101
|
Krzmarzick MJ, McNamara PJ, Crary BB, Novak PJ. Abundance and diversity of organohalide-respiring bacteria in lake sediments across a geographical sulfur gradient. FEMS Microbiol Ecol 2013; 84:248-58. [DOI: 10.1111/1574-6941.12059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Mark J. Krzmarzick
- Department of Civil Engineering; University of Minnesota; Minneapolis; MN; USA
| | - Patrick J. McNamara
- Department of Civil Engineering; University of Minnesota; Minneapolis; MN; USA
| | - Benjamin B. Crary
- Department of Civil Engineering; University of Minnesota; Minneapolis; MN; USA
| | - Paige J. Novak
- Department of Civil Engineering; University of Minnesota; Minneapolis; MN; USA
| |
Collapse
|
102
|
Maness AD, Bowman KS, Yan J, Rainey FA, Moe WM. Dehalogenimonas spp. can Reductively Dehalogenate High Concentrations of 1,2-Dichloroethane, 1,2-Dichloropropane, and 1,1,2-Trichloroethane. AMB Express 2012; 2:54. [PMID: 23046725 PMCID: PMC3492069 DOI: 10.1186/2191-0855-2-54] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022] Open
Abstract
The contaminant concentrations over which type strains of the species Dehalogenimonas alkenigignens and Dehalogenimonas lykanthroporepellens were able to reductively dechlorinate 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were evaluated. Although initially isolated from an environment with much lower halogenated solvent concentrations, D. alkenigignens IP3-3T was found to reductively dehalogenate chlorinated alkanes at concentrations comparable to D. lykanthroporepellens BL-DC-9T. Both species dechlorinated 1,2-DCA, 1,2-DCP, and 1,1,2-TCA present at initial concentrations at least as high as 8.7, 4.0, and 3.5 mM, respectively. The ability of Dehalogenimonas spp. to carry out anaerobic reductive dechlorination even in the presence of high concentrations of chlorinated aliphatic alkanes has important implications for remediation of contaminated soil and groundwater.
Collapse
Affiliation(s)
- Andrew D Maness
- Department of Civil and Environmental Engineering, Louisiana State University, 3513B Patrick Taylor Hall, Baton Rouge, LA, 70803, USA
| | - Kimberly S Bowman
- Department of Civil and Environmental Engineering, Louisiana State University, 3513B Patrick Taylor Hall, Baton Rouge, LA, 70803, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jun Yan
- Department of Civil and Environmental Engineering, Louisiana State University, 3513B Patrick Taylor Hall, Baton Rouge, LA, 70803, USA
- Present address: Jun Yan, Department of Microbiology and Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| | - Fred A Rainey
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, 99508, USA
| | - William M Moe
- Department of Civil and Environmental Engineering, Louisiana State University, 3513B Patrick Taylor Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
103
|
Jiang L, Ni J, Liu Q. Evolution of selenoproteins in the metazoan. BMC Genomics 2012; 13:446. [PMID: 22943432 PMCID: PMC3473315 DOI: 10.1186/1471-2164-13-446] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background The selenocysteine (Sec) containing proteins, selenoproteins, are an important group of proteins present throughout all 3 kingdoms of life. With the rapid progression of selenoprotein research in the post-genomic era, application of bioinformatics methods to the identification of selenoproteins in newly sequenced species has become increasingly important. Although selenoproteins in human and other vertebrates have been investigated, studies of primitive invertebrate selenoproteomes are rarely reported outside of insects and nematodes. Result A more integrated view of selenoprotein evolution was constructed using several representative species from different evolutionary eras. Using a SelGenAmic-based selenoprotein identification method, 178 selenoprotein genes were identified in 6 invertebrates: Amphimedon queenslandica, Trichoplax adhaerens, Nematostella vectensis, Lottia gigantean, Capitella teleta, and Branchiostoma floridae. Amphioxus was found to have the most abundant and variant selenoproteins of any animal currently characterized, including a special selenoprotein P (SelP) possessing 3 repeated Trx-like domains and Sec residues in the N-terminal and 2 Sec residues in the C-terminal. This gene structure suggests the existence of two different strategies for extension of Sec numbers in SelP for the preservation and transportation of selenium. In addition, novel eukaryotic AphC-like selenoproteins were identified in sponges. Conclusion Comparison of various animal species suggests that even the most primitive animals possess a selenoproteome range and variety similar to humans. During evolutionary history, only a few new selenoproteins have emerged and few were lost. Furthermore, the massive loss of selenoproteins in nematodes and insects likely occurred independently in isolated partial evolutionary branches.
Collapse
Affiliation(s)
- Liang Jiang
- College of Life Sciences, Shenzhen University, Shenzhen, 518060, Guangdong Province, PR, China
| | | | | |
Collapse
|
104
|
Samin G, Janssen DB. Transformation and biodegradation of 1,2,3-trichloropropane (TCP). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3067-78. [PMID: 22875418 PMCID: PMC3414701 DOI: 10.1007/s11356-012-0859-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/09/2012] [Indexed: 05/04/2023]
Abstract
PURPOSE 1,2,3-Trichloropropane (TCP) is a persistent groundwater pollutant and a suspected human carcinogen. It is also is an industrial chemical waste that has been formed in large amounts during epichlorohydrin manufacture. In view of the spread of TCP via groundwater and its toxicity, there is a need for cheap and efficient technologies for the cleanup of TCP-contaminated sites. In situ or on-site bioremediation of TCP is an option if biodegradation can be achieved and stimulated. This paper presents an overview of methods for the remediation of TCP-contaminated water with an emphasis on the possibilities of biodegradation. CONCLUSIONS Although TCP is a xenobiotic chlorinated compound of high chemical stability, a number of abiotic and biotic conversions have been demonstrated, including abiotic oxidative conversion in the presence of a strong oxidant and reductive conversion by zero-valent zinc. Biotransformations that have been observed include reductive dechlorination, monooxygenase-mediated cometabolism, and enzymatic hydrolysis. No natural organisms are known that can use TCP as a carbon source for growth under aerobic conditions, but anaerobically TCP may serve as electron acceptor. The application of biodegradation is hindered by low degradation rates and incomplete mineralization. Protein engineering and genetic modification can be used to obtain microorganisms with enhanced TCP degradation potential.
Collapse
Affiliation(s)
- Ghufrana Samin
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|
105
|
Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. Antonie Van Leeuwenhoek 2012; 103:99-119. [DOI: 10.1007/s10482-012-9790-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
106
|
Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater. Int J Syst Evol Microbiol 2012; 63:1492-1498. [PMID: 22888191 DOI: 10.1099/ijs.0.045054-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strictly anaerobic bacterial strains, designated IP3-3(T) and SBP-1, were isolated from groundwater contaminated by chlorinated alkanes and alkenes at a Superfund Site located near Baton Rouge, Louisiana (USA). Both strains reductively dehalogenate a variety of polychlorinated aliphatic alkanes, including 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane and 1,2,3-trichloropropane, when provided with hydrogen as the electron donor. To clarify their taxonomic position, strains IP3-3(T) and SBP-1 were characterized using a polyphasic approach. Both IP3-3(T) and SBP-1 are mesophilic, non-spore-forming, non-motile and Gram-stain-negative. Cells of both strains are irregular cocci with diameters of 0.4-1.1 µm. Both are resistant to ampicillin and vancomycin. The genomic DNA G+C contents of strains IP3-3(T) and SBP-1 are 55.5±0.4 and 56.2±0.2 mol% (HPLC), respectively. Major cellular fatty acids include C18 : 1ω9c, C16 : 0, C14 : 0 and C16 : 1ω9c. 16S rRNA gene sequence based phylogenetic analyses indicated that the strains cluster within the phylum Chloroflexi most closely related to but distinct from the species Dehalogenimonas lykanthroporepellens (96.2 % pairwise similarity) and Dehalococcoides mccartyi (90.6 % pairwise similarity). Physiological and chemotaxonomic traits as well as phylogenetic analysis support the conclusion that these strains represent a novel species within the genus Dehalogenimonas for which the name Dehalogenimonas alkenigignens sp. nov. is proposed. The type strain is IP3-3(T) ( = JCM 17062(T) = NRRL B-59545(T)).
Collapse
Affiliation(s)
- Kimberly S Bowman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M Fernanda Nobre
- Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Milton S da Costa
- Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Fred A Rainey
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska 99508, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - William M Moe
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
107
|
Moe WM, Stebbing RE, Rao JU, Bowman KS, Nobre MF, da Costa MS, Rainey FA. Pelosinus
defluvii sp. nov., isolated from chlorinated solvent-contaminated groundwater, emended description of the genus
Pelosinus
and transfer of
Sporotalea propionica
to Pelosinus
propionicus comb. nov. Int J Syst Evol Microbiol 2012; 62:1369-1376. [DOI: 10.1099/ijs.0.033753-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two anaerobic bacterial strains, designated SHI-1T and SHI-2, were isolated from chlorinated solvent-contaminated groundwater. They were found to be identical in phenotypic properties and shared high (98.5–99.8 %) pairwise 16S rRNA gene sequence similarity. Multiple 16S rRNA genes were found to be present in the isolates as well as
Pelosinus fermentans
DSM 17108T and
Sporotalea propionica
DSM 13327T. Strains SHI-1T and SHI-2 could be differentiated from their closest phylogenetic relatives,
P. fermentans
DSM 17108T and
S. propionica
DSM 13327T, on the basis of their phenotypic and phylogenetic properties. The isolates were Gram-negative, spore-forming, motile rods with peritrichous flagella. Growth occurred at 10–42 °C and pH 5.5–8.5. Fermentative growth was observed on Casamino acids, fructose, fumarate, glucose, glycerol, pyruvate and yeast extract. The major organic acids produced from glucose and glycerol fermentation were propionate and acetate. The major organic acids produced from fermentation of fumarate were propionate, acetate and succinate. The major cellular fatty acids were summed feature 4 (consisting of C15 : 1ω8c and/or C15 : 2), summed feature 8 (consisting of C17 : 1ω8c and/or C17 : 2) and C14 : 0 dimethyl aldehyde. The polar lipids comprised aminophospholipids, including phosphatidylethanolamine and phosphatidylserine, and an unknown phospholipid. The genomic DNA G+C content was 39.2 mol%. We propose that strains SHI-1T and SHI-2 are assigned to a novel species of the genus
Pelosinus
, with the name Pelosinus
defluvii sp. nov. (type strain SHI-1T = NRRL Y-59407T = LMG 25549T). The description of the genus
Pelosinus
is emended. We also propose the transfer of
S. propionica
to the genus
Pelosinus
as Pelosinus
propionicus comb. nov. (type strain TmPN3T = DSM 13327T = ATCC BAA-626T), on the basis of phylogenetic, chemotaxonomic and phenotypic properties.
Collapse
Affiliation(s)
- William M. Moe
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Rachael E. Stebbing
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jyoti U. Rao
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kimberly S. Bowman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M. Fernanda Nobre
- Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Milton S. da Costa
- Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Fred A. Rainey
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
108
|
Discovery of a trans-dichloroethene-respiring Dehalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol 2012; 78:5280-7. [PMID: 22635995 DOI: 10.1128/aem.00384-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The WBC-2 consortium is an organohalide-respiring anaerobic microbial enrichment culture capable of dechlorinating 1,1,2,2-tetrachloroethane (TeCA) to ethene. In the WBC-2 culture, TeCA is first transformed to trans-dichloroethene (tDCE) by dichloroelimination; tDCE is subsequently transformed to vinyl chloride (VC) and then to ethene by hydrogenolysis. Analysis of 16S rRNA gene clone libraries from culture DNA revealed sequences from three putative dechlorinating organisms belonging to Dehalococcoides, Dehalobacter, and Dehalogenimonas genera. Quantitative PCR primers were designed for each of these sequences, and their abundance was quantified in enrichment cultures over time. These data revealed that complete dechlorination of TeCA to ethene involves all three organisms. Dehalobacter spp. grew during the dihaloelimination of TeCA to tDCE, while Dehalococcoides and Dehalogenimonas spp. grew during hydrogenolysis of tDCE to ethene. This is the first time a genus other than Dehalococcoides has been implicated in dechlorination of tDCE to VC.
Collapse
|
109
|
Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce D, Detter C, Tapia R, Han S, Goodwin L, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Land M, Chang YJ, Kyrpides NC, Ovchinnikova G, Hauser L, Lapidus A, Yan J, Bowman KS, da Costa MS, Rainey FA, Moe WM. Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9(T)) and comparison to "Dehalococcoides" strains. Stand Genomic Sci 2012; 6:251-64. [PMID: 22768368 PMCID: PMC3387798 DOI: 10.4056/sigs.2806097] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dehalogenimonas lykanthroporepellens is the type species of the genus Dehalogenimonas, which belongs to a deeply branching lineage within the phylum Chloroflexi. This strictly anaerobic, mesophilic, non spore-forming, Gram-negative staining bacterium was first isolated from chlorinated solvent contaminated groundwater at a Superfund site located near Baton Rouge, Louisiana, USA. D. lykanthroporepellens was of interest for genome sequencing for two reasons: (a) an unusual ability to couple growth with reductive dechlorination of environmentally important polychlorinated aliphatic alkanes and (b) a phylogenetic position that is distant from previously sequenced bacteria. The 1,686,510 bp circular chromosome of strain BL-DC-9(T) contains 1,720 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small subunit rRNA (16S) locus.
Collapse
|
110
|
Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 2012; 63:625-635. [PMID: 22544797 DOI: 10.1099/ijs.0.034926-0] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Six obligately anaerobic bacterial isolates (195(T), CBDB1, BAV1, VS, FL2 and GT) with strictly organohalide-respiring metabolisms were obtained from chlorinated solvent-contaminated aquifers, contaminated and uncontaminated river sediments or anoxic digester sludge. Cells were non-motile with a disc-shaped morphology, 0.3-1 µm in diameter and 0.1-0.2 µm thick, and characteristic indentations on opposite flat sides of the cell. Growth occurred in completely synthetic, reduced medium amended with a haloorganic electron acceptor (mostly chlorinated but also some brominated compounds), hydrogen as electron donor, acetate as carbon source, and vitamins. No other growth-supporting redox couples were identified. Aqueous hydrogen consumption threshold concentrations were <1 nM. Growth ceased when vitamin B(12) was omitted from the medium. Addition of sterile cell-free supernatant of Dehalococcoides-containing enrichment cultures enhanced dechlorination and growth of strains 195 and FL2, suggesting the existence of so-far unidentified stimulants. Dechlorination occurred between pH 6.5 and 8.0 and over a temperature range of 15-35 °C, with an optimum growth temperature between 25 and 30 °C. The major phospholipid fatty acids were 14 : 0 (15.7 mol%), br15 : 0 (6.2 mol%), 16 : 0 (22.7 mol%), 10-methyl 16 : 0 (25.8 mol%) and 18 : 0 (16.6 mol%). Unusual furan fatty acids including 9-(5-pentyl-2-furyl)-nonanoate and 8-(5-hexyl-2-furyl)-octanoate were detected in strains FL2, BAV1 and GT, but not in strains 195(T) and CBDB1. The 16S rRNA gene sequences of the six isolates shared more than 98 % identity, and phylogenetic analysis revealed an affiliation with the phylum Chloroflexi and more than 10 % sequence divergence from other described isolates. The genome sizes and G+C contents ranged from 1.34 to 1.47 Mbp and 47 to 48.9 mol% G+C, respectively. Based on 16S rRNA gene sequence comparisons, genome-wide average nucleotide identity and phenotypic characteristics, the organohalide-respiring isolates represent a new genus and species, for which the name Dehalococcoides mccartyi gen. nov., sp. nov. is proposed. Isolates BAV1 ( = ATCC BAA-2100 = JCM 16839 = KCTC 5957), FL2 ( = ATCC BAA-2098 = DSM 23585 = JCM 16840 = KCTC 5959), GT ( = ATCC BAA-2099 = JCM 16841 = KCTC 5958), CBDB1, 195(T) ( = ATCC BAA-2266(T) = KCTC 15142(T)) and VS are considered strains of Dehalococcoides mccartyi, with strain 195(T) as the type strain. The new class Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov. are described to accommodate the new taxon.
Collapse
Affiliation(s)
- Frank E Löffler
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jun Yan
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kirsti M Ritalahti
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Elizabeth A Edwards
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jochen A Müller
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Heather Fullerton
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Stephen H Zinder
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Alfred M Spormann
- Departments of Civil and Environmental Engineering and of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
111
|
Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 2012; 63:86-92. [PMID: 22328612 DOI: 10.1099/ijs.0.041012-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel obligately anaerobic, mesophilic, organotrophic bacterium, strain P3M-1(T), was isolated from a microbial mat formed in a wooden bath filled with hot water emerging from a 2775 m-deep well in the Tomsk region of western Siberia, Russia. Cells of strain P3M-1(T) were rod-shaped, 0.3-0.7 µm in width and formed multicellullar filaments that reached up to 400 µm in length. Strain P3M-1(T) grew optimally at 42-45 °C, pH 7.5-8.0, and with 0.1% (w/v) NaCl. Under optimal conditions, the doubling time was 6 h. The isolate was able to ferment a variety of proteinaceous substrates and sugars, including microcrystalline cellulose. Acetate, ethanol and H(2) were the main products of glucose fermentation. The genomic DNA G+C content was 55 mol%. 16S rRNA gene sequence-based phylogenetic analyses showed that strain P3M-1(T) was a member of the class Anaerolinea, with 92.8 % sequence similarity to Levilinea saccharolytica KIBI-1(T). Based on phylogenetic analysis and physiological properties, strain P3M-1(T) represents a novel species in a new genus, for which the name Ornatilinea apprima gen. nov., sp. nov. is proposed; the type strain of O. apprima is P3M-1(T) (= DSM 23815(T)=VKM B-2669(T)).
Collapse
Affiliation(s)
- O A Podosokorskaya
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - E A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - A A Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65, 117485 Moscow, Russia
| | - T V Kolganova
- Bioengineering Center, Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/1, 117312 Moscow, Russia
| | - I V Kublanov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/2, 117312 Moscow, Russia
| |
Collapse
|
112
|
Rao JU, Rash BA, Nobre MF, da Costa MS, Rainey FA, Moe WM. Actinomyces naturae sp. nov., the first Actinomyces sp. isolated from a non-human or animal source. Antonie van Leeuwenhoek 2011; 101:155-68. [PMID: 21965039 DOI: 10.1007/s10482-011-9644-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Three facultatively anaerobic, Gram-positive staining, rod-shaped, non-spore forming, flagellated bacterial strains, BL-75, BL-79(T) and BL-104, were isolated from chlorinated solvent-contaminated groundwater. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed them to represent a distinct lineage within the genus Actinomyces with sequence identities in the range of <88-95.4% with previously described Actinomyces species. The strains were oxidase and catalase negative. Nitrate was not reduced. Esculin was hydrolyzed. Growth occurred in the temperature range of 20-43°C (optimum 30-37°C) and pH range 4.5-9.0 (optimum pH 6.5). Substrates supporting growth included various mono-, di-, and tri-saccharides. The end products of glucose fermentation were acetate, lactate, succinate and formate. Fermentative growth was observed in the presence of near saturation concentrations of perchloroethene (PCE) and toluene and in the presence of 1,2-dichloroethane and 1,1,2-trichloroethane at concentrations up to at least 24.4 mM and 11.2 mM, respectively. The dominant cellular fatty acids when grown in peptone/yeast extract/glucose (PYG) medium were C(18:1) ω9c, C(16:0), and C(14:0). The peptidoglycan was found to contain the amino acids alanine, glutamic acid, lysine, and ornithine at approximate molar ratios of 1.7 Ala: 2.3 Glu: 1.3 Lys: 1.0 Orn. The cell wall sugars were found to include rhamnose and mannose. The polar lipids were found to include diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phospholipid (PL), phosphoglycolipids (PGL), and glycolipids (GL). The main respiratory quinone of strain BL-79(T) was MK-9(H(4)), with minor components MK-10(H(4)) and MK-8(H(4)). The DNA mol% G+C content of the type strain is 69.8%. On the basis of phylogenetic and phenotypic characteristics, these strains could be differentiated from previously described species of the genus Actinomyces. Strains BL-75, BL-79(T) and BL-104 are designated as a novel species, for which the name Actinomyces naturae sp. nov. is proposed. This is the first Actinomyces species isolated from an environmental rather than human or animal sources. The type strain of Actinomyces naturae is BL-79(T) (= CCUG 56698(T) = NRRL B-24670(T)).
Collapse
Affiliation(s)
- Jyoti U Rao
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
113
|
Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp. Appl Environ Microbiol 2011; 77:5361-9. [PMID: 21666017 DOI: 10.1128/aem.00063-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dehalococcoides spp. are an industrially relevant group of Chloroflexi bacteria capable of reductively dechlorinating contaminants in groundwater environments. Existing Dehalococcoides genomes revealed a high level of sequence identity within this group, including 98 to 100% 16S rRNA sequence identity between strains with diverse substrate specificities. Common molecular techniques for identification of microbial populations are often not applicable for distinguishing Dehalococcoides strains. Here we describe an oligonucleotide microarray probe set designed based on clustered Dehalococcoides genes from five different sources (strain DET195, CBDB1, BAV1, and VS genomes and the KB-1 metagenome). This "pangenome" probe set provides coverage of core Dehalococcoides genes as well as strain-specific genes while optimizing the potential for hybridization to closely related, previously unknown Dehalococcoides strains. The pangenome probe set was compared to probe sets designed independently for each of the five Dehalococcoides strains. The pangenome probe set demonstrated better predictability and higher detection of Dehalococcoides genes than strain-specific probe sets on nontarget strains with <99% average nucleotide identity. An in silico analysis of the expected probe hybridization against the recently released Dehalococcoides strain GT genome and additional KB-1 metagenome sequence data indicated that the pangenome probe set performs more robustly than the combined strain-specific probe sets in the detection of genes not included in the original design. The pangenome probe set represents a highly specific, universal tool for the detection and characterization of Dehalococcoides from contaminated sites. It has the potential to become a common platform for Dehalococcoides-focused research, allowing meaningful comparisons between microarray experiments regardless of the strain examined.
Collapse
|
114
|
McMurdie PJ, Hug LA, Edwards EA, Holmes S, Spormann AM. Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genomics 2011; 12:287. [PMID: 21635780 PMCID: PMC3146451 DOI: 10.1186/1471-2164-12-287] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/02/2011] [Indexed: 11/17/2022] Open
Abstract
Background Vinyl chloride is a widespread groundwater pollutant and Group 1 carcinogen. A previous comparative genomic analysis revealed that the vinyl chloride reductase operon, vcrABC, of Dehalococcoides sp. strain VS is embedded in a horizontally-acquired genomic island that integrated at the single-copy tmRNA gene, ssrA. Results We targeted conserved positions in available genomic islands to amplify and sequence four additional vcrABC -containing genomic islands from previously-unsequenced vinyl chloride respiring Dehalococcoides enrichments. We identified a total of 31 ssrA-specific genomic islands from Dehalococcoides genomic data, accounting for 47 reductive dehalogenase homologous genes and many other non-core genes. Sixteen of these genomic islands contain a syntenic module of integration-associated genes located adjacent to the predicted site of integration, and among these islands, eight contain vcrABC as genetic 'cargo'. These eight vcrABC -containing genomic islands are syntenic across their ~12 kbp length, but have two phylogenetically discordant segments that unambiguously differentiate the integration module from the vcrABC cargo. Using available Dehalococcoides phylogenomic data we estimate that these ssrA-specific genomic islands are at least as old as the Dehalococcoides group itself, which in turn is much older than human civilization. Conclusions The vcrABC -containing genomic islands are a recently-acquired subset of a diverse collection of ssrA-specific mobile elements that are a major contributor to strain-level diversity in Dehalococcoides, and may have been throughout its evolution. The high similarity between vcrABC sequences is quantitatively consistent with recent horizontal acquisition driven by ~100 years of industrial pollution with chlorinated ethenes.
Collapse
Affiliation(s)
- Paul J McMurdie
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA.
| | | | | | | | | |
Collapse
|
115
|
Grégoire P, Bohli M, Cayol JL, Joseph M, Guasco S, Dubourg K, Cambar J, Michotey V, Bonin P, Fardeau ML, Ollivier B. Caldilinea tarbellica sp. nov., a filamentous, thermophilic, anaerobic bacterium isolated from a deep hot aquifer in the Aquitaine Basin. Int J Syst Evol Microbiol 2011; 61:1436-1441. [DOI: 10.1099/ijs.0.025676-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, thermophilic, filamentous (0.45 × >100 µm) bacterium, designated D1-25-10-4T, was isolated from a deep hot aquifer in France. Cells were non-motile and Gram-negative. Growth was observed at 43–65 °C (optimum 55 °C), at pH 6.8–7.8 (optimum pH 7.0) and with 0–5 g NaCl l−1 (optimum 0 g NaCl l−1). Strain D1-25-10-4T was a chemo-organotroph and fermented ribose, maltose, glucose, galactose, arabinose, fructose, mannose, sucrose, raffinose, xylose, glycerol, fumarate, peptone, starch and xylan. Yeast extract was required for growth. Sulfate, thiosulfate, sulfite, elemental sulfur, nitrate, nitrite and fumarate were not used as terminal electron acceptors. The G+C content of the DNA was 61.9 mol%. The major cellular fatty acids of strain D1-25-10-4T were C17 : 0, C18 : 0, C16 : 0 and iso-C17 : 0. The closest phylogenetic relative of strain D1-25-10-4T was Caldilinea aerophila STL-6-O1T (97.9 % 16S rRNA gene sequence similarity). DNA–DNA relatedness between strain D1-25-10-4T and Caldilinea aerophila DSM 14535T was 8.7±1 %. On the basis of phylogenetic, genotypic and phenotypic characteristics, strain D1-25-10-4T represents a novel species within the genus Caldilinea, class Caldilineae, phylum Chloroflexi, for which the name Caldilinea tarbellica sp. nov. is proposed. The type strain is D1-25-10-4T ( = DSM 22659T = JCM 16120T).
Collapse
Affiliation(s)
- Patrick Grégoire
- Institut du Thermalisme, Université Victor Segalen Bordeaux 2, 8 rue Sainte Ursule, 40100 Dax, France
- Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds UMR 180, IRD, Universités de Provence et de la Méditerranée, ESIL case 925, 163 avenue de Luminy, 13288 Marseille, France
| | - Malek Bohli
- Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds UMR 180, IRD, Universités de Provence et de la Méditerranée, ESIL case 925, 163 avenue de Luminy, 13288 Marseille, France
| | - Jean-Luc Cayol
- Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds UMR 180, IRD, Universités de Provence et de la Méditerranée, ESIL case 925, 163 avenue de Luminy, 13288 Marseille, France
| | - Manon Joseph
- Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds UMR 180, IRD, Universités de Provence et de la Méditerranée, ESIL case 925, 163 avenue de Luminy, 13288 Marseille, France
| | - Sophie Guasco
- LMGEM, UMR 6117, Centre d’Océanologie de Marseille, Université Aix Marseille 2 Campus de Luminy - Case 901, 163 Avenue de Luminy, 13288 Marseille, France
| | - Karine Dubourg
- Institut du Thermalisme, Université Victor Segalen Bordeaux 2, 8 rue Sainte Ursule, 40100 Dax, France
| | - Jean Cambar
- Institut du Thermalisme, Université Victor Segalen Bordeaux 2, 8 rue Sainte Ursule, 40100 Dax, France
| | - Valérie Michotey
- LMGEM, UMR 6117, Centre d’Océanologie de Marseille, Université Aix Marseille 2 Campus de Luminy - Case 901, 163 Avenue de Luminy, 13288 Marseille, France
| | - Patricia Bonin
- LMGEM, UMR 6117, Centre d’Océanologie de Marseille, Université Aix Marseille 2 Campus de Luminy - Case 901, 163 Avenue de Luminy, 13288 Marseille, France
| | - Marie-Laure Fardeau
- Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds UMR 180, IRD, Universités de Provence et de la Méditerranée, ESIL case 925, 163 avenue de Luminy, 13288 Marseille, France
| | - Bernard Ollivier
- Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds UMR 180, IRD, Universités de Provence et de la Méditerranée, ESIL case 925, 163 avenue de Luminy, 13288 Marseille, France
| |
Collapse
|
116
|
Empadinhas N, da Costa MS. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea. Environ Microbiol 2010; 13:2056-77. [PMID: 21176052 DOI: 10.1111/j.1462-2920.2010.02390.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their interactions with biomolecules have already fuelled several emerging applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | | |
Collapse
|
117
|
Frequent concomitant presence of Desulfitobacterium spp. and "Dehalococcoides" spp. in chloroethene-dechlorinating microbial communities. Appl Microbiol Biotechnol 2010; 90:361-8. [PMID: 21152914 DOI: 10.1007/s00253-010-3042-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
The presence of chloroethene dechlorination activity as well as several bacterial genera containing mainly organohalide-respiring members was investigated in 34 environmental samples from 18 different sites. Cultures inoculated with these environmental samples on tetrachloroethene and amended weekly with a seven organic electron donor mixture resulted in 11 enrichments with cis-DCE, ten with VC, and 11 with ethene as dechlorination end product, and only two where no dechlorination was observed. "Dehalococcoides" spp. and Desulfitobacterium spp. were detected in the majority of the environmental samples independently of the dechlorination end product formed. The concomitant presence of Dehalococcoides spp. and Desulfitobacterium spp. in the majority of the enrichments suggested that chloroethene dechlorination was probably the result of catalysis by at least two organohalide-respiring genera either in parallel or by stepwise catalysis. A more detailed study of one enrichment on cis-DCE suggested that in this culture Desulfitobacterium spp. as well as Dehalococcoides spp. dechlorinated cis-DCE whereas dechlorination of VC was only catalyzed by the latter.
Collapse
|
118
|
Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 2010; 28:308-16. [DOI: 10.1016/j.tibtech.2010.03.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 11/20/2022]
|
119
|
Detection and quantification of Dehalogenimonas and "Dehalococcoides" populations via PCR-based protocols targeting 16S rRNA genes. Appl Environ Microbiol 2009; 75:7560-4. [PMID: 19820163 DOI: 10.1128/aem.01938-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the haloalkane dechlorinating genus Dehalogenimonas are distantly related to "Dehalococcoides" but share high homology in some variable regions of their 16S rRNA gene sequences. In this study, primers and PCR protocols intended to uniquely target Dehalococcoides were reevaluated, and primers and PCR protocols intended to uniquely target Dehalogenimonas were developed and tested. Use of the genus-specific primers revealed the presence of both bacterial groups in groundwater at a Louisiana Superfund site.
Collapse
|