101
|
Bian S, Zhao M, Zhang H, Ren Y. Differentially Expressed Genes Identification of Kohlrabi Seedlings ( Brassica oleracea var. caulorapa L.) under Polyethylene Glycol Osmotic Stress and AP2/ERF Transcription Factor Family Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1167. [PMID: 38674577 PMCID: PMC11054715 DOI: 10.3390/plants13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Osmotic stress is a condition in which plants do not get enough water due to changes in environmental factors. Plant response to osmotic stress is a complex process involving the interaction of different stress-sensitive mechanisms. Differentially expressed genes and response mechanisms of kohlrabi have not been reported under osmotic stress. A total of 196,642 unigenes and 33,040 differentially expressed unigenes were identified in kohlrabi seedlings under polyethylene glycol osmotic stress. AP2/ERF, NAC and eight other transcription factor family members with a high degree of interaction with CAT and SOD antioxidant enzyme activity were identified. Subsequently, 151 AP2/ERF genes were identified and analyzed. Twelve conserved motifs were searched and all AP2/ERF genes were clustered into four groups. A total of 149 AP2/ERF genes were randomly distributed on the chromosome, and relative expression level analysis showed that BocAP2/ERF genes of kohlrabi have obvious specificity in different tissues. This study lays a foundation for explaining the osmotic stress resistance mechanism of kohlrabi and provides a theoretical basis for the functional analysis of BocAP2/ERF transcription factor family members.
Collapse
Affiliation(s)
- Shuanling Bian
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Mengliang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Huijuan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Yanjing Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| |
Collapse
|
102
|
Wu R, Li Y, Wang L, Li Z, Wu R, Xu K, Liu Y. The DBB Family in Populus trichocarpa: Identification, Characterization, Evolution and Expression Profiles. Molecules 2024; 29:1823. [PMID: 38675643 PMCID: PMC11054233 DOI: 10.3390/molecules29081823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The B-box proteins (BBXs) encode a family of zinc-finger transcription factors that regulate the plant circadian rhythm and early light morphogenesis. The double B-box (DBB) family is in the class of the B-box family, which contains two conserved B-box domains and lacks a CCT (CO, CO-like and TOC1) motif. In this study, the identity, classification, structures, conserved motifs, chromosomal location, cis elements, duplication events, and expression profiles of the PtrDBB genes were analyzed in the woody model plant Populus trichocarpa. Here, 12 PtrDBB genes (PtrDBB1-PtrDBB12) were identified and classified into four distinct groups, and all of them were homogeneously spread among eight out of seventeen poplar chromosomes. The collinearity analysis of the DBB family genes from P. trichocarpa and two other species (Z. mays and A. thaliana) indicated that segmental duplication gene pairs and high-level conservation were identified. The analysis of duplication events demonstrates an insight into the evolutionary patterns of DBB genes. The previously published transcriptome data showed that PtrDBB genes represented distinct expression patterns in various tissues at different stages. In addition, it was speculated that several PtrDBBs are involved in the responsive to drought stress, light/dark, and ABA and MeJA treatments, which implied that they might function in abiotic stress and phytohormone responses. In summary, our results contribute to the further understanding of the DBB family and provide a reference for potential functional studies of PtrDBB genes in P. trichocarpa.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Yuxin Li
- Melbourne School of Design, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Lin Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Zitian Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Runbin Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Kehang Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Yixin Liu
- College of Landscape Architecture and Art, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
103
|
Huang X, Zhou Y, Shi X, Wen J, Sun Y, Chen S, Hu T, Li R, Wang J, Jia X. PfbZIP85 Transcription Factor Mediates ω-3 Fatty Acid-Enriched Oil Biosynthesis by Down-Regulating PfLPAT1B Gene Expression in Plant Tissues. Int J Mol Sci 2024; 25:4375. [PMID: 38673960 PMCID: PMC11050522 DOI: 10.3390/ijms25084375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C18:1 and C18:2) but enhanced C18:3 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production.
Collapse
Affiliation(s)
- Xusheng Huang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Yali Zhou
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Xianfei Shi
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Jing Wen
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Yan Sun
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Shuwei Chen
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Ting Hu
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Runzhi Li
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Jiping Wang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China; (X.H.); (Y.Z.); (J.W.)
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
104
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
105
|
Deng H, Pei Y, Xu X, Du X, Xue Q, Gao Z, Shu P, Wu Y, Liu Z, Jian Y, Wu M, Wang Y, Li Z, Pirrello J, Bouzayen M, Deng W, Hong Y, Liu M. Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening. THE NEW PHYTOLOGIST 2024; 242:592-609. [PMID: 38402567 DOI: 10.1111/nph.19632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The plant hormone ethylene plays a critical role in fruit defense against Botrytis cinerea attack, but the underlying mechanisms remain poorly understood. Here, we showed that ethylene response factor SlERF.C1 acts as a key regulator to trigger the ethylene-mediated defense against B. cinerea in tomato fruits without compromising ripening. Knockout of SlERF.C1 increased fruit susceptibility to B. cinerea with no effect on ripening process, while overexpression enhanced resistance. RNA-Seq, transactivation assays, EMSA and ChIP-qPCR results indicated that SlERF.C1 activated the transcription of PR genes by binding to their promoters. Moreover, SlERF.C1 interacted with the mitogen-activated protein kinase SlMPK8 which allowed SlMPK8 to phosphorylate SlERF.C1 at the Ser174 residue and increases its transcriptional activity. Knocking out of SlMPK8 increased fruit susceptibility to B. cinerea, whereas overexpression enhanced resistance without affecting ripening. Furthermore, genetic crosses between SlMPK8-KO and SlERF.C1-OE lines reduced the resistance to B. cinerea attack in SlERF.C1-OE fruits. In addition, B. cinerea infection induced ethylene production which in turn triggered SlMPK8 transcription and enhanced the phosphorylation of SlERF.C1. Overall, our findings reveal the regulatory mechanism of the 'Ethylene-MPK8-ERF.C1-PR' module in resistance against B. cinerea and provide new insight into the manipulation of gray mold disease in fruits.
Collapse
Affiliation(s)
- Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qihan Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhuo Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhaoqiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
106
|
Wang S, Jiang R, Feng J, Zou H, Han X, Xie X, Zheng G, Fang C, Zhao J. Overexpression of transcription factor FaMYB63 enhances salt tolerance by directly binding to the SOS1 promoter in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:32. [PMID: 38512490 DOI: 10.1007/s11103-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Rongyi Jiang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haodong Zou
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaohuan Han
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guanghui Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
107
|
Shikha, Pandey DK, Upadhyay S, Phukan UJ, Shukla RK. Transcriptome analysis of waterlogging-induced adventitious root and control taproot of Mentha arvensis. PLANT CELL REPORTS 2024; 43:104. [PMID: 38507094 DOI: 10.1007/s00299-024-03182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
KEY MESSAGE The present study reports differentially expressed transcripts in the waterlogging-induced adventitious root (AR) of Mentha arvensis; the identified transcripts will help to understand AR development and improve waterlogging stress response. Waterlogging notably hampers plant growth in areas facing waterlogged soil conditions. In our previous findings, Mentha arvensis was shown to adapt better in waterlogging conditions by initiating the early onset of adventitious root development. In the present study, we compared the transcriptome analysis of adventitious root induced after the waterlogging treatment with the control taproot. The biochemical parameters of total carbohydrate, total protein content, nitric oxide (NO) scavenging activity and antioxidant enzymes, such as catalase activity (CAT) and superoxide dismutase (SOD) activity, were enhanced in the adventitious root compared with control taproot. Analysis of differentially expressed genes (DEGs) in adventitious root compared with the control taproot were grouped into four functional categories, i.e., carbohydrate metabolism, antioxidant activity, hormonal regulation, and transcription factors that could be majorly involved in the development of adventitious roots. Differential expression of the upregulated and uniquely expressing thirty-five transcripts in adventitious roots was validated using qRT-PCR. This study has generated the resource of differentially and uniquely expressing transcripts in the waterlogging-induced adventitious roots. Further functional characterization of these transcripts will be helpful to understand the development of adventitious roots, leading to the resistance towards waterlogging stress in Mentha arvensis.
Collapse
Affiliation(s)
- Shikha
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durgesh Kumar Pandey
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Swati Upadhyay
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Ujjal J Phukan
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
108
|
Qin Y, Li J, Chen J, Yao S, Li L, Huang R, Tan Y, Ming R, Huang D. Genome-wide characterization of the bHLH gene family in Gynostemma pentaphyllum reveals its potential role in the regulation of gypenoside biosynthesis. BMC PLANT BIOLOGY 2024; 24:205. [PMID: 38509465 PMCID: PMC10953245 DOI: 10.1186/s12870-024-04879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Gynostemma pentaphyllum, an ancient Chinese herbal medicine, serves as a natural source of gypenosides with significant medicinal properties. Basic helix-loop-helix (bHLH) transcription factors play pivotal roles in numerous biological processes, especially in the regulation of secondary metabolism in plants. However, the characteristics and functions of the bHLH genes in G. pentaphyllum remain unexplored, and their regulatory role in gypenoside biosynthesis remains poorly elucidated. RESULTS This study identified a total of 111 bHLH members in G. pentaphyllum (GpbHLHs), categorizing them into 26 subgroups based on shared conserved motif compositions and gene structures. Collinearity analysis illustrated that segmental duplications predominately lead to the evolution of GpbHLHs, with most duplicated GpbHLH gene pairs undergoing purifying selection. Among the nine gypenoside-related GpbHLH genes, two GpbHLHs (GpbHLH15 and GpbHLH58) were selected for further investigation based on co-expression analysis and functional prediction. The expression of these two selected GpbHLHs was dramatically induced by methyl jasmonate, and their nuclear localization was confirmed. Furthermore, yeast one-hybrid and dual-luciferase assays demonstrated that GpbHLH15 and GpbHLH58 could bind to the promoters of the gypenoside biosynthesis pathway genes, such as GpFPS1, GpSS1, and GpOSC1, and activate their promoter activity to varying degrees. CONCLUSIONS In conclusion, our findings provide a detailed analysis of the bHLH family and valuable insights into the potential use of GpbHLHs to enhance the accumulation of gypenosides in G. pentaphyllum.
Collapse
Affiliation(s)
- Yanhong Qin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jinmei Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
109
|
Zhang F, Liu Y, Ma J, Su S, Chen L, Cheng Y, Buter S, Zhao X, Yi L, Lu Z. Analyzing the Diversity of MYB Family Response Strategies to Drought Stress in Different Flax Varieties Based on Transcriptome Data. PLANTS (BASEL, SWITZERLAND) 2024; 13:710. [PMID: 38475556 DOI: 10.3390/plants13050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The MYB transcription factor family has numerous members, and is involved in biological activities, such as ABA signaling, which plays an important role in a plant's resistance to abiotic stresses such as drought. However, the diversity of MYB members that respond to drought stress and their regulatory mechanisms in different flax varieties were unclear. In this study, we obtained 855.69 Gb of clean data from 120 flax root samples from 20 flax (Linum usitatissimum L.) varieties, assembled 92,861 transcripts, and identified 434 MYB family members in each variety. The expression profiles of the MYB transcription factor family from 20 flax varieties under drought stress were analyzed. The results indicated that there are four strategies by which the MYB family responds to drought stress in these 20 flax varieties, each of which has its own specific processes, such as development, reproduction, and localization processes. The four strategies also include common biological processes, such as stimulus responses, metabolic processes, and biological regulation. The WGCNA method was subsequently employed to identify key members of the MYB family involved in response strategies to drought stress. The results demonstrated that a 1R-MYB subfamily gene co-expression network is significantly related to the gibberellin response and cytokinin-activated signaling pathway processes in the 'Strategy 4' for MYB family response to drought, identifying core genes such as Lus.scaffold70.240. Our results showed a diversity of MYB family responses to drought stress within flax varieties, and these results contribute to deciphering the mechanisms of the MYB family regulation of drought resistance. This will promote the more accurate breeding development of flax to adapt to agricultural production under drought conditions.
Collapse
Affiliation(s)
- Fan Zhang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Ying Liu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Shaofeng Su
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Liyu Chen
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Siqin Buter
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Liuxi Yi
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| |
Collapse
|
110
|
Yao X, Meng F, Wu L, Guo X, Sun Z, Jiang W, Zhang J, Wu J, Wang S, Wang Z, Su X, Dai X, Qu C, Xing S. Genome-wide identification of R2R3-MYB family genes and gene response to stress in ginger. THE PLANT GENOME 2024; 17:e20258. [PMID: 36209364 DOI: 10.1002/tpg2.20258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Ginger (Zingiber officinale Roscoe) is an important plant used worldwide for medicine and food. The R2R3-MYB transcription factor (TF) family has essential roles in plant growth, development, and stresses resistance, and the number of genes in the family varies greatly among different types of plants. However, genome-wide discovery of ZoMYBs and gene responses to stresses have not been reported in ginger. Therefore, genome-wide analysis of R2R3-MYB genes in ginger was conducted in this study. Protein phylogenetic relations and conserved motifs and chromosome localization and duplication, structure, and cis-regulatory elements were analyzed. In addition, the expression patterns of selected genes were analyzed under two different stresses. A total of 299 candidate ZoMYB genes were discovered in ginger. Based on groupings of R2R3-MYB genes in the model plant Arabidopsis thaliana (L.) Heynh., ZoMYBs were divided into eight groups. Genes were distributed across 22 chromosomes at uneven densities. In gene duplication analysis, 120 segmental duplications were identified in the ginger genome. Gene expression patterns of 10 ZoMYBs in leaves of ginger under abscisic acid (ABA) and low-temperature stress treatments were different. The results will help to determine the exact roles of ZoMYBs in anti-stress responses in ginger.
Collapse
Affiliation(s)
- Xiaoyan Yao
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Fei Meng
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
| | - Liping Wu
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
| | - Zongping Sun
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal Univ., Fuyang, 236037, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal Univ., Hengyang, Hunan, 421008, China
| | - Jing Zhang
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
| | - Jing Wu
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China
| | - Shuting Wang
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
| | - Zhaojian Wang
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
| | - Xinglong Su
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
| | - Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural Univ., Tai'an, 271018, China
| | - Changqing Qu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal Univ., Fuyang, 236037, China
| | - Shihai Xing
- College of Pharmacy, Anhui Univ. of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
111
|
Xiong R, Peng Z, Zhou H, Xue G, He A, Yao X, Weng W, Wu W, Ma C, Bai Q, Ruan J. Genome-wide identification, structural characterization and gene expression analysis of the WRKY transcription factor family in pea (Pisum sativum L.). BMC PLANT BIOLOGY 2024; 24:113. [PMID: 38365619 PMCID: PMC10870581 DOI: 10.1186/s12870-024-04774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND The WRKY gene family is one of the largest families of transcription factors in higher plants, and WRKY transcription factors play important roles in plant growth and development as well as in response to abiotic stresses; however, the WRKY gene family in pea has not been systematically reported. RESULTS In this study, 89 pea WRKY genes were identified and named according to the random distribution of PsWRKY genes on seven chromosomes. The gene family was found to have nine pairs of tandem duplicates and 19 pairs of segment duplicates. Phylogenetic analyses of the PsWRKY and 60 Arabidopsis WRKY proteins were performed to determine their homology, and the PsWRKYs were classified into seven subfamilies. Analysis of the physicochemical properties, motif composition, and gene structure of pea WRKYs revealed significant differences in the physicochemical properties within the PsWRKY family; however, their gene structure and protein-conserved motifs were highly conserved among the subfamilies. To further investigate the evolutionary relationships of the PsWRKY family, we constructed comparative syntenic maps of pea with representative monocotyledonous and dicotyledonous plants and found that it was most recently homologous to the dicotyledonous WRKY gene families. Cis-acting element analysis of PsWRKY genes revealed that this gene family can respond to hormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA). Further analysis of the expression of 14 PsWRKY genes from different subfamilies in different tissues and fruit developmental stages, as well as under five different hormone treatments, revealed differences in their expression patterns in the different tissues and fruit developmental stages, as well as under hormone treatments, suggesting that PsWRKY genes may have different physiological functions and respond to hormones. CONCLUSIONS In this study, we systematically identified WRKY genes in pea for the first time and further investigated their physicochemical properties, evolution, and expression patterns, providing a theoretical basis for future studies on the functional characterization of pea WRKY genes during plant growth and development.
Collapse
Affiliation(s)
- Ruiqi Xiong
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Zhonghua Peng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Hui Zhou
- Sichuan Province Seed Station, Chengdu, Sichuan, 610041, China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Xin Yao
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Chao Ma
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Qing Bai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China.
| |
Collapse
|
112
|
Chen N, Zhan W, Shao Q, Liu L, Lu Q, Yang W, Que Z. Cloning, Expression, and Functional Analysis of the MYB Transcription Factor SlMYB86-like in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:488. [PMID: 38498460 PMCID: PMC10893056 DOI: 10.3390/plants13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
MYB transcription factors (TFs) have been shown to play a key role in plant growth and development and are in response to various types of biotic and abiotic stress. Here, we clarified the structure, expression patterns, and function of a MYB TF, SlMYB86-like (Solyc06g071690) in tomato using an inbred tomato line exhibiting high resistance to bacterial wilt (Hm 2-2 (R)) and one susceptible line (BY 1-2 (S)). The full-length cDNA sequence of this gene was 1226 bp, and the open reading frame was 966 bp, which encoded 321 amino acids; its relative molecular weight was 37.05055 kDa; its theoretical isoelectric point was 7.22; it was a hydrophilic nonsecreted protein; and it had no transmembrane structures. The protein also contains a highly conserved MYB DNA-binding domain and was predicted to be localized to the nucleus. Phylogenetic analysis revealed that SlMYB86-like is closely related to SpMYB86-like in Solanum pennellii and clustered with other members of the family Solanaceae. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of the SlMYB86-like gene was tissue specific and could be induced by Ralstonia solanacearum, salicylic acid, and jasmonic acid. The results of virus-induced gene silencing (VIGS) revealed that SlMYB86-like silencing decreased the resistance of tomato plants to bacterial wilt, suggesting that it positively regulates the resistance of tomatoes to bacterial wilt. Overall, these findings indicate that SlMYB86-like plays a key role in regulating the resistance of tomatoes to bacterial wilt.
Collapse
Affiliation(s)
- Na Chen
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Wenwen Zhan
- Guangzhou Resuce Agricultural Science and Technology Co., Ltd., Guangzhou 510642, China;
| | - Qin Shao
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Liangliang Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Qineng Lu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Weihai Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Zhiqun Que
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| |
Collapse
|
113
|
Waschburger EL, Filgueiras JPC, Turchetto-Zolet AC. DOF gene family expansion and diversification. Genet Mol Biol 2024; 46:e20230109. [PMID: 38315880 PMCID: PMC10842470 DOI: 10.1590/1678-4685-gmb-2023-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024] Open
Abstract
DOF (DNA binding with one finger) proteins are part of a plant-specific transcription factor (TF) gene family widely involved in plant development and stress responses. Many studies have uncovered their structural and functional characteristics in recent years, leading to a rising number of genome-wide identification study approaches, unveiling the DOF family expansion in angiosperm species. Nonetheless, these studies primarily concentrate on particular taxonomic groups. Identifying DOF TFs within less-represented groups is equally crucial, as it enhances our comprehension of their evolutionary history, contributions to plant phenotypic diversity, and role in adaptation. This review summarizes the main findings and progress of genome-wide identification and characterization studies of DOF TFs in Viridiplantae, exposing their roles as players in plant adaptation and a glimpse of their evolutionary history. We also present updated data on the identification and number of DOF genes in native and wild species. Altogether, these data, comprising a phylogenetic analysis of 2124 DOF homologs spanning 83 different species, will contribute to identifying new functional DOF groups, adding to our understanding of the mechanisms driving plant evolution and offering valuable insights into their potential applications.
Collapse
Affiliation(s)
- Edgar Luis Waschburger
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - João Pedro Carmo Filgueiras
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
114
|
Sun C, Yao G, Zhao J, Chen R, Hu K, He G, Zhang H. SlERF109-like and SlNAC1 Coordinately Regulated Tomato Ripening by Inhibiting ACO1 Transcription. Int J Mol Sci 2024; 25:1873. [PMID: 38339150 PMCID: PMC10855853 DOI: 10.3390/ijms25031873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources.
Collapse
Affiliation(s)
- Chen Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Jinghan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Ruying Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Guanghua He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| |
Collapse
|
115
|
Kumar V, Majee A, Patwal P, Sairem B, Sane AP, Sane VA. A GARP transcription factor SlGCC positively regulates lateral root development in tomato via auxin-ethylene interplay. PLANTA 2024; 259:55. [PMID: 38300324 DOI: 10.1007/s00425-023-04325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
MAIN CONCLUSION SlGCC, a GARP transcription factor, functions as a root-related transcriptional repressor. SlGCC synchronizes auxin and ethylene signaling involving SlPIN3 and SlIAA3 as intermediate targets sketching a molecular map for lateral root development in tomato. The root system is crucial for growth and development of plants as it performs basic functions such as providing mechanical support, nutrients and water uptake, pathogen resistance and responds to various stresses. SlGCC, a GARP family transcription factor (TF), exhibited predominant expression in age-dependent (initial to mature stages) tomato root. SlGCC is a transcriptional repressor and is regulated at a transcriptional and translational level by auxin and ethylene. Auxin and ethylene mediated SlGCC protein stability is governed via proteasome degradation pathway during lateral root (LR) growth development. SlGCC over-expressor (OE) and under-expressed (UE) tomato transgenic lines demonstrate its role in LR development. This study is an attempt to unravel the vital role of SlGCC in regulating tomato LR architecture.
Collapse
Affiliation(s)
- Vinod Kumar
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Adity Majee
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Patwal
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babythoihoi Sairem
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidhu A Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
116
|
Zhou Y, Li Z, Xu C, Pan J, Li H, Zhou Y, Zou Y. Genome-wide analysis of bZIP gene family members in Pleurotus ostreatus, and potential roles of PobZIP3 in development and the heat stress response. Microb Biotechnol 2024; 17:e14413. [PMID: 38376071 PMCID: PMC10877997 DOI: 10.1111/1751-7915.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) is widespread among eukaryotes and serves different roles in fungal processes including nutrient utilization, growth, stress responses and development. The oyster mushroom (Pleurotus ostreatus) is an important and widely cultivated edible mushroom worldwide; nevertheless, reports are lacking on the identification or function of bZIP gene family members in P. ostreatus. Herein, 11 bZIPs on 6 P. ostreatus chromosomes were systematically identified, which were classified into 3 types according to their protein sequences. Phylogenetic analysis of PobZIPs with other fungal bZIPs indicated that PobZIPs may have differentiated late. Cis-regulatory element analysis revealed that at least one type of stress-response-related element was present on each bZIP promoter. RNA-seq and RT-qPCR analyses revealed that bZIP expression patterns were altered under heat stress and different developmental stages. We combined results from GST-Pull-down, EMSA and yeast two-hybrid assays to screen a key heat stress-responsive candidate gene PobZIP3. PobZIP3 overexpression in P. ostreatus enhanced tolerance to high temperature and cultivation assays revealed that PobZIP3 positively regulates the development of P. ostreatus. RNA-seq analysis showed that PobZIP3 plays a role in glucose metabolism pathways, antioxidant enzyme activity and sexual reproduction. These results may support future functional studies of oyster mushroom bZIP TFs.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Zihao Li
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Congtao Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Jinlong Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Haikang Li
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Yi Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Yajie Zou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
117
|
Song J, Liu Y, Cai W, Zhou S, Fan X, Hu H, Ren L, Xue Y. Unregulated GmAGL82 due to Phosphorus Deficiency Positively Regulates Root Nodule Growth in Soybean. Int J Mol Sci 2024; 25:1802. [PMID: 38339080 PMCID: PMC10855635 DOI: 10.3390/ijms25031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.
Collapse
Affiliation(s)
- Jia Song
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
| | - Ying Liu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Wangxiao Cai
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Silin Zhou
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Xi Fan
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Hanqiao Hu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Lei Ren
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yingbin Xue
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
118
|
Jin R, Yang H, Muhammad T, Li X, Tuerdiyusufu D, Wang B, Wang J. Involvement of Alfin-Like Transcription Factors in Plant Development and Stress Response. Genes (Basel) 2024; 15:184. [PMID: 38397174 PMCID: PMC10887727 DOI: 10.3390/genes15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Alfin-like (AL) proteins are an important class of transcription factor (TF) widely distributed in eukaryotes and play vital roles in many aspects of plant growth and development. AL proteins contain an Alfin-like domain and a specific PHD-finger structure domain at the N-terminus and C-terminus, respectively. The PHD domain can bind to a specific (C/A) CAC element in the promoter region and affect plant growth and development by regulating the expression of functional genes. This review describes a variety of AL transcription factors that have been isolated and characterized in Arabidopsis thaliana, Brassica rapa, Zea mays, Brassica oleracea, Solanum lycopersicum, Populus trichocarpa, Pyrus bretschenedri, Malus domestica, and other species. These studies have focused mainly on plant growth and development, different abiotic stress responses, different hormonal stress responses, and stress responses after exposure to pathogenic bacteria. However, studies on the molecular functional mechanisms of Alfin-like transcription factors and the interactions between different signaling pathways are rare. In this review, we performed phylogenetic analysis, cluster analysis, and motif analysis based on A. thaliana sequences. We summarize the structural characteristics of AL transcription factors in different plant species and the diverse functions of AL transcription factors in plant development and stress regulation responses. The aim of this study was to provide a reference for further application of the functions and mechanisms of action of the AL protein family in plants.
Collapse
Affiliation(s)
- Ruixin Jin
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Xin Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Diliaremu Tuerdiyusufu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
119
|
Zhang H, Huang Y. Genome-wide identification and characterization of greenbug-inducible NAC transcription factors in sorghum. Mol Biol Rep 2024; 51:207. [PMID: 38270755 DOI: 10.1007/s11033-023-09158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Sorghum (Sorghum bicolor) is an important cereal crop grown worldwide because of its multipurpose uses such as food, forage, and bioenergy feedstock and its wide range of adaption even in marginal environments. Greenbug can cause severe damage to sorghum plants and yield loss. Plant NAC transcription factors (TFs) have been reported to have diverse functions in plant development and plant defense but has not been studied in sorghum yet. METHODS AND RESULTS In this study, a comprehensive analysis of the sorghum NAC (SbNAC) gene family was conducted through genome-wide analysis. A total of 112 NAC genes has been identified in the sorghum genome. These SbNAC genes are phylogenetically clustered into 15 distinct subfamilies and unevenly distribute in clusters at the telomeric ends of each chromosome. Twelve pairs of SbNAC genes are possibly involved in the segmental duplication among nine chromosomes except chromosome 10. Structure analysis showed the diverse structures with a highly variable number of exons in the SbNAC genes. Furthermore, most of the SbNAC genes showed specific temporal and spatial expression patterns according to the results of RNA-seq analysis, suggesting their diverse functions during sorghum growth and development. We have also identified nine greenbug-inducible SbNAC genes by comparing the expression profiles between two sorghum genotypes (susceptible BTx623 and resistant PI607900) in response to greenbug infestation. CONCLUSIONS Our systematic analysis of the NAC gene expression profiles provides both a preliminary survey into their roles in plant defense against insect pests and a useful reference for in-depth characterization of the SbNAC genes and the regulatory network that contributes genetic resistance to aphids.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yinghua Huang
- USDA-ARS Plant Science Research Laboratory, 1301 N. Western Road, Stillwater, OK, 74075, USA.
| |
Collapse
|
120
|
Zhang F, Ma J, Liu Y, Fang J, Wei S, Xie R, Han P, Zhao X, Bo S, Lu Z. A Multi-Omics Analysis Revealed the Diversity of the MYB Transcription Factor Family's Evolution and Drought Resistance Pathways. Life (Basel) 2024; 14:141. [PMID: 38255756 PMCID: PMC10820167 DOI: 10.3390/life14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The MYB transcription factor family can regulate biological processes such as ABA signal transduction to cope with drought stress, but its evolutionary mechanism and the diverse pathways of response to drought stress in different species are rarely reported. In this study, a total of 4791 MYB family members were identified in 908,757 amino acid sequences from 12 model plants or crops using bioinformatics methods. It was observed that the number of MYB family members had a linear relationship with the chromosome ploidy of species. A phylogenetic analysis showed that the MYB family members evolved in subfamily clusters. In response to drought stress, the pathways of MYB transcription factor families exhibited species-specific diversity, with closely related species demonstrating a higher resemblance. This study provides abundant references for drought resistance research and the breeding of wheat, soybean, and other plants.
Collapse
Affiliation(s)
- Fan Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Ying Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Jing Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Shuli Wei
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| |
Collapse
|
121
|
Tang J, Hu Z, Zhang J, Daroch M. Genome-scale identification and comparative analysis of transcription factors in thermophilic cyanobacteria. BMC Genomics 2024; 25:44. [PMID: 38195395 PMCID: PMC10775510 DOI: 10.1186/s12864-024-09969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The transcription factors (TFs) in thermophilic cyanobacteria might represent a uniquely evolved gene repertoire in light of the strong selective pressure caused by hostile habitats. Understanding the molecular composition of the TF genes in thermophilic cyanobacteria will facilitate further studies regarding verifying their exact biochemical functions and genetic engineering. However, limited information is available on the TFs of thermophilic cyanobacteria. Herein, a thorough investigation and comparative analysis were performed to gain insights into the molecular composition of the TFs in 22 thermophilic cyanobacteria. RESULTS The results suggested a fascinating diversity of the TFs among these thermophiles. The abundance and type of TF genes were diversified in these genomes. The identified TFs are speculated to play various roles in biological regulations. Further comparative and evolutionary genomic analyses revealed that HGT may be associated with the genomic plasticity of TF genes in Thermostichus and Thermosynechococcus strains. Comparative analyses also indicated different pattern of TF composition between thermophiles and corresponding mesophilic reference cyanobacteria. Moreover, the identified unique TFs of thermophiles are putatively involved in various biological regulations, mainly as responses to ambient changes, may facilitating the thermophiles to survive in hot springs. CONCLUSION The findings herein shed light on the TFs of thermophilic cyanobacteria and fundamental knowledge for further research regarding thermophilic cyanobacteria with a broad potential for transcription regulations in responses to environmental fluctuations.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zhe Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Jing Zhang
- Food Safety Detection Key Laboratory of Sichuan, Technical Center of Chengdu Customs, Chengdu, 610041, China.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
122
|
Qian Z, Shi D, Zhang H, Li Z, Huang L, Yan X, Lin S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int J Mol Sci 2024; 25:566. [PMID: 38203741 PMCID: PMC10778882 DOI: 10.3390/ijms25010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
Collapse
Affiliation(s)
- Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
123
|
Blanc-Mathieu R, Dumas R, Turchi L, Lucas J, Parcy F. Plant-TFClass: a structural classification for plant transcription factors. TRENDS IN PLANT SCIENCE 2024; 29:40-51. [PMID: 37482504 DOI: 10.1016/j.tplants.2023.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Transcription factors (TFs) bind DNA at specific sequences to regulate gene expression. This universal process is achieved via their DNA-binding domain (DBD). In mammals, the vast diversity of DBD structural conformations and the way in which they contact DNA has been used to organize TFs in the TFClass hierarchical classification. However, the numerous DBD types present in plants but absent from mammalian genomes were missing from this classification. We reviewed DBD 3D structures and models available for plant TFs to classify most of the 56 recognized plant TF types within the TFClass framework. This extended classification adds eight new classes and 37 new families corresponding to DBD structures absent in mammals. Plant-TFClass provides a unique resource for TF comparison across families and organisms.
Collapse
Affiliation(s)
- Romain Blanc-Mathieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France
| | - Renaud Dumas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France
| | - Laura Turchi
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France.
| |
Collapse
|
124
|
Huang H, Zhao L, Zhang B, Huang W, Zhang Z, An B. Integrated analysis of the metabolome and transcriptome provides insights into anthocyanin biosynthesis of cashew apple. Food Res Int 2024; 175:113711. [PMID: 38129034 DOI: 10.1016/j.foodres.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The cashew apple remains an underutilized agricultural product despite its abundance as a by-product of cashew nut production. Anthocyanins are water-soluble pigments responsible for red, purple, and blue hues in plant tissues and have various health-promoting properties. To investigate the anthocyanin biosynthesis in cashew apples, fruits with varying peel colors from three cultivars were subjected to integrative analyses with metabolomics and transcriptomics. Through a UPLC-ESI-MS/MS-based targeted metabolomics analysis, a total of 26 distinct anthocyanin compounds were identified in the fruits of the three cashew cultivars. Subsequent quantification revealed that Pelargonidin-3-O-galactoside, Petunidin-3-O-arabinoside, and Cyanidin-3-O-galactoside were the primary contributors responsible for the red pigmentation in cashew apple peels. Following transcriptomic analysis showed that the expression levels of anthocyanin biosynthetic genes were predominantly higher in the red cashew apples as compared to the other two cultivars. Moreover, correlation analysis revealed that eight potential transcription factors implicated in the regulation of anthocyanin biosynthesis. Among these, four transcription factors exhibited positive correlations with both anthocyanin contents and anthocyanin biosynthetic gene expression, while the remaining four transcription factors displayed negative correlations. These findings provide a comprehensive understanding of the molecular basis of anthocyanin biosynthesis in cashew apple peels.
Collapse
Affiliation(s)
- Haijie Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory of Crop Gene Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs & National Cultivar Improvement Center of Tropical Fruit Tree, Haikou, 571101, People's Republic of China.
| | - Li Zhao
- Tropical Biodiversity and Bioresource Utilization Laboratory, Qiongtai Normal University, Haikou 570100, People's Republic of China
| | - Bei Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, People's Republic of China
| | - Weijian Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory of Crop Gene Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs & National Cultivar Improvement Center of Tropical Fruit Tree, Haikou, 571101, People's Republic of China
| | - Zhongrun Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory of Crop Gene Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs & National Cultivar Improvement Center of Tropical Fruit Tree, Haikou, 571101, People's Republic of China
| | - Bang An
- Sanya Nanfan Research Institute of Hainan University, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, People's Republic of China.
| |
Collapse
|
125
|
Lambret‐Frotte J, Smith G, Langdale JA. GOLDEN2-like1 is sufficient but not necessary for chloroplast biogenesis in mesophyll cells of C 4 grasses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:416-431. [PMID: 37882077 PMCID: PMC10953395 DOI: 10.1111/tpj.16498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Chloroplasts are the site of photosynthesis. In land plants, chloroplast biogenesis is regulated by a family of transcription factors named GOLDEN2-like (GLK). In C4 grasses, it has been hypothesized that genome duplication events led to the sub-functionalization of GLK paralogs (GLK1 and GLK2) to control chloroplast biogenesis in two distinct cell types: mesophyll and bundle sheath cells. Although previous characterization of golden2 (g2) mutants in maize has demonstrated a role for GLK2 paralogs in regulating chloroplast biogenesis in bundle sheath cells, the function of GLK1 has remained elusive. Here we show that, contrary to expectations, GLK1 is not required for chloroplast biogenesis in mesophyll cells of maize. Comparisons between maize and Setaria viridis, which represent two independent C4 origins within the Poales, further show that the role of GLK paralogs in controlling chloroplast biogenesis in mesophyll and bundle sheath cells differs between species. Despite these differences, complementation analysis revealed that GLK1 and GLK2 genes from maize are both sufficient to restore functional chloroplast development in mesophyll and bundle sheath cells of S. viridis mutants. Collectively our results suggest an evolutionary trajectory in C4 grasses whereby both orthologs retained the ability to induce chloroplast biogenesis but GLK2 adopted a more prominent developmental role, particularly in relation to chloroplast activation in bundle sheath cells.
Collapse
Affiliation(s)
- Julia Lambret‐Frotte
- Department of BiologyUniversity of OxfordSouth Parks RoadOX1 3RBOxfordUK
- Present address:
NIAB, Park FarmVilla Road, ImpingtonCB24 9NZCambridgeUK
| | - Georgia Smith
- Department of BiologyUniversity of OxfordSouth Parks RoadOX1 3RBOxfordUK
| | - Jane A. Langdale
- Department of BiologyUniversity of OxfordSouth Parks RoadOX1 3RBOxfordUK
| |
Collapse
|
126
|
Long T, Yang F, Chen Z, Xing Y, Tang X, Chen B, Cui W, Rodriguez LG, Wang L, Gao Y, Yao Y. Overexpression of PtoMYB99 diminishes poplar tolerance to osmotic stress by suppressing ABA and JA biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154149. [PMID: 38064888 DOI: 10.1016/j.jplph.2023.154149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Drought poses a serious challenge to sustained plant growth and crop yields in the context of global climate change. Drought tolerance in poplars and their underlying mechanisms still remain largely unknown. In this article, we investigated the overexpression of PtoMYB99 - both a drought and abscisic acid (ABA) induced gene constraining drought tolerance in poplars (as compared with wild type poplars). First, we found that PtoMYB99-OE lines exhibited increased stomatal opening and conductance, higher transpiration and photosynthetic rates, as well as reduced levels of ABA and jasmonic acid (JA). Second, PtoMYB99-OE lines accumulated more reactive oxygen species (ROS), including H2O2 and O2-, as well as malonaldehyde (MDA), proline, and soluble sugar under osmotic stress; conversely, the activity of antioxidant enzymes (SOD, POD, and CAT), was weakened in the PtoMYB99-OE lines. Third, the expression of ABA biosynthetic genes, PtoNCED3.1 and PtoNCED3.2, as well as JA biosynthetic genes, PtoOPR3.1 and PtoOPR3.2, was significantly reduced in the PtoMYB99-OE lines under both normal conditions and osmotic stress. Based on our results, we conclude that the overexpression of PtoMYB99 compromises tolerance to osmotic stress in poplar. These findings contribute to the understanding of the role of the MYB genes in drought stress and the biosynthesis of ABA and JA.
Collapse
Affiliation(s)
- Tao Long
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Fengming Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Yuhang Xing
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Xia Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Banglan Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Wenli Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Lucas Gutierrez Rodriguez
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China.
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China.
| |
Collapse
|
127
|
Pandey V, Singh S. Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects. Comb Chem High Throughput Screen 2024; 27:1701-1715. [PMID: 38441014 DOI: 10.2174/0113862073300371240229100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Heat stress impacts plant growth at all phases of development, although the particular threshold for heat tolerance varies significantly across different developmental stages. During seed germination, elevated temperatures can either impede or completely halt the process, contingent upon the plant type and the severity of the stress. During advanced stages, high temperatures can have a negative impact on photosynthesis, respiration, water balance, and membrane integrity. Additionally, they can also influence the levels of hormones and primary and secondary metabolites. In addition, during the growth and development of plants, there is an increased expression of various heat shock proteins, as well as other proteins related to stress, and the generation of reactive oxygen species (ROS). These are significant plant responses to heat stress. Plants employ several strategies to deal with heat stress, such as maintaining the stability of their cell membranes, removing harmful reactive oxygen species (ROS), producing antioxidants, accumulating and adjusting compatible solutes, activating mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, crucially, signaling through chaperones and activating transcription. These molecular-level systems boost the ability of plants to flourish in heat stress. Potential genetic methods to enhance plant heat stress resistance encompass old and modern molecular breeding techniques and transgenic approaches, all of which rely on a comprehensive comprehension of these systems. Although several plants exhibit enhanced heat tolerance through traditional breeding methods, the effectiveness of genetic transformation techniques has been somewhat restricted. The latter results from the current constraints in our understanding and access to genes that have known impacts on plant heat stress tolerance. However, these challenges may be overcome in the future. Besides genetic methods, crops' heat tolerance can be improved through the pre-treatment of plants with various environmental challenges or the external application of osmoprotectants such as glycine betaine and proline. Thermotolerance is achieved through an active process in which plants allocate significant energy to maintain their structure and function to avoid damage induced by heat stress. The practice of nanoparticles has been shown to upgrade both the standard and the quantity of produce when crops are under heat stress. This review provides information on the effects of heat stress on plants and explores the importance of nanoparticles, transgenics, and genomic techniques in reducing the negative consequences of heat stress. Furthermore, it explores how plants might adapt to heat stress by modifying their biochemical, physiological, and molecular reactions.
Collapse
Affiliation(s)
- Vineeta Pandey
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, 17 km Stone, NH-2, Mathura, Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| |
Collapse
|
128
|
Zhu X, Wang B, Liu W, Wei X, Wang X, Du X, Liu H. Genome-wide analysis of AP2/ERF gene and functional analysis of CqERF24 gene in drought stress in quinoa. Int J Biol Macromol 2023; 253:127582. [PMID: 37866580 DOI: 10.1016/j.ijbiomac.2023.127582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Quinoa is a crop with high nutritional value and strong stress resistance. AP2/ERF transcription factors play a key role in plant growth and development. In this study, 148 AP2/ERF genes were identified in quinoa, which were divided into 5 subfamilies, including ERF, AP2, DREB, RAV and Soloist. The results showed that the number of introns ranged from 0 to 11, and the Motif 1-Motif 4 was highly conserved in most CqAP2/ERF proteins. The 148 CqAP2/ERF genes were distributed on 19 chromosomes. There were 93 pairs of duplicating genes in this family, and gene duplication played a critical role in the expansion of this family. Protein-protein interaction indicated that the proteins in CqAP2/ERF subfamily exhibited complex interactions, and GO enrichment analysis indicated that 148 CqAP2/ERF proteins were involved in transcription factor activity. In addition, CqAP2/ERF gene contains a large number of elements related to hormones in promoter region (IAA, GA, SA, ABA and MeJA) and stresses (salt, drought, low temperature and anaerobic induction). Transcriptome analysis under drought stress indicated that most of the CqAP2/ERF genes were responsive to drought stress, and subcellular localization indicated that CqERF24 was location in the nucleus, qRT-PCR results also showed that most of the genes such as CqERF15, CqERF24, CqDREB03, CqDREB14, CqDREB37 and CqDREB43 also responded to drought stress in roots and leaves. Overexpression of CqERF24 in Arabidopsis thaliana enhanced drought resistance by increasing antioxidant enzyme activity and activation-related stress genes, and the gene is sensitive to ABA, while silencing CqERF24 in quinoa decreased drought tolerance. In addition, overexpression of CqERF24 in quinoa calli enhanced resistance to mannitol. These results lay a solid foundation for further study on the role of AP2/ERF family genes in quinoa under drought stress.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuefeng Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Haixun Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
129
|
Jin R, He B, Qin Y, Du Z, Cao C, Li J. Unveiling the role of bZIP transcription factors CREB and CEBP in detoxification metabolism of Nilaparvata lugens (Stål). Int J Biol Macromol 2023; 253:126576. [PMID: 37648128 DOI: 10.1016/j.ijbiomac.2023.126576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
The basic leucine zipper (bZIP) superfamily is a crucial group of xenobiotics in insects. However, little is known about the function of CAAT enhancer binding proteins (CEBP) and cAMP response element binding protein (CREB) in Nilaparvata lugens. In the present study, NlCEBP and NlCREB were cloned and identified. Quantitative polymerase real-time chain reaction (qRT-PCR) analysis showed the expression of NlCEBP and NlCREB was significantly induced after chemical insecticides exposure. Silencing of NlCEBP and NlCREB increased the susceptibility of N. lugens to insecticides, and the detoxification enzyme activities were also significantly decreased. In addition, comparative transcriptome analysis revealed that 174 genes were significantly co-down-regulated after interfering with the two transcription factors. GO analysis showed that co-down-regulated genes are mostly related to energy transport and metabolic functions indicating the potential regulatory role of NlCEBP and NlCREB in detoxification metabolism. Our research shed lights on the functional roles of transcription factors NlCEBP and NlCREB in the detoxification metabolism of N. lugens, providing a theoretical basis for pest management and comprehensive control of this pest and increasing our understanding of insect toxicology.
Collapse
Affiliation(s)
- Ruoheng Jin
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, PR China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Biyan He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Tongling Municipal Bureau of Agricultural and Rural Affairs, Tongling 244002, PR China
| | - Yao Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zuyi Du
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, PR China.
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
130
|
Sui C, Cheng S, Wang D, Lv L, Meng H, Du M, Li J, Su P, Guo S. Systematic identification and characterization of the soybean ( Glycine max) B-box transcription factor family. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chao Sui
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Shanshan Cheng
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Deying Wang
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Lujia Lv
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Huiran Meng
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Mengxue Du
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Jingyu Li
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Peisen Su
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Shangjing Guo
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| |
Collapse
|
131
|
Lo T, Coombe L, Gagalova KK, Marr A, Warren RL, Kirk H, Pandoh P, Zhao Y, Moore RA, Mungall AJ, Ritland C, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I, Thomson A. Assembly and annotation of the black spruce genome provide insights on spruce phylogeny and evolution of stress response. G3 (BETHESDA, MD.) 2023; 14:jkad247. [PMID: 37875130 PMCID: PMC10755193 DOI: 10.1093/g3journal/jkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.
Collapse
Affiliation(s)
- Theodora Lo
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Kristina K Gagalova
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Alex Marr
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - René L Warren
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Heather Kirk
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Pawan Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Richard A Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Joerg Bohlmann
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Inanç Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Ashley Thomson
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
132
|
Yuan G, Zhang N, Zou Y, Hao Y, Pan J, Liu Y, Zhang W, Li B. Genome-wide identification and expression analysis of WRKY gene family members in red clover ( Trifolium pratense L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1289507. [PMID: 38130488 PMCID: PMC10733489 DOI: 10.3389/fpls.2023.1289507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Trifolium pratense is an important legume forage grass and a key component of sustainable livestock development. Serving as an essential component, the WRKY gene family, a crucial group of regulatory transcription factors in plants, holds significant importance in their response to abiotic stresses. However, there has been no systematic analysis conducted on the WRKY gene family in Trifolium pratense. This study conducted a comprehensive genomic characterization of the WRKY gene family in Trifolium pratense, utilizing the latest genomic data, resulting in the identification of 59 TpWRKY genes. Based on their structural features, phylogenetic characteristics, and conserved motif composition, the WRKY proteins were classified into three groups, with group II further subdivided into five subgroups (II-a, II-b, II-c, II-d, and II-e). The majority of the TpWRKYs in a group share a similar structure and motif composition. Intra-group syntenic analysis revealed eight pairs of duplicate segments. The expression patterns of 59 TpWRKY genes in roots, stems, leaves, and flowers were examined by analyzing RNA-seq data. The expression of 12 TpWRKY genes under drought, low-temperature (4°C), methyl jasmonate (MeJA) and abscisic acid (ABA) stresses was analyzed by RT-qPCR. The findings indicated that TpWRKY46 was highly induced by drought stress, and TpWRKY26 and TpWRKY41 were significantly induced by low temperature stress. In addition, TpWRKY29 and TpWRKY36 were greatly induced by MeJA stress treatment, and TpWRKY17 was significantly upregulated by ABA stress treatment. In this research, we identified and comprehensively analyzed the structural features of the WRKY gene family in T.pratense, along with determined the possible roles of WRKY candidate genes in abiotic stress. These discoveries deepen our understandings of how WRKY transcription factors contribute to species evolution and functional divergence, laying a solid molecular foundation for future exploration and study of stress resistance mechanisms in T.pratense.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weiguo Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Beibei Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| |
Collapse
|
133
|
Wen X, Yuan J, Bozorov TA, Waheed A, Kahar G, Haxim Y, Liu X, Huang L, Zhang D. An efficient screening system of disease-resistant genes from wild apple, Malus sieversii in response to Valsa mali pathogenic fungus. PLANT METHODS 2023; 19:138. [PMID: 38042829 PMCID: PMC10693133 DOI: 10.1186/s13007-023-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
For molecular breeding of future apples, wild apple (Malus sieversii), the primary progenitor of domesticated apples, provides abundant genetic diversity and disease-resistance traits. Valsa canker (caused by the fungal pathogen Valsa mali) poses a major threat to wild apple population as well as to cultivated apple production in China. In the present study, we developed an efficient system for screening disease-resistant genes of M. sieversii in response to V. mali. An optimal agrobacterium-mediated transient transformation of M. sieversii was first used to manipulate in situ the expression of candidate genes. After that, the pathogen V. mali was inoculated on transformed leaves and stems, and 3 additional methods for slower disease courses were developed for V. mali inoculation. To identify the resistant genes, a series of experiments were performed including morphological (incidence, lesion area/length, fungal biomass), physiological (H2O2 content, malondialdehyde content), and molecular (Real-time quantitative Polymerase Chain Reaction) approaches. Using the optimized system, we identified two transcription factors with high resistance to V. mali, MsbHLH41 and MsEIL3. Furthermore, 35 and 45 downstream genes of MsbHLH41 and MsEIL3 were identified by screening the V. mali response gene database in M. sieversii, respectively. Overall, these results indicate that the disease-resistant gene screening system has a wide range of applications for identifying resistant genes and exploring their immune regulatory networks.
Collapse
Affiliation(s)
- Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
- National Positioning Observation and Research Station of Forest Ecosystem in Yili (XinJiang), Academy of Forestry in Yili, Yili, 835100, China
| | - Jiangxue Yuan
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
134
|
Yadav P, Sharma K, Tiwari N, Saxena G, Asif MH, Singh S, Kumar M. Comprehensive transcriptome analyses of Fusarium-infected root xylem tissues to decipher genes involved in chickpea wilt resistance. 3 Biotech 2023; 13:390. [PMID: 37942053 PMCID: PMC10630269 DOI: 10.1007/s13205-023-03803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Fusarium wilt is the most destructive soil-borne disease that poses a major threat to chickpea production. To comprehensively understand the interaction between chickpea and Fusarium oxysporum, the xylem-specific transcriptome analysis of wilt-resistant (WR315) and wilt-susceptible (JG62) genotypes at an early timepoint (4DPI) was investigated. Differential expression analysis showed that 1368 and 348 DEGs responded to pathogen infection in resistant and susceptible genotypes, respectively. Both genotypes showed transcriptional reprogramming in response to Foc2, but the responses in WR315 were more severe than in JG62. Results of the KEGG pathway analysis revealed that most of the DEGS in both genotypes with enrichment in metabolic pathways, secondary metabolite biosynthesis, plant hormone signal transduction, and carbon metabolism. Genes associated with defense-related metabolites synthesis such as thaumatin-like protein 1b, cysteine-rich receptor-like protein kinases, MLP-like proteins, polygalacturonase inhibitor 2-like, ethylene-responsive transcription factors, glycine-rich cell wall structural protein-like, beta-galactosidase-like, subtilisin-like protease, thioredoxin-like protein, chitin elicitor receptor kinase-like, proline transporter-like, non-specific lipid transfer protein and sugar transporter were mostly up-regulated in resistant as compared to susceptible genotypes. The results of this study provide disease resistance genes, which would be helpful in understanding the Foc resistance mechanism in chickpea. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03803-9.
Collapse
Affiliation(s)
- Pooja Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Kritika Sharma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Garima Saxena
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mehar H. Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Swati Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Manoj Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
135
|
Peng B, Sun X, Tian X, Kong D, He L, Peng J, Liu Y, Guo G, Sun Y, Pang R, Zhou W, Zhao J, Wang Q. OsNAC74 affects grain protein content and various biological traits by regulating OsAAP6 expression in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:87. [PMID: 38037655 PMCID: PMC10684849 DOI: 10.1007/s11032-023-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
The grain protein content is an important quality trait in cereals, and the expression level of the OsAAP6 can significantly affect the grain protein content in rice. Through site-directed mutagenesis, we found that the position from -7 to -12 bp upstream of the transcription start site of the OsAAP6 was the functional variation site. By using the yeast single hybrid test, point-to-point in yeast, and the local surface plasmon resonance test, the OsNAC74 was screened and verified to be a regulator upstream of OsAAP6. The OsNAC74 is a constitutively expressed gene whose product is located on the cell membrane. The OsAAP6 and the genes related to the seed storage in the Osnac74 mutants were downregulated, and grain protein content was significantly reduced. In addition, OsNAC74 had a significant impact on quality traits such as grain chalkiness and gel consistency in rice. Although the Osnac74 mutant seeds were relatively small, the individual plant yield was not decreased. Therefore, OsNAC74 is an important regulatory factor with multiple biological functions. This study provides important information for the later use of OsNAC74 gene for molecular design and breeding in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01433-w.
Collapse
Affiliation(s)
- Bo Peng
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Xiaoyu Sun
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Xiayu Tian
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Dongyan Kong
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Lulu He
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Juan Peng
- Xinyang Station of Plant Protection and Inspection, Xinyang, 464000 China
| | - Yan Liu
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Guiying Guo
- Xinyang Academy of Agricultural Science, Xinyang, 464000 China
| | - Yanfang Sun
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Ruihua Pang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Wei Zhou
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Jinhui Zhao
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Quanxiu Wang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| |
Collapse
|
136
|
Xu W, Nyamaharo KC, Huang Y, Mei J, Guo W, Ke L, Sun Y. A signal R3-type, CAPRICE-like MYB transcription factor from Dendrobium nobile controls trichome and root-hair development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111878. [PMID: 37777017 DOI: 10.1016/j.plantsci.2023.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The CAPRICE-like MYB transcription factors with R3 MYB motif play a central role in regulating trichome and root-hair development in plants. We identified the homologous gene of ENHANCER OF TRY AND CPC (ETC) in Arabidopsis from Dendrobium nobile Lindl with full cDNA sequence and genomic sequence (CAPRICE-LIKE MYB, DnCPL and DngCPL) respectively. Phylogenic analyses revealed a close relationship of CAPRICE-like MYB TFs between D. nobile and A. thaliana. Promoter analysis indicated that DnCPL is specifically expressed in trichome basal cells of leaf epidermis and root hairs. Overexpression of DnCPL results in the suppression of trichome formation and overproduction of root hairs. In transgenic plants overexpressing DnCPL and DngCPL, trichome formation was inhibited, moreover, no trichomes were observed in tissues of aerial parts, and root-hair differentiation was significantly enhanced by strongly repressing endogenous genes of AtCPC, AtTCL1, and AtTCL2 expression, thereby enhancing AtTRY expression. The DnCPL RNAi plants formed fewer lateral roots with a corresponding change in AtCPC, AtTCL1 and AtTCL2 expression. These results suggest that Dendrobium and Arabidopsis partially use similar transcription factors for epidermal cell differentiation and the CPC-like R3 MYB, DnCPL, may be a key common regulator of plant trichome and root-hair development. The results also provided genes and means of regulation to improve the survival ratio of artificially cultivated Dendrobium with more lateral roots.
Collapse
Affiliation(s)
- Wenqi Xu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Kundai Chelsea Nyamaharo
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jun Mei
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Wanli Guo
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
137
|
Song Y, Ma B, Feng X, Guo Q, Zhou L, Zhang X, Zhang C. Genome-Wide Analysis of the Universal Stress Protein Gene Family in Blueberry and Their Transcriptional Responses to UV-B Irradiation and Abscisic Acid. Int J Mol Sci 2023; 24:16819. [PMID: 38069138 PMCID: PMC10706445 DOI: 10.3390/ijms242316819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Universal stress proteins (USPs) play essential roles in plant development, hormonal regulation, and abiotic stress responses. However, the characteristics and functional divergence of USP family members have not been studied in blueberry (Vaccinium corymbosum). In this study, we identified 72 VcUSP genes from the Genome Database for Vaccinium. These VcUSPs could be divided into five groups based on their phylogenetic relationships. VcUSPs from groups Ⅰ, Ⅳ, and Ⅴ each possess one UspA domain; group Ⅰ proteins also contain an ATP-binding site that is not present in group Ⅳ and Ⅴ proteins. Groups Ⅱ and Ⅲ include more complex proteins possessing one to three UspA domains and UspE or UspF domains. Prediction of cis-regulatory elements in the upstream sequences of VcUSP genes indicated that their protein products are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of RNA deep sequencing data showed that 21 and 7 VcUSP genes were differentially expressed in response to UV-B radiation and exogenous abscisic acid (ABA) treatments, respectively. VcUSP41 and VcUSP68 expressions responded to both treatments, and their encoded proteins may integrate the UV-B and ABA signaling pathways. Weighted gene co-expression network analysis revealed that VcUSP22, VcUSP26, VcUSP67, VcUSP68, and VcUSP41 were co-expressed with many transcription factor genes, most of which encode members of the MYB, WRKY, zinc finger, bHLH, and AP2 families, and may be involved in plant hormone signal transduction, circadian rhythms, the MAPK signaling pathway, and UV-B-induced flavonoid biosynthesis under UV-B and exogenous ABA treatments. Our study provides a useful reference for the further functional analysis of VcUSP genes and blueberry molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
138
|
Wu X, Cheng C, Ma R, Xu J, Ma C, Zhu Y, Ren Y. Genome-wide identification, expression analysis, and functional study of the bZIP transcription factor family and its response to hormone treatments in pea (Pisum sativum L.). BMC Genomics 2023; 24:705. [PMID: 37993794 PMCID: PMC10666455 DOI: 10.1186/s12864-023-09793-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Basic leucine zipper (bZIP) protein is a plant-specific transcription factor involved in various biological processes, including light signaling, seed maturation, flower development, cell elongation, seed accumulation protein, and abiotic and biological stress responses. However, little is known about the pea bZIP family. RESULTS In this study, we identified 87 bZIP genes in pea, named PsbZIP1 ~ PsbZIP87, via homology analysis using Arabidopsis. The genes were divided into 12 subfamilies and distributed unevenly in 7 pea chromosomes. PsbZIPs in the same subfamily contained similar intron/exon organization and motif composition. 1 tandem repeat event and 12 segmental duplication events regulated the expansion of the PsbZIP gene family. To better understand the evolution of the PsbZIP gene family, we conducted collinearity analysis using Arabidopsis thaliana, Oryza sativa Japonica, Fagopyrum tataricum, Solanum lycopersicum, Vitis vinifera, and Brachypodium distachyon as the related species of pea. In addition, interactions between PsbZIP proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of PsbZIP expression was complex. We also evaluated the expression patterns of bZIP genes in different tissues and at different fruit development stages, all while subjecting them to five hormonal treatments. CONCLUSION These results provide a deeper understanding of PsbZIP gene family evolution and resources for the molecular breeding of pea. The findings suggested that PsbZIP genes, specifically PSbZIP49, play key roles in the development of peas and their response to various hormones.
Collapse
Affiliation(s)
- Xiaozong Wu
- Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| | - Changhe Cheng
- China Tobacco Zhejiang Industrial Co., LTD, Hangzhou, 310000, People's Republic of China
| | - Rui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianbo Xu
- Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| | - Congcong Ma
- College of Medical Technology, Luoyang Polytechnic, Luoyang, 471000, China
| | - Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, 462500, China.
- Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
| | - Yanyan Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
139
|
Hibbert LE, Qian Y, Smith HK, Milner S, Katz E, Kliebenstein DJ, Taylor G. Making watercress ( Nasturtium officinale) cropping sustainable: genomic insights into enhanced phosphorus use efficiency in an aquatic crop. FRONTIERS IN PLANT SCIENCE 2023; 14:1279823. [PMID: 38023842 PMCID: PMC10662076 DOI: 10.3389/fpls.2023.1279823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Watercress (Nasturtium officinale) is a nutrient-dense salad crop with high antioxidant capacity and glucosinolate concentration and with the potential to contribute to nutrient security as a locally grown outdoor aquatic crop in northern temperate climates. However, phosphate-based fertilizers used to support plant growth contribute to the eutrophication of aquatic habitats, often pristine chalk streams, downstream of farms, increasing pressure to minimize fertilizer use and develop a more phosphorus-use efficient (PUE) crop. Here, we grew genetically distinct watercress lines selected from a bi-parental mapping population on a commercial watercress farm either without additional phosphorus (P-) or under a commercial phosphate-based fertilizer regime (P+), to decipher effects on morphology, nutritional profile, and the transcriptome. Watercress plants sustained shoot yield in P- conditions, through enhanced root biomass, but with shorter stems and smaller leaves. Glucosinolate concentration was not affected by P- conditions, but both antioxidant capacity and the concentration of sugars and starch in shoot tissue were enhanced. We identified two watercress breeding lines, with contrasting strategies for enhanced PUE: line 60, with highly plastic root systems and increased root growth in P-, and line 102, maintaining high yield irrespective of P supply, but less plastic. RNA-seq analysis revealed a suite of genes involved in cell membrane remodeling, root development, suberization, and phosphate transport as potential future breeding targets for enhanced PUE. We identified watercress gene targets for enhanced PUE for future biotechnological and breeding approaches enabling less fertilizer inputs and reduced environmental damage from watercress cultivation.
Collapse
Affiliation(s)
- Lauren E. Hibbert
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
- School of Biological Sciences, University of Southampton, Hampshire, United Kingdom
| | - Yufei Qian
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | | | | | - Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | | | - Gail Taylor
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
140
|
Abd El Moneim D, Mansour H, Alshegaihi RM, Safhi FA, Alwutayd KM, Alshamrani R, Alamri A, Felembam W, Abuzaid AO, Magdy M. Evolutionary insights and expression dynamics of the CaNFYB transcription factor gene family in pepper ( Capsicum annuum) under salinity stress. Front Genet 2023; 14:1288453. [PMID: 38028611 PMCID: PMC10652888 DOI: 10.3389/fgene.2023.1288453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: The Capsicum annuum nuclear factor Y subunit B (CaNFYB) gene family plays a significant role in diverse biological processes, including plant responses to abiotic stressors such as salinity. Methods: In this study, we provide a comprehensive analysis of the CaNFYB gene family in pepper, encompassing their identification, structural details, evolutionary relationships, regulatory elements in promoter regions, and expression profiles under salinity stress. Results and discussion: A total of 19 CaNFYB genes were identified and subsequently characterized based on their secondary protein structures, revealing conserved domains essential for their functionality. Chromosomal distribution showed a non-random localization of these genes, suggesting potential clusters or hotspots for NFYB genes on specific chromosomes. The evolutionary analysis focused on pepper and comparison with other plant species indicated a complex tapestry of relationships with distinct evolutionary events, including gene duplication. Moreover, promoter cis-element analysis highlighted potential regulatory intricacies, with notable occurrences of light-responsive and stress-responsive binding sites. In response to salinity stress, several CaNFYB genes demonstrated significant temporal expression variations, particularly in the roots, elucidating their role in stress adaptation. Particularly CaNFYB01, CaNFYB18, and CaNFYB19, play a pivotal role in early salinity stress response, potentially through specific regulatory mechanisms elucidated by their cis-elements. Their evolutionary clustering with other Solanaceae family members suggests conserved ancestral functions vital for the family's survival under stress. This study provides foundational knowledge on the CaNFYB gene family in C. annuum, paving the way for further research to understand their functional implications in pepper plants and relative species and their potential utilization in breeding programs to enhance salinity tolerance.
Collapse
Affiliation(s)
- Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Hassan Mansour
- Department of Biological Sciences, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amnah Alamri
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wessam Felembam
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amani Omar Abuzaid
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Magdy
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
141
|
Rana D, Sharma P, Arpita K, Srivastava H, Sharma S, Gaikwad K. Genome-wide identification and characterization of GRAS gene family in pigeonpea ( Cajanus cajan (L.) Millspaugh). 3 Biotech 2023; 13:363. [PMID: 37840881 PMCID: PMC10570252 DOI: 10.1007/s13205-023-03782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The GRAS proteins are plant-specific transcription factors (TFs) that play a crucial role in various plant physiological processes, including tissue development and stress responses. To date, GRAS family has been comprehensively characterized in Arabidopsis, soybean, rice, chickpea and other plant species. To understand the structural and functional aspects of pigeonpea (C. cajan), we identified 60 putative GRAS (CcGRAS) genes from pigeonpea genome and further analysed their physicochemical properties, subcellular locations, evolutionary classification, exon-intron structures, conserved domains, gene duplication events and cis-promoter regions. Based on the sequence similarity, CcGRAS family was clustered into 9 subfamilies and the genes with a similar structure and motif distribution were clustered in the same group. The gene duplication studies revealed that these genes were derived from tandem and dispersed duplication events. The cis-promoter regulatory analysis of CcGRAS genes indicated the presence of three types of cis-acting elements including light-responsive, hormone-responsive and plant growth and development related. The expression profiling of CcGRAS genes revealed their tissue-specific functions and differential nature. Collectively, this study highlights relevant functional and regulatory elements of GRAS family in pigeonpea creating a significant resource for future functional studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03782-x.
Collapse
Affiliation(s)
- Divyansh Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313 India
| | - Priya Sharma
- Department of Biotechnology, Jamia Hamdard, New Delhi, Delhi 110062 India
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kumari Arpita
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Harsha Srivastava
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Sandhya Sharma
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kishor Gaikwad
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| |
Collapse
|
142
|
Li X, Martín-Pizarro C, Zhou L, Hou B, Wang Y, Shen Y, Li B, Posé D, Qin G. Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening. THE PLANT CELL 2023; 35:4020-4045. [PMID: 37506031 PMCID: PMC10615214 DOI: 10.1093/plcell/koad210] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
The NAC transcription factor ripening inducing factor (RIF) was previously reported to be necessary for the ripening of octoploid strawberry (Fragaria × ananassa) fruit, but the mechanistic basis of RIF-mediated transcriptional regulation and how RIF activity is modulated remains elusive. Here, we show that FvRIF in diploid strawberry, Fragaria vesca, is a key regulator in the control of fruit ripening and that knockout mutations of FvRIF result in a complete block of fruit ripening. DNA affinity purification sequencing coupled with transcriptome deep sequencing suggests that 2,080 genes are direct targets of FvRIF-mediated regulation, including those related to various aspects of fruit ripening. We provide evidence that FvRIF modulates anthocyanin biosynthesis and fruit softening by directly regulating the related core genes. Moreover, we demonstrate that FvRIF interacts with and serves as a substrate of MAP kinase 6 (FvMAPK6), which regulates the transcriptional activation function of FvRIF by phosphorylating FvRIF at Thr-310. Our findings uncover the FvRIF-mediated transcriptional regulatory network in controlling strawberry fruit ripening and highlight the physiological significance of phosphorylation modification on FvRIF activity in ripening.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Carmen Martín-Pizarro
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga 29071,Spain
| | - Leilei Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
| | - Bingzhu Hou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
| | - Yuying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206,China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing 100193,China
| | - David Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga 29071,Spain
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| |
Collapse
|
143
|
Al-Dossary O, Furtado A, KharabianMasouleh A, Alsubaie B, Al-Mssallem I, Henry RJ. Long read sequencing to reveal the full complexity of a plant transcriptome by targeting both standard and long workflows. PLANT METHODS 2023; 19:112. [PMID: 37865785 PMCID: PMC10589961 DOI: 10.1186/s13007-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Long read sequencing allows the analysis of full-length transcripts in plants without the challenges of reliable transcriptome assembly. Long read sequencing of transcripts from plant genomes has often utilized sized transcript libraries. However, the value of including libraries of differing sizes has not been established. METHODS A comprehensive transcriptome of the leaves of Jojoba (Simmondsia chinensis) was generated from two different PacBio library preparations: standard workflow (SW) and long workflow (LW). RESULTS The importance of using both transcript groups in the analysis was demonstrated by the high proportion of unique sequences (74.6%) that were not shared between the groups. A total of 37.8% longer transcripts were only detected in the long dataset. The completeness of the combined transcriptome was indicated by the presence of 98.7% of genes predicted in the jojoba male reference genome. The high coverage of the transcriptome was further confirmed by BUSCO analysis showing the presence of 96.9% of the genes from the core viridiplantae_odb10 lineage. The high-quality isoforms post Cd-Hit merged dataset of the two workflows had a total of 167,866 isoforms. Most of the transcript isoforms were protein-coding sequences (71.7%) containing open reading frames (ORFs) ≥ 100 amino acids (aa). Alternative splicing and intron retention were the basis of most transcript diversity when analysed at the whole genome level and by specific analysis of the apetala2 gene families. CONCLUSION This suggests the need to specifically target the capture of longer transcripts to provide more comprehensive genome coverage in plant transcriptome analysis and reveal the high level of alternative splicing.
Collapse
Affiliation(s)
- Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir KharabianMasouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
144
|
Liu Q, Wang F, Li P, Yu G, Zhang X. Overexpression of Lolium multiflorum LmMYB1 Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:15280. [PMID: 37894960 PMCID: PMC10607481 DOI: 10.3390/ijms242015280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Lolium multiflorum is one of the world-famous forage grasses with rich biomass, fast growth rate and good nutritional quality. However, its growth and forage yield are often affected by drought, which is a major natural disaster all over the world. MYB transcription factors have some specific roles in response to drought stress, such as regulation of stomatal development and density, control of cell wall and root development. However, the biological function of MYB in L. multiflorum remains unclear. Previously, we elucidated the role of LmMYB1 in enhancing osmotic stress resistance in Saccharomyces cerevisiae. Here, this study elucidates the biological function of LmMYB1 in enhancing plant drought tolerance through an ABA-dependent pathway involving the regulation of cell wall development and stomatal density. After drought stress and ABA stress, the expression of LmMYB1 in L. multiflorum was significantly increased. Overexpression of LmMYB1 increased the survival rate of Arabidopsis thaliana under drought stress. Under drought conditions, expression levels of drought-responsive genes such as AtRD22, AtRAB and AtAREB were up-regulated in OE compared with those in WT. Further observation showed that the stomatal density of OE was reduced, which was associated with the up-regulated expression of cell wall-related pathway genes in the RNA-Seq results. In conclusion, this study confirmed the biological function of LmMYB1 in improving drought tolerance by mediating cell wall development through the ABA-dependent pathway and thereby affecting stomatal density.
Collapse
Affiliation(s)
- Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fangyan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| |
Collapse
|
145
|
Gao R, Lu Y, Wu N, Liu H, Jin X. Comprehensive study of serine/arginine-rich (SR) gene family in rice: characterization, evolution and expression analysis. PeerJ 2023; 11:e16193. [PMID: 37849832 PMCID: PMC10578304 DOI: 10.7717/peerj.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
As important regulators of alternative splicing (AS) events, serine/arginine (SR)-rich proteins play indispensable roles in the growth and development of organisms. Until now, the study of SR genes has been lacking in plants. In the current study, we performed genome-wide analysis on the SR gene family in rice. A total of 24 OsSR genes were phylogenetically classified into seven groups, corresponding to seven subfamilies. The OsSR genes' structures, distribution of conserved domains, and protein tertiary structure of OsSR were conserved within each subfamily. The synteny analysis revealed that segmental duplication events were critical for the expansion of OsSR gene family. Moreover, interspecific synteny revealed the distribution of orthologous SR gene pairs between rice and Arabidopsis, sorghum, wheat, and maize. Among all OsSR genes, 14 genes exhibited NAGNAG acceptors, and only four OsSR genes had AS events on the NAGNAG acceptors. Furthermore, the distinct tissue-specific expression patterns of OsSR genes showed that these genes may function in different developmental stages in rice. The AS patterns on the same OsSR gene were variable among the root, stem, leaf, and grains at different filling stages, and some isoforms could only be detected in one or a few of tested tissues. Meanwhile, our results showed that the expression of some OsSR genes changed dramatically under ABA, GA, salt, drought, cold or heat treatment, which were related to the wide distribution of corresponding cis-elements in their promoter regions, suggesting their specific roles in stress and hormone response. This research facilitates our understanding of SR gene family in rice and provides clues for further exploration of the function of OsSR genes.
Collapse
Affiliation(s)
- Rui Gao
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yingying Lu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Nan Wu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaoli Jin
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
146
|
Hu Y, Li C, Zhou R, Song Y, Lv Z, Wang Q, Dong X, Liu S, Feng C, Zhou Y, Zeng X, Zhang L, Wang Z, Di H. The Transcription Factor ZmNAC89 Gene Is Involved in Salt Tolerance in Maize ( Zea mays L.). Int J Mol Sci 2023; 24:15099. [PMID: 37894780 PMCID: PMC10606073 DOI: 10.3390/ijms242015099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The NAC gene family has transcription factors specific to plants, which are involved in development and stress response and adaptation. In this study, ZmNAC89, an NAC gene in maize that plays a role in saline-alkaline tolerance, was isolated and characterized. ZmNAC89 was localized in the nucleus and had transcriptional activation activity during in vitro experiments. The expression of ZmNAC89 was strongly upregulated under saline-alkaline, drought and ABA treatments. Overexpression of the ZmNAC89 gene in transgenic Arabidopsis and maize enhanced salt tolerance at the seedling stage. Differentially expressed genes (DEGs) were then confirmed via RNA-sequencing analysis with the transgenic maize line. GO analyses showed that oxidation-reduction process-regulated genes were involved in ZmNAC89-mediated salt-alkaline stress. ZmNAC89 may regulate maize saline-alkali tolerance through the REDOX pathway and ABA signal transduction pathway. From 140 inbred maize lines, 20 haplotypes and 16 SNPs were found in the coding region of the ZmNAC89 gene, including the excellent haplotype HAP20. These results contribute to a better understanding of the response mechanism of maize to salt-alkali stress and marker-assisted selection during maize breeding.
Collapse
Affiliation(s)
- Yingying Hu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Chunxiang Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Runyu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Yongfeng Song
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Zhichao Lv
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Qi Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Xiaojie Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
- Institute of Crop Resources Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shan Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Chenchen Feng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.H.); (C.L.); (R.Z.); (Y.S.); (Z.L.); (Q.W.); (X.D.); (S.L.); (C.F.); (Y.Z.); (X.Z.); (L.Z.)
| |
Collapse
|
147
|
Liu X, Sun W, Ma B, Song Y, Guo Q, Zhou L, Wu K, Zhang X, Zhang C. Genome-wide analysis of blueberry B-box family genes and identification of members activated by abiotic stress. BMC Genomics 2023; 24:584. [PMID: 37789264 PMCID: PMC10546702 DOI: 10.1186/s12864-023-09704-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND B-box (BBX) proteins play important roles in regulating plant growth, development, and abiotic stress responses. BBX family genes have been identified and functionally characterized in many plant species, but little is known about the BBX family in blueberry (Vaccinium corymbosum). RESULT In this study, we identified 23 VcBBX genes from the Genome Database for Vaccinium (GDV). These VcBBXs can be divided into five clades based on gene structures and conserved domains in their encoded proteins. The prediction of cis-acting elements in the upstream sequences of VcBBX genes and protein-protein interactions indicated that VcBBX proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of transcriptome deep sequencing (RNA-seq) data showed that VcBBX genes exhibited organ-specific expression pattern and 11 VcBBX genes respond to ultraviolet B (UV-B) radiation. The co-expression analysis revealed that the encoded 11 VcBBX proteins act as bridges integrating UV-B and phytohormone signaling pathways in blueberry under UV-B radiation. Reverse-transcription quantitative PCR (RT-qPCR) analysis showed that most VcBBX genes respond to drought, salt, and cold stress. Among VcBBX proteins, VcBBX24 is highly expressed in all the organs, not only responds to abiotic stress, but it also interacts with proteins in UV-B and phytohormone signaling pathways, as revealed by computational analysis and co-expression analysis, and might be an important regulator integrating abiotic stress and phytohormone signaling networks. CONCLUSIONS Twenty-three VcBBX genes were identified in blueberry, in which, 11 VcBBX genes respond to UV-B radiation, and act as bridges integrating UV-B and phytohormone signaling pathways according to RNA-seq data. The expression patterns under abiotic stress suggested that the functional roles of most VcBBX genes respose to drought, salt, and cold stress. Our study provides a useful reference for functional analysis of VcBBX genes and for improving abiotic stress tolerance in blueberry.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wenying Sun
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Bin Ma
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yan Song
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Qingxun Guo
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Lianxia Zhou
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Kuishen Wu
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xinsheng Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
148
|
He Z, Ma X, Wang F, Li J, Zhao M. LcERF10 functions as a positive regulator of litchi fruitlet abscission. Int J Biol Macromol 2023; 250:126264. [PMID: 37572813 DOI: 10.1016/j.ijbiomac.2023.126264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Phytohormone ethylene is well-known in positive modulation of plant organ abscission. However, the molecular mechanism underlying ethylene-induced abscission remains largely unknown. Here, we identified an ethylene-responsive factor, LcERF10, as a key regulatory gene in litchi fruitlet abscission. LcERF10 was strongly induced in the fruitlet abscission zone (FAZ) during the ethylene-activated abscission. Silencing of LcERF10 in litchi weakened the cytosolic alkalization of the FAZ and reduced fruitlet abscission. Moreover, LcERF10 directly bound the promoter and repressed the expression of LcNHX7, a Na+/H+ exchanger that was down-regulated in FAZ following the ethylene-activated abscission and up-regulated after LcERF10 silencing. Additionally, ectopic expression of LcERF10 in Arabidopsis promoted the cytosolic alkalization of the floral organ AZ and accelerated the floral organ abscission. Collectively, our results suggest that the transcription factor LcERF10 plays a positive role in litchi fruitlet abscission.
Collapse
Affiliation(s)
- Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
149
|
Sharma M, Negi S, Kumar P, Srivastava DK, Choudhary MK, Irfan M. Fruit ripening under heat stress: The intriguing role of ethylene-mediated signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111820. [PMID: 37549738 DOI: 10.1016/j.plantsci.2023.111820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Crop production is significantly influenced by climate, and even minor climate changes can have a substantial impact on crop yields. Rising temperature due to climate change can lead to heat stress (HS) in plants, which not only hinders plant growth and development but also result in significant losses in crop yields. To cope with the different stresses including HS, plants have evolved a variety of adaptive mechanisms. In response to these stresses, phytohormones play a crucial role by generating endogenous signals that regulate the plant's defensive response. Among these, Ethylene (ET), a key phytohormone, stands out as a major regulator of stress responses in plants and regulates many plant traits, which are critical for crop productivity and nutritional quality. ET is also known as a ripening hormone for decades in climacteric fruit and many studies are available deciphering the function of different ET biosynthesis and signaling components in the ripening process. Recent studies suggest that HS significantly affects fruit quality traits and perturbs fruit ripening by altering the regulation of many ethylene biosynthesis and signaling genes resulting in substantial loss of fruit yield, quality, and postharvest stability. Despite the significant progress in this field in recent years the interplay between ET, ripening, and HS is elusive. In this review, we summarized the recent advances and current understanding of ET in regulating the ripening process under HS and explored their crosstalk at physiological and molecular levels to shed light on intricate relationships.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Dinesh Kumar Srivastava
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mani Kant Choudhary
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
150
|
Grimaldi-Olivas JC, Morales-Merida BE, Cruz-Mendívil A, Villicaña C, Heredia JB, López-Meyer M, León-Chan R, Lightbourn-Rojas LA, León-Félix J. Transcriptomic analysis of bell pepper (Capsicum annuum L.) revealing key mechanisms in response to low temperature stress. Mol Biol Rep 2023; 50:8431-8444. [PMID: 37624559 DOI: 10.1007/s11033-023-08744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Bell pepper (Capsicum annuum L.) is one of the most economically and nutritionally important vegetables worldwide. However, its production can be affected by various abiotic stresses, such as low temperature. This causes various biochemical, morphological and molecular changes affecting membrane lipid composition, photosynthetic pigments, accumulation of free sugars and proline, secondary metabolism, as well as a change in gene expression. However, the mechanism of molecular response to this type of stress has not yet been elucidated. METHODS AND RESULTS To further investigate the response mechanism to this abiotic stress, we performed an RNA-Seq transcriptomic analysis to obtain the transcriptomic profile of Capsicum annuum exposed to low temperature stress, where libraries were constructed from reads of control and low temperature stress samples, varying on average per treatment from 22,952,190.5-27,305,327 paired reads ranging in size from 30 to 150 bp. The number of differentially expressed genes (DEGs) for each treatment was 388, 417 and 664 at T-17 h, T-22 h and T-41 h, respectively, identifying 58 up-regulated genes and 169 down-regulated genes shared among the three exposure times. Likewise, 23 DEGs encoding TFs were identified at T-17 h, 30 DEGs at T-22 h and 47 DEGs at T-42 h, respectively. GO analysis revealed that DEGs were involved in catalytic activity, response to temperature stimulus, oxidoreductase activity, stress response, phosphate ion transport and response to abscisic acid. KEGG pathway analysis identified that DEGs were related to flavonoid biosynthesis, alkaloid biosynthesis and plant circadian rhythm pathways in the case of up-regulated genes, while in the case of down-regulated genes, they pertained to MAPK signaling and plant hormone signal transduction pathways, present at all the three time points of low temperature exposure. Validation of the transcriptomic method was performed by evaluation of five DEGs by quantitative polymerase chain reaction (q-PCR). CONCLUSIONS The data obtained in the present study provide new insights into the transcriptome profiles of Capsicum annuum stem in response to low temperature stress. The data generated may be useful for the identification of key candidate genes and molecular mechanisms involved in response to this type of stress.
Collapse
Affiliation(s)
- Jesús Christian Grimaldi-Olivas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Brandon Estefano Morales-Merida
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Abraham Cruz-Mendívil
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), CONAHCYT-Instituto Politécnico Nacional (IPN), Unidad Sinaloa. Blvd. Juan de Dios Bátiz Paredes #250 Col. San Joachin, C.P. 81049, Guasave, Sinaloa, Mexico
| | - Claudia Villicaña
- Laboratorio de Biología Molecular y Genómica Funcional, CONAHCYT-Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5, Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - J Basilio Heredia
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Melina López-Meyer
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional (IPN), Unidad Sinaloa. Blvd. Juan de Dios Bátiz Paredes #250 Col. San Joachin, C.P. 81049, Guasave, Sinaloa, Mexico
| | - Rubén León-Chan
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., C.P. 33981, Ciudad Jiménez, Chihuahua, Mexico
| | - Luis Alberto Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., C.P. 33981, Ciudad Jiménez, Chihuahua, Mexico
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|