101
|
Sharma N, Biswas R, Lourderaj U. Dynamics of a gas-phase S NAr reaction: non-concerted mechanism despite the Meisenheimer complex being a transition state. Phys Chem Chem Phys 2020; 22:26562-26567. [PMID: 33200767 DOI: 10.1039/d0cp05567k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The commonly accepted mechanism of the nucleophilic aromatic substitution (SNAr) reaction has been found to be governed by the nature of the Meisenheimer structure on the potential energy surface. A stable Meisenheimer intermediate favors a stepwise mechanism, while a Meisenheimer transition state favors a concerted mechanism. Here, we show by using a detailed potential energy map (using the DFT and DLPNO-CCSD(T)/CBS methods) and ab initio classical trajectory simulations that the F- + C6H5NO2 SNAr reaction involves a Meisenheimer transition state and follows a stepwise mechanism in contrast to the expected concerted pathway. The stepwise mechanism observed in the trajectory simulations takes place by the formation of various ion-dipole and σ-complexes. While the majority of the trajectories follow the multi-step mechanism and avoid the minimum energy path, a considerable fraction exhibit a roaming atom mechanism where the F atom hovers around the phenyl ring before the formation of the products.
Collapse
Affiliation(s)
- Nishant Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P. O. Jatni, Khurda, Odisha, India.
| | | | | |
Collapse
|
102
|
Allum F, Mason R, Burt M, Slater CS, Squires E, Winter B, Brouard M. Post extraction inversion slice imaging for 3D velocity map imaging experiments. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1842531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Felix Allum
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Robert Mason
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Craig S. Slater
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Eleanor Squires
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Benjamin Winter
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
103
|
Quinn MS, Nauta K, Kable SH. Disentangling the H2E, F(1Σg+) (v′=0−18)←X(1Σg+)(v″=3−9)(2+1) REMPI spectrum via 2D velocity-mapped imaging. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1836412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mitchell S. Quinn
- The University of New South Wales at Sydney, Kensington, NSW, Australia
| | - Klaas Nauta
- The University of New South Wales at Sydney, Kensington, NSW, Australia
| | - Scott H. Kable
- The University of New South Wales at Sydney, Kensington, NSW, Australia
| |
Collapse
|
104
|
Li J, Zhao B, Xie D, Guo H. Advances and New Challenges to Bimolecular Reaction Dynamics Theory. J Phys Chem Lett 2020; 11:8844-8860. [PMID: 32970441 DOI: 10.1021/acs.jpclett.0c02501] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamics of bimolecular reactions in the gas phase are of foundational importance in combustion, atmospheric chemistry, interstellar chemistry, and plasma chemistry. These collision-induced chemical transformations are a sensitive probe of the underlying potential energy surface(s). Despite tremendous progress in past decades, our understanding is still not complete. In this Perspective, we survey the recent advances in theoretical characterization of bimolecular reaction dynamics, stimulated by new experimental observations, and identify key new challenges.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
105
|
Chen XM, Chu YJ, Liu CG. Degradation Mechanism of Benzo[ a]pyrene Initiated by the OH Radical and 1O 2: An Insight from Density Functional Theory Calculations. ACS OMEGA 2020; 5:25552-25560. [PMID: 33073081 PMCID: PMC7557245 DOI: 10.1021/acsomega.0c01448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The degradation mechanism of benzo[a]pyrene (BaP) initiated by •OH and 1O2 in aqueous solution is investigated by density functional theory calculations. The main degradation products are BaP-1,6-quinone, BaP-3,6-quinone, BaP-4,6-quinone, and BaP-6,12-quinone. •OH and HO2 are the main intermediate radical species. At a low initial concentration of •OH, 1O2 could be a primary driver for BaP degradation. The degradation mechanism includes six consecutive elementary reactions: (1) 1O2 initiation forming BaP-6-OO. (2) 1,3 H-shift (H atom shifts to the OO group) that is promoted by H2O, forming BaP-6-OOH. (3) BaP-6-OOH decomposes into the •OH radical and BaP-6-O. (4) •OH addition to BaP-6-O forming BaP-6-O-1(3,4,12)-OH. (5) Extracting the H atom from the carbon with the OH group by 1O2. (6) Extracting the H atom from the OH group by HO2. At a high initial concentration of •OH, the •OH-initiated and 1O2-initiated degradation reactions of BaP are both feasible. The degradation mechanism includes six consecutive elementary reactions: (1) •OH initiation forming BaP-6-OH or 1O2 initiation forming BaP-6-OO. (2) 1O2 addition to BaP-6-OH forming BaP-6-OH-12(1,3,4)-OO or •OH addition to BaP-6-OO forming BaP-6-OO-12(1,3,4)-OH. (3) Extracting the H atom from the carbon with the OH group by 1O2, forming HO2. (4) 1,3 H-shift (H-shift from the carbon to the OO group), promoted by H2O. (5) The loss of the OH radical. (6) Abstracting the H atom from the OH group by HO2. In this paper, the formation of BaP-4,6-quinone via the BaP degradation is first reported. Water participates in the elementary reaction in which the H atom attached on the aromatic ring shifts to the OO group, serving as a bridge that stabilizes the transition state and transports the proton. A comprehensive investigation explains the degradation mechanism of BaP initiated by •OH and 1O2 in aqueous solution.
Collapse
Affiliation(s)
- Xue-Mei Chen
- College
of Chemical Engineering, Northeast Electric
Power University, Jilin
City 132012, China
| | - Yun-Jie Chu
- College
of Chemical Engineering, Northeast Electric
Power University, Jilin
City 132012, China
| | - Chun-Guang Liu
- Department
of Chemistry, Faculty of Science, Beihua
University, Jilin
City 132013, China
| |
Collapse
|
106
|
Quinn MS, Nauta K, Jordan MJT, Bowman JM, Houston PL, Kable SH. Rotational resonances in the H
2
CO roaming reaction are revealed by detailed correlations. Science 2020; 369:1592-1596. [DOI: 10.1126/science.abc4088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/19/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Mitchell S. Quinn
- School of Chemistry, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Klaas Nauta
- School of Chemistry, University of New South Wales, Kensington, NSW, 2052, Australia
| | | | - Joel M. Bowman
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Paul L. Houston
- Department of Chemistry and Biochemistry, Cornell University, Ithaca, NY, USA
| | - Scott H. Kable
- School of Chemistry, University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
107
|
Käser S, Koner D, Christensen AS, von Lilienfeld OA, Meuwly M. Machine Learning Models of Vibrating H2CO: Comparing Reproducing Kernels, FCHL, and PhysNet. J Phys Chem A 2020; 124:8853-8865. [DOI: 10.1021/acs.jpca.0c05979] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Anders S. Christensen
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - O. Anatole von Lilienfeld
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
108
|
Paterson MJ, Townsend D. Rydberg-to-valence evolution in excited state molecular dynamics. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1815389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Dave Townsend
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
109
|
Lupi J, Puzzarini C, Cavallotti C, Barone V. State-of-the-Art Quantum Chemistry Meets Variable Reaction Coordinate Transition State Theory to Solve the Puzzling Case of the H 2S + Cl System. J Chem Theory Comput 2020; 16:5090-5104. [PMID: 32603107 PMCID: PMC8009477 DOI: 10.1021/acs.jctc.0c00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The atmospheric reaction of H2S with Cl has been reinvestigated to check if, as previously suggested, only explicit dynamical computations can lead to an accurate evaluation of the reaction rate because of strong recrossing effects and the breakdown of the variational extension of transition state theory. For this reason, the corresponding potential energy surface has been thoroughly investigated, thus leading to an accurate characterization of all stationary points, whose energetics has been computed at the state of the art. To this end, coupled-cluster theory including up to quadruple excitations has been employed, together with the extrapolation to the complete basis set limit and also incorporating core-valence correlation, spin-orbit, and scalar relativistic effects as well as diagonal Born-Oppenheimer corrections. This highly accurate composite scheme has also been paralleled by less expensive yet promising computational approaches. Moving to kinetics, variational transition state theory and its variable reaction coordinate extension for barrierless steps have been exploited, thus obtaining a reaction rate constant (8.16 × 10-11 cm3 molecule-1 s-1 at 300 K and 1 atm) in remarkable agreement with the experimental counterpart. Therefore, contrary to previous claims, there is no need to invoke any failure of the transition state theory, provided that sufficiently accurate quantum-chemical computations are performed. The investigation of the puzzling case of the H2S + Cl system allowed us to present a robust approach for disclosing the thermochemistry and kinetics of reactions of atmospheric and astrophysical interest.
Collapse
Affiliation(s)
- Jacopo Lupi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Carlo Cavallotti
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, I-20131 Milano, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
110
|
He C, Zhao L, Doddipatla S, Thomas AM, Nikolayev AA, Galimova GR, Azyazov VN, Mebel AM, Kaiser RI. Gas-Phase Synthesis of 3-Vinylcyclopropene via the Crossed Beam Reaction of the Methylidyne Radical (CH; X 2 Π) with 1,3-Butadiene (CH 2 CHCHCH 2 ; X 1 A g ). Chemphyschem 2020; 21:1295-1309. [PMID: 32291897 DOI: 10.1002/cphc.202000183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The crossed molecular beam reactions of the methylidyne radical (CH; X2 Π) with 1,3-butadiene (CH2 CHCHCH2 ; X1 Ag ) along with their (partially) deuterated counterparts were performed at collision energies of 20.8 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio calculations, we reveal that the methylidyne radical may add barrierlessly to the terminal carbon atom and/or carbon-carbon double bond of 1,3-butadiene, leading to doublet C5 H7 intermediates with life times longer than the rotation periods. These collision complexes undergo non-statistical unimolecular decomposition through hydrogen atom emission yielding the cyclic cis- and trans-3-vinyl-cyclopropene products with reaction exoergicities of 119±42 kJ mol-1 . Since this reaction is barrierless, exoergic, and all transition states are located below the energy of the separated reactants, these cyclic C5 H6 products are predicted to be accessed even in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and cold molecular clouds such as TMC-1.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | | | - Galiya R Galimova
- Samara National Research University, Samara, 443086, Russian Federation.,Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Valeriy N Azyazov
- Samara National Research University, Samara, 443086, Russian Federation.,Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
111
|
Three-dimensional covariance-map imaging of molecular structure and dynamics on the ultrafast timescale. Commun Chem 2020; 3:72. [PMID: 36703470 PMCID: PMC9814411 DOI: 10.1038/s42004-020-0320-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/15/2020] [Indexed: 01/29/2023] Open
Abstract
Ultrafast laser pump-probe methods allow chemical reactions to be followed in real time, and have provided unprecedented insight into fundamental aspects of chemical reactivity. While evolution of the electronic structure of the system under study is evident from changes in the observed spectral signatures, information on rearrangement of the nuclear framework is generally obtained indirectly. Disentangling contributions to the signal arising from competing photochemical pathways can also be challenging. Here we introduce the new technique of three-dimensional covariance-map Coulomb explosion imaging, which has the potential to provide complete three-dimensional information on molecular structure and dynamics as they evolve in real time during a gas-phase chemical reaction. We present first proof-of-concept data from recent measurements on CF3I. Our approach allows the contributions from competing fragmentation pathways to be isolated and characterised unambiguously, and is a promising route to enabling the recording of 'molecular movies' for a wide variety of gas-phase chemical processes.
Collapse
|
112
|
Nagahata Y, Borondo F, Benito RM, Hernandez R. Identifying reaction pathways in phase space via asymptotic trajectories. Phys Chem Chem Phys 2020; 22:10087-10105. [PMID: 32342955 DOI: 10.1039/c9cp06610a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we revisit the concepts of the reactivity map and the reactivity bands as an alternative to the use of perturbation theory for the determination of the phase space geometry of chemical reactions. We introduce a reformulated metric, called the asymptotic trajectory indicator, and an efficient algorithm to obtain reactivity boundaries. We demonstrate that this method has sufficient accuracy to reproduce phase space structures such as turnstiles for a 1D model of the isomerization of ketene in an external field. The asymptotic trajectory indicator can be applied to higher dimensional systems coupled to Langevin baths as we demonstrate for a 3D model of the isomerization of ketene.
Collapse
Affiliation(s)
- Yutaka Nagahata
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
113
|
Livshits E, Luzon I, Gope K, Baer R, Strasser D. Time-resolving the ultrafast H 2 roaming chemistry and H 3+ formation using extreme-ultraviolet pulses. Commun Chem 2020; 3:49. [PMID: 36703393 PMCID: PMC9814522 DOI: 10.1038/s42004-020-0294-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/25/2020] [Indexed: 01/29/2023] Open
Abstract
The time scales and formation mechanisms of tri-hydrogen cation products in organic molecule ionization processes are poorly understood, despite their cardinal role in the chemistry of the interstellar medium and in other chemical systems. Using an ultrafast extreme-ultraviolet pump and time-resolved near-IR probe, combined with high-level ab initio molecular dynamics calculations, here we report unambiguously that H3+ formation in double-ionization of methanol occurs on a sub 100 fs time scale, settling previous conflicting findings of strong-field Coulomb explosion experiments. Our combined experimental-computational studies suggest that ultrafast competition, between proton-transfer and long-range electron-transfer processes, determines whether the roaming neutral H2 dynamics on the dication result in [Formula: see text] or [Formula: see text] fragments respectively.
Collapse
Affiliation(s)
- Ester Livshits
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Itamar Luzon
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Krishnendu Gope
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Roi Baer
- grid.9619.70000 0004 1937 0538Fritz Haber Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Daniel Strasser
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| |
Collapse
|
114
|
Abstract
Roaming reactions were first clearly identified in photodissociation of formaldehyde 15 years ago, and roaming dynamics are now recognized as a universal aspect of chemical reactivity. These reactions typically involve frustrated near-dissociation of a quasibound system to radical fragments, followed by reorientation at long range and intramolecular abstraction. The consequences can be unexpected formation of molecular products, depletion of the radical pool in chemical systems, and formation of products with unusual internal state distributions. In this review, I examine some current aspects of roaming reactions with an emphasis on experimental results, focusing on possible quantum effects in roaming and roaming dynamics in bimolecular systems. These considerations lead to a more inclusive definition of roaming reactions as those for which key dynamics take place at long range.
Collapse
Affiliation(s)
- Arthur G. Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
115
|
Abstract
Nonstatistical dynamics is important for many chemical reactions. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory of unimolecular kinetics assumes a reactant molecule maintains a statistical microcanonical ensemble of vibrational states during its dissociation so that its unimolecular dynamics are time independent. Such dynamics results when the reactant's atomic motion is chaotic or irregular. Intrinsic non-RRKM dynamics occurs when part of the reactant's phase space consists of quasiperiodic/regular motion and a bottleneck exists, so that the unimolecular rate constant is time dependent. Nonrandom excitation of a molecule may result in short-time apparent non-RRKM dynamics. For rotational activation, the 2J + 1 K levels for a particular J may be highly mixed, making K an active degree of freedom, or K may be a good quantum number and an adiabatic degree of freedom. Nonstatistical dynamics is often important for bimolecular reactions and their intermediates and for product-energy partitioning of bimolecular and unimolecular reactions. Post–transition state dynamics is often highly complex and nonstatistical.
Collapse
Affiliation(s)
- Bhumika Jayee
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
116
|
Wang E, Shan X, Chen L, Pfeifer T, Chen X, Ren X, Dorn A. Ultrafast Proton Transfer Dynamics on the Repulsive Potential of the Ethanol Dication: Roaming-Mediated Isomerization versus Coulomb Explosion. J Phys Chem A 2020; 124:2785-2791. [PMID: 32159968 PMCID: PMC7307916 DOI: 10.1021/acs.jpca.0c02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
If
a molecular dication is produced on a repulsive potential energy
surface (PES), it normally dissociates. Before that, however, ultrafast
nuclear dynamics can change the PES and significantly influence the
fragmentation pathway. Here, we investigate the electron-impact-induced
double ionization and subsequent fragmentation processes of the ethanol
molecule using multiparticle coincident momentum spectroscopy and
ab initio dynamical simulations. For the electronic ground state of
the ethanol dication, we observe several fragmentation channels that
cannot be reached by direct Coulomb explosion (CE) but require preceding
isomerization. Our simulations show that ultrafast hydrogen or proton
transfer (PT) can stabilize the repulsive PES of the dication before
the direct CE and form intermediate H2 or H2O. These neutrals stay in the vicinity of the precursor, and roaming
mechanisms lead to isomerization and finally PT resulting in emission
of H3+ or H3O+. The present
findings can help to understand the complex fragmentation dynamics
of molecular cations.
Collapse
Affiliation(s)
- Enliang Wang
- Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany
| | - Xu Shan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Thomas Pfeifer
- Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany
| | - Xiangjun Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xueguang Ren
- Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany.,School of Science, Xi'an Jiaotong University, Xianning West Road 28, Xi'an 710049, China
| | - Alexander Dorn
- Max Planck Institut für Kernphysik, Saupfercheckweg, 1, 69117 Heidelberg, Germany
| |
Collapse
|
117
|
Zhang L, Jiang B. A quantum wavepacket study of state-to-state photodissociation dynamics of HOBr/DOBr. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1911214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
118
|
Abstract
By using high-level ab initio methods, we examine the nature of bonding between Rydberg electrons hosted by two four-coordinate nitrogen centers embedded in a hydrocarbon scaffold. The electronic structure of these species resembles that of diradicals, yet the diffuse nature of the orbitals hosting the unpaired electrons results in unusual features. The unpaired Rydberg electrons exhibit long-range bonding interactions, leading to stabilization of the singlet state (relative to the triplet) and a reduced number of effectively unpaired electrons. However, thermochemical gains due to through-space bonding are offset by strong Coulomb repulsion between positively charged nitrogen cores. The kinetic stability of these Rydberg diradicals may be controlled by a judicious choice of the molecular scaffold, suggesting possible strategies for their experimental characterization.
Collapse
Affiliation(s)
- Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Shmuel Zilberg
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
119
|
Wu CH, Magers DB, Harding LB, Klippenstein SJ, Allen WD. Reaction Profiles and Kinetics for Radical-Radical Hydrogen Abstraction via Multireference Coupled Cluster Theory. J Chem Theory Comput 2020; 16:1511-1525. [PMID: 32073856 DOI: 10.1021/acs.jctc.9b00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Radical-radical abstractions in hydrocarbon oxidation chemistry are disproportionation reactions that are generally exothermic with little or no barrier yet are underappreciated and poorly studied. Such challenging multireference electronic structure problems are tackled here using the recently developed state-specific multireference coupled cluster methods Mk-MRCCSD and Mk-MRCCSD(T), as well as the companion perturbation theory Mk-MRPT2 and the established MRCISD, MRCISD+Q, and CASPT2 approaches. Reaction paths are investigated for five prototypes involving radical-radical hydrogen abstraction: H + BeH → H2+ Be, H + NH2 → H2 + NH, CH3 + C2H5 → CH4 + C2H4, H + C2H5 → H2 + C2H4, and H + HCO → H2 + CO. Full configuration interaction (FCI) benchmark computations for the H + BeH, H + NH2, and H + HCO reactions prove that Mk-MRCCSD(T) provides superior accuracy for the interaction energies in the entrance channel, with mean absolute errors less than 0.3 kcal mol-1 and percentage deviations less than 10% over the fragment separations of relevance to kinetics. To facilitate combustion studies, energetics for the CH3 + C2H5, H + C2H5, and H + HCO reactions were computed at each level of theory with correlation-consistent basis sets (cc-pVXZ, X = T, Q, 5) and extrapolated to the complete basis set (CBS) limit. These CBS energies were coupled with CASPT2 projected vibrational frequencies along a minimum energy path to obtain rate constants for these three reactions. The rigorous Mk-MRCCSD(T)/CBS results demonstrate unequivocally that these three reactions proceed with no barrier in the entrance channel, contrary to some earlier predictions. Mk-MRCCSD(T) also reveals that the economical CASPT2 method performs well for large interfragment separations but may deteriorate substantially at shorter distances.
Collapse
Affiliation(s)
- Chia-Hua Wu
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - D Brandon Magers
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States.,Department of Chemistry and Physics, Belhaven University, Jackson, Mississippi 39202, United States
| | - Lawrence B Harding
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wesley D Allen
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
120
|
Guan Y, Yarkony DR. Accurate Neural Network Representation of the Ab Initio Determined Spin-Orbit Interaction in the Diabatic Representation Including the Effects of Conical Intersections. J Phys Chem Lett 2020; 11:1848-1858. [PMID: 32062966 DOI: 10.1021/acs.jpclett.0c00074] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A method for fitting ab initio determined spin-orbit coupling interactions, in the Breit-Pauli approximation, based on quasidiabatic representations using neural network fits is reported. The algorithm generalizes our recently reported neural network approach for representing the dipole interaction. The S0, S1, and T1 states of formaldehyde are used as an example. First, the two singlet states S0 and S1 are diabatized with a modified Boys Localization diabatization method. Second, the spin-orbit coupling between singlet and triplet states is transformed to the diabatic representation. This removes the discontinuities in the adiabatic representation. The diabatized spin-orbit couplings are then fit with smooth neural network functions. The analytic representation of spin-orbit coupling interactions in a diabatic basis by neural networks will make accurate full-dimensional quantum dynamical treatment of both internal conversion and intersystem crossing possible, which will help us to gain better understanding of both processes.
Collapse
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
121
|
Yang CH, Bhattacharyya S, Liu L, Fang WH, Liu K. Real-time tracking of the entangled pathways in the multichannel photodissociation of acetaldehyde. Chem Sci 2020; 11:6423-6430. [PMID: 34094106 PMCID: PMC8159351 DOI: 10.1039/d0sc00063a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The roaming mechanism, an unconventional reaction path, was discovered more than a decade ago in the studies of formaldehyde photodissociation, H2CO → H2 + CO. Since then, observations of roaming have been claimed in numerous photochemical processes. A closer examination of the presented data, however, revealed that evidence for roaming is not always unequivocal, and some of the conclusions could be misleading. We report here an in-depth, joint experimental and theoretical study of the title reaction. By tracking the time-evolution of the pair-correlated product state distributions, we decipher the competing, interwoven reaction pathways that lead to the radical (CH3 + HCO) and molecular (CH4 + CO) products. Possible roaming pathways are then elucidated and a more precise descriptor of the phenomenon is delineated.
Collapse
Affiliation(s)
- Chung-Hsin Yang
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica P. O. Box 23-166 Taipei Taiwan 10617
| | - Surjendu Bhattacharyya
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica P. O. Box 23-166 Taipei Taiwan 10617
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Department of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Department of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica P. O. Box 23-166 Taipei Taiwan 10617 .,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS Dalian 116023 P. R. China.,Aerosol Science Research Center, National Sun Yat-sen University Kaohsiung Taiwan 80424
| |
Collapse
|
122
|
Iwamoto N, Schwartz CJ, Jochim B, Raju P K, Feizollah P, Napierala JL, Severt T, Tegegn SN, Solomon A, Zhao S, Lam H, Wangjam TN, Kumarappan V, Carnes KD, Ben-Itzhak I, Wells E. Strong-field control of H 3 + production from methanol dications: Selecting between local and extended formation mechanisms. J Chem Phys 2020; 152:054302. [PMID: 32035476 DOI: 10.1063/1.5129946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using the CD3OH isotopologue of methanol, the ratio of D2H+ to D3 + formation is manipulated by changing the characteristics of the intense femtosecond laser pulse. Detection of D2H+ indicates a formation process involving two hydrogen atoms from the methyl side of the molecule and a proton from the hydroxyl side, while detection of D3 + indicates local formation involving only the methyl group. Both mechanisms are thought to involve a neutral D2 moiety. An adaptive control strategy that employs image-based feedback to guide the learning algorithm results in an enhancement of the D2H+/D3 + ratio by a factor of approximately two. The optimized pulses have secondary structures 110-210 fs after the main pulse and result in photofragments that have different kinetic energy release distributions than those produced from near transform limited pulses. Systematic changes to the linear chirp and higher order dispersion terms of the laser pulse are compared to the results obtained with the optimized pulse shapes.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - Charles J Schwartz
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - Bethany Jochim
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Kanaka Raju P
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Peyman Feizollah
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - J L Napierala
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - T Severt
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - S N Tegegn
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - A Solomon
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - S Zhao
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - Huynh Lam
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Tomthin Nganba Wangjam
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - V Kumarappan
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - K D Carnes
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - I Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - E Wells
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| |
Collapse
|
123
|
Strong inverse kinetic isotope effect observed in ammonia charge exchange reactions. Nat Commun 2020; 11:173. [PMID: 31924778 PMCID: PMC6954264 DOI: 10.1038/s41467-019-13976-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022] Open
Abstract
Isotopic substitution has long been used to understand the detailed mechanisms of chemical reactions; normally the substitution of hydrogen by deuterium leads to a slower reaction. Here, we report our findings on the charge transfer collisions of cold [Formula: see text] ions and two isotopologues of ammonia, [Formula: see text] and [Formula: see text]. Deuterated ammonia is found to react more than three times faster than hydrogenated ammonia. Classical capture models are unable to account for this pronounced inverse kinetic isotope effect. Moreover, detailed ab initio calculations cannot identify any (energetically accessible) crossing points between the reactant and product potential energy surfaces, indicating that electron transfer is likely to be slow. The higher reactivity of [Formula: see text] is attributed to the greater density of states (and therefore lifetime) of the deuterated reaction complex compared to the hydrogenated system. Our observations could provide valuable insight into possible mechanisms contributing to deuterium fractionation in the interstellar medium.
Collapse
|
124
|
Fu YL, Lu X, Han YC, Fu B, Zhang DH, Bowman JM. Collision-induced and complex-mediated roaming dynamics in the H + C 2H 4 → H 2 + C 2H 3 reaction. Chem Sci 2020; 11:2148-2154. [PMID: 34123304 PMCID: PMC8150095 DOI: 10.1039/c9sc05951b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Roaming is a novel mechanism in reaction dynamics. It describes an unusual pathway, which can be quite different from the conventional minimum-energy path, leading to products. While roaming has been reported or suggested in a number of unimolecular reactions, it has been rarely reported for bimolecular reactions. Here, we report a high-level computational study of roaming dynamics in the important bimolecular combustion reaction H + C2H4 → H2 + C2H3, using a new, high-level machine learning-based potential energy surface. In addition to the complex-mediated roaming mechanism, a non-complex forming roaming mechanism is found. It can be described as a direct inelastic collision where the departing H atom roams and then abstracts an H atom. We denoted this as “collision-induced” roaming. These two roaming mechanisms have different angular distributions; however, both produce highly internally excited C2H3. The roaming pathway leads to remarkably different dynamics as compared with the direct abstraction pathway. A clear signature of the roaming mechanism is highly internally excited C2H3, which could be observed experimentally. Collision-induced and complex-mediated roaming mechanisms are revealed for an important bimolecular reaction in combustion.![]()
Collapse
Affiliation(s)
- Yan-Lin Fu
- Department of Physics, Dalian University of Technology Dalian China 116024 .,State Key Laboratory of Molecular Reaction Dynamics, Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China 116023
| | - Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics, Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China 116023
| | - Yong-Chang Han
- Department of Physics, Dalian University of Technology Dalian China 116024
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China 116023
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China 116023
| | - Joel M Bowman
- Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University Atlanta Georgia 30322 USA
| |
Collapse
|
125
|
Zanchet A, García GA, Nahon L, Bañares L, Marggi Poullain S. Signature of a conical intersection in the dissociative photoionization of formaldehyde. Phys Chem Chem Phys 2020; 22:12886-12893. [DOI: 10.1039/d0cp01267j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron/ion coincidence experiments and ab initio calculations of the dissociative photoionization of formaldehyde reveal the presence of a conical intersection controlling the dynamics and favoring dissociation into the molecular channel, CO+ + H2.
Collapse
Affiliation(s)
- Alexandre Zanchet
- Departamento de Química Física (Unidad Asociada de I+D+i al CSIC)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | | | - Laurent Nahon
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | - Luis Bañares
- Departamento de Química Física (Unidad Asociada de I+D+i al CSIC)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Sonia Marggi Poullain
- Departamento de Química Física (Unidad Asociada de I+D+i al CSIC)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| |
Collapse
|
126
|
Li H, Suits AG. Universal crossed beam imaging studies of polyatomic reaction dynamics. Phys Chem Chem Phys 2020; 22:11126-11138. [DOI: 10.1039/d0cp00522c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crossed-beam imaging studies of polyatomic reactions show surprising dynamics not anticipated by extrapolation from smaller model systems.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Chemistry
- University of Missouri
- Columbia
- USA
| | | |
Collapse
|
127
|
Feldmaier M, Bardakcioglu R, Reiff J, Main J, Hernandez R. Phase-space resolved rates in driven multidimensional chemical reactions. J Chem Phys 2019; 151:244108. [DOI: 10.1063/1.5127539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Robin Bardakcioglu
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
128
|
Rowell KN, Kable SH, Jordan MJT. Structural Effects on the Norrish Type I α-Bond Cleavage of Tropospherically Important Carbonyls. J Phys Chem A 2019; 123:10381-10396. [DOI: 10.1021/acs.jpca.9b05534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keiran N. Rowell
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Scott H. Kable
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
129
|
Dörfler AD, Eberle P, Koner D, Tomza M, Meuwly M, Willitsch S. Long-range versus short-range effects in cold molecular ion-neutral collisions. Nat Commun 2019; 10:5429. [PMID: 31780657 PMCID: PMC6882903 DOI: 10.1038/s41467-019-13218-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
The investigation of cold interactions between ions and neutrals has recently emerged as a new scientific frontier at the interface of physics and chemistry. Here, we report a study of charge-transfer (CT) collisions of Rb atoms with N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ and O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ ions in the mK regime using a dynamic ion-neutral hybrid trapping experiment. We observe markedly different CT kinetics and dynamics for the different systems and reaction channels studied. While the kinetics in some channels are consistent with classical capture theory, others show distinct non-universal dynamics. The experimental results are interpreted with the help of classical-capture, quasiclassical-trajectory and quantum-scattering calculations using ab-initio potentials for the highly excited molecular states involved. The theoretical analysis reveals an intricate interplay between short- and long-range effects in the different reaction channels which ultimately determines the CT dynamics and rates. Our results illustrate salient mechanisms that determine the efficiency of cold molecular CT reactions. Studies on reactions between cold molecular ions and neutral atoms provide insights into intermolecular interactions. Here the authors explore the kinetics and dynamics of charge-transfer collisions between the cold N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ and O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ ions and neutral Rb atoms and discuss the role of long- and short-range effects.
Collapse
Affiliation(s)
- Alexander D Dörfler
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Pascal Eberle
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Michał Tomza
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| | - Stefan Willitsch
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| |
Collapse
|
130
|
Meng Q, Yan J, Liu H, Chen C, Li S, Shen X, Song J, Zheng L, Han B. Self-supported hydrogenolysis of aromatic ethers to arenes. SCIENCE ADVANCES 2019; 5:eaax6839. [PMID: 31803832 PMCID: PMC6874494 DOI: 10.1126/sciadv.aax6839] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/01/2019] [Indexed: 05/28/2023]
Abstract
Arenes are widely used chemicals and essential components in liquid fuels, which are currently produced from fossil feedstocks. Here, we proposed the self-supported hydrogenolysis (SSH) of aromatic ethers to produce arenes using the hydrogen source within the reactants, and it was found that RuW alloy nanoparticles were very efficient catalyst for the reactions. This route is very attractive and distinguished from the reported studies on the cleavage of the CAr─O bonds. The unique feature of this methodology is that exogenous hydrogen or other reductant is not required, and hydrogenation of aromatic rings could be avoided completely. The selectivities to arenes could reach >99.9% at complete conversion of the ethers. Moreover, lignin could also be transformed into arenes efficiently over the RuW alloy catalyst. The mechanism studies showed that the neighboring Ru and W species in the RuW alloy nanoparticles worked synergistically to accelerate the SSH reaction.
Collapse
Affiliation(s)
- Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiang Yan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing 101400, China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Shen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing 101400, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
131
|
de Castro DG, Poveda LA, Crispim LWS, Ballester MY. Quasi-Classical Trajectory Study of NH( 3∑ -) + NH( 3∑ -) Reactive Collisions. J Phys Chem A 2019; 123:9113-9122. [PMID: 31573199 DOI: 10.1021/acs.jpca.9b08278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A full-dimension quasi-classical trajectory study of collisions between two NH radicals is presented. Interatomic interactions are represented by a previously reported global six-dimensional potential energy surface for singlet electronic state of the N2H2 system. This study suggests that the formation of N2 from the collision of two NH radicals may occur via a one-step (NH + NH → N2 + H + H) or two-step (NH + NH → N2H + H → N2 + H + H) microscopic reaction mechanism. A fast vibrational energy redistribution is observed in the four-body complex in the latter mechanism. Excitation functions are presented and discussed. A variant of the vibrational energy quantum mechanical threshold method was used to correct the zero-point energy leakage in the classical calculations. The influence of reactant's rotational and vibrational energy on reactivity was investigated by state-specific calculations with one or both reactants excited. Reaction rate constants for the ground and some rotationally excited states are presented using an Arrhenius-Kooij-like functional form.
Collapse
Affiliation(s)
| | - Luis A Poveda
- Centro Federal de Educação Tecnológica de Minas Gerais , Belo Horizonte 36700-000 , MG , Brazil
| | | | | |
Collapse
|
132
|
Chen W, Zhang L, Yuan D, Chang Y, Yu S, Wang S, Wang T, Jiang B, Yuan K, Yang X, Wang X. Observation of the Carbon Elimination Channel in Vacuum Ultraviolet Photodissociation of OCS. J Phys Chem Lett 2019; 10:4783-4787. [PMID: 31378065 DOI: 10.1021/acs.jpclett.9b01811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The textbook mechanism for OCS photodissociation mainly involves the CO + S or CS + O product channel via a single bond fission. However, a third dissociation channel concerning the cleavage of both C-S and C-O bonds yielding SO + C products, though thermodynamically allowed, has never been verified experimentally to date. By using a tunable vacuum ultraviolet laser light and time-sliced velocity map ion imaging technique, we have clearly observed the SO(X3Σ-) + C(3PJ=0) products as the vacuum ultraviolet laser photon energy gradually exceeds its thermodynamic threshold. The corresponding SO(X3Σ-) coproducts are highly vibrationally excited and show varying angular distributions from isotropic to anisotropic as the excitation photon energy increases. Theoretical analysis suggests that a fast nonadiabatic pathway plays a dominant role in the formation of the anisotropic SO products. That isotropic products arise as the excitation photon energies approach the thermodynamic threshold can be reasonably explained by the "roaming mechanism".
Collapse
Affiliation(s)
- Wentao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Liang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Daofu Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Siwen Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
133
|
Yuen CH, Lapierre D, Gatti F, Kokoouline V, Tyuterev VG. The Role of Ozone Vibrational Resonances in the Isotope Exchange Reaction 16O 16O + 18O → 18O 16O + 16O: The Time-Dependent Picture. J Phys Chem A 2019; 123:7733-7743. [PMID: 31408343 DOI: 10.1021/acs.jpca.9b06139] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We consider the time-dependent dynamics of the isotope exchange reaction in collisions between an oxygen molecule and an oxygen atom: 16O16O + 18O → 16O18O + 16O. A theoretical approach using the multiconfiguration time-dependent Hartree method was employed to model the time evolution of the reaction. Two potential surfaces available in the literature were used in the calculations, and the results obtained with the two surfaces are compared with each other as well as with results of a previous theoretical time-independent approach. A good agreement for the reaction probabilities with the previous theoretical results is found. Comparing the results obtained using two potential energy surfaces allows us to understand the role of the reef/shoulder-like feature in the minimum energy path of the reaction in the isotope exchange process. Also, it was found that the distribution of final products of the reaction is highly anisotropic, which agrees with experimental observations and, at the same time, suggests that the family of approximated statistical approaches, assuming a randomized distribution over final exit channels, is not applicable to this case.
Collapse
Affiliation(s)
- Chi Hong Yuen
- Department of Physics , University of Central Florida , Orlando , Florida 32816 , United States
| | - David Lapierre
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences , BP 1039, 51687 Reims Cedex 2 , France
| | - Fabien Gatti
- Institut de Sciences Moléculaires d'Orsay, UMR-CNRS 8214, Université Paris-Sud, Université Paris-Saclay , 91405 Orsay , France
| | - Viatcheslav Kokoouline
- Department of Physics , University of Central Florida , Orlando , Florida 32816 , United States
| | - Vladimir G Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences , BP 1039, 51687 Reims Cedex 2 , France.,QUAMER Laboratory , Tomsk State University , 634000 Tomsk , Russia
| |
Collapse
|
134
|
Keshavarz F. Chemical Kinetics Approves the Occurrence of C ( 3P j) Reaction with H 2O. J Phys Chem A 2019; 123:5877-5892. [PMID: 31268710 DOI: 10.1021/acs.jpca.9b03492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although both atomic carbon and water are omnipresent in human life, there is a debate about the possibility of carbon reaction with water. Some low-temperature spectroscopic investigations have rejected the reaction, whereas some room-temperature experiments and theoretical studies have accepted the possibility of the reaction by reporting rate coefficients ranging from 105 to 109 L mol-1 s-1. This study provides new lines of evidence about the reaction through exploration of the reaction mechanism using the CCSD(T) method and solving the corresponding master equation by following two main approaches. According to the results, the rate coefficient of the reaction is significantly influenced by the tunneling and hindered rotation effects, in addition to the selected total angular momentum (J). Furthermore, the total rate coefficient of the reaction increases dramatically (from 107 to 1011 L mol-1 s-1) with the rise of temperature from 100 to 4000 K, while the total rate coefficient is insensitive to pressure (0.1-10 atm). Despite some differences between the results of the two approaches, the rate coefficients of both methods are consistent with the previously reported rate coefficients. Also, in agreement with the previous studies, the major products are 2HOC + 2H and 2HCO + 2H. In general, the findings approve the occurrence of the title reaction and indicate that the mentioned conflict is due to the sensitivity of the reaction to the investigated temperature and J level. The sensitivity does not permit low-temperature spectroscopic studies to detect any products and varies the measured and calculated rate coefficients.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Department of Chemistry, College of Science , Shiraz University , Shiraz 71946-84795 , Iran
| |
Collapse
|
135
|
Yoshida D, Takahashi K. Odd–Even Reactivity Variation Due to Dynamical Effects around the Roaming Saddle Points of the Reaction Between C n– Chain ( n = 2–8) and H 2. J Phys Chem A 2019; 123:5300-5308. [DOI: 10.1021/acs.jpca.9b03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daisuke Yoshida
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, Republic of China
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, Republic of China
| |
Collapse
|
136
|
Antonov I, Voronova K, Chen MW, Sztáray B, Hemberger P, Bodi A, Osborn DL, Sheps L. To Boldly Look Where No One Has Looked Before: Identifying the Primary Photoproducts of Acetylacetone. J Phys Chem A 2019; 123:5472-5490. [DOI: 10.1021/acs.jpca.9b04640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ivan Antonov
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Krisztina Voronova
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Ming-Wei Chen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Bálint Sztáray
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | | | - Andras Bodi
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Leonid Sheps
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
137
|
Pradhan R, Lourderaj U. Can reactions follow non-traditional second-order saddle pathways avoiding transition states? Phys Chem Chem Phys 2019; 21:12837-12842. [PMID: 31166331 DOI: 10.1039/c9cp02431j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report here an ab initio (CASSCF/6-31+G*) trajectory simulation study on the mechanisms of the denitrogenation of 1-pyrazoline and its subsituted analogue that reveals reaction pathways via a high energy second-order saddle (SOS) region. This mechanism involves the molecule adopting a five-membered planar structure contrary to the traditional boat-like transition state. The SOS offers a trifurcation point where a pathway branches into three, different from the single pathway associated with a transitions state. We observe that the molecules following the SOS path exhibit distinctive dynamical features and form products with high translational energies and low rotational energies compared to those following the traditional pathways. In addition, the SOS pathway provides an alternative mechanism for the formation of stereo-selective products. Interestingly, although the reaction proceeds via a trimethylene diradical intermediate, the simulations show that the product cyclopropane is formed with a major single inversion of the configuration consistent with experimental observations. They also reveal mechanisms that do not follow the minimum energy paths and exhibit non-statistical dissociation dynamics.
Collapse
Affiliation(s)
- Renuka Pradhan
- National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, P.O. Jatni, Khurda, Odisha, India.
| | | |
Collapse
|
138
|
Wolf TJA, Gühr M. Photochemical pathways in nucleobases measured with an X-ray FEL. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170473. [PMID: 30929626 PMCID: PMC6452046 DOI: 10.1098/rsta.2017.0473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The conversion of light energy into other molecular energetic degrees of freedom is often dominated by ultrafast, non-adiabatic processes. Femtosecond spectroscopy with optical pulses has helped in shaping our understanding of crucial processes in molecular energy-conversion. The advent of new, ultrashort and bright X-ray free electron laser sources opens the possibility to use X-ray-typical element and site sensitivity for ultrafast molecular research. We present two types of spectroscopy, ultrafast Auger and ultrafast X-ray absorption spectroscopy, and discuss their sensitivity to molecular processes. While Auger spectroscopy is able to monitor bond distance changes in the vicinity of an X-ray created core hole, near-edge absorption spectroscopy can deliver high-fidelity information on non-adiabatic transitions involving lone-pair orbitals. We demonstrate these features on the example of the UV-excited nucleobase thymine, investigated at the oxygen K-edge. We find a C-O bond elongation in the Auger data in addition to ππ*/ nπ* non-adiabatic transition in X-ray near-edge absorption. We compare the results from both methods and draw a conclusive scenario of non-adiabatic molecular relaxation after UV excitation. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Thomas J. A. Wolf
- SLAC National Accelerator Laboratory, PULSE, 2575 Sand Hill Road, Menlo Park 94025, CA, USA
| | - Markus Gühr
- SLAC National Accelerator Laboratory, PULSE, 2575 Sand Hill Road, Menlo Park 94025, CA, USA
- Physics and Astronomy Institute, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, Potsdam 14476, Germany
- e-mail:
| |
Collapse
|
139
|
Ma Y, Liu J, Li F, Wang F, Kitsopoulos TN. Roaming Dynamics in the Photodissociation of Formic Acid at 230 nm. J Phys Chem A 2019; 123:3672-3677. [PMID: 30969120 DOI: 10.1021/acs.jpca.9b00724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Roaming dynamics is observed in the photodissociation of formic acid (HCOOH) at 230 nm by using the slice imaging method. In combination with rotational state selective (2 + 1) resonance-enhanced multiphoton ionization of the CO fragments, the speed distributions of the CO fragments exhibit a low recoil velocity at low rotational levels of J = 9 and 20, while the velocity distributions of CO at high rotational levels of J = 30 and 48 show a relatively large recoil velocity. The experimental results indicate that the roaming of OH radical should be related with the formation of CO + H2O channel at the present photolysis energy. Unlike the roaming pathways occurring in H2CO that can be described by loose flat potential, our CO speed distribution analysis suggests the presence of a "tight" flat potential in the roaming dynamics of HCOOH molecules.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Jiaxing Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Fangfang Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Fengyan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Theofanis N Kitsopoulos
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Electronic Structure and Laser, FORTH, Heraklion, Greece; Department of Chemistry , University of Crete , Heraklion , Greece
| |
Collapse
|
140
|
del Mazo-Sevillano P, Aguado A, Jiménez E, Suleimanov YV, Roncero O. Quantum Roaming in the Complex-Forming Mechanism of the Reactions of OH with Formaldehyde and Methanol at Low Temperature and Zero Pressure: A Ring Polymer Molecular Dynamics Approach. J Phys Chem Lett 2019; 10:1900-1907. [PMID: 30939028 PMCID: PMC6534501 DOI: 10.1021/acs.jpclett.9b00555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The quantum dynamics of the title reactions are studied using the ring polymer molecular dynamics (RPMD) method from 20 to 1200 K using recently proposed full dimensional potential energy surfaces which include long-range dipole-dipole interactions. A V-shaped dependence of the reaction rate constants is found with a minimum at 200-300 K, in rather good agreement with the current experimental data. For temperatures above 300 K the reaction proceeds following a direct H-abstraction mechanism. However, below 100 K the reaction proceeds via organic-molecule···OH collision complexes, with very long lifetimes, longer than 10-7 s, associated with quantum roaming arising from the inclusion of quantum effects by the use of RPMD. The long lifetimes of these complexes are comparable to the time scale of the tunnelling to form reaction products. These complexes are formed at zero pressure because of quantum effects and not only at high pressure as suggested by transition state theory (TST) calculations for OH + methanol and other OH reactions. The zero-pressure rate constants reproduce quite well measured ones below 200 K, and this agreement opens the question of how important the pressure effects on the reaction rate constants are, as implied in TST-like formalisms. The zero-pressure mechanism is applicable only to very low gas density environments, such as the interstellar medium, which are not repeatable by experiments.
Collapse
Affiliation(s)
- Pablo del Mazo-Sevillano
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alfredo Aguado
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica, Universidad de Castilla La Mancha, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| | - Yury V. Suleimanov
- Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Str., Nicosia 2121, Cyprus
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
141
|
Macaluso V, Scuderi D, Crestoni ME, Fornarini S, Corinti D, Dalloz E, Martinez-Nunez E, Hase WL, Spezia R. l-Cysteine Modified by S-Sulfation: Consequence on Fragmentation Processes Elucidated by Tandem Mass Spectrometry and Chemical Dynamics Simulations. J Phys Chem A 2019; 123:3685-3696. [DOI: 10.1021/acs.jpca.9b01779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Veronica Macaluso
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Évry, France
| | - Debora Scuderi
- LCP, Laboratoire de Chimie Physique, Université Paris-Sud, Bat. 349, CNRS UMR8000, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Enzo Dalloz
- LCP, Laboratoire de Chimie Physique, Université Paris-Sud, Bat. 349, CNRS UMR8000, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Emilio Martinez-Nunez
- Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Riccardo Spezia
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Évry, France
- CNRS, Laboratoire de Chimie Théorique, LCT, Sorbonne Université, 4, Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
142
|
Maeda S, Harabuchi Y. On Benchmarking of Automated Methods for Performing Exhaustive Reaction Path Search. J Chem Theory Comput 2019; 15:2111-2115. [DOI: 10.1021/acs.jctc.8b01182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
143
|
Kar S, Sen R, Kothandaraman J, Goeppert A, Chowdhury R, Munoz SB, Haiges R, Prakash GKS. Mechanistic Insights into Ruthenium-Pincer-Catalyzed Amine-Assisted Homogeneous Hydrogenation of CO2 to Methanol. J Am Chem Soc 2019; 141:3160-3170. [DOI: 10.1021/jacs.8b12763] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sayan Kar
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Raktim Sen
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Jotheeswari Kothandaraman
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Ryan Chowdhury
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Socrates B. Munoz
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Ralf Haiges
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| |
Collapse
|
144
|
Feldmaier M, Schraft P, Bardakcioglu R, Reiff J, Lober M, Tschöpe M, Junginger A, Main J, Bartsch T, Hernandez R. Invariant Manifolds and Rate Constants in Driven Chemical Reactions. J Phys Chem B 2019; 123:2070-2086. [DOI: 10.1021/acs.jpcb.8b10541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Philippe Schraft
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Robin Bardakcioglu
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Melissa Lober
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Martin Tschöpe
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andrej Junginger
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Thomas Bartsch
- Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
145
|
Foley CD, Alavi ST, Joalland B, Broderick BM, Dias N, Suits AG. Imaging the infrared multiphoton excitation and dissociation of propargyl chloride. Phys Chem Chem Phys 2019; 21:1528-1535. [PMID: 30617359 DOI: 10.1039/c8cp06668j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared multiphoton excitation is combined with UV excitation and state-resolved probes of Cl(2P3/2), Cl*(2P1/2), and HCl to study the photochemistry of propargyl chloride. The results show evidence both of infrared multiphoton dissociation on the ground electronic state and infrared multiphoton excitation followed by UV dissociation. The results are interpreted with the aid of a full characterization of the stationary points on the ground state using ab initio methods, as well as our recent experimental and theoretical characterization of the UV photochemistry of the molecule. The data suggest elimination of HCl on the ground electronic state produces linear propadienylidene as a coproduct over a roaming-like transition state that accesses the Cl-H-C abstraction geometry. This identification is supported by separate chirped-pulse microwave studies in a quasi-uniform flow also reported here.
Collapse
Affiliation(s)
- Casey D Foley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
146
|
Affiliation(s)
- Brianna R. Heazlewood
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
147
|
Harrison AW, Kharazmi A, Shaw MF, Quinn MS, Lee KLK, Nauta K, Rowell KN, Jordan MJT, Kable SH. Dynamics and quantum yields of H2 + CH2CO as a primary photolysis channel in CH3CHO. Phys Chem Chem Phys 2019; 21:14284-14295. [DOI: 10.1039/c8cp06412a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ketene + H2 channel in CH3CHO photolysis is not modelled by quasi-classical trajectories over the transition state.
Collapse
Affiliation(s)
| | - Alireza Kharazmi
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| | | | | | - K. L. Kelvin Lee
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| | - Klaas Nauta
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| | - Keiran N. Rowell
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| | | | - Scott H. Kable
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| |
Collapse
|
148
|
Ashfold MNR, Ingle RA, Karsili TNV, Zhang J. Photoinduced C–H bond fission in prototypical organic molecules and radicals. Phys Chem Chem Phys 2019; 21:13880-13901. [DOI: 10.1039/c8cp07454b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We survey and assess current knowledge regarding the primary photochemistry of hydrocarbon molecules and radicals.
Collapse
Affiliation(s)
| | | | | | - Jingsong Zhang
- Department of Chemistry
- University of California at Riverside
- Riverside
- USA
| |
Collapse
|
149
|
Ekanayake N, Nairat M, Weingartz NP, Michie MJ, Levine BG, Dantus M. Substituent effects on H 3 + formation via H 2 roaming mechanisms from organic molecules under strong-field photodissociation. J Chem Phys 2018; 149:244310. [PMID: 30599731 DOI: 10.1063/1.5065387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Roaming chemical reactions are often associated with neutral molecules. The recent findings of roaming processes in ionic species, in particular, ones that lead to the formation of H3 + under strong-field laser excitation, are of considerable interest. Given that such gas-phase reactions are initiated by double ionization and subsequently facilitated through deprotonation, we investigate the strong-field photodissociation of ethanethiol, also known as ethyl mercaptan, and compare it to results from ethanol. Contrary to expectations, the H3 + yield was found to be an order of magnitude lower for ethanethiol at certain laser field intensities, despite its lower ionization energy and higher acidity compared to ethanol. In-depth analysis of the femtosecond time-resolved experimental findings, supported by ab initio quantum mechanical calculations, provides key information regarding the roaming mechanisms related to H3 + formation. Results of this study on the dynamics of dissociative half-collisions involving H3 +, a vital cation which acts as a Brønsted-Lowry acid protonating interstellar organic compounds, may also provide valuable information regarding the formation mechanisms and observed natural abundances of complex organic molecules in interstellar media and planetary atmospheres.
Collapse
Affiliation(s)
- Nagitha Ekanayake
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Muath Nairat
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nicholas P Weingartz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Matthew J Michie
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
150
|
Hare SR, Li A, Tantillo DJ. Post-transition state bifurcations induce dynamical detours in Pummerer-like reactions. Chem Sci 2018; 9:8937-8945. [PMID: 30627409 PMCID: PMC6296359 DOI: 10.1039/c8sc02653j] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022] Open
Abstract
A post-transition state bifurcation (PTSB) involved in a Pummerer-type rearrangement is characterized using density functional theory (DFT) calculations on potential energy stationary points and direct dynamics simulations. A sensitivity of the ratio of products produced via this PTSB to solvent dielectric constant is revealed and implications of such a dependence for selectivity control of organic reactions are discussed.
Collapse
Affiliation(s)
| | - Ang Li
- Shanghai Institute of Organic Chemistry , China
| | | |
Collapse
|