101
|
Lancien M, Martin M, Hsieh MH, Leustek T, Goodman H, Coruzzi GM. Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:347-358. [PMID: 11844111 DOI: 10.1046/j.1365-313x.2002.01218.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The physiological role of the NADH-dependent glutamine-2-oxoglutarate aminotransferase (NADH-GOGAT) enzyme was addressed in Arabidopsis using gene expression analysis and by the characterization of a knock-out T-DNA insertion mutant (glt1-T) in the single NADH-GOGAT GLT1 gene. The NADH-GOGAT GLT1 mRNA is expressed at higher levels in roots than in leaves. This expression pattern contrasts with GLU1, the major gene encoding Fd-GOGAT, which is most highly expressed in leaves and is involved in photorespiration. These distinct organ-specific expression patterns suggested a non-redundant physiological role for the NADH-GOGAT and Fd-GOGAT gene products. To test the in vivo function of NADH-GOGAT, we conducted molecular and physiological analysis of the glt1-T mutant, which is null for NADH-GOGAT, as judged by mRNA level and enzyme activity. Metabolic analysis showed that the glt1-T mutant has a specific defect in growth and glutamate biosynthesis when photorespiration was repressed by 1% CO2. Under these conditions, the glt1-T mutant displayed a 20% decrease in growth and a dramatic 70% reduction in glutamate levels. Herein, we discuss the significance of NADH-GOGAT in non-photorespiratory ammonium assimilation and in glutamate synthesis required for plant development.
Collapse
Affiliation(s)
- Muriel Lancien
- Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
102
|
Zeh M, Leggewie G, Hoefgen R, Hesse H. Cloning and characterization of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L.). PLANT MOLECULAR BIOLOGY 2002; 48:255-265. [PMID: 11855727 DOI: 10.1023/a:1013333303554] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A potato cDNA clone, StMS1, that encodes a methionine synthase was isolated. This protein was identified on the basis of both structural and functional evidence. The predicted sequence of the protein encoded by StMS1 shows a high degree of similarity to methionine synthases from other organisms and the expression of StMS1 in bacterial mutant strains restored the mutant's ability to synthesize methionine. Genomic organization and expression analyses suggest that StMS1 is a low-copy gene and is differentially expressed in potato organs. StMS1 expression was found in all tissues, but at elevated levels in flowers, basal levels in sink and source leaves, roots and stolons, and low levels in stems and tubers. RNA expression data were confirmed by western blot analysis except that the protein content in leaves was less than expected from the RNA data. Western blot analysis of subcellular fractions revealed that the protein is located in the cytosol. However, the changing pattern of gene expression during the day/night period implied a light-dependent control of MS transcription normally seen for enzymes localized in plastids. The expression of MS was shown to be light-inducible with its highest expression at midday. These RNA data were not confirmed at the protein level since protein content levels remained constant over the whole day. Feeding experiments of detached leaves revealed that sucrose or sucrose-derived products are responsible for StMS1 induction. This induction can be blocked by treatment with DCMU during the light period. Western analysis revealed that the amount of StMS1 is not affected by either treatment. This experiment confirmed the presence of a day/night rhythm. Methionine synthase expression is regulated by photoassimilates but this seems not to detectably alter protein levels.
Collapse
MESH Headings
- 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics
- 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism
- Blotting, Southern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Light
- Molecular Sequence Data
- Mutation
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Analysis, DNA
- Solanum tuberosum/enzymology
- Solanum tuberosum/genetics
- Tissue Distribution
- Transcription, Genetic/radiation effects
- Vitamin B 12/physiology
Collapse
Affiliation(s)
- Michaela Zeh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany
| | | | | | | |
Collapse
|
103
|
Regulation of Carbon and Nitrogen Assimilation Through Gene Expression. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2002. [DOI: 10.1007/0-306-48138-3_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
104
|
Galili G. New insights into the regulation and functional significance of lysine metabolism in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:27-43. [PMID: 12221976 DOI: 10.1146/annurev.arplant.53.091401.110929] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lysine is one of the most limiting essential amino acids in vegetative foods consumed by humans and livestock. In addition to serving as a building block of proteins, lysine is also a precursor for glutamate, an important signaling amino acid that regulates plant growth and responses to the environment. Recent genetic, molecular, and biochemical evidence suggests that lysine synthesis and catabolism are regulated by novel concerted mechanisms. These include intracellular compartmentalization of enzymes and metabolites, complex transcriptional and posttranscriptional controls of genes encoding enzymes in lysine metabolism during plant growth and development, as well as interactions between different metabolic fluxes. The recent advances in our understanding of the regulation of lysine metabolism in plants may also prove valuable for future production of high-lysine crops.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
105
|
Stöhr C, Mäck G. Diurnal changes in nitrogen assimilation of tobacco roots. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1283-9. [PMID: 11432947 DOI: 10.1093/jexbot/52.359.1283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To gain an insight into the diurnal changes of nitrogen assimilation in roots the in vitro activities of cytosolic and plasma membrane-bound nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.7.7.1) and cytosolic and plastidic glutamine synthetase (EC 6.3.1.2) were studied. Simultaneously, changes in the contents of total protein, nitrate, nitrite, and ammonium were followed. Roots of intact tobacco plants (Nicotiana tabacum cv. Samsun) were extracted every 3 h during a diurnal cycle. Nitrate reductase, nitrite reductase and glutamine synthetase were active throughout the day-night cycle. Two temporarily distinct peaks of nitrate reductase were detected: during the day a peak of soluble nitrate reductase in the cytosol, in the dark phase a peak of plasma membrane-bound nitrate reductase in the apoplast. The total activities of nitrate reduction were similar by day and night. High activities of nitrite reductase prevented the accumulation of toxic amounts of nitrite throughout the entire diurnal cycle. The resulting ammonium was assimilated by cytosolic glutamine synthetase whose two activity peaks, one in the light period and one in the dark, closely followed those of nitrate reductase. The contribution of plastidic glutamine synthetase was negligible. These results strongly indicate that nitrate assimilation in roots takes place at similar rates day and night and is thus differently regulated from that in leaves.
Collapse
Affiliation(s)
- C Stöhr
- Institut für Botanik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany.
| | | |
Collapse
|
106
|
Stöhr C, Mäck G. Diurnal changes in nitrogen assimilation of tobacco roots. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11432947 DOI: 10.1093/jxb/52.359.1283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To gain an insight into the diurnal changes of nitrogen assimilation in roots the in vitro activities of cytosolic and plasma membrane-bound nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.7.7.1) and cytosolic and plastidic glutamine synthetase (EC 6.3.1.2) were studied. Simultaneously, changes in the contents of total protein, nitrate, nitrite, and ammonium were followed. Roots of intact tobacco plants (Nicotiana tabacum cv. Samsun) were extracted every 3 h during a diurnal cycle. Nitrate reductase, nitrite reductase and glutamine synthetase were active throughout the day-night cycle. Two temporarily distinct peaks of nitrate reductase were detected: during the day a peak of soluble nitrate reductase in the cytosol, in the dark phase a peak of plasma membrane-bound nitrate reductase in the apoplast. The total activities of nitrate reduction were similar by day and night. High activities of nitrite reductase prevented the accumulation of toxic amounts of nitrite throughout the entire diurnal cycle. The resulting ammonium was assimilated by cytosolic glutamine synthetase whose two activity peaks, one in the light period and one in the dark, closely followed those of nitrate reductase. The contribution of plastidic glutamine synthetase was negligible. These results strongly indicate that nitrate assimilation in roots takes place at similar rates day and night and is thus differently regulated from that in leaves.
Collapse
Affiliation(s)
- C Stöhr
- Institut für Botanik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany.
| | | |
Collapse
|
107
|
Fuentes SI, Allen DJ, Ortiz-Lopez A, Hernández G. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1071-81. [PMID: 11432923 DOI: 10.1093/jexbot/52.358.1071] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitrogen, which is a major limiting nutrient for plant growth, is assimilated as ammonium by the concerted action of glutamine synthetase (GS) and glutamate synthase (GOGAT). GS catalyses the critical incorporation of inorganic ammonium into the amino acid glutamine. Two types of GS isozymes, located in the cytosol (GS1) and in the chloroplast (GS2) have been identified in plants. Tobacco (Nicotiana tabacum) transformants, over-expressing GS1 driven by the constitutive CaMV 35S promoter were analysed. GS in leaves of GS-5 and GS-8 plants was up-regulated, at the level of RNA and proteins. These transgenic plants had six times higher leaf GS activity than controls. Under optimum nitrogen fertilization conditions there was no effect of GS over-expression on photosynthesis or growth. However, under nitrogen starvation the GS transgenics had c. 70% higher shoot and c. 100% greater root dry weight as well as 50% more leaf area than low nitrogen controls. This was achieved by the maintenance of photosynthesis at rates indistinguishable from plants under high nitrogen, while photosynthesis in control plants was inhibited by 40-50% by nitrogen deprivation. It was demonstrated that manipulation of GS activity has the potential to maintain crop photosynthetic productivity while reducing nitrogen fertilization and the concomitant pollution.
Collapse
Affiliation(s)
- S I Fuentes
- Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Apartado Postal 565-A, Cuernavaca, Mor. México
| | | | | | | |
Collapse
|
108
|
Oliveira IC, Brenner E, Chiu J, Hsieh MH, Kouranov A, Lam HM, Shin MJ, Coruzzi G. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway. Braz J Med Biol Res 2001; 34:567-75. [PMID: 11323742 DOI: 10.1590/s0100-879x2001000500003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.
Collapse
Affiliation(s)
- I C Oliveira
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Ortega JL, Temple SJ, Sengupta-Gopalan C. Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. PLANT PHYSIOLOGY 2001; 126:109-21. [PMID: 11351075 PMCID: PMC102286 DOI: 10.1104/pp.126.1.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Revised: 01/08/2001] [Accepted: 01/30/2001] [Indexed: 05/18/2023]
Abstract
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of NH4+ with glutanate to yield glutamine. Gene constructs consisting of the cauliflower mosaic virus (CaMV) 35S promoter driving a cytosolic isoform of GS (GS1) gene have been introduced into alfalfa (Medicago sativa). Although transcripts for the transgene were shown to accumulate to high levels in the leaves, they were undetectable in the nodules. However, significant amounts of beta-glucuronidase activity could be detected in nodules of plants containing the CaMV 35S promoter-beta-glucuronidase gene construct, suggesting that the transcript for the GS1 transgene is not stable in the root nodules. Leaves of alfalfa plants with the CaMV 35S promoter-GS1 gene showed high levels of accumulation of the transcript for the transgene when grown under low-nitrogen conditions and showed a significant drop in the level of GS1 transcripts when fed with high levels of NO3-. However, no increase in GS activity or polypeptide level was detected in the leaves of transgenic plants. The results suggest that GS1 is regulated at the level of RNA stability and protein turnover.
Collapse
Affiliation(s)
- J L Ortega
- Agronomy and Horticulture Department, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | | | |
Collapse
|
110
|
Hermsmeier D, Schittko U, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. PLANT PHYSIOLOGY 2001; 125:683-700. [PMID: 11161026 PMCID: PMC64870 DOI: 10.1104/pp.125.2.683] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Revised: 07/24/2000] [Accepted: 09/20/2000] [Indexed: 05/18/2023]
Abstract
Plants respond to herbivore attack with a dramatic functional reorganization that involves the activation of direct and indirect defenses and tolerance, which in turn make large demands on primary metabolism. Here we provide the first characterization of the transcriptional reorganization that occurs after insect attack in a model plant-herbivore system: Nicotiana attenuata Torr. ex Wats.-Manduca sexta. We used mRNA differential display to characterize one-twentieth of the insect-responsive transcriptome of N. attenuata and verified differential expression for 27 cDNAs. Northern analyses were used to study the effects of folivory and exposure to airborne methyl jasmonate and for kinetic analyses throughout a 16-h- light/8-h-dark cycle. Sequence similarity searches allowed putative functions to be assigned to 15 transcripts. Genes were related to photosynthesis, electron transport, cytoskeleton, carbon and nitrogen metabolism, signaling, and a group responding to stress, wounding, or invasion of pathogens. Overall, transcripts involved in photosynthesis were strongly down-regulated, whereas those responding to stress, wounding, and pathogens and involved in shifting carbon and nitrogen to defense were strongly up-regulated. The majority of transcripts responded similarly to airborne methyl jasmonate and folivory, and had tissue- and diurnal-specific patterns of expression. Transcripts encoding Thr deaminase (TD) and a putative retrotransposon were absent in control plants, but were strongly induced after herbivory. Full-length sequences were obtained for TD and the pathogen-inducible alpha-dioxygenase, PIOX. Effects of abiotic and biotic stimuli were investigated for transcripts encoding TD, importin alpha, PIOX, and a GAL83-like kinase cofactor.
Collapse
Affiliation(s)
- D Hermsmeier
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Carl Zeiss Promenade 10, D-07745 Jena, Germany
| | | | | |
Collapse
|
111
|
Casazza AP, Basner A, Höfgen R, Hesse H. Expression of threonine synthase from Solanum tuberosum L. is not metabolically regulated by photosynthesis-related signals or by nitrogenous compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 157:43-50. [PMID: 10940468 DOI: 10.1016/s0168-9452(00)00265-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although the control of carbon fixation and nitrogen assimilation has been studied in detail, little is known about the regulation of carbon and nitrogen flow into amino acids. In this paper the isolation of a cDNA encoding threonine synthase is reported (TS; EC 4.2.99.2) from a leaf lambda ZAP II-library of Solanum tuberosum L. and the transcriptional regulation of the respective gene expression in response to metabolic changes. The pattern of expression of TS by feeding experiments of detached petioles revealed that TS expression is regulated neither by photosynthesis-related metabolites nor by nitrogenous compounds. The present study suggests that the regulation of the conversion of aspartate to threonine is not controlled at the transcript level of TS. The nucleotide and deduced amino acid sequences of potato TS show homology to other known sequences from Arabidopsis thaliana and microorganisms. TS is present as a low copy gene in the genome of potato as demonstrated in Southern blot analysis. When cloned into a bacterial expression vector, the cDNA did functionally complement the Escherichia coli mutant strain Gif41. TS transcript was found in all tissues of potato and was most abundant in flowers and source leaves.
Collapse
Affiliation(s)
- AP Casazza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Abt. Willmitzer, Am Mühlenberg 1, 14476, Golm, Germany
| | | | | | | |
Collapse
|
112
|
Navarro F, Martín-Figueroa E, Candau P, Florencio FJ. Ferredoxin-dependent iron-sulfur flavoprotein glutamate synthase (GlsF) from the Cyanobacterium synechocystis sp. PCC 6803: expression and assembly in Escherichia coli. Arch Biochem Biophys 2000; 379:267-76. [PMID: 10898944 DOI: 10.1006/abbi.2000.1894] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains two different glutamate synthases whose genes, gltB and glsF (previously known as gltS), have been cloned (F. Navarro et al., 1995, Plant Mol. Biol. 27, 753-767). The glsF gene has been expressed in the glutamate auxotrophic Escherichia coli strain CLR207 RecA, but the corresponding protein does not complement the auxotrophy. The transformed strain showed ferredoxin-dependent glutamate synthase (Fd-GOGAT) activity, demonstrating the capability of E. coli for providing and correctly assembling both the iron-sulfur center and the flavin cofactor of the enzyme. Fd-GOGAT (GlsF) is correctly cleaved at Cys37 to form the mature enzyme in E. coli, as occurs with the large subunit of its own NADPH-GOGAT. The recombinant Fd-GOGAT has been purified to electrophoretic homogeneity, using as the main purification step a ferredoxin-affinity chromatography. The pure enzyme, with a molecular mass of about 180 kDa, shows an absorption spectrum characteristic of iron-sulfur flavoproteins. The analyses of the prosthetic groups indicate that Fd-GOGAT contains only one FMN, but no FAD, and one [3Fe-4S](+,0) cluster per molecule. Oxidation-reduction titration, using absorbance changes of the FMN group in the visible region, gave a midpoint redox potential of -200 +/- 25 mV at pH 7.5. The recombinant enzyme is strictly ferredoxin-dependent and shows apparent K(M) values similar to those of the native Synechocystis protein: 4.5 vs 3.5 microM, 2.2 vs 2.5 mM, and 0.6 vs 0.5 mM for ferredoxin, glutamine, and 2-oxoglutarate, respectively. The addition of the reductant dithionite to the enzyme resulted in the loss of the absorption peak at 436 nm, characteristic of oxidized flavins, which was restored by the anaerobic addition of 2-oxoglutarate, in the presence of glutamine.
Collapse
Affiliation(s)
- F Navarro
- Centro de Investigaciones Científicas Isla de la Cartuja, Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avenida Américo Vespucio s/n, Sevilla, 41092, Spain
| | | | | | | |
Collapse
|
113
|
Denby KJ, Last RL. Diverse regulatory mechanisms of amino acid biosynthesis in plants. GENETIC ENGINEERING 2000; 21:173-89. [PMID: 10822497 DOI: 10.1007/978-1-4615-4707-5_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- K J Denby
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
114
|
Ortiz-Lopez A, Chang H, Bush DR. Amino acid transporters in plants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:275-80. [PMID: 10748260 DOI: 10.1016/s0005-2736(00)00144-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amino acid transporters are essential participants in the resource allocation processes that support plant growth and development. Recent results have identified several new transporters that contribute to a wide array of physiological activities, and detailed molecular analysis has provided fundamental insights into the structure, function and regulation of these integral membrane proteins.
Collapse
Affiliation(s)
- A Ortiz-Lopez
- Photosynthesis Research Unit, USDA-Agricultural Research Service, University of Illinois Urbana-Champaign, 190 ERML, Urbana, IL, USA
| | | | | |
Collapse
|
115
|
Foyer CH, Ferrario-Méry S, Huber SC. Regulation of Carbon Fluxes in the Cytosol: Coordination of Sucrose Synthesis, Nitrate Reduction and Organic Acid and Amino Acid Biosynthesis. PHOTOSYNTHESIS 2000. [DOI: 10.1007/0-306-48137-5_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
116
|
Schoenbeck MA, Temple SJ, Trepp GB, Blumenthal JM, Samac DA, Gantt JS, Hernandez G, Vance CP. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. JOURNAL OF EXPERIMENTAL BOTANY 2000. [PMID: 10938793 DOI: 10.1093/jxb/51.342.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Legumes obtain a substantial portion of their nitrogen (N) from symbiotic N2 fixation in root nodules. The glutamine synthetase (GS, EC 6.3.1.2)/glutamate synthase (GOGAT) cycle is responsible for the initial N assimilation. This report describes the analysis of a transgenic alfalfa (Medicago sativa L.) line containing an antisense NADH-GOGAT (EC 1.4.1.14) under the control of the nodule-enhanced aspartate amino-transferase (AAT-2) promoter. In one transgenic line, NADH-GOGAT enzyme activity was reduced to approximately 50%, with a corresponding reduction in protein and mRNA. The transcript abundance for cytosolic GS, ferredoxin-dependent GOGAT (EC 1.4.7.1), AAT-2 (EC 2.6.1.1), asparagine synthase (EC 6.3.5.4), and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were unaffected, as were enzyme activities for AAT, PEPC and GS. Antisense NADH-GOGAT plants grown under symbiotic conditions were moderately chlorotic and reduced in growth and N content, even though symbiotic N2 fixation was not significantly reduced. The addition of nitrate relieved the chlorosis and restored growth and N content. Surprisingly, the antisense NADH-GOGAT plants were male sterile resulting from inviable pollen. A reduction in NADH-GOGAT enzyme activity and transcript abundance in the antisense plants was measured during the early stages of flower development. Inheritance of the transgene was stable and resulted in progeny with a range of NADH-GOGAT activity. These data indicate that NADH-GOGAT plays a critical role in the assimilation of symbiotically fixed N and during pollen development.
Collapse
Affiliation(s)
- M A Schoenbeck
- Department of Agromomy and Plant Genetics, University of Minnesota, St Paul 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Brugiere N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B. Glutamine synthetase in the phloem plays a major role in controlling proline production. THE PLANT CELL 1999; 11:1995-2012. [PMID: 10521528 PMCID: PMC144111 DOI: 10.1105/tpc.11.10.1995] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To inhibit expression specifically in the phloem, a 274-bp fragment of a cDNA (Gln1-5) encoding cytosolic glutamine synthetase (GS1) from tobacco was placed in the antisense orientation downstream of the cytosolic Cu/Zn superoxide dismutase promoter of Nicotiana plumbaginifolia. After Agrobacterium-mediated transformation, two transgenic N. tabacum lines exhibiting reduced levels of GS1 mRNA and GS activity in midribs, stems, and roots were obtained. Immunogold labeling experiments allowed us to verify that the GS protein content was markedly decreased in the phloem companion cells of transformed plants. Moreover, a general decrease in proline content in the transgenic plants in comparison with wild-type tobacco was observed when plants were forced to assimilate large amounts of ammonium. In contrast, no major changes in the concentration of amino acids used for nitrogen transport were apparent. A (15)NH(4)(+)-labeling kinetic over a 48-hr period confirmed that in leaves of transgenic plants, the decrease in proline production was directly related to glutamine availability. After 2 weeks of salt treatment, the transgenic plants had a pronounced stress phenotype, consisting of wilting and bleaching in the older leaves. We conclude that GS in the phloem plays a major role in regulating proline production consistent with the function of proline as a nitrogen source and as a key metabolite synthesized in response to water stress.
Collapse
Affiliation(s)
- N Brugiere
- Laboratoire du Metabolisme et de la Nutrition des Plantes, INRA de Versailles, Route de St. Cyr, F-78026 Versailles Cedex, France
| | | | | | | | | | | | | |
Collapse
|
118
|
Park KS, Kahn ML. Distribution of two isoforms of NADP-dependent isocitrate dehydrogenase in soybean (Glycine max). PLANT MOLECULAR BIOLOGY 1999; 40:13-21. [PMID: 10394941 DOI: 10.1023/a:1026464704134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two different cDNAs that encode NADP-specific isocitrate dehydrogenase (NADP-IDH) isozymes of soybean (Glycine max) were characterized. The nucleotide sequences of the coding regions of these cDNAs have 74% identity to each other and give predicted amino acid sequences that have 83% identity to each other. Using PCR techniques, their coding regions were subcloned into a protein overexpression vector, pQE32, to yield pIDH4 and pIDH1, respectively. Both IDH4 and IDH1 enzymes were expressed in Escherichia coli as catalytically active His6 tagged proteins, purified to homogeneity by affinity chromatography on nickel chelate resin and rabbit polyclonal antibodies to each were generated. Surprisingly, antiserum to IDH4 did not react with IDH1 protein and IDH1 antiserum reacted only very weakly with IDH4 protein. IDH4 antibody reacts with a protein of expected molecular weight in cotyledon, young leaf, young root, mature root and nodules but the reaction with mature leaf tissue was low compared to other tissues. Western blot results show that IDH1 was not expressed in young roots but a protein that reacts with the IDH1 antibody was highly expressed in leaves, showing that there was tissue-specific accumulation of NADP-IDH isozymes in soybean.
Collapse
Affiliation(s)
- K S Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
119
|
Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, Meek S, Deiting U, Stitt M, Scarabel M, Aitken A, MacKintosh C. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:1-12. [PMID: 10341439 DOI: 10.1046/j.1365-313x.1999.00417.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Far-Western overlays of soluble extracts of cauliflower revealed many proteins that bound to digoxygenin (DIG)-labelled 14-3-3 proteins. Binding to DIG-14-3-3s was prevented by prior dephosphorylation of the extract proteins or by competition with 14-3-3-binding phosphopeptides, indicating that the 14-3-3 proteins bind to phosphorylated sites. The proteins that bound to the DIG-14-3-3s were also immunoprecipitated from extracts with anti-14-3-3 antibodies, demonstrating that they were bound to endogenous plant 14-3-3 proteins. 14-3-3-binding proteins were purified from cauliflower extracts, in sufficient quantity for amino acid sequence analysis, by affinity chromatography on immobilised 14-3-3 proteins and specific elution with a 14-3-3-binding phosphopeptide. Purified 14-3-3-binding proteins included sucrose-phosphate synthase, trehalose-6-phosphate synthase, glutamine synthetases, a protein (LIM17) that has been implicated in early floral development, an approximately 20 kDa protein whose mRNA is induced by NaCl, and a calcium-dependent protein kinase that was capable of phosphorylating and rendering nitrate reductase (NR) sensitive to inhibition by 14-3-3 proteins. In contrast to the phosphorylated NR-14-3-3 complex which is activated by dissociation with 14-3-3-binding phosphopeptides, the total sugar-phosphate synthase activity in plant extracts was inhibited by up to 40% by a 14-3-3-binding phosphopeptide and the phosphopeptide-inhibited activity was reactivated by adding excess 14-3-3 proteins. Thus, 14-3-3 proteins are implicated in regulating several aspects of primary N and C metabolism. The procedures described here will be valuable for determining how the phosphorylation and 14-3-3-binding status of defined target proteins change in response to extracellular stimuli.
Collapse
Affiliation(s)
- G Moorhead
- Department of Biochemistry, University of Dundee, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Finnemann J, Schjoerring JK. Translocation of NH 4
+
in oilseed rape plants in relation to glutamine synthetase isogene expression and activity. PHYSIOLOGIA PLANTARUM 1999. [PMID: 0 DOI: 10.1034/j.1399-3054.1999.105311.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
121
|
Tercé-Laforgue T, Carrayol E, Cren M, Desbrosses G, Hecht V, Hirel B. A strong constitutive positive element is essential for the ammonium-regulated expression of a soybean gene encoding cytosolic glutamine synthetase. PLANT MOLECULAR BIOLOGY 1999; 39:551-64. [PMID: 10092182 DOI: 10.1023/a:1006169018296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to identify important promoter elements controlling the ammonium-regulated expression of the soybean gene GS15 encoding cytosolic glutamine synthetase, a series of 5' promoter deletions were fused to the GUS reporter gene. To allow the detection of positive and negative regulatory elements, a series of 3' deletions were fused to a -90 CaMV 35S promoter fragment placed upstream of the GUS gene. Both types of construct were introduced into Lotus corniculatus plants and soybean roots via Agrobacterium rhizogenes-mediated transformation. Both spectrophotometric enzymatic analysis and histochemical localization of GUS activity in roots, root nodules and shoots of transgenic plants revealed that a strong constitutive positive element (SCPE) of 400 bp, located in the promoter distal region is indispensable for the ammonium-regulated expression of GS15. Interestingly, this SCPE was able to direct constitutive expression in both a legume and non-legume background to a level similar to that driven by the CaMV 35S full-length promoter. In addition, results showed that separate proximal elements, located in the first 727 bp relative to the transcription start site, are essential for root- and root nodule-specific expression. This proximal region contains an AAAGAT and two TATTTAT consensus sequences characteristic of nodulin or nodule-enhanced gene promoters. A putative silencer region containing the same TATTTAT consensus sequence was identified between the SCPE and the organ-specific elements. The presence of positive, negative and organ-specific elements together with the three TATTTAT consensus sequences within the promoter strongly suggest that these multiple promoter fragments act in a cooperative manner, depending on the spatial conformation of the DNA for trans-acting factor accessibility.
Collapse
MESH Headings
- Base Sequence
- Cytosol/enzymology
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Fabaceae/enzymology
- Fabaceae/genetics
- Gene Expression/drug effects
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Glutamate-Ammonia Ligase/genetics
- Glutamate-Ammonia Ligase/metabolism
- Molecular Sequence Data
- Plants, Genetically Modified
- Plants, Medicinal
- Promoter Regions, Genetic
- Quaternary Ammonium Compounds/pharmacology
- Regulatory Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Deletion
- Glycine max/chemistry
- Glycine max/enzymology
- Glycine max/genetics
Collapse
Affiliation(s)
- T Tercé-Laforgue
- Laboratoire du Métabolisme et de la Nutrition des Plantes, INRA, Centre de Versailles, France
| | | | | | | | | | | |
Collapse
|
122
|
Hsieh MH, Lam HM, van de Loo FJ, Coruzzi G. A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci U S A 1998; 95:13965-70. [PMID: 9811909 PMCID: PMC24990 DOI: 10.1073/pnas.95.23.13965] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1998] [Indexed: 11/18/2022] Open
Abstract
PII is a protein allosteric effector in Escherichia coli and other bacteria that indirectly regulates glutamine synthetase at the transcriptional and post-translational levels in response to nitrogen availability. Data supporting the notion that plants have a nitrogen regulatory system(s) includes previous studies showing that the levels of mRNA for plant nitrogen assimilatory genes such as glutamine synthetase (GLN) and asparagine synthetase (ASN) are modulated by carbon and organic nitrogen metabolites. Here, we have characterized a PII homolog (GLB1) in two higher plants, Arabidopsis thaliana and Ricinus communis (Castor bean). Each plant PII-like protein has high overall identity to E. coli PII (50%). Western blot analyses reveal that the plant PII-like protein is a nuclear-encoded chloroplast protein. The PII-like protein of plants appears to be regulated at the transcriptional level in that levels of GLB1 mRNA are affected by light and metabolites. To initiate studies of the in vivo function of the Arabidopsis PII-like protein, we have constructed transgenic lines in which PII expression is uncoupled from its native regulation. Analyses of these transgenic plants support the notion that the plant PII-like protein may serve as part of a complex signal transduction network involved in perceiving the status of carbon and organic nitrogen. Thus, the PII protein found in archaea, bacteria, and now in higher eukaryotes (plants) is one of the most widespread regulatory proteins known, providing evidence for an ancestral metabolic regulatory mechanism that may have existed before the divergence of these three domains of life.
Collapse
Affiliation(s)
- M H Hsieh
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
123
|
Lam HM, Hsieh MH, Coruzzi G. Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:345-353. [PMID: 9881155 DOI: 10.1046/j.1365-313x.1998.00302.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In plants, the amino acid asparagine serves as an important nitrogen transport compound whose levels are dramatically regulated by light in many plant species, including Arabidopsis thaliana. To elucidate the mechanisms regulating the flux of assimilated nitrogen into asparagine, we examined the regulation of the gene family for asparagine synthetase in Arabidopsis. In addition to the previously identified ASN1 gene, we identified a novel class of asparagine synthetase genes in Arabidopsis (ASN2 and ASN3) by functional complementation of a yeast asparagine auxotroph. The proteins encoded by the ASN2/3 cDNAs contain a Pur-F type glutamine-binding triad suggesting that they, like ASN1, encode glutamine-dependent asparagine synthetase isoenzymes. However, the ASN2/3 isoenzymes form a novel dendritic group with monocot AS genes which is distinct from all other dicot AS genes including Arabidopsis ASN1. In addition to these distinctions in sequence, the ASN1 and ASN2 genes are reciprocally regulated by light and metabolites. Time-course experiments reveal that light induces levels of ASN2 mRNA while it represses levels of ASN1 mRNA in a kinetically reciprocal fashion. Moreover, the levels of ASN2 and ASN1 mRNA are also reciprocally regulated by carbon and nitrogen metabolites. The distinct regulation of ASN1 and ASN2 genes combined with their distinct encoded isoenzymes suggest that they may play different roles in nitrogen metabolism, as discussed in this paper.
Collapse
Affiliation(s)
- H M Lam
- Chinese University of Hong Kong, Department of Biology, Shantin, N.T
| | | | | |
Collapse
|
124
|
Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB. Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:535-44. [PMID: 9675899 DOI: 10.1046/j.1365-313x.1998.00151.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Long distance transport of amino acids is mediated by several families of differentially expressed amino acid transporters. The two genes AAP1 and AAP2 encode broad specificity H(+)-amino acid co-transporters and are expressed to high levels in siliques of Arabidopsis, indicating a potential role in supplying the seeds with organic nitrogen. The expression of both genes is developmentally controlled and is strongly induced in siliques at heart stage of embryogenesis, shortly before induction of storage protein genes. Histochemical analysis of transgenic plants expressing promoter-GUS fusions shows that the genes have nonoverlapping expression patterns in siliques. AAP1 is expressed in the endosperm and the cotyledons whereas AAP2 is expressed in the vascular strands of siliques and in funiculi. The endosperm expression of AAP1 during early stages of seed development indicates that the endosperm serves as a transient storage tissue for organic nitrogen. Amino acids are transported in both xylem and phloem but during seed filling are imported only via the phloem. AAP2, which is expressed in the phloem of stems and in the veins supplying seeds, may function in uptake of amino acids assimilated in the green silique tissue, in the retrieval of amino acids leaking passively out of the phloem and in xylem-to-phloem transfer along the path. The promoters provide excellent tools to study developmental, hormonal and metabolic control of nitrogen nutrition during development and may help to manipulate the timing and composition of amino acid import into seeds.
Collapse
Affiliation(s)
- B Hirner
- Insitut für Botanik, Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
125
|
Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM. Arabidopsis gls mutants and distinct Fd-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. THE PLANT CELL 1998; 10:741-52. [PMID: 9596633 PMCID: PMC144371 DOI: 10.1105/tpc.10.5.741] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ferredoxin-dependent glutamate synthase (Fd-GOGAT) plays a major role in photorespiration in Arabidopsis, as has been determined by the characterization of mutants deficient in Fd-GOGAT enzyme activity (gls). Despite genetic evidence for a single Fd-GOGAT locus and gene, we discovered that Arabidopsis contains two expressed genes for Fd-GOGAT (GLU1 and GLU2). Physical and genetic mapping of the gls1 locus and GLU genes indicates that GLU1 is linked to the gls1 locus, whereas GLU2 maps to a different chromosome. Contrasting patterns of GLU1 and GLU2 expression explain why a mutation in only one of the two genes for Fd-GOGAT leads to a photorespiratory phenotype in the gls1 mutants. GLU1 mRNA was expressed at the highest levels in leaves, and its mRNA levels were specifically induced by light or sucrose. In contrast, GLU2 mRNA was expressed at lower constitutive levels in leaves and preferentially accumulated in roots. Although these results suggest a major role for GLU1 in photorespiration, the sucrose induction of GLU1 mRNA in leaves also suggests a role in primary nitrogen assimilation. This possibility is supported by the finding that chlorophyll levels of a gls mutant are significantly lower than those of the wild type when grown under conditions that suppress photorespiration. Both the mutant analysis and gene regulation studies suggest that GLU1 plays a major role in photorespiration and also plays a role in primary nitrogen assimilation in leaves, whereas the GLU2 gene may play a major role in primary nitrogen assimilation in roots.
Collapse
Affiliation(s)
- K T Coschigano
- Department of Biology, 1009 Main Building, New York University, 100 Washington Square East, New York, New York 10003, USA
| | | | | | | |
Collapse
|
126
|
Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM. Arabidopsis gls mutants and distinct Fd-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. THE PLANT CELL 1998. [PMID: 9596633 DOI: 10.2307/3870661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ferredoxin-dependent glutamate synthase (Fd-GOGAT) plays a major role in photorespiration in Arabidopsis, as has been determined by the characterization of mutants deficient in Fd-GOGAT enzyme activity (gls). Despite genetic evidence for a single Fd-GOGAT locus and gene, we discovered that Arabidopsis contains two expressed genes for Fd-GOGAT (GLU1 and GLU2). Physical and genetic mapping of the gls1 locus and GLU genes indicates that GLU1 is linked to the gls1 locus, whereas GLU2 maps to a different chromosome. Contrasting patterns of GLU1 and GLU2 expression explain why a mutation in only one of the two genes for Fd-GOGAT leads to a photorespiratory phenotype in the gls1 mutants. GLU1 mRNA was expressed at the highest levels in leaves, and its mRNA levels were specifically induced by light or sucrose. In contrast, GLU2 mRNA was expressed at lower constitutive levels in leaves and preferentially accumulated in roots. Although these results suggest a major role for GLU1 in photorespiration, the sucrose induction of GLU1 mRNA in leaves also suggests a role in primary nitrogen assimilation. This possibility is supported by the finding that chlorophyll levels of a gls mutant are significantly lower than those of the wild type when grown under conditions that suppress photorespiration. Both the mutant analysis and gene regulation studies suggest that GLU1 plays a major role in photorespiration and also plays a role in primary nitrogen assimilation in leaves, whereas the GLU2 gene may play a major role in primary nitrogen assimilation in roots.
Collapse
Affiliation(s)
- K T Coschigano
- Department of Biology, 1009 Main Building, New York University, 100 Washington Square East, New York, New York 10003, USA
| | | | | | | |
Collapse
|
127
|
Zhao J, Williams CC, Last RL. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. THE PLANT CELL 1998. [PMID: 9501110 DOI: 10.2307/3870594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated.
Collapse
Affiliation(s)
- J Zhao
- Boyce Thompson Institute for Plant Research and Section of Genetics and Development, Cornell University, Tower Road, Ithaca, New York 14853-1801, USA
| | | | | |
Collapse
|
128
|
Zhao J, Williams CC, Last RL. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. THE PLANT CELL 1998; 10:359-70. [PMID: 9501110 PMCID: PMC143997 DOI: 10.1105/tpc.10.3.359] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated.
Collapse
Affiliation(s)
- J Zhao
- Boyce Thompson Institute for Plant Research and Section of Genetics and Development, Cornell University, Tower Road, Ithaca, New York 14853-1801, USA
| | | | | |
Collapse
|
129
|
Zhu-Shimoni JX, Galili G. Expression of an arabidopsis aspartate Kinase/Homoserine dehydrogenase gene is metabolically regulated by photosynthesis-related signals but not by nitrogenous compounds. PLANT PHYSIOLOGY 1998; 116:1023-8. [PMID: 9501134 PMCID: PMC35071 DOI: 10.1104/pp.116.3.1023] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/1997] [Accepted: 11/24/1997] [Indexed: 05/19/2023]
Abstract
Although the control of carbon fixation and nitrogen assimilation has been studied in detail, relatively little is known about the regulation of carbon and nitrogen flow into amino acids. In this paper we report our study of the metabolic regulation of expression of an Arabidopsis aspartate kinase/homoserine dehydrogenase (AK/HSD) gene, which encodes two linked key enzymes in the biosynthetic pathway of aspartate family amino acids. Northern blot analyses, as well as expression of chimeric AK/HSD-beta-glucuronidase constructs, have shown that the expression of this gene is regulated by the photosynthesis-related metabolites sucrose and phosphate but not by nitrogenous compounds. In addition, analysis of AK/HSD promoter deletions suggested that a CTTGACTCTA sequence, resembling the binding site for the yeast GCN4 transcription factor, is likely to play a functional role in the expression of this gene. Nevertheless, longer promoter fragments, lacking the GCN4-like element, were still able to confer sugar inducibility, implying that the metabolic regulation of this gene is apparently obtained by multiple and redundant promoter sequences. The present and previous studies suggest that the conversion of aspartate into either the storage amino acid asparagine or aspartate family amino acids is subject to a coordinated, reciprocal metabolic control, and this biochemical branch point is a part of a larger, coordinated regulatory mechanism of nitrogen and carbon storage and utilization.
Collapse
Affiliation(s)
- JX Zhu-Shimoni
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100 Israel
| | | |
Collapse
|
130
|
Yamagata H, Nakajima A, Bowler C, Iwasaki T. Molecular cloning and characterization of a cDNA encoding asparagine synthetase from soybean (Glycine max L.) cell cultures. Biosci Biotechnol Biochem 1998; 62:148-50. [PMID: 9501527 DOI: 10.1271/bbb.62.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A cDNA encoding glutamine-dependent asparagine synthetase was isolated from dark-adapted Glycine max cell culture. The deduced amino acid sequence showed 76-89% identity with other plant sequences. The gene for asparagine synthetase is expressed predominantly in shoots as compared to roots of etiolated plants and the level of expression decreases following light treatment, suggesting that the gene expression is down-regulated by light.
Collapse
Affiliation(s)
- H Yamagata
- Laboratory of Biochemistry, Faculty of Agriculture, Kobe University, Japan
| | | | | | | |
Collapse
|
131
|
Normanly J, Grisafi P, Fink GR, Bartel B. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. THE PLANT CELL 1997; 9:1781-90. [PMID: 9368415 PMCID: PMC157021 DOI: 10.1105/tpc.9.10.1781] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Indole-3-acetonitrile (IAN) is a candidate precursor of the plant growth hormone indole-3-acetic acid (IAA). We demonstrated that IAN has auxinlike effects on Arabidopsis seedlings and that exogenous IAN is converted to IAA in vivo. We isolated mutants with reduced sensitivity to IAN that remained sensitive to IAA. These mutants were recessive and fell into a single complementation group that mapped to chromosome 3, within 0.5 centimorgans of a cluster of three nitrilase-encoding genes, NIT1, NIT2, and NIT3. Each of the three mutants contained a single base change in the coding region of the NIT1 gene, and the expression pattern of NIT1 is consistent with the IAN insensitivity observed in the nit1 mutant alleles. The half-life of IAN and levels of IAA and IAN were unchanged in the nit1 mutant, confirming that Arabidopsis has other functional nitrilases. Overexpressing NIT2 in transgenic Arabidopsis caused increased sensitivity to IAN and faster turnover of exogenous IAN in vivo.
Collapse
Affiliation(s)
- J Normanly
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | | | | | |
Collapse
|
132
|
Shi L, Twary SN, Yoshioka H, Gregerson RG, Miller SS, Samac DA, Gantt JS, Unkefer PJ, Vance CP. Nitrogen assimilation in alfalfa: isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves. THE PLANT CELL 1997; 9:1339-56. [PMID: 9286111 PMCID: PMC157002 DOI: 10.1105/tpc.9.8.1339] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Asparagine, the primary assimilation product from N2 fixation in temperate legumes and the predominant nitrogen transport product in many plant species, is synthesized via asparagine synthetase (AS; EC 6.3.5.4). Here, we report the isolation and characterization of a cDNA and a gene encoding the nodule-enhanced form of AS from alfalfa. The AS gene is comprised of 13 exons separated by 12 introns. The 5' flanking region of the AS gene confers nodule-enhanced reporter gene activity in transformed alfalfa. This region also confers enhanced reporter gene activity in dark-treated leaves. These results indicate that the 5' upstream region of the AS gene contains elements that affect expression in root nodules and leaves. Both AS mRNA and enzyme activity increased approximately 10- to 20-fold during the development of effective nodules. Ineffective nodules have strikingly reduced amounts of AS transcript. Alfalfa leaves have quite low levels of AS mRNA and protein; however, exposure to darkness resulted in a considerable increase in both. In situ hybridization with effective nodules and beta-glucuronidase staining of nodules from transgenic plants showed that AS is expressed in both infected and uninfected cells of the nodule symbiotic zone and in the nodule parenchyma. RNA gel blot analysis and in situ hybridization results are consistent with the hypothesis that initial AS expression in nodules is independent of nitrogenase activity.
Collapse
MESH Headings
- Adaptation, Physiological
- Amino Acid Sequence
- Asparagine/biosynthesis
- Aspartate-Ammonia Ligase/genetics
- Base Sequence
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Darkness
- Gene Expression/radiation effects
- Genes, Plant/radiation effects
- Genes, Reporter
- Glucuronidase/genetics
- In Situ Hybridization
- Medicago sativa/genetics
- Medicago sativa/metabolism
- Medicago sativa/radiation effects
- Molecular Sequence Data
- Nitrogen/metabolism
- Nitrogen Fixation/genetics
- Nitrogen Fixation/physiology
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- L Shi
- U.S. Department of Agnculture, Agricultural Research Service, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Turano FJ, Thakkar SS, Fang T, Weisemann JM. Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. PLANT PHYSIOLOGY 1997; 113:1329-41. [PMID: 9112779 PMCID: PMC158256 DOI: 10.1104/pp.113.4.1329] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two distinct cDNA clones encoding NAD(H)-dependent glutamate dehydrogenase (NAD[H]-GDH) in Arabidopsis thaliana were identified and sequenced. The genes corresponding to these cDNA clones were designated GDH1 and GDH2. Analysis of the deduced amino acid sequences suggest that both gene products contain putative mitochondrial transit polypeptides and NAD(H)- and alpha-ketoglutarate-binding domains. Subcellular fractionation confirmed the mitochondrial location of the NAD(H)-GDH isoenzymes. In addition, a putative EF-hand loop, shown to be associated with Ca2+ binding, was identified in the GDH2 gene product but not in the GDH1 gene product. GDH1 encodes a 43.0-kD polypeptide, designated alpha, and GDH2 encodes a 42.5-kD polypeptide, designated beta. The two subunits combine in different ratios to form seven NAD(H)-GDH isoenzymes. The slowest-migrating isoenzyme in a native gel, GDH1, is a homohexamer composed of alpha subunits, and the fastest-migrating isoenzyme, GDH7, is a homohexamer composed of beta subunits. GDH isoenzymes 2 through 6 are heterohexamers composed of different ratios of alpha and beta subunits. NAD(H)-GDH isoenzyme patterns varied among different plant organs and in leaves of plants irrigated with different nitrogen sources or subjected to darkness for 4 d. Conversely, there were little or no measurable changes in isoenzyme patterns in roots of plants treated with different nitrogen sources. In most instances, changes in isoenzyme patterns were correlated with relative differences in the level of alpha and beta subunits. Likewise, the relative difference in the level of alpha or beta subunits was correlated with changes in the level of GDH1 or GDH2 transcript detected in each sample, suggesting that NAD(H)-GDH activity is controlled at least in part at the transcriptional level.
Collapse
Affiliation(s)
- F J Turano
- United States Department of Agriculture, Climate Stress Laboratory, Beltsville, Maryland 20705, USA
| | | | | | | |
Collapse
|
134
|
Suzuki A, Rothstein S. Structure and regulation of ferredoxin-dependent glutamase synthase from Arabidopsis thaliana. Cloning of cDNA expression in different tissues of wild-type and gltS mutant strains, and light induction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:708-18. [PMID: 9057836 DOI: 10.1111/j.1432-1033.1997.00708.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ferredoxin (Fd)-dependent glutamate synthase is present in green leaves, etiolated leaves, shoots and roots of Arabidopsis thaliana (ecotype Columbia). In photosynthetic green leaves and shoots, Fd-dependent glutamate synthase accounts for more than 96% of the total glutamate synthase activity in vitro with the remaining activity derived from an enzyme that uses NADH as the electron donor. In etiolated leaves and roots, Fd-dependent glutamate synthase is 3-4-fold less active than in green leaves, but represents 70-85% of the total glutamate synthase activity in these tissues. Fd-dependent glutamate synthase is detected as a single peptide of 165 kDa on a western blot of green leaf and shoot tissues, and this Fd-dependent glutamate synthase polypeptide is 3-4-fold less abundant in etiolated leaves and roots. In these non-photosynthetic tissues, there is a higher activity of NADH-dependent glutamate synthase. The A. thaliana gltS mutant (strain CS254) contains only 1.7% and 17.5% of the wild-type Fd-dependent glutamate synthase activity in leaves and roots, respectively. Western blots indicate that the Fd-dependent glutamate synthase peptide of 165 kDa is absent from leaves and roots of the gltS mutant. In contrast, NADH-dependent glutamate synthase activity in leaves and roots is unaffected. During illumination of wild-type dark-grown leaves for 72 h, the levels of Fd-dependent glutamate synthase protein and its activity increased threefold to levels equivalent to those in green leaves. In contrast, NADH-dependent glutamate synthase activity decrease twofold during illumination. The complete nucleotide sequence of the complementary DNA for A. thaliana Fd-dependent glutamate synthase has been determined. Analysis of the amino acid sequence deduced from the complete cDNA sequence (5178 bp) has revealed that A. thaliana Fd-dependent glutamate synthase is synthesized as a 1648-amino-acid precursor protein (180090 Da) which consists of a 131-amino-acid transit peptide (14603 Da) and a 1517-amino-acid mature peptide (165487 Da). The A. thaliana Fd-dependent glutamate synthase has a high similarity to maize Fd-dependent glutamate synthase (83%) and to the analogous region of NADH-dependent glutamate synthase (42%) and NADPH-dependent glutamate synthases (40-43%) from different organisms. The A. thaliana Fd-dependent glutamate synthase contains the purF-type glutamine-amido-transfer domain as well as flavin and iron-sulfur-cluster-binding domains. The deduced primary structures of A. thaliana Fd-dependent glutamate synthase and of glutamate synthases from other organisms indicate that Fd-dependent glutamate synthase may have evolved from bacterial NADPH-dependent glutamate synthase. The cDNA hybridized to RNA of about 5.3 kb from different tissues of A. thaliana. A high steady-state level of Fd-dependent glutamate synthase mRNA is found in photosynthetic green leaves and shoots, and roots contain less mRNA for Fd-dependent glutamate synthase. In the gltS mutant, there are twofold and fourfold lower levels of Fd-dependent glutamate synthase mRNA in leaves and roots, respectively, relative to those in wild-type A. thaliana. Under continuous illumination of dark-grown leaves, the Fd-dependent glutamate synthase mRNA is induced twofold to a level equivalent to that in green leaves.
Collapse
Affiliation(s)
- A Suzuki
- Laboratoire du Métabolisme et de la Nutrition des Plantes, Institut National de la Recherche Agronomique, Versailles, France
| | | |
Collapse
|
135
|
Hirel B, Phillipson B, Murchie E, Suzuki A, Kunz C, Ferrario S, Limami A, Chaillou S, Deleens E, Brugière N, Chaumont-Bonnet M, Foyer C, Morot-Gaudry JF. Manipulating the pathway of ammonia assimilation in transgenic non-legumes and legumes. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/jpln.19971600223] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
136
|
Chen Q, Silflow CD. Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1996; 112:987-96. [PMID: 8938407 PMCID: PMC158025 DOI: 10.1104/pp.112.3.987] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To elucidate the role of glutamine synthetase (GS) in nitrogen assimilation in the green alga Chlamydomonas reinhardtii we used maize GS1 (the cytosolic form) and GS2 (the chloroplastic form) cDNAs as hybridization probes to isolate C. reinhardtii cDNA clones. The amino acid sequences derived from the C. reinhardtii clones have extensive homology with GS enzymes from higher plants. A putative amino-terminal transit peptide encoded by the GS2 cDNA suggests that the protein localizes to the chloroplast. Genomic DNA blot analysis indicated that GS1 is encoded by a single gene, whereas two genomic fragments hybridized to the GS2 cDNA probe. All GS2 cDNA clones corresponded to only one of the two GS2 genomic sequences. We provide evidence that ammonium, nitrate, and light regulate GS transcript accumulation in green algae. Our results indicate that the level of GS1 transcripts is repressed by ammonium but induced by nitrate. The level of GS2 transcripts is not affected by ammonium or nitrate. Expression of both GS1 and GS2 genes is regulated by light, but perhaps through different mechanisms. Unlike in higher plants, no decreased level of GS2 transcripts was detected when cells were grown under conditions that repress photorespiration. Analysis of GS transcript levels in mutants with defects in the nitrate assimilation pathway show that nitrate assimilation and ammonium assimilation are regulated independently.
Collapse
Affiliation(s)
- Q Chen
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
137
|
Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 1996; 15:2988-96. [PMID: 8670800 PMCID: PMC450240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glutamate decarboxylase (GAD) catalyzes the decarboxylation of glutamate to CO2 and gamma-aminobutyrate (GABA). GAD is ubiquitous in prokaryotes and eukaryotes, but only plant GAD has been shown to bind calmodulin (CaM). Here, we assess the role of the GAD CaM-binding domain in vivo. Transgenic tobacco plants expressing a mutant petunia GAD lacking the CaM-binding domain (GADdeltaC plants) exhibit severe morphological abnormalities, such as short stems, in which cortex parenchyma cells fail to elongate, associated with extremely high GABA and low glutamate levels. The morphology of transgenic plants expressing the full-length GAD (GAD plants) is indistinguishable from that of wild-type (WT) plants. In WT and GAD plant extracts, GAD activity is inhibited by EGTA and by the CaM antagonist trifluoperazine, and is associated with a CaM-containing protein complex of approximately 500 kDa. In contrast, GADdeltaC plants lack normal GAD complexes, and GAD activity in their extracts is not affected by EGTA and trifluoperazine. We conclude that CaM binding to GAD is essential for the regulation of GABA and glutamate metabolism, and that regulation of GAD activity is necessary for normal plant development. This study is the first to demonstrate an in vivo function for CaM binding to a target protein in plants.
Collapse
Affiliation(s)
- G Baum
- Department of Plant Genetics, Weizmann Institute of Science, Israel
| | | | | | | | | | | | | |
Collapse
|
138
|
Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO AMINO ACIDS IN HIGHER PLANTS. ACTA ACUST UNITED AC 1996; 47:569-593. [PMID: 15012301 DOI: 10.1146/annurev.arplant.47.1.569] [Citation(s) in RCA: 411] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitrogen assimilation is a vital process controlling plant growth and development. Inorganic nitrogen is assimilated into the amino acids glutamine, glutamate, asparagine, and aspartate, which serve as important nitrogen carriers in plants. The enzymes glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), aspartate aminotransferase (AspAT), and asparagine synthetase (AS) are responsible for the biosynthesis of these nitrogen-carrying amino acids. Biochemical studies have revealed the existence of multiple isoenzymes for each of these enzymes. Recent molecular analyses demonstrate that each enzyme is encoded by a gene family wherein individual members encode distinct isoenzymes that are differentially regulated by environmental stimuli, metabolic control, developmental control, and tissue/cell-type specificity. We review the recent progress in using molecular-genetic approaches to delineate the regulatory mechanisms controlling nitrogen assimilation into amino acids and to define the physiological role of each isoenzyme involved in this metabolic pathway.
Collapse
Affiliation(s)
- H.-M. Lam
- Department of Biology, New York University, New York, NY 10003
| | | | | | | | | |
Collapse
|
139
|
Frommer WB, Hummel S, Unseld M, Ninnemann O. Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci U S A 1995; 92:12036-40. [PMID: 8618839 PMCID: PMC40291 DOI: 10.1073/pnas.92.26.12036] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In most plants amino acids represent the major transport form for organic nitrogen. A sensitive selection system in yeast mutants has allowed identification of a previously unidentified amino acid transporter in Arabidopsis. AAT1 encodes a hydrophobic membrane protein with 14 membrane-spanning regions and shares homologies with the ecotropic murine leukemia virus receptor, a bifunctional protein serving also as a cationic amino acid transporter in mammals. When expressed in yeast, AAT1 mediates high-affinity transport of basic amino acids, but to a lower extent also recognizes acidic and neutral amino acids. AAT1-mediated histidine transport is sensitive to protonophores and occurs against a concentration gradient, indicating that AAT1 may function as a proton symporter. AAT1 is specifically expressed in major veins of leaves and roots and in various floral tissues--i.e., and developing seeds.
Collapse
Affiliation(s)
- W B Frommer
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | | | |
Collapse
|
140
|
Douglas P, Morrice N, MacKintosh C. Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves. FEBS Lett 1995; 377:113-7. [PMID: 8543031 DOI: 10.1016/0014-5793(95)01300-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purified nitrate reductase (NR) from spinach leaves was phosphorylated in vitro by NR-inactivating kinase on Ser-543 which is located in the hinge 1 region between the molybdenum-cofactor and haem-binding domains. Phosphorylation of Ser-543 allowed NR to be inhibited by the inhibitor, NIP. Degraded NR preparations in which a proportion of the subunits had lost 45 amino acids from the N-terminus during purification could be phosphorylated by NR kinase on Ser-543, but could not subsequently be fully inhibited by NIP, suggesting a role for the N-terminal tail of NR in NIP binding.
Collapse
Affiliation(s)
- P Douglas
- Department of Biochemistry, University of Dundee, Scotland, UK
| | | | | |
Collapse
|
141
|
Singh BK, Shaner DL. Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. THE PLANT CELL 1995. [PMID: 12242394 DOI: 10.2307/3870048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- B. K. Singh
- American Cyanamid Company, P.O. Box 400, Princeton, New Jersey 08543-0400
| | | |
Collapse
|
142
|
Affiliation(s)
- N M Crawford
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
143
|
Mylona P, Pawlowski K, Bisseling T. Symbiotic Nitrogen Fixation. THE PLANT CELL 1995; 7:869-885. [PMID: 12242391 DOI: 10.2307/3870043] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- P. Mylona
- Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
144
|
Affiliation(s)
- N M Crawford
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
145
|
Singh BK, Shaner DL. Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. THE PLANT CELL 1995; 7:935-944. [PMID: 12242394 PMCID: PMC160890 DOI: 10.1105/tpc.7.7.935] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- B. K. Singh
- American Cyanamid Company, P.O. Box 400, Princeton, New Jersey 08543-0400
| | | |
Collapse
|
146
|
Affiliation(s)
- R. Whetten
- Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, North Carolina 27695-8008
| | | |
Collapse
|
147
|
Mylona P, Pawlowski K, Bisseling T. Symbiotic Nitrogen Fixation. THE PLANT CELL 1995; 7:869-885. [PMID: 12242391 PMCID: PMC160880 DOI: 10.1105/tpc.7.7.869] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- P. Mylona
- Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
148
|
Mylona P, Pawlowski K, Bisseling T. Symbiotic Nitrogen Fixation. THE PLANT CELL 1995. [PMID: 12242391 DOI: 10.1105/2ftpc.7.7.869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- P. Mylona
- Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
149
|
Affiliation(s)
- R. Whetten
- Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, North Carolina 27695-8008
| | | |
Collapse
|
150
|
Radwanski ER, Last RL. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. THE PLANT CELL 1995; 7:921-34. [PMID: 7640526 PMCID: PMC160888 DOI: 10.1105/tpc.7.7.921] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- E R Radwanski
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853-1801, USA
| | | |
Collapse
|