101
|
Wu NC, Wilson IA. Structural insights into the design of novel anti-influenza therapies. Nat Struct Mol Biol 2018; 25:115-121. [PMID: 29396418 PMCID: PMC5930012 DOI: 10.1038/s41594-018-0025-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022]
Abstract
A limited arsenal of therapies is currently available to tackle the emergence of a future influenza pandemic or even to deal effectively with the continual outbreaks of seasonal influenza. However, recent findings hold great promise for the design of novel vaccines and therapeutics, including the possibility of more universal treatments. Structural biology has been a major contributor to those advances, in particular through the many studies on influenza hemagglutinin (HA), the major surface antigen. HA's primary function is to enable the virus to enter host cells, and structural work has revealed the various HA conformational forms generated during the entry process. Other studies have explored how human broadly neutralizing antibodies (bnAbs), designed proteins, peptides and small molecules, can inhibit and neutralize the virus. Here we review milestones in HA structural biology and how the recent insights from bnAbs are paving the way to design novel vaccines and therapeutics.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
102
|
Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor. J Virol 2018; 92:JVI.00921-17. [PMID: 29070694 DOI: 10.1128/jvi.00921-17] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant.IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed the molecular features and compared the relative characteristics of one H7N9 LPAIV and two H7N9 HPAIVs isolated from chickens and two human-origin H7N9 HPAIVs in chicken and mouse models. We found that all HPAIVs both are highly pathogenic and have valid transmissibility in chickens. Strikingly, the human-origin viruses were more highly pathogenic than the avian-origin viruses in mice, and dynamic mutations were confirmed by NGS and Sanger sequencing. Our findings offer important insight into the origin, adaptation, pathogenicity, and transmissibility of these viruses to both poultry and mammals.
Collapse
|
103
|
Delguste M, Koehler M, Alsteens D. Probing Single Virus Binding Sites on Living Mammalian Cells Using AFM. Methods Mol Biol 2018; 1814:483-514. [PMID: 29956251 DOI: 10.1007/978-1-4939-8591-3_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool that allows biological samples ranging from single receptors to membranes and tissues to be probed. Force-distance curve-based AFM (FD-based AFM) nowadays enables to image living cells at high resolution and simultaneously localize and characterize specific ligand-receptor binding events. In this chapter, we present how FD-based AFM permits to investigate virus binding to living mammalian cells and quantify the kinetic and thermodynamic parameters that describe the free-energy landscape of the single virus-receptor-mediated binding. Using a model virus, we probed the specific interaction with cells expressing its cognate receptor and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthens the attachment of the virus to the cell.
Collapse
Affiliation(s)
- Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
104
|
Pu Z, Xiang D, Li X, Luo T, Shen X, Murphy RW, Liao M, Shen Y. Potential Pandemic of H7N9 Avian Influenza A Virus in Human. Front Cell Infect Microbiol 2018; 8:414. [PMID: 30533399 PMCID: PMC6265602 DOI: 10.3389/fcimb.2018.00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Since 2013, the H7N9 avian influenza A virus (AIV) has caused human infections and to the extent of now surpassing H5N1. This raises an alarm about the potential of H7N9 to become a pandemic problem. Our compilation of the amino acid changes required for AIVs to cross the species-barrier discovers 58 that have very high proportions in both the human- and avian-isolated H7N9 viruses. These changes correspond with sporadic human infections that continue to occur in regions of avian infections. Among the six internal viral genes, amino acid changes do not differ significantly between H9N2 and H7N9, except for V100A in PA, and K526R, D627K, and D701N in PB2. H9N2 AIVs provide internal genes to H7N9. Most of the amino acid changes in H7N9 appear to come directly from H9N2. Seventeen amino acid substitutions appear to have fixed quickly by the 5th wave. Among these, six amino acid sites in HA1 are receptor binding sites, and PB2-A588V was shown to promote the adaptation of AIVs to mammals. The accelerated fixation of mutations may promote the adaptation of H7N9 to human, but need further functional evidence. Although H7N9 AIVs still cannot efficiently transmit between humans, they have the genetic makeup associated with human infections. These viruses must be controlled in poultry to remove the threat of it becoming a human pandemic event.
Collapse
Affiliation(s)
- Zhiqing Pu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dan Xiang
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Xiaobing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tingting Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Robert W. Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Yongyi Shen
| |
Collapse
|
105
|
Supramolecular glycorhodamine-polymer dot ensembles for the homogeneous, fluorogenic analysis of lectins. Carbohydr Res 2018; 455:1-4. [DOI: 10.1016/j.carres.2017.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/02/2023]
|
106
|
Vaccination with a Recombinant H7 Hemagglutinin-Based Influenza Virus Vaccine Induces Broadly Reactive Antibodies in Humans. mSphere 2017; 2:mSphere00502-17. [PMID: 29242836 PMCID: PMC5729220 DOI: 10.1128/msphere.00502-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
Zoonotic infections with high case fatality rates caused by avian H7N9 influenza viruses have been reported since early 2013 in China. Since then, the fifth wave of the H7N9 epidemic emerged in China, resulting in higher numbers of laboratory-confirmed cases than in previous years. Recently, H7N9 has started to antigenically drift and split into two new lineages, the Pearl River Delta and Yangtze River Delta clades, which do not match stockpiled H7 vaccines well. Humans are immunologically naive to these subtypes, and an H7N9 strain that acquires the capability of efficient human-to-human transmission poses a credible pandemic threat. Other characteristics of H7N9 are raising concerns as well, like its ability to bind to receptors in the human upper respiratory tract, the recent emergence of highly pathogenic variants, and the ability to quickly gain resistance to neuraminidase inhibitors. Therefore, developing and testing H7N9 vaccines constitutes a priority for pandemic preparedness. Human influenza virus infections with avian subtype H7N9 viruses are a major public health concern and have encouraged the development of effective H7 prepandemic vaccines. In this study, baseline and postvaccination serum samples of individuals aged 18 years and older who received a recombinant H7 hemagglutinin vaccine with and without an oil-in-water emulsion (SE) adjuvant were analyzed using a panel of serological assays. While only a small proportion of individuals seroconverted to H7N9 as measured by the conventional hemagglutination inhibition assay, our data show strong induction of anti-H7 hemagglutinin antibodies as measured by an enzyme-linked immunosorbent assay (ELISA). In addition, cross-reactive antibodies against phylogenetically distant group 2 hemagglutinins were induced, presumably targeting the conserved stalk domain of the hemagglutinin. Further analysis confirmed an induction of stalk-specific antibodies, suggesting that epitopes outside the classical antigenic sites are targeted by this vaccine in the context of preexisting immunity to related H3 hemagglutinin. Antibodies induced by H7 vaccination also showed functional activity in antibody-dependent cell-mediated cytotoxicity reporter assays and microneutralization assays. Additionally, our data show that sera from hemagglutination inhibition seroconverters conferred protection in a passive serum transfer experiment against lethal H7N9 virus challenge in mice. Interestingly, sera from hemagglutination inhibition nonseroconverters also conferred partial protection in the lethal animal challenge model. In conclusion, while recombinant H7 vaccination fails to induce measurable levels of hemagglutination-inhibiting antibodies in most subjects, this vaccination regime induces homosubtypic and heterosubtypic cross-reactive binding antibodies that are functional and partly protective in a murine passive transfer challenge model. IMPORTANCE Zoonotic infections with high case fatality rates caused by avian H7N9 influenza viruses have been reported since early 2013 in China. Since then, the fifth wave of the H7N9 epidemic emerged in China, resulting in higher numbers of laboratory-confirmed cases than in previous years. Recently, H7N9 has started to antigenically drift and split into two new lineages, the Pearl River Delta and Yangtze River Delta clades, which do not match stockpiled H7 vaccines well. Humans are immunologically naive to these subtypes, and an H7N9 strain that acquires the capability of efficient human-to-human transmission poses a credible pandemic threat. Other characteristics of H7N9 are raising concerns as well, like its ability to bind to receptors in the human upper respiratory tract, the recent emergence of highly pathogenic variants, and the ability to quickly gain resistance to neuraminidase inhibitors. Therefore, developing and testing H7N9 vaccines constitutes a priority for pandemic preparedness.
Collapse
|
107
|
Zhu W, Zhou J, Li Z, Yang L, Li X, Huang W, Zou S, Chen W, Wei H, Tang J, Liu L, Dong J, Wang D, Shu Y. Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017. ACTA ACUST UNITED AC 2017; 22:30533. [PMID: 28537546 PMCID: PMC5476987 DOI: 10.2807/1560-7917.es.2017.22.19.30533] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/24/2022]
Abstract
With no or low virulence in poultry, avian influenza A(H7N9) virus has caused severe
infections in humans. In the current fifth epidemic wave, a highly pathogenic avian
influenza (HPAI) H7N9 virus emerged. The insertion of four amino acids (KRTA) at the
haemagglutinin (HA) cleavage site enabled trypsin-independent infectivity of this virus.
Although maintaining dual receptor-binding preference, its HA antigenicity was distinct
from low-pathogenic avian influenza A(H7N9). The neuraminidase substitution R292K
conferred a multidrug resistance phenotype.
Collapse
Affiliation(s)
- Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China.,These authors contributed equally to this work
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China.,These authors contributed equally to this work
| | - Zi Li
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China.,These authors contributed equally to this work
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Sumei Zou
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Wenbing Chen
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jing Tang
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Liqi Liu
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| |
Collapse
|
108
|
CASCIRE surveillance network and work on avian influenza viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1386-1391. [PMID: 29294220 DOI: 10.1007/s11427-017-9251-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
|
109
|
Han M, Gu J, Gao GF, Liu WJ. China in action: national strategies to combat against emerging infectious diseases. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1383-1385. [PMID: 28887624 PMCID: PMC7088851 DOI: 10.1007/s11427-017-9141-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Min Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinhui Gu
- Division of Major Special Projects, Department of Health Science, Technology and Education at China's National Health and Family Planning Commission, Beijing, 100044, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
110
|
Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China. J Virol 2017; 91:JVI.01277-17. [PMID: 28956760 DOI: 10.1128/jvi.01277-17] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
The novel low-pathogenic avian influenza A H7N9 viruses (LPAI H7N9 viruses) have been a threat to public health since their emergence in 2013 because of the high rates of mortality and morbidity that they cause. Recently, highly pathogenic variants of these avian influenza A H7N9 viruses (HPAI H7N9 viruses) have emerged and caused human infections and outbreaks among poultry in mainland China. However, it is still unclear how the HPAI H7N9 virus was generated and how it evolved and spread in China. Here, we show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region and spread southward to the Pearl River Delta region, possibly through live poultry trade. After introduction into the Pearl River Delta region, the origin LPAI H7N9 virus acquired four amino acid insertions in the hemagglutinin (HA) protein cleavage site and mutated into the HPAI H7N9 virus in late May 2016. Afterward, the HPAI H7N9 viruses further reassorted with LPAI H7N9 or H9N2 viruses locally and generated multiple different genotypes. As of 14 July 2017, the HPAI H7N9 viruses had spread from Guangdong Province to at least 12 other provinces. The rapid geographical expansion and genetic evolution of the HPAI H7N9 viruses pose a great challenge not only to public health but also to poultry production. Effective control measures, including enhanced surveillance, are therefore urgently needed.IMPORTANCE The LPAI H7N9 virus has caused five outbreak waves in humans and was recently reported to have mutated into highly pathogenic variants. It is unknown how the HPAI H7N9 virus originated, evolved, and disseminated in China. In this study, we comprehensively analyzed the sequences of HPAI H7N9 viruses from 28 human and 21 environmental samples covering eight provinces in China that were taken from November 2016 to June 2017. The results show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region. However, the insertion of four amino acids into the HA protein cleavage site of an LPAI H7N9 virus occurred in late May 2016 in the Pearl River Delta region. The mutated HPAI H7N9 virus further reassorted with LPAI H7N9 or H9N2 viruses that were cocirculating in poultry. Considering the rapid geographical expansion of the HPAI H7N9 viruses, effective control measures are urgently needed.
Collapse
|
111
|
High throughput discovery of influenza virus neutralizing antibodies from phage-displayed synthetic antibody libraries. Sci Rep 2017; 7:14455. [PMID: 29089574 PMCID: PMC5663709 DOI: 10.1038/s41598-017-14823-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Pandemic and epidemic outbreaks of influenza A virus (IAV) infection pose severe challenges to human society. Passive immunotherapy with recombinant neutralizing antibodies can potentially mitigate the threats of IAV infection. With a high throughput neutralizing antibody discovery platform, we produced artificial anti-hemagglutinin (HA) IAV-neutralizing IgGs from phage-displayed synthetic scFv libraries without necessitating prior memory of antibody-antigen interactions or relying on affinity maturation essential for in vivo immune systems to generate highly specific neutralizing antibodies. At least two thirds of the epitope groups of the artificial anti-HA antibodies resemble those of natural protective anti-HA antibodies, providing alternatives to neutralizing antibodies from natural antibody repertoires. With continuing advancement in designing and constructing synthetic scFv libraries, this technological platform is useful in mitigating not only the threats of IAV pandemics but also those from other newly emerging viral infections.
Collapse
|
112
|
Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K, Hatta M, Yamada S, Ito M, Sakai-Tagawa Y, Shirakura M, Takashita E, Fujisaki S, McBride R, Thompson AJ, Takahashi K, Maemura T, Mitake H, Chiba S, Zhong G, Fan S, Oishi K, Yasuhara A, Takada K, Nakao T, Fukuyama S, Yamashita M, Lopes TJS, Neumann G, Odagiri T, Watanabe S, Shu Y, Paulson JC, Hasegawa H, Kawaoka Y. A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host Microbe 2017; 22:615-626.e8. [PMID: 29056430 DOI: 10.1016/j.chom.2017.09.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
Low pathogenic H7N9 influenza viruses have recently evolved to become highly pathogenic, raising concerns of a pandemic, particularly if these viruses acquire efficient human-to-human transmissibility. We compared a low pathogenic H7N9 virus with a highly pathogenic isolate, and two of its variants that represent neuraminidase inhibitor-sensitive and -resistant subpopulations detected within the isolate. The highly pathogenic H7N9 viruses replicated efficiently in mice, ferrets, and/or nonhuman primates, and were more pathogenic in mice and ferrets than the low pathogenic H7N9 virus, with the exception of the neuraminidase inhibitor-resistant virus, which showed mild-to-moderate attenuation. All viruses transmitted among ferrets via respiratory droplets, and the neuraminidase-sensitive variant killed several of the infected and exposed animals. Neuraminidase inhibitors showed limited effectiveness against these viruses in vivo, but the viruses were susceptible to a polymerase inhibitor. These results suggest that the highly pathogenic H7N9 virus has pandemic potential and should be closely monitored.
Collapse
Affiliation(s)
- Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masato Hatta
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Ryan McBride
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew J Thompson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromichi Mitake
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kosuke Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tomomi Nakao
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Beijing 102206, China
| | - James C Paulson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
113
|
Phylogenetic and genetic characterization of a 2017 clinical isolate of H7N9 virus in Guangzhou, China during the fifth epidemic wave. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1331-1339. [PMID: 29019145 DOI: 10.1007/s11427-017-9152-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022]
Abstract
Pathogenic H7N9 influenza viruses continue to pose a public health concern. The H7N9 virus has caused five outbreak waves of human infections in China since 2013. In the present study, a novel H7N9 strain (A/Guangdong/8H324/2017) was isolated from a female patient with severe respiratory illness during the fifth wave of the 2017 H7N9 epidemic. Phylogenetic analysis showed that the H7N9 viruses collected during the fifth wave belong to two different lineages: the Pearl River Delta lineage and the Yangtze River Delta lineage. The novel isolate is closely related to the Pearl River Delta H7N9 viruses, which were isolated from patients in Guangdong Province. The novel H7N9 isolate has an insertion of three basic amino acids in the cleavage site of hemagglutinin (HA), which may enhance virulence in poultry. The 2017 isolate also possesses an R292K substitution in the neuraminidase (NA) protein, which confers oseltamivir resistance. This study highlights the pandemic potential of the novel H7N9 virus in mammals; thus, future characterization and surveillance is warranted.
Collapse
|
114
|
Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces. Nat Protoc 2017; 12:2275-2292. [PMID: 28981124 DOI: 10.1038/nprot.2017.112] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the past five years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool set capable of imaging the surfaces of biological samples ranging from single receptors to membranes and tissues. One of these approaches, force-distance curve-based AFM (FD-based AFM), uses a probing tip functionalized with a ligand to image living cells at high-resolution and simultaneously localize and characterize specific ligand-receptor binding events. Analyzing data from FD-based AFM experiments using appropriate probabilistic models allows quantification of the kinetic and thermodynamic parameters that describe the free-energy landscape of the ligand-receptor bond. We have recently developed an FD-based AFM approach to quantify the binding events of single enveloped viruses to surface receptors of living animal cells while simultaneously observing them by fluorescence microscopy. This approach has provided insights into the early stages of the interaction between a virus and a cell. Applied to a model virus, we probed the specific interaction with cells expressing viral cognate receptors and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthened the attachment of the virus to the cell. Here we describe detailed procedures for probing the specific interactions of viruses with living cells; these procedures cover tip preparation, cell sample preparation, step-by-step FD-based AFM imaging and data analysis. Experienced microscopists should be able to master the entire set of protocols in 1 month.
Collapse
|
115
|
Chen TH, Liu YY, Jan JT, Huang MH, Spearman M, Butler M, Wu SC. Recombinant hemagglutinin proteins formulated in a novel PELC/CpG adjuvant for H7N9 subunit vaccine development. Antiviral Res 2017; 146:213-220. [PMID: 28947234 DOI: 10.1016/j.antiviral.2017.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
Humans infected with H7N9 avian influenza viruses can result in severe pneumonia and acute respiratory syndrome with an approximately 40% mortality rate, and there is an urgent need to develop an effective vaccine to reduce its pandemic potential. In this study, we used a novel PELC/CpG adjuvant for recombinant H7HA (rH7HA) subunit vaccine development. After immunizing BALB/c mice intramuscularly, rH7HA proteins formulated in this adjuvant instead of an alum adjuvant elicited higher IgG, hemagglutination-inhibition, and virus neutralizing antibodies in sera; induced higher numbers of H7HA-specific IFN-γ-secreting T cells and antibody secreting cells in spleen; and provided improved protection against live virus challenges. Our results indicate that rH7HA proteins formulated in PELC/CpG adjuvant can induce potent anti-H7N9 immunity that may provide useful information for H7N9 subunit vaccine development.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Yu Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
116
|
Vidaña B, Dolz R, Busquets N, Ramis A, Sánchez R, Rivas R, Valle R, Cordón I, Solanes D, Martínez J, Majó N. Transmission and immunopathology of the avian influenza virus A/Anhui/1/2013 (H7N9) human isolate in three commonly commercialized avian species. Zoonoses Public Health 2017; 65:312-321. [PMID: 28905526 DOI: 10.1111/zph.12393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/30/2022]
Abstract
H7N9 virus infection is a global concern, given that it can cause severe infection and mortality in humans. However, the understanding of H7N9 epidemiology, animal reservoir species and zoonotic risk remains limited. This work evaluates the pathogenicity, transmissibility and local innate immune response of three avian species harbouring different respiratory distribution of α2,6 and α2,3 SA receptors. Muscovy ducks, European quails and SPF chickens were intranasally inoculated with 105 embryo infectious dose (EID)50 of the human H7N9 (A/Anhui/1/2013) influenza isolate. None of the avian species showed clinical signs or macroscopic lesions, and only mild microscopic lesions were observed in the upper respiratory tract of quail and chickens. Quail presented more severe histopathologic lesions and avian influenza virus (AIV) positivity by immunohistochemistry (IHC), which correlated with higher IL-6 responses. In contrast, Muscovy ducks were resistant to disease and presented higher IFNα and TLR7 response. In all species, viral shedding was higher in the respiratory than in the digestive tract. Higher viral shedding was observed in quail, followed by chicken and ducks, which presented similar viral titres. Efficient transmission was observed in all contact quail and half of the Muscovy ducks, while no transmission was observed between chicken. All avian species showed viral shedding in drinking water throughout infection.
Collapse
Affiliation(s)
- B Vidaña
- Pathology Department, Animal and Plant Health Agency (APHA), KT15 3NB, Pathology, Addlestone, UK
| | - R Dolz
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Busquets
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Ramis
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Sánchez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Rivas
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Valle
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I Cordón
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - D Solanes
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - J Martínez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Majó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
117
|
Wilson JR, Belser JA, DaSilva J, Guo Z, Sun X, Gansebom S, Bai Y, Stark TJ, Chang J, Carney P, Levine MZ, Barnes J, Stevens J, Maines TR, Tumpey TM, York IA. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody protects mice from morbidity without interfering with the development of protective immunity to subsequent homologous challenge. Virology 2017; 511:214-221. [PMID: 28888111 DOI: 10.1016/j.virol.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
The emergence of A(H7N9) virus strains with resistance to neuraminidase (NA) inhibitors highlights a critical need to discover new countermeasures for treatment of A(H7N9) virus-infected patients. We previously described an anti-NA mAb (3c10-3) that has prophylactic and therapeutic efficacy in mice lethally challenged with A(H7N9) virus when delivered intraperitoneally (i.p.). Here we show that intrananasal (i.n.) administration of 3c10-3 protects 100% of mice from mortality when treated 24h post-challenge and further characterize the protective efficacy of 3c10-3 using a nonlethal A(H7N9) challenge model. Administration of 3c10-3 i.p. 24h prior to challenge resulted in a significant decrease in viral lung titers and deep sequencing analysis indicated that treatment did not consistently select for viral variants in NA. Furthermore, prophylactic administration of 3c10-3 did not inhibit the development of protective immunity to subsequent homologous virus re-challenge. Taken together, 3c10-3 highlights the potential use of anti-NA mAb to mitigate influenza virus infection.
Collapse
Affiliation(s)
- Jason R Wilson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; CNI Advantage, LLC, Norman, OK, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Juliana DaSilva
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Atlanta Research&Education Foundation, Atlanta, GA, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shane Gansebom
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; CNI Advantage, LLC, Norman, OK, USA
| | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas J Stark
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessie Chang
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John Barnes
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
118
|
Chen M, Chen M, Tan Y. An avian influenza A (H7N9) virus with polybasic amino acid insertion was found in human infection in southern China, Guangxi, February 2017. Infect Dis (Lond) 2017; 50:71-74. [PMID: 28829231 DOI: 10.1080/23744235.2017.1355105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Min Chen
- a Institute of Acute infectious Diseases Control and Prevention , Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control , Nanning , Guangxi , China
| | - Minmei Chen
- a Institute of Acute infectious Diseases Control and Prevention , Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control , Nanning , Guangxi , China
| | - Yi Tan
- a Institute of Acute infectious Diseases Control and Prevention , Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control , Nanning , Guangxi , China
| |
Collapse
|
119
|
Evolution of Influenza A Virus by Mutation and Re-Assortment. Int J Mol Sci 2017; 18:ijms18081650. [PMID: 28783091 PMCID: PMC5578040 DOI: 10.3390/ijms18081650] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), a highly infectious respiratory pathogen, has continued to be a significant threat to global public health. To complete their life cycle, influenza viruses have evolved multiple strategies to interact with a host. A large number of studies have revealed that the evolution of influenza A virus is mainly mediated through the mutation of the virus itself and the re-assortment of viral genomes derived from various strains. The evolution of influenza A virus through these mechanisms causes worldwide annual epidemics and occasional pandemics. Importantly, influenza A virus can evolve from an animal infected pathogen to a human infected pathogen. The highly pathogenic influenza virus has resulted in stupendous economic losses due to its morbidity and mortality both in human and animals. Influenza viruses fall into a category of viruses that can cause zoonotic infection with stable adaptation to human, leading to sustained horizontal transmission. The rapid mutations of influenza A virus result in the loss of vaccine optimal efficacy, and challenge the complete eradication of the virus. In this review, we highlight the current understanding of influenza A virus evolution caused by the mutation and re-assortment of viral genomes. In addition, we discuss the specific mechanisms by which the virus evolves.
Collapse
|
120
|
Wang CZ, Han HH, Tang XY, Zhou DM, Wu C, Chen GR, He XP, Tian H. Sialylglycan-Assembled Supra-Dots for Ratiometric Probing and Blocking of Human-Infecting Influenza Viruses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25164-25170. [PMID: 28703004 DOI: 10.1021/acsami.7b07485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The seasonal outbreak of influenza causes significant morbidity and mortality worldwide because a number of influenza virus (IV) strains have been shown to infect and circulate in humans. Development of effective means to timely monitor as well as block IVs is still a challenging task. Whereas conventional fluorescence probes rely on a fluorimetric change upon recognizing IVs, here we developed simple "Supra-dots" that are formed through the aqueous supramolecular assembly between a blue-emitting polymer dot and red-emitting sialylglycan probes for the ratiometric detection of IVs. Tuning the Förster resonance energy transfer from polymer dots to glycan probes by selective sialylglycan-virus recognition enables the fluorescence ratiometric determination of IVs, whereas the presence of unselective, control viruses quenched the fluorescence of the Supra-dots. Meanwhile, we show that the Supra-dots can effectively inhibit the invasion of a human-infecting IV toward a human cell line, thereby making possible a unique bifunctional, supramolecular probe for influenza theranostics.
Collapse
Affiliation(s)
- Chang-Zheng Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ying Tang
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai 200031, P. R. China
| | - Dong-Ming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai 200031, P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology , Shenzhen, Guangdong 510855, P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
121
|
Su S, Gu M, Liu D, Cui J, Gao GF, Zhou J, Liu X. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China. Trends Microbiol 2017; 25:713-728. [PMID: 28734617 DOI: 10.1016/j.tim.2017.06.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/30/2023]
Abstract
H7N9 influenza viruses were first isolated in 2013 and continue to cause human infections. H7N9 infections represent an ongoing public health threat that has resulted in 1344 cases with 511 deaths as of April 9, 2017. This highlights the continued threat posed by the current poultry trade and live poultry market system in China. Until now, there have been five H7N9 influenza epidemic waves in China; however, the steep increase in the number of humans infected with H7N9 viruses observed in the fifth wave, beginning in October 2016, the spread into western provinces, and the emergence of highly pathogenic (HP) H7N9 influenza outbreaks in chickens and infection in humans have caused domestic and international concern. In this review, we summarize and compare the different waves of H7N9 regarding their epidemiology, pathogenesis, evolution, and characteristic features, and speculate on factors behind the recent increase in the number of human cases and sudden outbreaks in chickens. The continuous evolution of the virus poses a long-term threat to public health and the poultry industry, and thus it is imperative to strengthen prevention and control strategies.
Collapse
Affiliation(s)
- Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Cui
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jiyong Zhou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
122
|
The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int J Mol Sci 2017; 18:ijms18071541. [PMID: 28714909 PMCID: PMC5536029 DOI: 10.3390/ijms18071541] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza A virus are responsible for the surface interactions of the virion with the host. Entry of the virus is mediated by functions of the HA: binding to cellular receptors and facilitating fusion of the virion membrane with the endosomal membrane. The HA structure contains receptor binding sites in the globular membrane distal head domains of the trimer, and the fusion machinery resides in the stem region. These sites have specific characteristics associated with subtype and host, and the differences often define species barriers. For example, avian viruses preferentially recognize α2,3-Sialic acid terminating glycans as receptors and mammalian viruses recognize α2,6-Sialic acid. The neuraminidase, or the receptor-destroying protein, cleaves the sialic acid from cellular membrane constituents and viral glycoproteins allowing for egress of nascent virions. A functional balance of activity has been demonstrated between the two glycoproteins, resulting in an optimum level of HA affinity and NA enzymatic cleavage to allow for productive infection. As more is understood about both HA and NA, the relevance for functional balance between HA and NA continues to expand, with potential implications for interspecies transmission, host adaptation, and pathogenicity.
Collapse
|
123
|
Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathog 2017; 13:e1006390. [PMID: 28617868 PMCID: PMC5472306 DOI: 10.1371/journal.ppat.1006390] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/28/2017] [Indexed: 12/26/2022] Open
Abstract
The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells. Influenza A virus of the H7N9 subtype continues to cross the species barrier from poultry to humans. This zoonotic ability is remarkable as the virus retains specificity to avian-type receptors. To effectively transmit between humans, the virus needs to acquire human-type receptor specificity. In this study, we show that recombinant H7 proteins need three amino acid mutations to change specificity to human-type receptors. Although we are not allowed to assess if these mutations would lead to efficient transmission in the ferret model, this knowledge will aid in surveillance. If these amino acid mutations are observed to arise during natural selection in humans, timely actions could be taken.
Collapse
|
124
|
Gao Q, Zhang J, Wang X, Liu Y, He R, Liu X, Wang F, Feng J, Yang D, Wang Z, Meng A, Yan X. The signalling receptor MCAM coordinates apical-basal polarity and planar cell polarity during morphogenesis. Nat Commun 2017; 8:15279. [PMID: 28589943 PMCID: PMC5467231 DOI: 10.1038/ncomms15279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
The apical-basal (AB) polarity and planar cell polarity (PCP) provide an animal cell population with different phenotypes during morphogenesis. However, how cells couple these two patterning systems remains unclear. Here we provide in vivo evidence that melanoma cell adhesion molecule (MCAM) coordinates AB polarity-driven lumenogenesis and c-Jun N-terminal kinase (JNK)/PCP-dependent ciliogenesis. We identify that MCAM is an independent receptor of fibroblast growth factor 4 (FGF4), a membrane anchor of phospholipase C-γ (PLC-γ), an immediate upstream receptor of nuclear factor of activated T-cells (NFAT) and a constitutive activator of JNK. We find that MCAM-mediated vesicular trafficking towards FGF4, while generating a priority-grade transcriptional response of NFAT determines lumenogenesis. We demonstrate that MCAM plays indispensable roles in ciliogenesis through activating JNK independently of FGF signals. Furthermore, mcam-deficient zebrafish and Xenopus exhibit a global defect in left-right (LR) asymmetric establishment as a result of morphogenetic failure of their LR organizers. Therefore, MCAM coordination of AB polarity and PCP provides insight into the general mechanisms of morphogenesis.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Zhang
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingfeng Liu
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
125
|
Unique Structural Features of Influenza Virus H15 Hemagglutinin. J Virol 2017; 91:JVI.00046-17. [PMID: 28404848 DOI: 10.1128/jvi.00046-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted.IMPORTANCE In the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can aid in global surveillance of such viruses for potential spread and emerging threat to the human population.
Collapse
|
126
|
Isakova-Sivak I, Rudenko L. Tackling a novel lethal virus: a focus on H7N9 vaccine development. Expert Rev Vaccines 2017; 16:1-13. [PMID: 28532182 DOI: 10.1080/14760584.2017.1333907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Avian-origin H7N9 influenza viruses first detected in humans in China in 2013 continue to cause severe human infections with a mortality rate close to 40%. These viruses are acknowledged as the subtype most likely to cause the next influenza pandemic. Areas covered: Here we review published data on the development of H7N9 influenza vaccine candidates and their evaluation in preclinical and clinical trials identified on PubMed database with the term 'H7N9 influenza vaccine'. In addition, a search with the same term was done on ClinicalTrials.gov to find ongoing clinical trials with H7N9 vaccines. Expert commentary: Influenza vaccines are the most powerful tool for protecting the human population from influenza infections, both seasonal and pandemic. During the past four years, a large number of promising H7N9 influenza vaccine candidates have been generated using traditional and advanced gene engineering techniques. In addition, with the support of WHO's GAP program, influenza vaccine production capacities have been established in a number of vulnerable low- and middle-income countries with a high population density, allowing the countries to be independent of vaccine supply from high-income countries. Overall, it is believed that the world is now well prepared for a possible H7N9 influenza pandemic.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Larisa Rudenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| |
Collapse
|
127
|
Zheng L, Wei J, Lv X, Bi Y, Wu P, Zhang Z, Wang P, Liu R, Jiang J, Cong H, Liang J, Chen W, Cao H, Liu W, Gao GF, Du Y, Jiang X, Li X. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens Bioelectron 2017; 91:46-52. [PMID: 27987410 DOI: 10.1016/j.bios.2016.12.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
Accurate diagnosis of influenza viruses is difficult and generally requires a complex process because of viral diversity and rapid mutability. In this study, we report a simple and rapid strategy for the detection and differentiation of influenza viruses using glycan-functionalized gold nanoparticles (gGNPs). This method is based on the aggregation of gGNP probes on the viral surface, which is mediated by the specific binding of the virus to the glycans. Using a set of gGNPs bearing different glycan structures, fourteen influenza virus strains, including the major subtypes currently circulating in human and avian populations, were readily differentiated from each other and from a human respiratory syncytial virus in a single-step colorimetric procedure. The results presented here demonstrate the potential of this gGNP-based system in the development of convenient and portable sensors for the clinical diagnosis and surveillance of influenza viruses.
Collapse
Affiliation(s)
- Longtang Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Zhongguancun, Beijing 100190, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Peixing Wu
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou 730050, China
| | - Zhenxing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Pengfei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Ruichen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Jingwen Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Haolong Cong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Jingnan Liang
- Core Facility, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Wenwen Chen
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Zhongguancun, Beijing 100190, China
| | - Xingyu Jiang
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China.
| |
Collapse
|
128
|
pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs. J Virol 2017; 91:JVI.00246-17. [PMID: 28356532 DOI: 10.1128/jvi.00246-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins.IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans.
Collapse
|
129
|
Role of Neuraminidase in Influenza A(H7N9) Virus Receptor Binding. J Virol 2017; 91:JVI.02293-16. [PMID: 28356530 PMCID: PMC5432883 DOI: 10.1128/jvi.02293-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
Influenza A(H7N9) viruses have caused a large number of zoonotic infections since their emergence in 2013. They remain a public health concern due to the repeated high levels of infection with these viruses and their perceived pandemic potential. A major factor that determines influenza A virus fitness and therefore transmissibility is the interaction of the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) with the cell surface receptor sialic acid. Typically, the HA is responsible for binding to the sialic acid to allow virus internalization and the NA is a sialidase responsible for cleaving sialic acid to aid virus spread and release. N9 NA has previously been shown to have receptor binding properties mediated by a sialic acid binding site, termed the hemadsorption (Hb) site, which is discrete from the enzymatically active sialidase site. This study investigated the N9 NA from a zoonotic H7N9 virus strain in order to determine its possible role in virus receptor binding. We demonstrate that this N9 NA has an active Hb site which binds to sialic acid, which enhances overall virus binding to sialic acid receptor analogues. We also show that the N9 NA can also contribute to receptor binding due to unusual kinetic characteristics of the sialidase site which specifically enhance binding to human-like α2,6-linked sialic acid receptors. IMPORTANCE The interaction of influenza A virus glycoproteins with cell surface receptors is a major determinant of infectivity and therefore transmissibility. Understanding these interactions is important for understanding which factors are necessary to determine pandemic potential. Influenza A viruses generally mediate binding to cell surface sialic acid receptors via the hemagglutinin (HA) glycoprotein, with the neuraminidase (NA) glycoprotein being responsible for cleaving the receptor to allow virus release. Previous studies showed that the NA proteins of the N9 subtype can bind sialic acid via a separate binding site distinct from the sialidase active site. This study demonstrates for purified protein and virus that the NA of the zoonotic H7N9 viruses has a binding capacity via both the secondary binding site and unusual kinetic properties of the sialidase site which promote receptor binding via this site and which enhance binding to human-like receptors. This could have implications for understanding human-to-human transmission of these viruses.
Collapse
|
130
|
Xie J, Weng Y, Ou J, Zhao L, Zhang Y, Wang J, Chen W, Huang M, Xiu W, Chen H, Zhang Y, Wu B, He W, Zhu Y, You L, Huang Z, Zhang C, Hong L, Wang W, Zheng K. Epidemiological, clinical, and virologic features of two family clusters of avian influenza A (H7N9) virus infections in Southeast China. Sci Rep 2017; 7:1512. [PMID: 28473725 PMCID: PMC5431426 DOI: 10.1038/s41598-017-01761-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/19/2017] [Indexed: 01/08/2023] Open
Abstract
This study aimed to investigate the epidemiological, clinical, and virologic characteristics of avian influenza A (H7N9) confirmed cases from two family clusters in Southeast China. Epidemiological data of the H7N9 confirmed cases and their close contacts were obtained through interviews and reviews of medical records. Of the four patients in these two family clusters, two cases had mild symptoms, one had severe symptoms, and one died. Three of the four patients had a history of exposure to live poultry or contaminated environments. The complete genome sequences of the H7N9 viruses from the same family cluster were highly homologous, and the four isolated viruses from the two family clusters exhibited the virologic features of the H7N9 virus, in terms of transmissibility, pathogenicity, host adaptation, and antiviral drug resistance. In addition, our findings indicated that the A/Fujian/18/2015 viral strain contained an additional hemagglutinin G225D substitution, which preferentially binds α2,6-linked sialic acids. The results of this study demonstrate that one family cluster was infected through common exposure to live poultry or contaminated environments, and the other was more likely to be infected through the human-to-human route.
Collapse
Affiliation(s)
- Jianfeng Xie
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
- School of Public Health, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Yuwei Weng
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
- School of Public Health, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Jianming Ou
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
- School of Public Health, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Lin Zhao
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Yanhua Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Jinzhang Wang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Wei Chen
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Meng Huang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Wenqiong Xiu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Hongbin Chen
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Yongjun Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Binshan Wu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Wenxiang He
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Ying Zhu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Libin You
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Zhimiao Huang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Canming Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
| | - Longtao Hong
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China
- School of Public Health, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Wei Wang
- School of Public Health, Fujian Medical University, Fuzhou, 350004, Fujian Province, China.
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, China.
| | - Kuicheng Zheng
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory for Zoonoses Research, Fuzhou, 350001, Fujian Province, China.
- School of Public Health, Fujian Medical University, Fuzhou, 350004, Fujian Province, China.
| |
Collapse
|
131
|
The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell Rep 2017; 19:235-245. [PMID: 28402848 DOI: 10.1016/j.celrep.2017.03.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/15/2017] [Accepted: 03/16/2017] [Indexed: 11/20/2022] Open
Abstract
Adaptation of influenza A viruses to new hosts are rare events but are the basis for emergence of new influenza pandemics in the human population. Thus, understanding the processes involved in such events is critical for anticipating potential pandemic threats. In 2013, the first case of human infection by an avian H10N8 virus was reported, yet the H10 hemagglutinin (HA) maintains avian receptor specificity. However, the 150-loop of H10 HA, as well as related H7 and H15 subtypes, contains a two-residue insert that can potentially block human receptor binding. Mutation of the 150-loop on the background of Q226L and G228S mutations, which arose in the receptor-binding site of human pandemic H2 and H3 viruses, resulted in acquisition of human-type receptor specificity. Crystal structures of H10 HA mutants with human and avian receptor analogs, receptor-binding studies, and tissue staining experiments illustrate the important role of the 150-loop in H10 receptor specificity.
Collapse
|
132
|
Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. J Virol 2017; 91:JVI.00049-17. [PMID: 28202753 DOI: 10.1128/jvi.00049-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/04/2017] [Indexed: 12/30/2022] Open
Abstract
The emergence of the novel influenza A virus (IAV) H7N9 since 2013 has caused concerns about the ability of the virus to spread between humans. Analysis of the receptor-binding properties of the H7 protein of a human isolate revealed modestly increased binding to α2,6 sialosides and reduced, but still dominant, binding to α2,3-linked sialic acids (SIAs) compared to a closely related avian H7N9 virus from 2008. Here, we show that the corresponding N9 neuraminidases (NAs) display equal enzymatic activities on a soluble monovalent substrate and similar substrate specificities on a glycan array. In contrast, solid-phase activity and binding assays demonstrated reduced specific activity and decreased binding of the novel N9 protein. Mutational analysis showed that these differences resulted from substitution T401A in the 2nd SIA-binding site, indicating that substrate binding via this site enhances NA catalytic activity. Substitution T401A in the novel N9 protein appears to functionally mimic the substitutions that are found in the 2nd SIA-binding site of NA proteins of avian-derived IAVs that became human pandemic viruses. Our phylogenetic analyses show that substitution T401A occurred prior to substitutions in hemagglutinin (HA), causing the altered receptor-binding properties mentioned above. Hence, in contrast to the widespread assumption that such changes in NA are obtained only after acquisition of functional changes in HA, our data indicate that mutations in the 2nd SIA-binding site may have enabled and even driven the acquisition of altered HA receptor-binding properties and may have contributed to the spread of the novel H7N9 viruses.IMPORTANCE Novel H7N9 IAVs continue to cause human infections and pose an ongoing public health threat. Here, we show that their N9 proteins display reduced binding to and lower enzymatic activity against multivalent substrates, resulting from mutation of the 2nd sialic acid-binding site. This mutation preceded and may have driven the selection of substitutions in H7 that modify H7 receptor-binding properties. Of note, all animal IAVs that managed to cross the host species barrier and became human viruses carry mutated 2nd sialic acid-binding sites. Screening of animal IAVs to monitor their potential to cross the host species barrier should therefore focus not only on the HA protein, but also on the functional properties of NA.
Collapse
|
133
|
Huang X, Zheng M, Wang P, Mok BWY, Liu S, Lau SY, Chen P, Liu YC, Liu H, Chen Y, Song W, Yuen KY, Chen H. An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells. Nat Commun 2017; 8:14751. [PMID: 28323816 PMCID: PMC5364394 DOI: 10.1038/ncomms14751] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
Influenza virus utilizes host splicing machinery to process viral mRNAs expressed from both M and NS segments. Through genetic analysis and functional characterization, we here show that the NS segment of H7N9 virus contains a unique G540A substitution, located within a previously undefined exonic splicing enhancer (ESE) motif present in the NEP mRNA of influenza A viruses. G540A supports virus replication in mammalian cells while retaining replication ability in avian cells. Host splicing regulator, SF2, interacts with this ESE to regulate splicing of NEP/NS1 mRNA and G540A substitution affects SF2–ESE interaction. The NS1 protein directly interacts with SF2 in the nucleus and modulates splicing of NS mRNAs during virus replication. We demonstrate that splicing of NEP/NS1 mRNA is regulated through a cis NEP-ESE motif and suggest a unique NEP-ESE may contribute to provide H7N9 virus with the ability to both circulate efficiently in avian hosts and replicate in mammalian cells. Some circulating avian influenza A viruses can infect humans, but the mechanism enabling species jump is poorly understood. Here, Huang et al. identify a nucleotide in NEP of avian H7N9 viruses that affects splicing efficiency of the NS segment and supports virus replication in avian and mammalian cells.
Collapse
Affiliation(s)
- Xiaofeng Huang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Min Zheng
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Bobo Wing-Yee Mok
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Siu-Ying Lau
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Pin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Yen-Chin Liu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Honglian Liu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Yixin Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Wenjun Song
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Department of Biotechnology, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Department of Biotechnology, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| |
Collapse
|
134
|
Structure of the infectious salmon anemia virus receptor complex illustrates a unique binding strategy for attachment. Proc Natl Acad Sci U S A 2017; 114:E2929-E2936. [PMID: 28320973 DOI: 10.1073/pnas.1617993114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orthomyxoviruses are an important family of RNA viruses, which include the various influenza viruses. Despite global efforts to eradicate orthomyxoviral pathogens, these infections remain pervasive. One such orthomyxovirus, infectious salmon anemia virus (ISAV), spreads easily throughout farmed and wild salmonids, constituting a significant economic burden. ISAV entry requires the interplay of the virion-attached hemagglutinin-esterase and fusion glycoproteins. Preventing infections will rely on improved understanding of ISAV entry. Here, we present the crystal structures of ISAV hemagglutinin-esterase unbound and complexed with receptor. Several distinctive features observed in ISAV HE are not seen in any other viral glycoprotein. The structures reveal a unique mode of receptor binding that is dependent on the oligomeric assembly of hemagglutinin-esterase. Importantly, ISAV hemagglutinin-esterase receptor engagement does not initiate conformational rearrangements, suggesting a distinct viral entry mechanism. This work improves our understanding of ISAV pathogenesis and expands our knowledge on the overall diversity of viral glycoprotein-mediated entry mechanisms. Finally, it provides an atomic-resolution model of the primary neutralizing antigen critical for vaccine development.
Collapse
|
135
|
Evaluation and Application of a Novel Quantitative Antioxidant Activity Assay Based on Cellular Metabolomics. Chromatographia 2017. [DOI: 10.1007/s10337-017-3256-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
136
|
Dong W, Farooqui A, Leon AJ, Kelvin DJ. Inhibition of influenza A virus infection by ginsenosides. PLoS One 2017; 12:e0171936. [PMID: 28187149 PMCID: PMC5302443 DOI: 10.1371/journal.pone.0171936] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/28/2017] [Indexed: 02/05/2023] Open
Abstract
Influenza viruses cause mild to severe respiratory infections in humans. Due to efficient means of transmission, the viruses infect human population on a large scale. Apart from vaccines, antiviral drugs are used to control infection; neuraminidase inhibitors are thought to be the first choice of treatment, particularly for severe cases. Rapidly evolving and emerging influenza viruses with increased frequency of viral resistance to these drugs stress the need to explore novel antiviral compounds. In this study, we investigated antiviral activity of ginseng extract and ginsenosides, the ginseng-derived triterpene and saponin compounds, against 2009 pandemic H1N1 virus in vitro and in vivo. Our data showed that treatment of mice with ginsenosides protected the animals from lethal 2009 pandemic H1N1 infection and lowered viral titers in animal lungs. Mechanistic studies revealed that ginsenosides interact with viral hemagglutinin protein and prevent the attachment of virus with α 2-3' sialic acid receptors present on host cell surfaces. The interference in the viral attachment process subsequently minimizes viral entry into the cells and decreases the severity of the viral infection. We also describe that sugar moieties present in ginsenosides are indispensible for their attachment with viral HA protein. On the basis of our observations, we can say that ginsenosides are promising candidates for the development of antiviral drugs for influenza viruses.
Collapse
Affiliation(s)
- Wei Dong
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
| | - Amber Farooqui
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
| | - Alberto J. Leon
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Deptartment of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
137
|
Macchi E, Rudd TR, Raman R, Sasisekharan R, Yates EA, Naggi A, Guerrini M, Elli S. Nuclear Magnetic Resonance and Molecular Dynamics Simulation of the Interaction between Recognition Protein H7 of the Novel Influenza Virus H7N9 and Glycan Cell Surface Receptors. Biochemistry 2016; 55:6605-6616. [PMID: 27933797 DOI: 10.1021/acs.biochem.6b00693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Avian influenza A viruses, which can also propagate between humans, present serious pandemic threats, particularly in Asia. The specificity (selectivity) of interactions between the recognition protein hemagglutinin (HA) of the virus capsid and the glycoconjugates of host cells also contributes to the efficient spread of the virus by aerosol between humans. Some avian origin viruses, such as H1N1 (South Carolina 1918), have improved their selectivity for human receptors by mutation in the HA receptor binding site, to generate pandemic viruses. Molecular details and dynamics of glycan-HA interactions are of interest, both in predicting the pandemic potential of a new emerging strain and in searching for new antiviral drugs. Two complementary techniques, 1H saturation transfer difference (1H STD) nuclear magnetic resonance and molecular dynamics (MD) simulation, were applied to analyze the interaction of the new H7 (A/Anhui/1/13 H7N9) with LSTa [Neu5Ac α(2→3) Gal β(1→3) GlcNAc β(1→3) Gal β(1→4) Glc] and LSTc [Neu5Ac α(2→6) Gal β(1→4) GlcNAc β(1→3) Gal β(1→4) Glc] pentasaccharides, models of avian and human receptor glycans. Their interactions with H7 were analyzed for the first time using 1H STD and MD, revealing structural and dynamic behavior that could not be obtained from crystal structures, and contributing to glycan-HA specificity. This highlighted aspects that could affect glycan-HA recognition, including the mutation H7 G228S, which increases H2 and H3 specificity for the human receptor. Finally, interactions between LSTc and H7 were compared with those between LSTc and H1 of H1N1 (South Carolina 1918), contributing to our understanding of the recognition ability of HAs.
Collapse
Affiliation(s)
- Eleonora Macchi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni" , Via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Timothy R Rudd
- National Institute for Biological Standards and Control (NIBSC) , Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - Rahul Raman
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool L69 7ZB, U.K
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni" , Via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni" , Via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni" , Via Giuseppe Colombo 81, 20133 Milano, Italy
| |
Collapse
|
138
|
Liu WJ, Tan S, Zhao M, Quan C, Bi Y, Wu Y, Zhang S, Zhang H, Xiao H, Qi J, Yan J, Liu W, Yu H, Shu Y, Wu G, Gao GF. Cross-immunity Against Avian Influenza A(H7N9) Virus in the Healthy Population Is Affected by Antigenicity-Dependent Substitutions. J Infect Dis 2016; 214:1937-1946. [PMID: 27738054 DOI: 10.1093/infdis/jiw471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The emergence of infections by the novel avian influenza A(H7N9) virus has posed a threat to human health. Cross-immunity between A(H7N9) and other heterosubtypic influenza viruses affected by antigenicity-dependent substitutions needs to be investigated. METHODS We investigated the cellular and humoral immune responses against A(H7N9) and 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09), by serological and T-cell-specific assays, in a healthy population. The molecular bases of the cellular and humoral antigenic variability of A(H7N9) were illuminated by structural determination. RESULTS We not only found that antibodies against A(H7N9) were lacking in the studied population, but also revealed that both CD4+ and CD8+ T cells that cross-reacted with A(H7N9) were at significantly lower levels than those against the A(H1N1)pdm09 peptides with substitutions. Moreover, individual peptides for A(H7N9) with low cross-reactivity were identified. Structural determination indicated that substitutions within these peptides influence the antigenic variability of A(H7N9) through both major histocompatibility complex (MHC) binding and T-cell receptor docking. CONCLUSIONS The impact of antigenicity-dependent substitutions on cross-reactivity of T-cell immunity against the novel influenza virus A(H7N9) in the healthy population benefits the understanding of immune evasion of influenza viruses and provides a useful reference for universal vaccine development.
Collapse
Affiliation(s)
- William J Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,University of Chinese Academy of Sciences, Beijing
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,University of Chinese Academy of Sciences, Beijing
| | - Chuansong Quan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Ying Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Shuijun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Haifeng Zhang
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention
| | - Yuelong Shu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - Guizhen Wu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - George F Gao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences.,University of Chinese Academy of Sciences, Beijing.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| |
Collapse
|
139
|
Wilson JR, Guo Z, Reber A, Kamal RP, Music N, Gansebom S, Bai Y, Levine M, Carney P, Tzeng WP, Stevens J, York IA. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo. Antiviral Res 2016; 135:48-55. [PMID: 27713074 DOI: 10.1016/j.antiviral.2016.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 12/09/2022]
Abstract
Zoonotic A(H7N9) avian influenza viruses emerged in China in 2013 and continue to be a threat to human public health, having infected over 800 individuals with a mortality rate approaching 40%. Treatment options for people infected with A(H7N9) include the use of neuraminidase (NA) inhibitors. However, like other influenza viruses, A(H7N9) can become resistant to these drugs. The use of monoclonal antibodies is a rapidly developing strategy for controlling influenza virus infection. Here we generated a murine monoclonal antibody (3c10-3) directed against the NA of A(H7N9) and show that prophylactic systemic administration of 3c10-3 fully protected mice from lethal challenge with wild-type A/Anhui/1/2013 (H7N9). Further, post-infection treatment with a single systemic dose of 3c10-3 at either 24, 48 or 72 h post A(H7N9) challenge resulted in both dose- and time-dependent protection of up to 100% of mice, demonstrating therapeutic potential for 3c10-3. Epitope mapping revealed that 3c10-3 binds near the enzyme active site of NA, and functional characterization showed that 3c10-3 inhibits the enzyme activity of NA and restricts the cell-to-cell spread of the virus in cultured cells. Affinity analysis also revealed that 3c10-3 binds equally well to recombinant NA of wild-type A/Anhui/1/2013 and to a variant NA carrying a R289K mutation known to infer NAI resistance. These results suggest that 3c10-3 has the potential to be used as a therapeutic to treat A(H7N9) infections either as an alternative to, or in combination with, current NA antiviral inhibitors.
Collapse
Affiliation(s)
- Jason R Wilson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Carter Consulting, Inc., Atlanta, GA, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ram P Kamal
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Battelle Memorial Institute, Atlanta, GA, USA
| | - Nedzad Music
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Battelle Memorial Institute, Atlanta, GA, USA
| | - Shane Gansebom
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Carter Consulting, Inc., Atlanta, GA, USA
| | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Levine
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wen-Pin Tzeng
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
140
|
Phanich J, Rungrotmongkol T, Kungwan N, Hannongbua S. Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study. J Comput Aided Mol Des 2016; 30:917-926. [PMID: 27714494 DOI: 10.1007/s10822-016-9981-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
The H7N9 avian influenza virus is a novel re-assortment from at least four different strains of virus. Neuraminidase, which is a glycoprotein on the surface membrane, has been the target for drug treatment. However, some H7N9 strains that have been isolated from patient after drug treatment have a R292K mutation in neuraminidase. This substitution was found to facilitate drug resistance using protein- and virus- assays, in particular it gave a high resistance to the most commonly used drug, oseltamivir. The aim of this research is to understand the source of oseltamivir resistance using MD simulations and the MM/PB(GB)SA binding free energy approaches. Both methods can predict the reduced susceptibility of oseltamivir in good agreement to the IC 50 binding energy, although MM/GBSA underestimates this prediction compared to the MM/PBSA calculation. Electrostatic interaction is the main contribution for oseltamivir binding in terms of both interaction and solvation. We found that the source of the drug resistance is a decrease in the binding interaction combined with the reduction of the dehydration penalty. The smaller K292 mutated residue has a larger binding pocket cavity compared to the wild-type resulting in the loss of drug carboxylate-K292 hydrogen bonding and an increased accessibility for water molecules around the K292 mutated residue. In addition, oseltamivir does not bind well to the R292K mutant complex as shown by the high degree of fluctuation in ligand RMSD during the simulation and the change in angular distribution of bulky side chain groups.
Collapse
Affiliation(s)
- Jiraphorn Phanich
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
141
|
He XP, Zeng YL, Tang XY, Li N, Zhou DM, Chen GR, Tian H. Rapid Identification of the Receptor-Binding Specificity of Influenza A Viruses by Fluorogenic Glycofoldamers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Ya-Li Zeng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Xin-Ying Tang
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Na Li
- National Center for Protein Science Shanghai; Shanghai Institutes of Biological Sciences; Chinese Academy of Sciences; Shanghai 200031 China
| | - Dong-Ming Zhou
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| |
Collapse
|
142
|
He XP, Zeng YL, Tang XY, Li N, Zhou DM, Chen GR, Tian H. Rapid Identification of the Receptor-Binding Specificity of Influenza A Viruses by Fluorogenic Glycofoldamers. Angew Chem Int Ed Engl 2016; 55:13995-13999. [DOI: 10.1002/anie.201606488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Ya-Li Zeng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Xin-Ying Tang
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Na Li
- National Center for Protein Science Shanghai; Shanghai Institutes of Biological Sciences; Chinese Academy of Sciences; Shanghai 200031 China
| | - Dong-Ming Zhou
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| |
Collapse
|
143
|
Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Sci Rep 2016; 6:29888. [PMID: 27431568 PMCID: PMC4949417 DOI: 10.1038/srep29888] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 01/31/2023] Open
Abstract
In May 2014, China formally confirmed the first human infection with the novel H5N6 avian influenza virus (AIV) in Sichuan Province. Before the first human case was reported, surveillance of AIVs in wild birds resulted in the detection of three H5N6 viruses in faecal samples from migratory waterfowl in Chenhu wetlands, Hubei Province, China. Genetic and phylogenetic analyses revealed that these three novel viruses were closely related to the H5N6 virus that has caused human infections in China since 2014. A Bayesian phylogenetic reconstruction of all eight segments suggests multiple reassortment events in the evolution of these viruses. The hemagglutinin (HA) and neuraminidase (NA) originated from the H5N2 and H6N6 AIVs, respectively, whereas all six internal genes were derived from avian H5N1 viruses. The reassortant may have occurred in eastern China during 2012–2013. A phylogeographic analysis of the HA and NA genes traced the viruses to southern China, from where they spread to other areas via eastern China. A receptor-binding test showed that H5N6 viruses from migratory waterfowl had human-type receptor-binding activity, suggesting a potential for transmission to humans. These data suggest that migratory waterfowl may play a role in the dissemination of novel H5N6 viruses.
Collapse
|
144
|
Yu M, Wang Q, Qi W, Zhang K, Liu J, Tao P, Ge S, Liao M, Ning Z. Expression of inflammation-related genes in the lung of BALB/c mice response to H7N9 influenza A virus with different pathogenicity. Med Microbiol Immunol 2016; 205:501-9. [PMID: 27401907 PMCID: PMC7101963 DOI: 10.1007/s00430-016-0466-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/01/2016] [Indexed: 11/29/2022]
Abstract
H7N9 influenza A virus (IAV)-infected human cases are increasing and reported over 200 mortalities since its first emergence in 2013. Host inflammatory response contributes to the clearance of influenza virus; meanwhile, the induced "cytokine storm" also leads to pathological lesions. However, what inflammation-related response of the host for H7N9 influenza A virus infection to survival from injures of exuberant cytokine release is still obscure. In this research, expression pattern and histological distribution of inflammation-related genes, RIP3, NLRP3, IL-1β, TNF-α, Slit2 and Robo4 in the lung of BALB/c mice infected with two H7N9 IAV strains with only a PB2 residue 627 difference were investigated, as well as the histopathological injury of the lung. Results showed that significantly higher expression level of NLRP3, RIP3, IL-1β and TNF-α in H7N9-infected groups compared with the control would play a key role in driving lung pathological lesion. While the expression level of Slit2 and Robo4 in H7N9 rVK627E group had significantly increased trend than VK627 which might be the main factor to inhibit the interstitial pneumonia and infiltration. Also, H7N9 induced the histopathological changes in the lung of infected mice, and RIP3, NLRP3, IL-1β, TNF-α, Slit2 and Robo4 showed cell-specific distribution in the lung. The results will provide basic data for further research on the mechanism of inflammatory response and understanding of the role of site 627 in PB2 in H7N9 IAVs infection. In addition, enhancing the resilience of the host vascular system to the inflammatory response by regulation of Slit2-Robo4 signaling pathway might provide a novel strategy for H7N9 IAVs infection.
Collapse
Affiliation(s)
- Meng Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qingnan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jianxin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Pan Tao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shikun Ge
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
145
|
The S128N mutation combined with an additional potential N-linked glycosylation site at residue 133 in hemagglutinin affects the antigenicity of the human H7N9 virus. Emerg Microbes Infect 2016; 5:e66. [PMID: 27381217 PMCID: PMC4972904 DOI: 10.1038/emi.2016.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/17/2016] [Accepted: 04/05/2016] [Indexed: 11/09/2022]
|
146
|
Fu L, Bi Y, Wu Y, Zhang S, Qi J, Li Y, Lu X, Zhang Z, Lv X, Yan J, Gao GF, Li X. Structure-Based Tetravalent Zanamivir with Potent Inhibitory Activity against Drug-Resistant Influenza Viruses. J Med Chem 2016; 59:6303-12. [DOI: 10.1021/acs.jmedchem.6b00537] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lifeng Fu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
- Graduate
University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Yuhai Bi
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Yan Wu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Shanshan Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Graduate
University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Jianxun Qi
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Yan Li
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Xuancheng Lu
- Laboratory
Animal Center, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Zhenning Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Graduate
University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Xun Lv
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jinghua Yan
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Center
for Influenza Research and Early Warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - George F. Gao
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Center
for Influenza Research and Early Warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Xuebing Li
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
- Center
for Influenza Research and Early Warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| |
Collapse
|
147
|
Characterization of Influenza Vaccine Hemagglutinin Complexes by Cryo-Electron Microscopy and Image Analyses Reveals Structural Polymorphisms. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:483-495. [PMID: 27074939 PMCID: PMC4895014 DOI: 10.1128/cvi.00085-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022]
Abstract
Influenza virus afflicts millions of people worldwide on an annual basis. There is an ever-present risk that animal viruses will cross the species barrier to cause epidemics and pandemics resulting in great morbidity and mortality. Zoonosis outbreaks, such as the H7N9 outbreak, underscore the need to better understand the molecular organization of viral immunogens, such as recombinant influenza virus hemagglutinin (HA) proteins, used in influenza virus subunit vaccines in order to optimize vaccine efficacy. Here, using cryo-electron microscopy and image analysis, we show that recombinant H7 HA in vaccines formed macromolecular complexes consisting of variable numbers of HA subunits (range, 6 to 8). In addition, HA complexes were distributed across at least four distinct structural classes (polymorphisms). Three-dimensional (3D) reconstruction and molecular modeling indicated that HA was in the prefusion state and suggested that the oligomerization and the structural polymorphisms observed were due to hydrophobic interactions involving the transmembrane regions. These experiments suggest that characterization of the molecular structures of influenza virus HA complexes used in subunit vaccines will lead to better understanding of the differences in vaccine efficacy and to the optimization of subunit vaccines to prevent influenza virus infection.
Collapse
|
148
|
He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res 2016; 429:1-22. [DOI: 10.1016/j.carres.2016.03.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
149
|
Wang H, Shi Y, Song J, Qi J, Lu G, Yan J, Gao GF. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 2016; 164:258-268. [PMID: 26771495 PMCID: PMC7111281 DOI: 10.1016/j.cell.2015.12.044] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/30/2015] [Accepted: 12/23/2015] [Indexed: 02/05/2023]
Abstract
Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Structural basis of Ebola virus endosomal-receptor binding NPC1 domain C (NPC1-C) displays a helical core structure with two protruding loops NPC1-C binds to the primed Ebola virus GP (GPcl) protein with a low affinity NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl
Collapse
Affiliation(s)
- Han Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Jian Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Microbial Physiology and Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
150
|
Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China. J Virol 2016; 90:5561-5573. [PMID: 27030268 DOI: 10.1128/jvi.03173-15] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/18/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China.
Collapse
|