologyQilu HospitalShandong UniversityJinanChina
| | - Yan Li
- School of Control Science and EngineeringShandong UniversityJinanChina
| | - Wenjuan Li
- Department of MicrobiologyKey Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunology of Shandong ProvinceSchool of Basic MedicineShandong UniversityJinanChina
| | - Yundong Sun
- Department of MicrobiologyKey Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunology of Shandong ProvinceSchool of Basic MedicineShandong UniversityJinanChina
| |
Collapse
|
122
|
Wang Y, Zhang C, Xu C, Feng L, Li A, Jin X, Guo S, Jiao X, Liu J, Guo Y, Zhu H, Han L, Yang G, Zhong K, Li H. H 2S mediates apoptosis in response to inflammation through PI3K/Akt/NFκB signaling pathway. Biotechnol Lett 2019; 42:375-387. [PMID: 31872317 DOI: 10.1007/s10529-019-02782-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Hydrogen sulfide (H2S) is involved in regulating cell apoptosis and proliferation. However, The effects and mechanism of H2S on the apoptosis of mammary epithelial cells that suffer from an inflammatory response remain unknown. RESULTS An inflammatory cell model was used to explore whether exogenous H2S regulates lipopolysaccharides (LPS)-induced cell proliferation and apoptosis. We found that H2S affected cell viability, the inflammatory response and apoptosis in LPS-treated cells in a concentration-dependent manner. Moreover, exogenous H2S rescued LPS-induced cystathionine γ-lyase (CSE) inhibition and cystathionine β-synthase (CBS) synthesis. Interestingly, in cells undergoing inflammation-induced apoptosis, H2S activated the PI3K/Akt and NFκB signal pathways both tested concentrations. Akt appeared to be a key crosstalk molecule that played a "bridge" role. CONCLUSIONS H2S regulates LPS-induced inflammation and apoptosis by activating the PI3K/Akt/NFκB signaling pathway. Hence, NaHS may be clinically useful for preventing or treating mastitis.
Collapse
Affiliation(s)
- Yueying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Chengyu Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Chunmei Xu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Luping Feng
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Anqi Li
- Zhengzhou Sias University, Xinzheng, Henan, People's Republic of China
| | - Xiangyang Jin
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Shuang Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xianqin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Jingsong Liu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yujie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Heshui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Liqiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Guoyu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
123
|
Abstract
Hydrogen sulfide (H2S) is dichotomous in nature as it is lethal at higher concentrations, but at lower concentrations it shows a more cytoprotective nature. Due to its involvement in many physiological processes, it has recently risen to significance as a gasotransmitter alongside carbon monoxide (CO) and nitric oxide (NO). Experimentation using H2S is thus important to generate in vitro and in vivo models for this ubiquitous gasotransmitter. However, laboratory studies involving H2S are challenging due to the special handling conditions required to work with such a toxic gas. The use of chemical donors in the cell culture also show temporally varying release profiles, which are not optimal when trying to control H2S in cell cultures lasting several days. Previously we applied microfluidics to deliver stable concentrations of H2S, and in this work, we demonstrate a novel experimental method incorporating feedback control to precisely deliver H2S that accounts for donor solution concentration decay.
Collapse
Affiliation(s)
- Maheshwar Adiraj Iyer
- Department of Bioengineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - David Eddington
- Department of Bioengineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| |
Collapse
|
124
|
Propargylglycine decreases neuro-immune interaction inducing pain response in temporomandibular joint inflammation model. Nitric Oxide 2019; 93:90-101. [DOI: 10.1016/j.niox.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
|
125
|
Xie S, Fu T, He L, Qiu L, Liu H, Tan W. DNA-Capped Silver Nanoflakes as Fluorescent Nanosensor for Highly Sensitive Imaging of Endogenous H2S in Cell Division Cycles. Anal Chem 2019; 91:15404-15410. [DOI: 10.1021/acs.analchem.9b02527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sitao Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Lei He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Honglin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- School of Food and Biological Engineering, Hefei University of Technology, Anhui 230009, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
126
|
Imaging of the third gasotransmitter hydrogen sulfide using 99mTc-labeled alpha-hydroxy acids. Nucl Med Biol 2019; 76-77:28-35. [PMID: 31678899 DOI: 10.1016/j.nucmedbio.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Hydrogen sulfide (H2S) defined as the third gasotransmitter after nitric oxide (NO) and carbon monoxide (CO) is an important mediator of various physiological functions. Although various H2S-imaging techniques using fluorescence and luminescence have been developed, only one radionuclide imaging using 64Cu-labeled cyclen complex was reported. Thus, we tried to develop 99mTc-labeled H2S imaging agents. METHODS Various α-hydroxy acids such as glycolate, L-lactate, D-lactate, D-gluconate, D-glucoheptonate, D-glucuronate, D-glucarate, and citrate were labeled with 99mTc in the presence of stannous chloride. The labeled compounds were incubated with 0.2 mM of NaHS, and reactive sulfur species and then analyzed by ITLC/normal saline to detect the formation of insoluble complex. Matrigels containing various concentrations of NaHS were xenografted on the shoulder of normal mice, and an imaging study was performed after intravenous injection of [99mTc]Tc-gluconate. We also obtained autoradiography image of a rat brain with a temporary brain ischemia after intravenous injection of [99mTc]Tc-gluconate. RESULTS [99mTc]Tc-gluconate showed the highest formation of insoluble complex (87.8 ± 3.6%) after incubation with 0.2 mM NaHS. The other reactive species such as glutathione, cysteine, sulfite, sulfate, thiosulfate, and NO did not form insoluble complex representing the reaction being specific to H2S. The Matrigel containing 2 μmol NaHS showed uptake of [99mTc]Tc-gluconate, which proved the feasibility as the specific H2S imaging agent in vivo. Temporary ischemic lesion of rat brain showed high radioactivity accumulation representing the feasibility as endogenous H2S imaging agents. CONCLUSION We proved that 99mTc-labeled α-hydroxy acid especially [99mTc]Tc-gluconate is a novel endogenous H2S imaging agent, which might contribute to study and diagnosis of various diseases related with inflammation and hypoxia.
Collapse
|
127
|
Pan Z, Wang J, Xu M, Chen S, Li X, Sun A, Lou N, Ni Y. Hydrogen sulfide protects against high glucose‑induced lipid metabolic disturbances in 3T3‑L1 adipocytes via the AMPK signaling pathway. Mol Med Rep 2019; 20:4119-4124. [PMID: 31545435 PMCID: PMC6797932 DOI: 10.3892/mmr.2019.10685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023] Open
Abstract
Aberrant lipid metabolism contributes to the development of type 2 diabetes mellitus. The mechanisms by which hydrogen sulfide (H2S), an endogenous gasotransmitter, regulates lipid metabolism remain unclear. The aim of the present study was to investigate if the protective effects of H2S during high glucose (HG)-induced lipid accumulation in 3T3-L1 adipocytes may be mediated by AMP-activated protein kinase (AMPK). Triglyceride (TG) content and the production of H2S were determined using adipogenesis colorimetric assay kits and H2S synthesis methods. The levels of monocyte chemoattractant protein-1 and adiponectin were evaluated by ELISA. Total AMPK and phosphorylated AMPK levels were assessed by western blot analysis. HG increased the cellular level of TG and decreased H2S production in 3T3-L1 adipocytes. The H2S donor, sodium hydrosulfide (NaHS) protected against the HG-induced accumulation of TG in 3T3-L1 adipocytes. Furthermore, NaHS suppressed HG-induced TG accumulation by activating AMPK. Collectively, the findings of the present study suggested that HG induced lipid accumulation in 3T3-L1 adipocytes, and AMPK activation may underlie the lipid-lowering effects of H2S.
Collapse
Affiliation(s)
- Zhe Pan
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jue Wang
- Department of Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Min Xu
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaobo Li
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Aili Sun
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Nengjun Lou
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yihong Ni
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
128
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
129
|
Yu S, Chen X, Huang C, Han D. A Cu 2+-doped two-dimensional material-based heterojunction photoelectrode: application for highly sensitive photoelectrochemical detection of hydrogen sulfide. RSC Adv 2019; 9:28276-28283. [PMID: 35530487 PMCID: PMC9071042 DOI: 10.1039/c9ra05385a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/04/2019] [Indexed: 11/22/2022] Open
Abstract
In this work, on the basis of a Cu2+-doped two-dimensional material-based heterojunction photoelectrode, a novel anodic photoelectrochemical (PEC) sensing platform was constructed for highly sensitive detection of endogenous H2S. Briefly, with g-C3N4 and TiO2 as representative materials, the sensor was fabricated by modifying g-C3N4/TiO2 nanorod arrays (NAs) onto the surface of fluorine-doped tin oxide (FTO) and then doping Cu2+ as a Cu x S (x = 1, 2) precursor. After the binding of S2- with surface-attached Cu2+, the signal was quenched owing to the in situ generation of Cu x S which offers trapping sites to hinder generation of photocurrent signals. Since the photocurrent inhibition was intimately associated with the concentration of S2-, a highly sensitive PEC biosensor was fabricated for H2S detection. More importantly, the proposed sensing platform showed the enormous potential of g-C3N4/TiO2 NAs for further development of PEC bioanalysis, which may serve as a common basis for other semiconductor applications and stimulates the exploration of numerous high-performance nanocomposites.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
- Department of Chemistry, Taizhou University Jiaojiang, 318000 China
| | - Xia Chen
- Department of Chemistry, Taizhou University Jiaojiang, 318000 China
| | - Chaobiao Huang
- College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Deman Han
- Department of Chemistry, Taizhou University Jiaojiang, 318000 China
| |
Collapse
|
130
|
Anion binding ability and cytotoxicity of a selective colorimetric chemosensor for H2S based on Zn(Ⅱ) complex. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
131
|
Grasa L, Abecia L, Peña-Cearra A, Robles S, Layunta E, Latorre E, Mesonero JE, Forcén R. TLR2 and TLR4 interact with sulfide system in the modulation of mouse colonic motility. Neurogastroenterol Motil 2019; 31:e13648. [PMID: 31119834 DOI: 10.1111/nmo.13648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND H2 S is a neuromodulator that may inhibit intestinal motility. H2 S production in colon is yielded by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) enzymes and sulfate-reducing bacteria (SRB). Toll-like receptors (TLRs) recognize intestinal microbiota. The aim of this work was to evaluate the influence of TLR2 and TLR4 on the endogenous and SRB-mediated synthesis of H2 S and its consequences on the colonic motility of mouse. METHODS Muscle contractility studies were performed in colon from WT, Tlr2-/- , and Tlr4-/- mice. The mRNA levels of TLR2, TLR4, CBS, CSE, and SRB were measured by real-time PCR. Free sulfide levels in colon and feces were determined by colorimetric assays. RESULTS NaHS and GYY4137, donors of H2 S, reduced the contractility of colon. Aminooxyacetic acid (AOAA), inhibitor of CBS, and D-L propargylglycine (PAG), inhibitor of CSE, increased the contractility of colon. In vivo treatment with NaHS or GYY4137 inhibited the spontaneous contractions and upregulated TLR2 expression. The in vivo activation of TLR4 with lipopolysaccharide increased the contractile response to PAG, mRNA levels of CSE, and the free sulfide levels of H2 S in colon. In Tlr2-/- and Tlr4-/- mice, the contractions induced by AOAA and PAG and mRNA levels of CBS and CSE were lower with respect to WT mice. Deficiency of TLR2 or TLR4 provokes alterations in free sulfide levels and SRB of colon. CONCLUSIONS AND INFERENCES Our study demonstrates interaction between TLR2 and TLR4 and the sulfide system in the regulation of colonic motility and contributes to the pathophysiology knowledge of intestinal motility disorders.
Collapse
Affiliation(s)
- Laura Grasa
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | | | - Ainize Peña-Cearra
- CIC bioGUNE, Spain.,University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sofia Robles
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Univesity of Gothenburg, Gothenburg, Sweden
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - José Emilio Mesonero
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Raquel Forcén
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
132
|
Melo ISF, Rodrigues FF, Costa SOAM, Braga AV, Morais MÍ, Vaz JA, Neto LS, Galvão I, Modolo LV, Amaral FA, Oliveira RB, de Fátima Â, Coelho MM, Machado RR. 4-Methylbenzenecarbothioamide, a hydrogen sulfide donor, inhibits tumor necrosis factor-α and CXCL1 production and exhibits activity in models of pain and inflammation. Eur J Pharmacol 2019; 856:172404. [PMID: 31132352 DOI: 10.1016/j.ejphar.2019.172404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The gasotransmitter hydrogen sulfide (H2S) is known to regulate many pathophysiological processes. Preclinical assays have demonstrated that H2S donors exhibit anti-inflammatory and antinociceptive activities, characterized by reduction of inflammatory mediators production, leukocytes recruitment, edema and mechanical allodynia. In the present study, the effects induced by 4-methylbenzenecarbothioamide (4-MBC) in models of pain and inflammation in mice, the mechanisms mediating such effects and the H2S-releasing property of this compound were evaluated. 4-MBC spontaneously released H2S in vitro in the absence of organic thiols. Intraperitoneal (i.p.) administration of 4-MBC (100 or 150 mg/kg) reduced the second phase of the nociceptive response induced by formaldehyde and induced a long lasting inhibitory effect on carrageenan mechanical allodynia. 4-MBC antiallodynic effect was not affected by previous administration of naltrexone or glibenclamide. 4-MBC (50, 100 or 150 mg/kg, i.p.) induced a long lasting inhibitory effect on paw edema induced by carrageenan. The highest dose (150 mg/kg, i.p.) of 4-MBC inhibited tumor necrosis factor-α and CXCL1 production and myeloperoxidase activity induced by carrageenan. Mechanical allodynia and paw edema induced by carrageenan were not inhibited by the 4-MBC oxo analogue (p-toluamide). In summary, 4-MBC, an H2S releasing thiobenzamide, exhibits antinociceptive and anti-inflammatory activities. These activities may be due to reduced cytokine and chemokine production and neutrophil recruitment. The H2S releasing property is likely essential for 4-MBC activity. Our results indicate that 4-MBC may represent a useful pharmacological tool to investigate the biological roles of H2S.
Collapse
Affiliation(s)
- Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Sarah O A M Costa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Alysson Vinícius Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Marcela Ísis Morais
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Jéssica A Vaz
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo S Neto
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Izabela Galvão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renata B Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
133
|
Reitsema VA, Star BS, de Jager VD, van Meurs M, Henning RH, Bouma HR. Metabolic Resuscitation Strategies to Prevent Organ Dysfunction in Sepsis. Antioxid Redox Signal 2019; 31:134-152. [PMID: 30403161 DOI: 10.1089/ars.2018.7537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Sepsis is the main cause of death among patients admitted to the intensive care unit. As current treatment is limited to antimicrobial therapy and supportive care, mortality remains high, which warrants efforts to find novel therapies. Recent Advances: Mitochondrial dysfunction is emerging as a key process in the induction of organ dysfunction during sepsis, and metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis. Critical Issues: Here, we review novel strategies to maintain organ function in sepsis by precluding mitochondrial dysfunction by lowering energetic demand to allow preservation of adenosine triphosphate-levels, while reducing free radical generation. As the most common strategy to suppress metabolism, that is, cooling, does not reveal unequivocal beneficial effects and may even increase mortality, caloric restriction or modulation of energy-sensing pathways (i.e., sirtuins and AMP-activated protein kinase) may offer safe alternatives. Similar effects may be offered when mimicking hibernation by hydrogen sulfide (H2S). In addition H2S may also confer beneficial effects through upregulation of antioxidant mechanisms, similar to the other gasotransmitters nitric oxide and carbon monoxide, which display antioxidant and anti-inflammatory effects in sepsis. In addition, oxidative stress may be averted by systemic or mitochondria-targeted antioxidants, of which a wide range are able to lower inflammation, as well as reduce organ dysfunction and mortality from sepsis. Future Directions: Mitochondrial dysfunction plays a key role in the pathophysiology of sepsis. As a consequence, metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis.
Collapse
Affiliation(s)
- Vera A Reitsema
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bastiaan S Star
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent D de Jager
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Matijs van Meurs
- 2 Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,3 Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
134
|
Upregulation of proBDNF in the Mesenteric Lymph Nodes in Septic Mice. Neurotox Res 2019; 36:540-550. [PMID: 31278527 DOI: 10.1007/s12640-019-00081-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/27/2023]
Abstract
The immune status in the lymphatic system, especially mesenteric lymph nodes (MLNs), is critical to regulate the septic shock. Brain-derived neurotrophic factor (BDNF) in the enteric system has been reported to regulate enteric immunity. However, the role of its precursor, proBDNF, in the immune status of MLNs under sepsis condition is still unclear. This study aimed to characterize the expression pattern of proBDNF in MLNs after lipopolysaccharide (LPS) stimulation, and to investigate the association of pathogenesis of sepsis. LPS (20 mg/kg) was intraperitoneally injected to induce sepsis in mice. Survival curve analysis, routine blood tests, and liver and kidney function tests were performed to evaluate the severity of sepsis. QPCR and histological staining were performed to assess the mRNA levels of proinflammatory cytokines and degree of immune-inflammatory response in the MLNs. Furthermore, Western blotting, flow cytometry, and immunofluorescence were performed to examine the key molecules expression of proBDNF signaling. Intraperitoneal LPS injection significantly decreased the number of lymphocytes in blood but increased the number of T lymphocytes in MLNs. Serum alanine transaminase, aspartate transaminase, and blood urea nitrogen levels were increased in LPS-challenged mice compared to control mice. LPS administration upregulated proinflammatory cytokine gene expression and induced histological changes in the MLNs. LPS injection increased BDNF, proBDNF, and its receptor pan neutrophin receptor 75 (p75NTR) expression in MLNs. The increased proBDNF was mainly localized on CD3+ and CD4+ T cells in the medulla of MLNs. LPS-induced sepsis upregulated proBDNF expression in medulla T cells of MLNs. ProBDNF upregulation may be involved in the pathogenesis of septic shock.
Collapse
|
135
|
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? Antioxid Redox Signal 2019; 31:1-38. [PMID: 29790379 PMCID: PMC6551999 DOI: 10.1089/ars.2017.7058] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
Abstract
Significance: Hydrogen sulfide (H2S) has been recognized as the third gaseous transmitter alongside nitric oxide and carbon monoxide. In the past decade, numerous studies have demonstrated an active role of H2S in the context of cancer biology. Recent Advances: The three H2S-producing enzymes, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3MST), have been found to be highly expressed in numerous types of cancer. Moreover, inhibition of CBS has shown anti-tumor activity, particularly in colon cancer, ovarian cancer, and breast cancer, whereas the consequence of CSE or 3MST inhibition remains largely unexplored in cancer cells. Intriguingly, H2S donation at high amounts or a long time duration has also been observed to induce cancer cell apoptosis in vitro and in vivo while sparing noncancerous fibroblast cells. Therefore, a bell-shaped model has been proposed to explain the role of H2S in cancer development. Specifically, endogenous H2S or a relatively low level of exogenous H2S may exhibit a pro-cancer effect, whereas exposure to H2S at a higher amount or for a long period may lead to cancer cell death. This indicates that inhibition of H2S biosynthesis and H2S supplementation serve as two distinct ways for cancer treatment. This paradoxical role of H2S has stimulated the enthusiasm for the development of novel CBS inhibitors, H2S donors, and H2S-releasing hybrids. Critical Issues: A clear relationship between H2S level and cancer progression remains lacking. The possibility that the altered levels of these byproducts have influenced the cell viability of cancer cells has not been excluded in previous studies when modulating H2S producing enzymes. Future Directions: The consequence of CSE or 3MST inhibition in cancer cells need to be examined in the future. Better portrayal of the crosstalk among these gaseous transmitters may not only lead to an in-depth understanding of cancer progression but also shed light on novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-zhong Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yong Yang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | | | - Philip K. Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
136
|
Hydrogen sulfide inhibited L-type calcium channels (CaV1.2) via up-regulation of the channel sulfhydration in vascular smooth muscle cells. Eur J Pharmacol 2019; 858:172455. [PMID: 31202801 DOI: 10.1016/j.ejphar.2019.172455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Hydrogen sulfide (H2S) exerts different effects on the cardiovascular system by modulating ion channels. The present study was to ascertain whether H2S affects L-type calcium (Ca2+) channels in vascular smooth muscle cells (VSMCs) and the subsequent signaling pathways. Here, CaV1.2 L-type Ca2+ currents (ICa, L) were inhibited by sodium hydrosulfide (NaHS, an H2S donor) in A7r5 cell lines using the whole-cell patch-clamp technique. Then NaHS significantly reduced intracellular Ca2+ concentration ([Ca2+]i) in Bayk8644-stimulated CaV1.2-HEK293 cells by using flow cytometry. However, NaHS did not affect the ryanodine-induced elevation of [Ca2+]i by means of confocal microscopy, ruling out its influence on the intracellular Ca2+ release. In the following, the sulfhydration of L-type Ca2+ channels was determined by Ellman's Test. The results showed that NaHS decreased the number of free sulfhydryls, which was further strengthened by the oxidant sulfhydryl modifier diamide (DM) and significantly counteracted by the reductant sulfhydryl modifier dithiothreitol (DTT). DTT also partly reversed the NaHS-reduced [Ca2+]i in CaV1.2-HEK293 cells. Additionally, NaHS did not change CaV1.2 expression. Furthermore, NaHS increased phosphorylation of PKC and ERK in both a concentration- and a time-dependent manner in VSMCs. Isradipine, L-type Ca2+ channel specific blocker, further increased H2S-induced phosphorylation of PKC and ERK, showing an additive effect with H2S. Therefore, our results suggest that H2S reduced ICa, L & [Ca2+]i and hence influenced the downstream PKC/ERK pathway, which was likely through regulating the sulfhydration of L-type Ca2+ channels in VSMCs.
Collapse
|
137
|
Yadav PK, Vitvitsky V, Kim H, White A, Cho US, Banerjee R. S-3-Carboxypropyl-l-cysteine specifically inhibits cystathionine γ-lyase-dependent hydrogen sulfide synthesis. J Biol Chem 2019; 294:11011-11022. [PMID: 31160338 DOI: 10.1074/jbc.ra119.009047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule, which modulates a wide range of mammalian physiological processes. Cystathionine γ-lyase (CSE) catalyzes H2S synthesis and is a potential target for modulating H2S levels under pathophysiological conditions. CSE is inhibited by propargylglycine (PPG), a widely used mechanism-based inhibitor. In this study, we report that inhibition of H2S synthesis from cysteine, but not the canonical cystathionine cleavage reaction catalyzed by CSE in vitro, is sensitive to preincubation of the enzyme with PPG. In contrast, the efficacy of S-3-carboxpropyl-l-cysteine (CPC) a new inhibitor described herein, was not dependent on the order of substrate/inhibitor addition. We observed that CPC inhibited the γ-elimination reaction of cystathionine and H2S synthesis from cysteine by human CSE with Ki values of 50 ± 3 and 180 ± 15 μm, respectively. We noted that CPC spared the other enzymes involved either directly (cystathionine β-synthase and mercaptopyruvate sulfurtransferase) or indirectly (cysteine aminotransferase) in H2S biogenesis. CPC also targeted CSE in cultured cells, inhibiting transsulfuration flux by 80-90%, as monitored by the transfer of radiolabel from [35S]methionine to GSH. The 2.5 Å resolution crystal structure of human CSE in complex with the CPC-derived aminoacrylate intermediate provided a structural framework for the molecular basis of its inhibitory effect. In summary, our study reveals a previously unknown confounding effect of PPG, widely used to inhibit CSE-dependent H2S synthesis, and reports on an alternative inhibitor, CPC, which could be used as a scaffold to develop more potent H2S biogenesis inhibitors.
Collapse
Affiliation(s)
- Pramod K Yadav
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Andrew White
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and.
| |
Collapse
|
138
|
Hydrogen sulfide impacts on inflammation-induced adipocyte dysfunction. Food Chem Toxicol 2019; 131:110543. [PMID: 31154084 DOI: 10.1016/j.fct.2019.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 11/21/2022]
Abstract
A dual role of hydrogen sulfide (H2S) in inflammation is well-reported and recent studies demonstrated adipogenic effects of H2S in 3T3-L1 cells. Here, we aimed to investigate the effects of H2S on adipocyte differentiation and inflammation. H2S concentration in 3T3-L1 culture media was increased during adipocyte differentiation in parallel to adipogenic and Cth gene expression, and its inhibition using DL-Propargyl Glycine (PPG) impaired 3T3-L1 differentiation. GYY4137 and Na2S administration only in the first or in the last stage of adipocyte differentiation resulted in a significant increased expression of adipogenic genes. However, when GYY4137 or Na2S were administrated during all process no significant effects on adipogenic gene expression were found, suggesting that excessive H2S administration might exert negative effects on adipogenesis. In fact, continuous addition of Na2S, which resulted in Na2S excess, inhibited adipogenesis, whereas time-expired Na2S had no effect. In inflammatory conditions, GYY4137, but not Na2S, administration attenuated the negative effects of inflammation on adipogenesis and insulin signaling-related gene expression during adipocyte differentiation. In inflamed adipocytes, Na2S administration enhanced the negative effects of inflammatory process. Altogether these data showed that slow-releasing H2S improved adipocyte differentiation in inflammatory conditions, and that H2S proadipogenic effects depend on dose, donor and exposure time.
Collapse
|
139
|
Li Y, Shu Y, Wang X, Jiao X, Xie X, Zhang J, Tang B. An H 2S-activated ratiometric CO photoreleaser enabled by excimer/monomer conversion. Chem Commun (Camb) 2019; 55:6301-6304. [PMID: 31089585 DOI: 10.1039/c9cc02352f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Based on the excimer-monomer conversion of a pyrene-flavone hybrid, a ratiometric CO photoreleaser, PFN, was constructed for simultaneous H2S quantification and CO release in inflammatory cells.
Collapse
Affiliation(s)
- Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
140
|
Spalloni A, Greco V, Ciriminna G, Corasolla Carregari V, Marini F, Pieroni L, Mercuri NB, Urbani A, Longone P. Impact of Pharmacological Inhibition of Hydrogen Sulphide Production in the SOD1G93A-ALS Mouse Model. Int J Mol Sci 2019; 20:ijms20102550. [PMID: 31137614 PMCID: PMC6567312 DOI: 10.3390/ijms20102550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
A number of factors can trigger amyotrophic lateral sclerosis (ALS), although its precise pathogenesis is still uncertain. In a previous study done by us, poisonous liquoral levels of hydrogen sulphide (H2S) in sporadic ALS patients were reported. In the same study very high concentrations of H2S in the cerebral tissues of the familial ALS (fALS) model of the SOD1G93A mouse, were measured. The objective of this study was to test whether decreasing the levels of H2S in the fALS mouse could be beneficial. Amino-oxyacetic acid (AOA)—a systemic dual inhibitor of cystathionine-β-synthase and cystathionine-γ lyase (two key enzymes in the production of H2S)—was administered to fALS mice. AOA treatment decreased the content of H2S in the cerebral tissues, and the lifespan of female mice increased by approximately ten days, while disease progression in male mice was not affected. The histological evaluation of the spinal cord of the females revealed a significant increase in GFAP positivity and a significant decrease in IBA1 positivity. In conclusion, the results of the study indicate that, in the animal model, the inhibition of H2S production is more effective in females. The findings reinforce the need to adequately consider sex as a relevant factor in ALS.
Collapse
Affiliation(s)
- Alida Spalloni
- Department of Experimental Neuroscience, Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Viviana Greco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Giulia Ciriminna
- Department of Experimental Neuroscience, Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Victor Corasolla Carregari
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Federica Marini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Luisa Pieroni
- Department of Experimental Neuroscience, Proteomics and Metabonomics Unit, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Nicola B Mercuri
- Department of Systems Medicine, Policlinico Universitario "Tor Vergata", University of Rome "Tor Vergata", 00133 Rome, Italy.
- Department of Experimental Neuroscience, Experimental Neurology Unit, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Andrea Urbani
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Patrizia Longone
- Department of Experimental Neuroscience, Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
141
|
A novel “turn-on” mitochondria-targeting near-infrared fluorescent probe for H2S detection and in living cells imaging. Talanta 2019; 197:326-333. [DOI: 10.1016/j.talanta.2019.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
|
142
|
A dual-function fluorescent probe for discriminative detection of hydrogen sulfide and hydrazine. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
143
|
Chen M, Li X, Shi Q, Zhang Z, Xu S. Hydrogen sulfide exposure triggers chicken trachea inflammatory injury through oxidative stress-mediated FOS/IL8 signaling. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:243-254. [PMID: 30684762 DOI: 10.1016/j.jhazmat.2019.01.054] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is well known to cause irritation and damage to airway following inhalation, but the mechanism by which H2S contributes to airway toxicity is unclear. In order to assess the respiratory toxicity of H2S inhalation in chicken trachea, we investigated the change of oxidative stress parameters, tracheal tissue structure and transcriptome profiles of chicken trachea exposed to H2S for 42 days. The results showed H2S exposure induced oxidative stress and inflammation in trachea. The ultrastructural analysis revealed loss of cilia and accumulation of mucus in tracheal epithelium. Differentially expressed genes (DEGs) analysis indicated 454 genes were significantly changed, including 136 genes upregulated and 318 genes downregulated. Gene ontology and KEGG analysis showed many genes involved in response to oxidative stress, inflammatory and immune response, which might contribute to H2S-induced tracheal inflammatory injury. Among those genes, N-acetyl-L-cysteine (NAC) treatment blocked the H2S-triggered expression of FOS and IL8. Silencing FOS by siRNA inhibited H2S-induced expression of IL8. Taken together, we concluded that H2S induced oxidative stress leads to tracheal inflammation through FOS/IL8 signaling, leading to excessive mucus secretion and absence of cilia. These results provide new insights for unveiling the biological effects of H2S in vivo and in vitro.
Collapse
Affiliation(s)
- Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
144
|
Zhao XJ, Jiang YR, Li YT, Yang BQ, Liu C, Liu ZH. A novel "turn-on" mitochondria-targeting near-infrared fluorescent probe for determination and bioimaging cellular hydrogen sulfide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:71-77. [PMID: 30597436 DOI: 10.1016/j.saa.2018.12.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) has been regarded as an important gas transmitter playing vital role in cytoprotective processes and redox signaling. It is very meaningful to monitor and analyze it in biosystem for obtaining important physiological and pathological information. Despite numerous fluorescent probes for cellular H2S have been reported in past decades, only a few have capability to detect mitochondrial H2S with near-infrared (NIR) emission. Therefore, a new mitochondria-targeting NIR fluorescent probe (Mito-NSH) for detection of cellular H2S was developed by introducing 2,4-dinitrophenyl ether into a novel dye (Mito-NOH). A large "turn-on" NIR fluorescence response was obtained due to thiolysis of ether to hydroxyl group when Mito-NSH was treated with NaHS. Moreover, Mito-NSH could quantitatively detect H2S at concentration ranging from 0 to 30 μM with a detection limit of 68.2 nM, and it exerts some superior optical properties, such as large stokes shift (107 nm), highly selectively mitochondria location, fast response and high selectivity to H2S. More impressively, it was successfully applied to imaging exogenous and endogenously generated H2S in living HeLa cells via confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Xiong-Jie Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yu-Ren Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Yu-Ting Li
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Bing-Qing Yang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Ce Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zhi-Hong Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
145
|
Tang Z, Song B, Ma H, Shi Y, Yuan J. A ratiometric time-gated luminescence probe for hydrogen sulfide based on copper(II)-coupled lanthanide complexes. Anal Chim Acta 2019; 1049:152-160. [DOI: 10.1016/j.aca.2018.10.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
|
146
|
Jiang M, Wang T, Yan X, Liu Z, Yan Y, Yang K, Qi J, Zhou H, Qian N, Zhou Q, Chen B, Xu X, Xi X, Yang C, Deng L. A Novel Rhein Derivative Modulates Bone Formation and Resorption and Ameliorates Estrogen-Dependent Bone Loss. J Bone Miner Res 2019; 34:361-374. [PMID: 30320929 DOI: 10.1002/jbmr.3604] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 11/10/2022]
Abstract
Osteoporosis, an osteolytic disease that affects millions of people worldwide, features a bone remodeling imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Identifying dual target-directed agents that inhibit excessive bone resorption and increase bone formation is considered an efficient strategy for developing new osteoporosis treatments. Rhein, a natural anthraquinone, can be isolated from various Asian herbal medicines. Rhein and its derivatives have been reported to have various beneficial pharmacological effects, especially their bone-targeting ability and anti-osteoclastogenesis activity. Moreover, hydrogen sulfide (H2 S) was reported to prevent ovariectomy- (OVX-) induced bone loss by enhancing bone formation, and sulfur replacement therapy has been considered a novel and plausible therapeutic option. Based on this information, we synthesized a rhein-derived thioamide (RT) and investigated its effects on bone resorption and bone formation in vitro and in vivo. It has been found that the RT-inhibited receptor activator of the nuclear factor-κB (NF-κB) ligand- (RANKL-) induced osteoclastogenesis and bone resorption in a dose-dependent manner. The expression of osteoclast marker genes was also suppressed by RT treatment. Furthermore, exploration of signal transduction pathways indicated that RT markedly blocked RANKL-induced osteoclastogenesis by attenuating MAPK pathways. However, RT treatment in an osteoblastic cell line, MC3TE-E1, indicated that RT led to an increase in the deposition of minerals and the expression of osteoblast marker genes, as demonstrated by Alizarin Red staining and alkaline phosphatase activity. Importantly, an OVX mouse model showed that RT could attenuate the bone loss in estrogen deficiency-induced osteoporosis in vivo with a smart H2 S-releasing property and that there was a considerable improvement in the biomechanical properties of bone. Accordingly, our current work highlights the dual regulation of bone remodeling by the rhein-derived molecule RT. This may be a highly promising approach for a new type of anti-osteoporosis agent. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Min Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tianqi Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xueming Yan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuochao Liu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yufei Yan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kai Yang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobing Xi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunhao Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
147
|
George L, Ramasamy T, Sirajudeen KNS, Manickam V. LPS-induced Apoptosis is Partially Mediated by Hydrogen Sulphide in RAW 264.7 Murine Macrophages. Immunol Invest 2019; 48:451-465. [DOI: 10.1080/08820139.2019.1566355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Leema George
- School BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, India
| | - Tamizhselvi Ramasamy
- School BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, India
| | - KNS Sirajudeen
- Department of Chemical Pathology, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Venkatraman Manickam
- School BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, India
| |
Collapse
|
148
|
Vasilieva SV, Petrishcheva MS, Yashkina EI, Osipov AN. Signaling and physiological activity of the NO-donating agent TNICthio in human blood lymphocytes, Jurkat and MCF7 cell lines. Mol Biol Rep 2019; 46:719-725. [PMID: 30637625 DOI: 10.1007/s11033-018-4527-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/23/2018] [Indexed: 01/30/2023]
Abstract
Signaling and physiological activities of the crystalline tetranitrosyl iron complex with thiosulfate-a NO-donor (TNICthio) were first studied on human cells in conditions of mono and combined application of H2S and antioxidants. Comparative studies were performed on three cell lines: normal and leukemic T lymphocytes (Jurkat cells) and breast cancer MCF-7 cells (human breast adenocarcinoma). Also established was a high biological activity of TNICthio, as well as correlation between the levels of reactive oxygen species generation, the formation of double-strand breaks (DSB) in DNA and cell proliferation. The amount of DNA DSB repair in normal lymphocytes was tenfold higher than in leukemic cells. Inorganic H2S donor sodium hydrosulfide (NaHS) had insignificant effects on the production of reactive oxygen species and generation of DNA DSB in the cells of all the lines under study. However, H2S increased the tolerance of cells to the stress response after combined cell treatment with NO + H2S. 0.5 mM NO-donor and 0.1 mM antitumor antibiotic doxorubicin were equally effective generators of reactive oxygen species in MCF-7 cells; however, antiproliferative activity of the NO-donor, in this case, proved to be twice higher. The results obtained in this work may be promising for the prediction of pro- and antioxidant properties of the new NO and H2S donating compounds, as well as for the development of methods for complex anticancer therapy.
Collapse
Affiliation(s)
- Svetlana V Vasilieva
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, Russia, 119334.
| | - Maria S Petrishcheva
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, Russia, 119334
| | - Elizaveta I Yashkina
- Federal State Institution A.I. Burnazyan Federal Medical and Biophysical Center, 46 Zhivopisnaya Street, Moscow, Russia, 123182
| | - Andreyan N Osipov
- N.N. Semyonov Institute of Chemical Physics, Russian Academy of Sciences, 4a Kosygin Street, Moscow, Russia, 119334
| |
Collapse
|
149
|
Park J, Kim T, Kim HJ, Hong JI. Iridium(iii) complex-based electrochemiluminescent probe for H2S. Dalton Trans 2019; 48:4565-4573. [DOI: 10.1039/c8dt04901g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
(Azmb-ppy)2Ir(acac) showed high “turn-off” ECL response for H2S.
Collapse
Affiliation(s)
- Joonho Park
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Taemin Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Hoon Jun Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Jong-In Hong
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
150
|
Zheng S, Jin X, Chen M, Shi Q, Zhang H, Xu S. Hydrogen sulfide exposure induces jejunum injury via CYP450s/ROS pathway in broilers. CHEMOSPHERE 2019; 214:25-34. [PMID: 30253253 DOI: 10.1016/j.chemosphere.2018.09.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen sulfide (H2S) is generally recognized as a highly poisonous environmental and industrial pollutant. Previous toxicological studies of H2S are mainly focused on the nervous and cardiovascular system. There are few reports on the H2S toxicity effects on jejunum to our knowledge. Our study examined the morphological changes and antioxidant functions of broiler jejunum after the 42-day exposure to H2S. Effects of H2S on morphological damage and immune function in the broiler jejunum were analyzed from the perspective of CYP450s and oxidative stress via transcriptomics and quantitative real-time PCR (qRT-PCR). It was found that the activities of GPx, CAT, SOD, and T-AOC and the level of GSH were observably decreased (P < 0.05), while the contents of MDA and H2O2 were remarkably increased (P < 0.05) in the jejunums of broilers exposed to H2S, which undergone a process of oxidative stress, and typical inflammatory changes and apoptosis could be observed. Transcriptional profiling results showed that 208 genes were significantly up-regulated while 295 genes were remarkably down-regulated in H2S group. The expression of CYP450s, inflammation and apoptosis-related genes were also significantly increased. In conclusion, H2S led to the redox homeostasis disorder through CYP450s differential expression in broiler jejunum. The jejunal inflammatory response, apoptosis along with the immune dysfunction were subsequently observed, which eventually caused jejunal morphology and functional damage. The present study further enriches and perfects the mechanism theory of H2S toxicity on broilers, which may be valuable for the risk assessment of H2S and human health protection.
Collapse
Affiliation(s)
- Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|