101
|
Abstract
The adrenal cortex elaborates two major groups of steroids that have been arbitrarily classified as glucocorticoids and mineralocorticoids, despite the fact that carbohydrate metabolism is intimately linked to mineral balance in mammals. In fact, glucocorticoids assured both of these functions in all living cells, animal and photosynthetic, prior to the appearance of aldosterone in teleosts at the dawn of terrestrial colonization. The evolutionary drive for a hormone specifically designed for hydromineral regulation led to zonation for the conversion of 18-hydroxycorticosterone into aldosterone through the catalytic action of a synthase in the secluded compartment of the adrenal zona glomerulosa. Corticoid hormones exert their physiological action by binding to receptors that belong to a transcription factor superfamily, which also includes some of the proteins regulating steroid synthesis. Steroids stimulate sodium absorption by the activation and/or de novo synthesis of the ion-gated, amiloride-sensitive sodium channel in the apical membrane and that of the Na+/K+-ATPase in the basolateral membrane. Receptors, channels, and pumps apparently are linked to the cytoskeleton and are further regulated variously by methylation, phosphorylation, ubiquination, and glycosylation, suggesting a complex system of control at multiple checkpoints. Mutations in genes for many of these different proteins have been described and are known to cause clinical disease.
Collapse
Affiliation(s)
- M K Agarwal
- Centre National de la Recherche Scientifique, Paris, France.
| | | |
Collapse
|
102
|
Pedersen PS, Holstein-Rathlou NH, Larsen PL, Qvortrup K, Frederiksen O. Fluid absorption related to ion transport in human airway epithelial spheroids. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L1096-103. [PMID: 10600878 DOI: 10.1152/ajplung.1999.277.6.l1096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway epithelium explants from cystic fibrosis (CF) patients and non-CF subjects formed monolayered spheres, with the apical ciliated cell membrane facing the bath and the basolateral cell membrane pointing toward a fluid-filled lumen. With the use of two microelectrodes, transepithelial potential difference and changes in potential difference in response to passage of current pulses were recorded, and epithelial resistance and the equivalent short-circuit current were calculated. Non-CF control potential difference and short-circuit current values were significantly lower than the CF values, and amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level in non-CF than in CF spheroids, 3) Cl(-)-channel inhibitors increased fluid absorption in amiloride-treated non-CF spheroids to a level equal to that of amiloride-treated CF spheroids, 4) hydrochlorothiazide reduced the amiloride-insensitive fluid absorption in both non-CF and CF spheroids, and 5) osmotic water permeabilities were equal in non-CF and CF spheroids ( approximately 27 x 10(-7) cm x s(-1) x atm(-1)).
Collapse
Affiliation(s)
- P S Pedersen
- Department of Clinical Genetics, Head and Neck Surgery, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen.
| | | | | | | | | |
Collapse
|
103
|
Sabater JR, Mao YM, Shaffer C, James MK, O'Riordan TG, Abraham WM. Aerosolization of P2Y(2)-receptor agonists enhances mucociliary clearance in sheep. J Appl Physiol (1985) 1999; 87:2191-6. [PMID: 10601167 DOI: 10.1152/jappl.1999.87.6.2191] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether aerosolized INS316 (UTP) stimulates lung mucociliary clearance (MCC) in sheep and, if so, to compare its effects with INS365, a novel P2Y(2)-receptor agonist. In the first series of studies, we used a previously described roentgenographic technique to measure tracheal mucus velocity (TMV), an index of MCC, before and for 4 h after aerosolization of INS316 (10(-1) M and 10(-2) M) and INS365 (10(-1) M and 10(-2) M), or normal saline in a randomized crossover fashion (n = 6). In a second series of studies, we compared the ability of these agents to enhance total lung clearance. For these tests, the clearance of inhaled technetium-labeled human serum albumin was measured serially over a 2-h period after aerosolization of 10(-1) M concentration of each agent (n = 7). Aerosolization of both P2Y(2)-receptor agonists induced significant dose-related increases in TMV (P < 0.05) compared with saline. The greatest increase in TMV was observed between 15 and 30 min after drug treatment. The highest dose (10(-1) M) of INS316 produced a greater overall stimulation of TMV than did INS365 (10(-1) M). Both compounds, compared with saline, induced a significant increase in MCC (P < 0.05) within 20 min of treatment. This enhancement in MCC began to plateau at 60 min. Although the response to INS316 started earlier, there was no significant difference between the clearance curves for the two compounds. We conclude that inhaled P2Y(2)-receptor agonists can increase lung MCC in sheep and that for P2Y(2)-receptor stimulation TMV accurately reflects changes in whole lung MCC.
Collapse
Affiliation(s)
- J R Sabater
- Division of Pulmonary and Critical Care Medicine, University of Miami School of Medicine at Mount Sinai Medical Center, Miami Beach, Florida 33140, USA
| | | | | | | | | | | |
Collapse
|
104
|
Teramoto S, Mastsue T, Ouchi Y. Manipulation of volume vs osmolality in cystic fibrosis lung disease. Chest 1999; 116:1494-5. [PMID: 10559127 DOI: 10.1378/chest.116.5.1494-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
105
|
Homolya L, Watt WC, Lazarowski ER, Koller BH, Boucher RC. Nucleotide-regulated calcium signaling in lung fibroblasts and epithelial cells from normal and P2Y(2) receptor (-/-) mice. J Biol Chem 1999; 274:26454-60. [PMID: 10473605 DOI: 10.1074/jbc.274.37.26454] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To test for the role of the P2Y(2) receptor (P2Y(2)-R) in the regulation of nucleotide-promoted Ca(2+) signaling in the lung, we generated P2Y(2)-R-deficient (P2Y(2)-R(-/-)) mice and measured intracellular Ca(2+)(i) responses (DeltaCa(2+)(i)) to nucleotides in cultured lung fibroblasts and nasal and tracheal epithelial cells from wild type and P2Y(2)-R(-/-) mice. In the wild type fibroblasts, the rank order of potencies for nucleotide-induced DeltaCa(2+)(i) was as follows: UTP >/= ATP >> ADP > UDP. The responses induced by these agonists were completely absent in the P2Y(2)-R(-/-) fibroblasts. Inositol phosphate responses paralleled those of DeltaCa(2+)(i) in both groups. ATP and UTP also induced Ca(2+)(i) responses in wild type airway epithelial cells. In the P2Y(2)-R(-/-) airway epithelial cells, UTP was ineffective. A small fraction (25%) of the ATP response persisted. Adenosine and alpha,beta-methylene ATP were ineffective, and ATP responses were not affected by adenosine deaminase or by removal of extracellular Ca(2+), indicating that neither P1 nor P2X receptors mediated this residual ATP response. In contrast, 2-methylthio-ADP promoted a substantial Ca(2+)(i) response in P2Y(2)-R(-/-) cells, which was inhibited by the P2Y(1) receptor antagonist adenosine 3'-5'-diphosphate. These studies demonstrate that P2Y(2)-R is the dominant purinoceptor in airway epithelial cells, which also express a P2Y(1) receptor, and that the P2Y(2)-R is the sole purinergic receptor subtype mediating nucleotide-induced inositol lipid hydrolysis and Ca(2+) mobilization in mouse lung fibroblasts.
Collapse
Affiliation(s)
- L Homolya
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
106
|
Agteresch HJ, Dagnelie PC, van den Berg JW, Wilson JH. Adenosine triphosphate: established and potential clinical applications. Drugs 1999; 58:211-32. [PMID: 10473017 DOI: 10.2165/00003495-199958020-00002] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is a purine nucleotide found in every cell of the human body. In addition to its well established role in cellular metabolism, extracellular ATP and its breakdown product adenosine, exert pronounced effects in a variety of biological processes including neurotransmission, muscle contraction, cardiac function, platelet function, vasodilatation and liver glycogen metabolism. These effects are mediated by both P1 and P2 receptors. A cascade of ectonucleotidases plays a role in the effective regulation of these processes and may also have a protective function by keeping extracellular ATP and adenosine levels within physiological limits. In recent years several clinical applications of ATP and adenosine have been reported. In anaesthesia, low dose adenosine reduced neuropathic pain, hyperalgesia and ischaemic pain to a similar degree as morphine or ketamine. Postoperative opioid use was reduced. During surgery, ATP and adenosine have been used to induce hypotension. In patients with haemorrhagic shock, increased survival was observed after ATP treatment. In cardiology, ATP has been shown to be a well tolerated and effective pulmonary vasodilator in patients with pulmonary hypertension. Bolus injections of ATP and adenosine are useful in the diagnosis and treatment of paroxysmal supraventricular tachycardias. Adenosine also allowed highly accurate diagnosis of coronary artery disease. In pulmonology, nucleotides in combination with a sodium channel blocker improved mucociliary clearance from the airways to near normal in patients with cystic fibrosis. In oncology, there are indications that ATP may inhibit weight loss and tumour growth in patients with advanced lung cancer. There are also indications of potentiating effects of cytostatics and protective effects against radiation tissue damage. Further controlled clinical trials are warranted to determine the full beneficial potential of ATP, adenosine and uridine 5'-triphosphate.
Collapse
Affiliation(s)
- H J Agteresch
- Department of Internal Medicine II, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
107
|
Noone PG, Bennett WD, Regnis JA, Zeman KL, Carson JL, King M, Boucher RC, Knowles MR. Effect of aerosolized uridine-5'-triphosphate on airway clearance with cough in patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 1999; 160:144-9. [PMID: 10390392 DOI: 10.1164/ajrccm.160.1.9806146] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormal ciliary structure and function and impaired mucociliary clearance. Because patients with PCD use cough clearance as an airway defense mechanism, we tested the hypothesis that aerosolized uridine-5'-triphosphate (UTP) would improve clearance during cough by its actions to stimulate Cl- secretion and mucin release by goblet cells. We measured clearance during cough in 12 patients with PCD (ages 14 to 71 yr, FEV1 43% to 89% predicted) in a double blind, randomized, crossover study after aerosolization of a single dose of UTP (5 mg/ml, 3.5 ml) or vehicle (0.12% saline, 3.5 ml). Clearance during cough (whole lung) was quantified during and after a series of controlled coughs by measuring the clearance of [99mTc]Fe2O3 particles via gamma camera scanning over 120 min. Safety parameters were recorded during and after drug delivery. Aerosolized UTP improved whole-lung clearance during cough as compared with vehicle (from 0 to 60 min: 0.40 +/- 0.07%/min [UTP] versus 0.26 +/- 0. 04%/min [vehicle] [mean +/- SEM], p = 0.01), and from 0 to 120 min: 0.38 +/- 0.05%/min [UTP] versus 0.25 +/- 0.04%/ min [vehicle], p = 0. 02). Aerosolized UTP is safe, with no serious adverse effects. Whole-lung clearance during cough in patients with defective ciliary function is enhanced after inhalation of UTP.
Collapse
Affiliation(s)
- P G Noone
- Division of Pulmonary Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Morris AP. The regulation of epithelial cell cAMP- and calcium-dependent chloride channels. ADVANCES IN PHARMACOLOGY 1999; 46:209-51. [PMID: 10332504 DOI: 10.1016/s1054-3589(08)60472-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
This chapter has focused on two types of chloride conductance found in epithelial cells. The leap from the Ussing chamber to patch-clamp studies has identified yet other conductances present which have also been electrophysiologically characterized. In the case of the swelling activated wholecell chloride current, a physiological function is apparent and a single-channel basis found, but its genetic identity remains unknown (see reviews by Frizzell and Morris, 1994; and Strange et al., 1996). The outwardly rectified chloride channel has been the subject of considerable electrophysiological interest over the past 10 years and is well characterized at the single-channel level, but its physiological function remains controversial (reviewed by Frizzell and Morris, 1994; Devidas and Guggino, 1997). Yet other conductances related to the CLC gene family also appear to be present in epithelial cells of the kidney (reviewed by Jentsch, 1996; Jentsch and Gunter, 1997) where physiological functions for some isoforms are emerging. Clearly, there remain many unknowns. Chief among these is the molecular basis of GCa2+Cl and many of other the conductances. As sequences become available it is expected that the wealth of information gained by investigation into CFTR function will provide a conceptual blueprint for similar studies in these later channel clones.
Collapse
Affiliation(s)
- A P Morris
- Department of Integrative Biology, University of Texas-Houston Health Science Center 77030, USA
| |
Collapse
|
109
|
Jiang C, Finkbeiner WE, Widdicombe JH, Fang SL, Wang KX, Nietupski JB, Hehir KM, Cheng SH. Restoration of cyclic adenosine monophosphate-stimulated chloride channel activity in human cystic fibrosis tracheobronchial submucosal gland cells by adenovirus-mediated and cationic lipid-mediated gene transfer. Am J Respir Cell Mol Biol 1999; 20:1107-15. [PMID: 10340929 DOI: 10.1165/ajrcmb.20.6.3440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In human airways, the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is predominantly expressed in serous cells of the tracheobronchial glands. Despite considerable evidence that submucosal glands are important contributors to the pathophysiology of CF lung disease, most attempts at CFTR gene transfer have primarily targeted airway surface epithelial cells. In this study, we systematically evaluated CFTR gene transfer into cultures of immortalized CF human tracheobronchial submucosal gland (6CFSMEO) cells using adenovirus and cationic lipid vectors. We found that the efficiency of adenovirus-mediated gene transfer was comparable in 6CFSMEO and CFT1 cells (a surface airway epithelial cell line isolated from a subject with CF). So was the ranking order of adenovirus vectors containing different enhancers/promoters (CMV >> E1a approximately phosphoglycerokinase), as determined by both X-Gal staining and quantitative measurement of beta-galactosidase activity. Further, we provide the first demonstration that cationic lipids mediate efficient gene transfer into 6CFSMEO cells in vitro. The transfection efficiency at optimal conditions was higher in 6CFSMEO than in CFT1 cells. Finally, either infection with adenoviral vectors or transfection with cationic lipid:plasmid DNA complexes encoding CFTR significantly increased chloride (Cl-) permeability, as assessed using the 6-methoxy-N-(3-sulfopropyl)-quinolinium (SPQ) fluorescence assay, indicating restoration of functional CFTR Cl- channel activity. These data show that although the mechanisms of transfection may be different between the two cell types, 6CFSMEO cells are as susceptible as CFT1 cells to transfection by adenoviral and cationic-lipid gene transfer vectors.
Collapse
Affiliation(s)
- C Jiang
- Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
The epithelia that line the airways of the lung exhibit two general functions: (1) airway epithelia in all regions 'defend' the lung against infectious and noxious agents; and (2) airway epithelia in the proximal regions replenish water lost from airway surfaces, i.e. the 'insensible water loss', consequent to conditioning inspired air. How airway epithelia perform both functions, and co-ordinate them in health and disease, is the subject of this review.
Collapse
Affiliation(s)
- R C Boucher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA.
| |
Collapse
|
111
|
Clarke LL, Harline MC, Otero MA, Glover GG, Garrad RC, Krugh B, Walker NM, González FA, Turner JT, Weisman GA. Desensitization of P2Y2 receptor-activated transepithelial anion secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C777-87. [PMID: 10199807 DOI: 10.1152/ajpcell.1999.276.4.c777] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Desensitization of P2Y2 receptor-activated anion secretion may limit the usefulness of extracellular nucleotides in secretagogue therapy of epithelial diseases, e.g., cystic fibrosis (CF). To investigate the desensitization process for endogenous P2Y2 receptors, freshly excised or cultured murine gallbladder epithelia (MGEP) were mounted in Ussing chambers to measure short-circuit current (Isc), an index of electrogenic anion secretion. Luminal treatment with nucleotide receptor agonists increased the Isc with a potency profile of ATP = UTP > 2-methylthioATP >> alpha,beta-methylene-ATP. RT-PCR revealed the expression of P2Y2 receptor mRNA in the MGEP cells. The desensitization of anion secretion required a 10-min preincubation with the P2Y2 receptor agonist UTP and increased in a concentration-dependent manner (IC50 approximately 10(-6) M). Approximately 40% of the anion secretory response was unaffected by maximal desensitizing concentrations of UTP. Recovery from UTP-induced desensitization was rapid (<10 min) at preincubation concentrations less than the EC50 (1.9 x 10(-6) M) but required progressively longer time periods at greater concentrations. UTP-induced total inositol phosphate production and intracellular Ca2+ mobilization desensitized with a concentration dependence similar to that of anion secretion. In contrast, maximal anion secretion induced by Ca2+ ionophore ionomycin was unaffected by preincubation with a desensitizing concentration of UTP. It was concluded that 1) desensitization of transepithelial anion secretion stimulated by the P2Y2 receptor agonist UTP is time and concentration dependent; 2) recovery from desensitization is prolonged (>90 min) at UTP concentrations >10(-5) M; and 3) UTP-induced desensitization occurs before the operation of the anion secretory mechanism.
Collapse
Affiliation(s)
- L L Clarke
- Dalton Cardiovascular Research Center and Department of Veterinary Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Murcia NS, Sweeney WE, Avner ED. New insights into the molecular pathophysiology of polycystic kidney disease. Kidney Int 1999; 55:1187-97. [PMID: 10200981 DOI: 10.1046/j.1523-1755.1999.00370.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polycystic kidney diseases are characterized by the progressive expansion of multiple cystic lesions, which compromise the function of normal parenchyma. Throughout the course of these diseases, renal tubular function and structure are altered, changing the tubular microenvironment and ultimately causing the formation and progressive expansion of cystic lesions. Renal tubules are predisposed to cystogenesis when a germ line mutation is inherited in either the human PKD1 or PKD2 genes in autosomal dominant polycystic kidney disease (ADPKD) or when a homozygous mutation in Tg737 is inherited in the orpk mouse model of autosomal recessive polycystic kidney disease (ARPKD). Recent information strongly suggests that the protein products of these disease genes may form a macromolecular signaling structure, the polycystin complex, which regulates fundamental aspects of renal epithelial development and cell biology. Here, we re-examine the cellular pathophysiology of renal cyst formation and enlargement in the context of our current understanding of the molecular genetics of ADPKD and ARPKD.
Collapse
Affiliation(s)
- N S Murcia
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | | | | |
Collapse
|
113
|
Abstract
The presence of receptors for ATP has not been established in any native preparation of retinal neurons or glia. In the present study, we used conventional electrophysiological and [Ca2+]in fluorescence imaging techniques to investigate the effects of ATP added to Ringer's solution perfusing the retinal-facing (apical) membrane of freshly isolated monolayers of bovine retinal pigment epithelium (RPE). ATP (or UTP) produced large, biphasic voltage and resistance changes with a Kd of approximately 5 microM for ATP and approximately 1 microM for UTP. Electrical and pharmacological evidence indicates that the first and second phases of the response are attributable to an increase in basolateral membrane Cl conductance and a decrease in apical membrane K conductance, respectively. The ATP-induced responses were not affected by adenosine, but were reduced by the P2-purinoceptor blocker suramin. ATP also produced a large, transient increase in [Ca2+]in that was blocked by cyclopiazonic acid, an inhibitor of endoplasmic reticulum Ca2+-ATPases. The calcium buffer BAPTA attenuated the voltage effects of ATP. We also found that apical DIDS significantly inhibited the ATP-evoked [Ca2+]in and electrical responses, suggesting that DIDS blocked the purinoceptor. Measurements of fluid movement across the RPE using the capacitance probe technique demonstrated a significant increase in fluid absorption by apical UTP. These data indicate the presence of metabotropic P2Y/P2U-purinoceptors at the RPE apical membrane and implicate extracellular ATP in vivo as a retinal signaling molecule that could help regulate the hydration and chemical composition of the subretinal space.
Collapse
|
114
|
Phillips JE, Wong LB, Yeates DB. Bidirectional transepithelial water transport: measurement and governing mechanisms. Biophys J 1999; 76:869-77. [PMID: 9929488 PMCID: PMC1300088 DOI: 10.1016/s0006-3495(99)77250-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the search for the mechanisms whereby water is transported across biological membranes, we hypothesized that in the airways, the hydration of the periciliary fluid layer is regulated by luminal-to-basolateral water transport coupled to active transepithelial sodium transport. The luminal-to-basolateral (JWL-->B) and the basolateral-to-luminal (JWB-->L) transepithelial water fluxes across ovine tracheal epithelia were measured simultaneously. The JWL-->B (6.1 microliter/min/cm2) was larger than JWB-->L (4.5 microliter/min/cm2, p < 0.05, n = 30). The corresponding water diffusional permeabilities were PdL-->B = 1.0 x 10(-4) cm/s and PdB-->L = 7.5 x 10(-5) cm/s. The activation energy (Ea) of JWL-->B (11.6 kcal/mol) was larger than the Ea of JWB-->L (6.5 kcal/mol, p < 0.05, n = 5). Acetylstrophanthidin (100 microM basolateral) reduced JWL-->B from 6.1 to 4.4 microliter/min/cm2 (p < 0. 05, n = 5) and abolished the PD. Amiloride (10 microM luminal) reduced JWL-->B from 5.7 to 3.7 microliter/min/cm2 (p < 0.05, n = 5) and reduced PD by 44%. Neither of these agents significantly changed JWB-->L. These data indicate that in tracheal epithelia under homeostatic conditions, JWB-->L was dominated by diffusion (Ea = 4.6 kcal/mol), whereas approximately 30% of JWL-->B was coupled to the active Na+,K+-ATPase pump (Ea = 27 kcal/mol).
Collapse
Affiliation(s)
- J E Phillips
- Department of Medicine, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
115
|
Zhang Y, Engelhardt JF. Airway surface fluid volume and Cl content in cystic fibrosis and normal bronchial xenografts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C469-76. [PMID: 9950775 DOI: 10.1152/ajpcell.1999.276.2.c469] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the use of an in vivo human bronchial xenograft model of cystic fibrosis (CF) and non-CF airways to investigate pathophysiological alterations in airway surface fluid (ASF) volume (Vs) and Cl content. Vs was calculated based on the dilution of an impermeable marker, [3H]inulin, during harvesting of ASF from xenografts with an isosmotic Cl-free solution. These calculations demonstrated that Vs in CF xenographs (28 +/- 3.0 microliter/cm2; n = 17) was significantly less than that of non-CF xenografts (35 +/- 2. 4 microliter/cm2; n = 30). The Cl concentration of ASF ([Cl]s) was determined using a solid-state AgCl electrode and adjusted for dilution during harvesting using the impermeable [3H]inulin marker. Cumulative results demonstrate small but significant elevations (P < 0.045) in [Cl]s in CF (125 +/- 4 mM; n = 27) compared with non-CF (114 +/- 4 mM; n = 48) xenografts. To investigate potential mechanisms by which CF airways may facilitate a higher level of fluid absorption yet retain slightly elevated levels of Cl, we sought to evaluate the capacity of CF and non-CF airways to absorb both 22Na and 36Cl. Two consistent findings were evident from these studies. First, in both CF and non-CF xenografts, 22Na and 36Cl were always absorbed in an equal molar ratio. Second, CF xenografts hyperabsorbed ( approximately 1.5-fold higher) both 22Na and 36Cl compared with non-CF xenografts. These results substantiate previously documented findings of elevated Na absorption in CF airways and also suggest that the slightly elevated [Cl]s found in this study of CF xenograft epithelia does not occur through a mechanism of decreased apical permeability to Cl.
Collapse
Affiliation(s)
- Y Zhang
- Departments of Anatomy and Cell Biology and of Internal Medicine, University of Iowa Medical School, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
116
|
Wilson PD, Hovater JS, Casey CC, Fortenberry JA, Schwiebert EM. ATP release mechanisms in primary cultures of epithelia derived from the cysts of polycystic kidneys. J Am Soc Nephrol 1999; 10:218-29. [PMID: 10215320 DOI: 10.1681/asn.v102218] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) cyst enlargement is exacerbated by accumulation of fluid within the lumen of the cyst. Extracellular nucleotides and nucleosides stimulate fluid and chloride (Cl-) secretion across epithelia and are potent autocrine and paracrine agonists within tissues. This study tests the hypothesis that ATP may be released by ADPKD epithelial cells. Once released, extracellular nucleotides and their metabolites may become "trapped" in the cyst lumen. As a consequence, extracellular ATP may augment ADPKD cyst enlargement through stimulation of salt and water secretion across ADPKD epithelia that encapsulate ADPKD cysts. To test this hypothesis, bioluminescence detection assays of ATP released from primary cultures of human ADPKD epithelial cells were compared with non-ADPKD human epithelial primary cultures. ADPKD cultures release comparable or greater amounts of ATP than non-ADPKD cultures derived from proximal tubule or cortex. ATP release in both ADPKD and non-ADPKD primary epithelial monolayers was directed largely into the apical medium; however, basolateral-directed ATP release under basal and stimulated conditions was also observed. Hypotonicity potentiated ATP release into the apical and basolateral medium in a reversible manner. Reconstitution of isotonic conditions with specific osmoles or inhibition with mechanosensitive ion channel blockers dampened hypotonicity-induced ATP release. "Flash-frozen" cyst fluids from ADPKD cysts, harvested from multiple donor kidneys, were screened by luminometry. A subset of cyst fluids contained as much as 0.5 to 10 microM ATP, doses sufficient to stimulate purinergic receptors. Taken together, these results show that ADPKD and non-ADPKD human epithelial primary cultures release ATP under basal and stimulated conditions and that ATP is released in vitro and into the cyst fluid by cystic epithelial cells in concentrations sufficient to stimulate ATP receptors. It is hypothesized that extracellular nucleotide release and signaling may contribute detrimentally to the gradual expansion of cyst fluid volume that is a hallmark of ADPKD.
Collapse
Affiliation(s)
- P D Wilson
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
117
|
Laubinger W, Reiser G. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat. Eur J Pharmacol 1999; 366:93-100. [PMID: 10064157 DOI: 10.1016/s0014-2999(98)00902-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.
Collapse
Affiliation(s)
- W Laubinger
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, Germany
| | | |
Collapse
|
118
|
Schwiebert EM. ABC transporter-facilitated ATP conductive transport. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1-8. [PMID: 9886914 DOI: 10.1152/ajpcell.1999.276.1.c1] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The concept that the cystic fibrosis (CF) transmembrane conductance regulator, the protein product of the CF gene, can conduct larger multivalent anions such as ATP as well as Cl- is controversial. In this review, I examine briefly past findings that resulted in controversy. It is not the goal of this review to revisit these disparate findings in detail. Rather, I focus intently on more recent studies, current studies in progress, and possible future directions that arose from the controversy and that may reconcile this issue. Important questions and hypotheses are raised as to the physiological roles that ATP-binding cassette (ABC) transporter-facilitated ATP transport and signaling may play in the control of epithelial cell function. Perhaps the identification of key biological paradigms for ABC transporter-mediated extracellular nucleotide signaling may unify and guide the CF research community and other research groups interested in ABC transporters toward understanding why ABC transporters facilitate ATP transport.
Collapse
Affiliation(s)
- E M Schwiebert
- Department of Physiology and Biophysics, Department of Cell Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| |
Collapse
|
119
|
Chu Q, Tousignant JD, Fang S, Jiang C, Chen LH, Cheng SH, Scheule RK, Eastman SJ. Binding and uptake of cationic lipid:pDNA complexes by polarized airway epithelial cells. Hum Gene Ther 1999; 10:25-36. [PMID: 10022528 DOI: 10.1089/10430349950019165] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To better understand the barriers associated with cationic lipid-mediated gene transfer to polarized epithelial cells, Fischer rat thyroid (FRT) cells and polarized normal human bronchial epithelial (NHBE) cells grown on filter supports at an air-liquid interface were used to study the binding and uptake of cationic lipid:plasmid DNA (pDNA) complexes. The efficiencies of binding and uptake of cationic lipid:pDNA complexes by these cell systems were monitored using fluorescence microscopy of fluorescently tagged lipid or pDNA probes. Fluorescent probe bound to the cell surface was differentiated from internalized probe by adding trypan blue, which quenched the fluorescence of bound but not internalized probes. For proliferating cells, binding and internalization of the cationic lipid:pDNA complexes were determined to be efficient. In contrast, little binding or internalization of the complexes was observed using polarized epithelial cells. However, after aspirating a small area of cells from the filter support, virtually all of the cells adjoining this newly formed edge bound and internalized the cationic lipid:pDNA complexes. To determine if their uptake in edge cells was related to the ability of the complexes to access the basolateral membranes of these cells, the binding and uptake of complexes was monitored in polarized NHBE cells that had been pretreated with EGTA or Ca2+-free media, strategies known to disrupt tight junctions. Cells treated in this manner bound and internalized cationic lipid:pDNA complexes efficiently and also expressed significant levels of transgene product. Control cells with intact tight junctions neither bound complexes nor expressed significant transgene product. These data confirm and extend earlier observations that the polarized apical membranes of airway epithelial cells are resistant to transfection by lipid:pDNA complexes. Further, in contrast to previous studies that have shown the entry step of complexes is not an important barrier for COS and HeLa cells, binding and entry of complexes in polarized NHBE cells appear to be rate limiting. These findings suggest that strategies designed to open the tight junctions of polarized epithelial cells may improve gene delivery to these cells for diseases such as cystic fibrosis (CF).
Collapse
Affiliation(s)
- Q Chu
- Genzyme Corporation, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Role of CFTR in Airway Disease. Physiol. Rev. 79, Suppl.: S215-S255, 1999. - Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), which accounts for the cAMP-regulated chloride conductance of airway epithelial cells. Lung disease is the chief cause of morbidity and mortality in CF patients. This review focuses on mechanisms whereby the deletion or impairment of CFTR chloride channel function produces lung disease. It examines the major themes of the channel hypothesis of CF, which involve impaired regulation of airway surface fluid volume or composition. Available evidence indicates that the effect of CFTR deletion alters physiological functions of both surface and submucosal gland epithelia. At the airway surface, deletion of CFTR causes hyperabsorption of sodium chloride and a reduction in the periciliary salt and water content, which impairs mucociliary clearance. In submucosal glands, loss of CFTR-mediated salt and water secretion compromises the clearance of mucins and a variety of defense substances onto the airway surface. Impaired mucociliary clearance, together with CFTR-related changes in the airway surface microenvironment, leads to a progressive cycle of infection, inflammation, and declining lung function. Here, we provide the details of this pathophysiological cascade in the hope that its understanding will promote the development of new therapies for CF.
Collapse
Affiliation(s)
- J M Pilewski
- Departments of Medicine and of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
121
|
Pedersen PS, Frederiksen O, Holstein-Rathlou NH, Larsen PL, Qvortrup K. Ion transport in epithelial spheroids derived from human airway cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L75-80. [PMID: 9887058 DOI: 10.1152/ajplung.1999.276.1.l75] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non-CF nasal polyps developed free-floating, monolayered epithelial spheres, with the apical, ciliated cell membrane facing the bath and the basolateral cell membrane pointing toward a fluid-filled lumen. Microelectrode impalement of both non-CF and CF spheroids revealed lumen-positive transepithelial electrical potential differences (PDs) that were inhibited by amiloride, indicating that the spheroids were inflated due to amiloride-sensitive Na+ absorption followed by water. Transformation to a Cl- secretory state was achieved by addition of ATP to the bath, leading to the development of a diphenylamine-2-carboxylate-sensitive PD. A cAMP-induced increase in PD was seen in non-CF spheroids only. In response to hydrocortisone treatment, Na+ transport reflected by amiloride-sensitive PD increased and more so in CF than in non-CF spheres. We concluded that this preparation is a useful model for the airway surface epithelium and is suitable for studies of transport mechanisms and regulation.
Collapse
Affiliation(s)
- P S Pedersen
- Department of Clinical Genetics, Rigshospitalet, DK 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
122
|
Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 1998; 95:1005-15. [PMID: 9875854 DOI: 10.1016/s0092-8674(00)81724-9] [Citation(s) in RCA: 818] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogenesis of cystic fibrosis (CF) airways infection is unknown. Two hypotheses, "hypotonic [low salt]/defensin" and "isotonic volume transport/mucus clearance," attempt to link defects in cystic fibrosis transmembrane conductance regulator-mediated ion transport to CF airways disease. We tested these hypotheses with planar and cylindrical culture models and found no evidence that the liquids lining airway surfaces were hypotonic or that salt concentrations differed between CF and normal cultures. In contrast, CF airway epithelia exhibited abnormally high rates of airway surface liquid absorption, which depleted the periciliary liquid layer and abolished mucus transport. The failure to clear thickened mucus from airway surfaces likely initiates CF airways infection. These data indicate that therapy for CF lung disease should not be directed at modulation of ionic composition, but rather at restoring volume (salt and water) on airway surfaces.
Collapse
Affiliation(s)
- H Matsui
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Uyekubo SN, Fischer H, Maminishkis A, Illek B, Miller SS, Widdicombe JH. cAMP-dependent absorption of chloride across airway epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L1219-27. [PMID: 9843860 DOI: 10.1152/ajplung.1998.275.6.l1219] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated levels of Na and Cl in airway surface liquid may play a major role in the airway pathology of cystic fibrosis (CF) (J. J. Smith, S. M. Travis, E. P. Greenberg, and M. J. Welsh. Cell 85: 229-236, 1996) and could be caused by block of transcellular Cl absorption due to lack of a functional CF transmembrane conductance regulator (CFTR). To test for transcellular absorption of Cl across non-CF epithelium, we studied how fluid absorption was affected by the opening and closing of Cl channels. Forskolin (an activator of CFTR) tripled fluid absorption across primary cultures of bovine tracheal epithelium but had no effect on human cells. However, in both species, fluid absorption was markedly inhibited by 5-nitro-2-(3-phenylpropylamino)benzoate, a blocker of CFTR. Microelectrode studies suggested that the magnitude of the absorptive response to forskolin in bovine cells depended on the size of an inwardly directed electrochemical driving force for Cl movement across the apical membrane. Patch-clamp measurements of bovine cells revealed CFTR in the apical membrane and a cAMP-activated, inwardly rectifying Cl channel in the basolateral membrane. We conclude that a significant fraction of absorbed Cl passes transcellularly in bovine tracheal epithelial cultures, with CFTR as the path of entry in the apical membrane and a novel cAMP-activated Cl channel as the exit route in the basolateral membrane. Our data further indicate that a similar pathway may exist in non-CF human tracheal epithelium.
Collapse
Affiliation(s)
- S N Uyekubo
- Children's Hospital Oakland Research Institute, Oakland 94609; School of Optometry and Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
124
|
Evans DJ, Matsumoto PS, Widdicombe JH, Li-Yun C, Maminishkis AA, Miller SS. Pseudomonas aeruginosa induces changes in fluid transport across airway surface epithelia. Am J Physiol Cell Physiol 1998; 275:C1284-90. [PMID: 9814977 DOI: 10.1152/ajpcell.1998.275.5.c1284] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluid transport across cultures of bovine tracheal epithelium was measured with a capacitance probe technique. Baseline fluid absorption (Jv) across bovine cells of 3.2 microliter. cm-2. h-1 was inhibited by approximately 78% after 1 h of exposure to suspensions of Pseudomonas aeruginosa, with a concomitant decrease in transepithelial potential (TEP) and increase in transepithelial resistance (Rt). Effects of P. aeruginosa were blocked by amiloride, which decreased Jv by 112% from baseline of 2.35 +/- 1.25 microliter. cm-2. h-1, increased Rt by 101% from baseline of 610 +/- 257 Omega. cm2, and decreased TEP by 91% from baseline of -55 +/- 18.5 mV. Microelectrode studies suggested that effects of P. aeruginosa on amiloride-sensitive Na absorption were due in part to a block of basolateral membrane K channels. In the presence of Cl transport inhibitors [5-nitro-2-(3-phenylpropylamino)-benzoic acid, H2-DIDS, and bumetanide], P. aeruginosa induced a fluid secretion of approximately 2.5 +/- 0.4 microliter. cm-2. h-1 and decreased Rt without changing TEP. However, these changes were abolished when the transport inhibitors were used in a medium in which Cl was replaced by an impermeant organic anion. Filtrates of P. aeruginosa suspensions had no effect on Jv, TEP, or Rt. Mutants lacking exotoxin A or rhamnolipids or with defective lipopolysaccharide still inhibited fluid absorption and altered bioelectrical properties. By contrast, mutations in the rpoN gene encoding a sigma factor of RNA polymerase abolished actions of P. aeruginosa. In vivo, changes in transepithelial salt and water transport induced by P. aeruginosa may alter viscosity and ionic composition of airway secretions so as to foster further bacterial colonization.
Collapse
Affiliation(s)
- D J Evans
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
125
|
Taylor AL, Kudlow BA, Marrs KL, Gruenert DC, Guggino WB, Schwiebert EM. Bioluminescence detection of ATP release mechanisms in epithelia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1391-406. [PMID: 9814989 DOI: 10.1152/ajpcell.1998.275.5.c1391] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autocrine and paracrine release of and extracellular signaling by ATP is a ubiquitous cell biological and physiological process. Despite this knowledge, the mechanisms and physiological roles of cellular ATP release are unknown. We tested the hypothesis that epithelia release ATP under basal and stimulated conditions by using a newly designed and highly sensitive assay for bioluminescence detection of ATP released from polarized epithelial monolayers. This bioluminescence assay measures ATP released from cystic fibrosis (CF) and non-CF human epithelial monolayers in a reduced serum medium through catalysis of the luciferase-luciferin reaction, yielding a photon of light collected by a luminometer. This novel assay measures ATP released into the apical or basolateral medium surrounding epithelia. Of relevance to CF, CF epithelia fail to release ATP across the apical membrane under basal conditions. Moreover, hypotonicity is an extracellular signal that stimulates ATP release into both compartments of non-CF epithelia in a reversible manner; the response to hypotonicity is also lost in CF epithelia. The bioluminescence detection assay for ATP released from epithelia and other cells will be useful in the study of extracellular nucleotide signaling in physiological and pathophysiological paradigms. Taken together, these results suggest that extracellular ATP may be a constant regulator of epithelial cell function under basal conditions and an autocrine regulator of cell volume under hypotonic conditions, two functions that may be lost in CF and contribute to CF pathophysiology.
Collapse
Affiliation(s)
- A L Taylor
- Departments of Cell Biology and of Physiology and Biophysics and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | |
Collapse
|
126
|
Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Invest 1998; 102:1125-31. [PMID: 9739046 PMCID: PMC509095 DOI: 10.1172/jci2687] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Airway surface liquid is comprised of mucus and an underlying, watery periciliary liquid (PCL). In contrast to the well-described axial transport of mucus along airway surfaces via ciliary action, theoretical analyses predict that the PCL is nearly stationary. Conventional and confocal microscopy of fluorescent microspheres and photoactivated fluorescent dyes were used with well-differentiated human tracheobronchial epithelial cell cultures exhibiting spontaneous, radial mucociliary transport to study the movements of mucus and PCL. These studies showed that the entire PCL is transported at approximately the same rate as mucus, 39.2+/-4.7 and 39.8+/-4.2 micrometer/sec, respectively. Removing the mucus layer reduced PCL transport by > 80%, to 4.8+/-0.6 micrometer/sec, a value close to that predicted from theoretical analyses of the ciliary beat cycle. Hence, the rapid movement of PCL is dependent upon the transport of mucus. Mucus-dependent PCL transport was spatially uniform and exceeded the rate expected for pure frictional coupling with the overlying mucus layer; hence, ciliary mixing most likely accelerates the diffusion of momentum from mucus into the PCL. The cephalad movement of PCL along airway epithelial surfaces makes this mucus-driven transport an important component of salt and water physiology in the lung in health and disease.
Collapse
Affiliation(s)
- H Matsui
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
127
|
Mailleau C, Capeau J, Brahimi-Horn MC. Interrelationship between the Na+/glucose cotransporter and CFTR in Caco-2 cells: relevance to cystic fibrosis. J Cell Physiol 1998; 176:472-81. [PMID: 9699500 DOI: 10.1002/(sici)1097-4652(199809)176:3<472::aid-jcp4>3.0.co;2-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Both the Na+-dependent glucose cotransporter (SGLT1) and the cystic fibrosis transmembrane conductance regulator (CFTR) modulate Na+ and fluid movement, although in opposite directions. Yet few studies have investigated a possible interrelationship between these two transporters. By using the Caco-2 human colon carcinoma cell line, we confirmed that the activities of these transporters increased with spontaneous differentiation to the enterocytic phenotype. We showed that SGLT1 was positively regulated by Cl- and that optimal activity of CFTR was dependent on the presence of glucose. We also demonstrated that inhibition of CFTR by glibenclamide or diphenylamine-2-carboxylate did not modify the activity of SGLT1 and inhibition of SGLT1 by phlorizin did not modify the activity of CFTR, although it resulted in inhibition of glycoconjugate synthesis. These results point to positive substrate-cross regulation of SGLT1 and CFTR and suggest that NaCl and glucose are important for not only Na+ absorption and fluid movement, but also for cAMP-dependent Cl- efflux, and glycoconjugate synthesis, functions that are known to be anomalous in cystic fibrosis.
Collapse
Affiliation(s)
- C Mailleau
- Institut National de la Santé et de la Recherche Médicale U. 402, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | |
Collapse
|
128
|
Zabner J, Smith JJ, Karp PH, Widdicombe JH, Welsh MJ. Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro. Mol Cell 1998; 2:397-403. [PMID: 9774978 DOI: 10.1016/s1097-2765(00)80284-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) is caused by the loss of functional CFTR Cl- channels. However, it is not understood how this defect disrupts salt and liquid movement in the airway or whether it alters the NaCl concentration in the thin liquid film covering the airway surface. Using a new approach, we found that CF airway surface liquid had a higher NaCl concentration than normal. Both CF and non-CF epithelia absorbed salt and liquid; however, expression of CFTR Cl- channels was required for maximal absorption. Thus, loss of CFTR elevates the salt concentration in CF airway surface liquid and in sweat by related mechanisms; the elevated NaCl concentration is due to a block in transcellular Cl- movement. The high NaCl may predispose CF airways to bacterial infections by inhibiting endogenous antibacterial defenses.
Collapse
Affiliation(s)
- J Zabner
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
129
|
Watt WC, Lazarowski ER, Boucher RC. Cystic fibrosis transmembrane regulator-independent release of ATP. Its implications for the regulation of P2Y2 receptors in airway epithelia. J Biol Chem 1998; 273:14053-8. [PMID: 9593757 DOI: 10.1074/jbc.273.22.14053] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis (CF) transmembrane regulator (CFTR) is a cyclic AMP-dependent Cl- channel that is defective in CF cells. It has been hypothesized that CFTR exhibits an ATP release function that controls the airway surface ATP concentrations. In airway epithelial cells, CFTR-independent Ca2+-activated Cl- conductance is regulated by the P2Y2 receptor. Thus, ATP may function as an autocrine signaling factor promoting Cl- secretion in normal but not CF epithelia if ATP release is defective. We have tested for CFTR-dependent ATP release using four independent detection systems. First, a luciferase assay detected no differences in ATP concentrations in the medium from control versus cyclic AMP-stimulated primary normal human nasal epithelial (HNE) cells. A marked accumulation of extracellular ATP resulted from mechanical stimulation effected by a medium displacement. Second, high pressure liquid chromatography analysis of 3H-labeled species released from [3H]adenine-loaded HNE cells revealed no differences between basal and cyclic AMP-stimulated cells. Mechanical stimulation of HNE cells again resulted in enhanced accumulation of extracellular [3H]ATP and [3H]ADP. Third, when measuring ATP concentrations via nucleoside diphosphokinase-catalyzed phosphorylation of [alpha-33P]dADP, equivalent formation of [33P]dATP was observed in the media of control and cyclic AMP-stimulated HNE cells and nasal epithelial cells from wild-type and CF mice. Mechanically stimulated [33P]dATP formation was similar in both cell types. Fourth, 1321N1 cells stably expressing the human P2Y2 receptor were used as a reporter system for detection of ATP via P2Y2 receptor-promoted formation of [3H]inositol phosphates. Basal [3H]inositol phosphate accumulation was of the same magnitude in control and CFTR-transduced cells, and no change was observed following addition of forskolin and isoproterenol. In both cell types, mechanical stimulation resulted in hexokinase-attenuable [3H]inositol phosphate formation. In summary, our data suggest that ATP release may be triggered by mechanical stimulation of cell surfaces. No evidence was found supporting a role for CFTR in the release of ATP.
Collapse
Affiliation(s)
- W C Watt
- Cystic Fibrosis Research and Treatment Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA
| | | | | |
Collapse
|
130
|
Inglis SK, Corboz MR, Ballard ST. Effect of anion secretion inhibitors on mucin content of airway submucosal gland ducts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L762-6. [PMID: 9612291 DOI: 10.1152/ajplung.1998.274.5.l762] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In porcine bronchi, inhibition of both Cl- and HCO3- transport is required to block the anion secretion response to ACh and to cause mucus accumulation within ACh-treated submucosal gland ducts [S. K. Inglis, M. R. Corboz, A. E. Taylor, and S. T. Ballard. Am. J. Physiol. 272 (Lung Cell. Mol. Physiol. 16): L372-L377, 1997]. In this previous study, a combination of three potential HCO3- transport inhibitors [1 mM acetazolamide, 1 mM DIDS, and 0.1 mM dimethylamiloride (DMA)] was used to block carbonic anhydrase, Cl-/HCO3- exchange, and Na+/H+ exchange, respectively. The aim of the present study was to obtain a better understanding of the mechanism of ACh-induced HCO3- secretion in airway glands by determining which of the three inhibitors, in combination with bumetanide, is required to block anion secretion and so cause ductal mucin accumulation. Gland duct mucin content was measured in distal bronchi isolated from domestic pigs. Addition of either bumetanide alone, bumetanide plus acetazolamide, or bumetanide plus DIDS had no significant effect on ACh-induced mean gland duct mucin content. In contrast, glands treated with bumetanide plus DMA as well as glands treated with all four anion transport blockers were almost completely occluded with mucin after the addition of ACh. These data suggest that mucin is cleared from the ducts of bronchial submucosal glands by liquid generated from Cl(-)- and DMA-sensitive HCO3- transport.
Collapse
Affiliation(s)
- S K Inglis
- Department of Physiology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | |
Collapse
|
131
|
Wu DX, Lee CY, Uyekubo SN, Choi HK, Bastacky SJ, Widdicombe JH. Regulation of the depth of surface liquid in bovine trachea. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L388-95. [PMID: 9530174 DOI: 10.1152/ajplung.1998.274.3.l388] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The luminal surface of airways is lined by a thin film of airway surface liquid (ASL). Physiological regulation of the depth of ASL has not been reported previously. In this paper, we have used low-temperature scanning electron microscopy of rapidly frozen specimens of bovine tracheal epithelium to demonstrate alterations in the depth of ASL in response to the cholinergic agonist methacholine. We first established that methacholine selectively stimulated airway glands, with maximal secretion at approximately 2 min and a return to baseline within approximately 5 min. A 2-min exposure to methacholine increased the depth of ASL from 23 to 78 microns. Thereafter, depth decreased linearly with time, reaching 32 microns at 30 min. The initial increase in depth was blocked by bumetanide, an inhibitor of active chloride secretion, whereas the slow decline back to baseline was inhibited by amiloride, a blocker of active sodium absorption. We conclude that the methacholine-induced changes in ASL depth reflect transient gland secretion followed by liquid absorption across the surface epithelium.
Collapse
Affiliation(s)
- D X Wu
- Children's Hospital Oakland Research Institute, California 94609, USA
| | | | | | | | | | | |
Collapse
|
132
|
Sweezey N, Tchepichev S, Gagnon S, Fertuck K, O'Brodovich H. Female gender hormones regulate mRNA levels and function of the rat lung epithelial Na channel. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C379-86. [PMID: 9486127 DOI: 10.1152/ajpcell.1998.274.2.c379] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial Na channel (ENaC) plays a critical role in the active reabsorption of alveolar fluid at the time of birth or during pulmonary edema. Although rat (r) ENaC is regulated by glucocorticoids during fetal development, there are no data regarding the influence of gender hormones on ENaC expression or function. We report higher levels of mRNAs encoding the alpha-rENaC subunit or the cystic fibrosis transmembrane conductance regulator (CFTR) in the lungs of nonpregnant adult female relative to adult male Wistar rats. Combined, but not separate, administration of progesterone and 17 beta-estradiol increased mRNA levels encoding alpha-rENaC, gamma-rENaC, and CFTR within 24 h. We also found a dose-dependent increase in rENaC functional activity (as assessed by the amiloride-sensitive short-circuit current across primary monolayer cultures of alveolar epithelial cells mounted in Ussing chambers) after a 5-day incubation of cells in medium containing progesterone and 17 beta-estradiol. These findings suggest a gender-dependent influence on the lung's ability to recover from pulmonary edema and on the degree of airway fluid hydration in cystic fibrosis.
Collapse
Affiliation(s)
- N Sweezey
- Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
133
|
Trout L, King M, Feng W, Inglis SK, Ballard ST. Inhibition of airway liquid secretion and its effect on the physical properties of airway mucus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L258-63. [PMID: 9486211 DOI: 10.1152/ajplung.1998.274.2.l258] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The combination of both Cl- and HCO3- secretion inhibitors causes an accumulation of mucins within the submucosal gland ducts of acetylcholine (ACh)-treated bronchi [S. K. Inglis, M. R. Corboz, A. E. Taylor, and S. T. Ballard. Am. J. Physiol. 272 (Lung Cell. Mol. Physiol. 16): L372-L377, 1997], suggesting indirectly that these agents block airway gland liquid secretion. The present study tested the hypotheses that ACh-stimulated liquid secretion is driven by Cl- and HCO3- secretion and that inhibition of this process leads to secretion of a dehydrated mucus with altered rheological properties. Excised distal bronchi from pigs were pretreated with either a combination of Cl- and HCO3- secretion inhibitors (bumetanide, acetazolamide, dimethylamiloride, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid) or the dimethyl sulfoxide vehicle and were then treated with ACh to induce secretion. The rate of mucus liquid secretion was substantially reduced when the airways were pretreated with the anion secretion inhibitors. Mucus liquid from inhibitor-pretreated airways contained almost threefold more nonvolatile solids than the control liquid. Rheological analysis revealed that mucus liquid from inhibitor-pretreated airways expressed a significantly greater log G* (rigidity factor), whereas tangent delta (recoil factor) was significantly reduced. These results suggest that 1) ACh-induced liquid secretion in bronchi is driven by both Cl- and HCO3- secretion and 2) inhibition of ACh-induced liquid secretion results in the secretion of mucus with a reduced water content and altered rheological properties.
Collapse
Affiliation(s)
- L Trout
- Department of Physiology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | | | | | |
Collapse
|
134
|
Hull J, Skinner W, Robertson C, Phelan P. Elemental content of airway surface liquid from infants with cystic fibrosis. Am J Respir Crit Care Med 1998; 157:10-4. [PMID: 9445271 DOI: 10.1164/ajrccm.157.1.9703045] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We tested the hypothesis that airway surface liquid (ASL) electrolyte composition is altered in infants with cystic fibrosis (CF) and that the presence of airway inflammation affects ASL composition. We measured the tracheal ASL sodium and chloride concentration and examined bronchoalveolar lavage (BAL) fluid cytology, interleukin-8 (IL-8) concentrations, and quantitative bacterial culture in 19 infants and young children with CF. Seven infants undergoing bronchoscopy for the evaluation of stridor served as non-CF controls. In addition, we measured nasal ASL sodium and chloride concentrations from 10 young adults with CF and from 10 control subjects. On the basis of the BAL findings, the infants with CF were divided into three groups: one with little evidence of pulmonary inflammation (CF-NI, n = 5); one with obvious pulmonary inflammation (CF-I, n = 7); and an intermediate group (CF-MI, n = 7). We found the ASL sodium was not different among any of the four groups (means mM +/- SE, 85 +/- 10 controls; 78 +/- 16 CF-NI; 83 +/- 9 CF-MI, 84 +/- 9 CF-I). In contrast the ASL chloride was lower in the CF-NI group when compared with control subjects (108 +/- 5 control subjects; 77 +/- 7 CF-NI, p < 0.01). In the CF-I and CF-MI groups, the ASL chloride concentrations were of intermediate values (CF-I 95 +/- 10 mM; CF-MI 96 +/- 9 mM) and not significantly different from controls. Results from the nasal ASL analysis showed no significant differences in sodium and chloride concentrations in the CF group compared with control subjects. These results suggest that the primary abnormality of ASL composition is a reduction in chloride concentration. ASL composition appears to be affected by the presence of airway inflammation.
Collapse
Affiliation(s)
- J Hull
- Department of Thoracic Medicine, Royal Children's Hospital, Parkville, Melbourne, Australia
| | | | | | | |
Collapse
|
135
|
Knowles MR, Robinson JM, Wood RE, Pue CA, Mentz WM, Wager GC, Gatzy JT, Boucher RC. Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest 1997; 100:2588-95. [PMID: 9366574 PMCID: PMC508460 DOI: 10.1172/jci119802] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To test whether a major contribution of airways epithelial ion transport to lung defense reflects the regulation of airway surface liquid (ASL) ionic composition, we measured ASL composition using the filter paper technique. On nasal surfaces, the Cl- concentration (approximately 125 meq/liter) was similar to plasma, but the Na+ concentration (approximately 110 meq/liter) was below plasma, and K+ concentration (approximately 30 meq/liter) above plasma. The resting ASL osmolarity [2(Na+ + K+); 277 meq/liter] approximated isotonicity. There were no detectable differences between cystic fibrosis (CF) and normal subjects. In the lower airways, the Na+ concentrations were 80-85 meq/liter, K+ levels approximately 15 meq/liter, and Cl- concentrations 75-80 meq/liter. Measurements of Na+ activity with Na(+)-selective electrodes and osmolality with freezing point depression yielded values consistent with the monovalent cation measurements. Like the nasal surfaces, no differences in cations were detected between CF, normal, or chronic bronchitis subjects. The tracheobronchial ASL hypotonicity was hypothesized to reflect collection-induced gland secretion, a speculation consistent with observations in which induction of nasal gland secretion produced hypotonic secretions. We conclude that there are no significant differences in ASL ion concentrations between CF, normal, and chronic bronchitis subjects and, because ASL ion concentrations exceed values consistent with defensin activity, the failure of CF lung defense may reflect predominantly factors other than salt-dependent defensins.
Collapse
Affiliation(s)
- M R Knowles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Winters SL, Yeates DB. Roles of hydration, sodium, and chloride in regulation of canine mucociliary transport system. J Appl Physiol (1985) 1997; 83:1360-9. [PMID: 9338447 DOI: 10.1152/jappl.1997.83.4.1360] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To gain insight into the homeostatic mechanisms regulating airway ion/water fluxes and mucociliary transport, the canine tracheobronchial airway fluid was perturbed by deposition of hypo- and hyperosmotic aerosols for >1 h. Tracheal ciliary beat frequency (CBF) was measured by using heterodyne laser light scattering. Tracheal mucus velocity (TMV) and bronchial mucociliary clearance (BMC) were measured by using radioaerosols and nuclear imaging. Respiratory tract fluid output (RTFO) was collected by using a secretion-collecting endotracheal tube. In six dogs, CBF increased during water deposition in the airways to 180 +/- 30 mg/min and RTFO increased from 2.2 +/- 0.5 to 18.3 +/- 1.6 mg/min, accounting for <10% of the fluid deposition. TMV and BMC were unchanged. CBF, TMV, and BMC were markedly increased by inhalation of aerosolized 3.4 M NaCl. Aerosolized 0.85 M NaCl, in contrast, decreased BMC. In this case, RTFO represented 24% of aerosol deposition. Aerosolized 0.85 M choline chloride and 0.85 M sodium gluconate enhanced BMC and TMV concurrent with a decrease in CBF. RTFO of sodium gluconate studies exceeded 50% of aerosol deposition. Thus the airways appear to have transepithelial compensatory mechanisms that reduce the impact of a moderate increases in NaCl and hydration load, but when these responses cannot adequately respond because of the delivery of impermeable ions or very high tonicity, removal of the challenges are affected by a stimulation of mucociliary transport.
Collapse
Affiliation(s)
- S L Winters
- Pulmonary Biophysics and Bioengineering Research Laboratory, Department of Medicine, University of Illinois at Chicago, Chicago 60680, USA
| | | |
Collapse
|
137
|
Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog Retin Eye Res 1997. [DOI: 10.1016/s1350-9462(96)00037-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
138
|
Winters SL, Yeates DB. Interaction between ion transporters and the mucociliary transport system in dog and baboon. J Appl Physiol (1985) 1997; 83:1348-59. [PMID: 9338446 DOI: 10.1152/jappl.1997.83.4.1348] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To gain insight into the role of epithelial ion channels, pumps, and cotransporters in regulating airway water and mucociliary transport, we administered inhibitors of the Na+ channel (amiloride), 3Na-2K-adenosinetriphosphatase (acetylstrophanthidin), and Na-K-2Cl cotransporter (furosemide) to anesthetized dogs and/or baboons. Tracheal ciliary beat frequency was measured by using heterodyne laser light scattering. Tracheal mucus velocity (TMV) and bronchial mucociliary clearance (BMC) or lung mucociliary clearance were measured by using radioaerosols and nuclear imaging. Respiratory tract fluid output was collected by using a secretion-collecting endotracheal tube. In six dogs, amiloride aerosol -lung deposition, 96 +/- 11 microg (means +/- SE)- had minimal effect, whereas acetylstrophanthidin aerosol (lung deposition, 71 +/- 9 microg) increased BMC, and furosemide (40 mg iv) markedly increased TMV. In five baboons, TMV increased after iv furosemide administration (2 mg/kg) as well as by aerosol (lung deposition, 20 +/- 3 mg), coincident with increases in ciliary-mucus coupling from 11.5 +/- 0. 1 to 29.5 +/- 0.4 and 46.5 +/- 0.7 microm/beat, respectively. Furosemide also increased lung mucociliary clearance in baboons. In dogs, respiratory tract fluid output increased after intravenous furosemide from 2.2 +/- 0.5 to 6.8 +/- 1.7 mg/min. When combined with dry-air inhalation, furosemide failed to stimulate TMV and reversed the inhibition of BMC by dry air. Thus pharmacological manipulation of the Na-K-2Cl cotransporter and the 3Na-2K-adenosinetriphosphatase pump may provide increases of clinical relevance in airway hydration and mucociliary transport.
Collapse
Affiliation(s)
- S L Winters
- Pulmonary Biophysics and Bioengineering Research Laboratory, Department of Medicine, University of Illinois at Chicago, Chicago 60680, USA
| | | |
Collapse
|
139
|
Grubb BR, Schiretz FR, Boucher RC. Volume transport across tracheal and bronchial airway epithelia in a tubular culture system. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C21-9. [PMID: 9252438 DOI: 10.1152/ajpcell.1997.273.1.c21] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Airway epithelia are thought to play an important role in maintaining the depth (volume) and composition of airway surface liquid (ASL). However, due to the difficulty in measuring airway epithelial volume flow (Jv) and ASL composition, our knowledge of ASL homeostasis is limited. We have developed a permeable tubular culture system (biofiber) suitable for growing airway epithelia on the biofiber luminal surface, which allows measurements of bioelectric properties and Jv. Canine tracheal and bronchial epithelia readily attach, grow to confluence, and develop an electrical potential difference (-10 to -40 mV) across the biofiber. Using a six-hormone-supplemented medium, we detected a significant basal absorptive Jv across both the tracheal cells (0.65 +/- 0.08 microliter.cm-2.h-1) and bronchial cells (2.21 +/- 0.42 microliters.cm-2.h-1), which was significantly reduced by amiloride. Forskolin stimulated a net secretory Jv in tracheal biofibers (-0.56 +/- 0.19 microliter.h-1.cm-2) only. When the culture medium was supplemented with cholera toxin (CT), the basal absorptive Jv was significantly reduced in the bronchial biofibers and the tracheal biofibers exhibited net secretion. The forskolin-stimulated secretory Jv in the tracheal biofibers was significantly greater in the presence of CT than in its absence (-1.30 +/- 0.29 microliters.h-1.cm-2), whereas bronchial biofibers exhibited no significant Jv response to forskolin. We conclude that the Jv measured in tubular culture is highly dependent on the region from which the cells originated as well as the composition of the culture medium. Use of the biofiber culture system to study airway epithelia should give further insight into factors regulating Jv and composition of ASL.
Collapse
Affiliation(s)
- B R Grubb
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill 27599-7248, USA
| | | | | |
Collapse
|
140
|
Deneuville E, Perrot-Minot C, Pennaforte F, Roussey M, Zahm JM, Clavel C, Puchelle E, de Bentzmann S. Revisited physicochemical and transport properties of respiratory mucus in genotyped cystic fibrosis patients. Am J Respir Crit Care Med 1997; 156:166-72. [PMID: 9230742 DOI: 10.1164/ajrccm.156.1.9606123] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the physicochemical and transport properties of sputum samples collected in physiotherapy from a well-documented group of 27 cystic fibrosis (CF) patients with identified CF genotypes. Sputum samples were characterized ex vivo for their water content, surface properties (surface tension and contact angle), rheologic properties (viscosity and elastic modulus), and transport properties (mucociliary and cough transport). These data were analyzed in relation to the clinical status of the patients (FEV1, FVC, Shwachman score, Brasfield score, nutritional status), their genotype, and the degree of infection of their sputa (leukocyte and Pseudomonas aeruginosa counts). We observed negative and significant correlations between mucociliary transport and elastic modulus of the patients' sputum (r = -0.63, p < 0.01), and between the cough transport and contact angle of the sputum (r = -0.81, p < 0.0001), respectively. The P. aeruginosa count was also significantly correlated with the sputum water content (r = -0.53, p < 0.02) as well as with the cough transport of the sputum (r = -0.62, p < 0.01). In CF patients with a sputum leukocyte count > 2,000/mm3, the sputum water content (p < 0.02), FEV1 (p < 0.05) and FVC (p < 0.02) were significantly lower than those of CF patients with a leukocyte count < or = 2,000/mm3. CF patients with a homozygous delta F 508 genotype had significantly greater values of sputum water content (p < 0.05), and cough-transport capacity (p < 0.05) than did heterozygous patients. No correlation was observed between the sputum properties and any of the clinical data. These results suggest that the control of infection should be emphasized in CF, since it can directly or indirectly modulate the degree of hydration, and therefore the physicochemical and transport properties, of airway secretions.
Collapse
Affiliation(s)
- E Deneuville
- INSERM Unité 314, CHR Maison Blanche, Reims, France
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Jiang C, Finkbeiner WE, Widdicombe JH, Miller SS. Fluid transport across cultures of human tracheal glands is altered in cystic fibrosis. J Physiol 1997; 501 ( Pt 3):637-47. [PMID: 9218222 PMCID: PMC1159463 DOI: 10.1111/j.1469-7793.1997.637bm.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. There is evidence that defective submucosal gland secretion contributes to the airway pathology of cystic fibrosis (CF). Using a capacitance probe technique, we have compared fluid transport across submucosal gland cultures from individuals with and without CF. 2. Under baseline conditions, approximately 60% of non-CF cultures secreted fluid; the rest absorbed. In secreting tissues, amiloride increased secretion, whereas in absorbing tissues it reduced or reversed absorption. 5-Nitro-2(3-phenylpropylamino)-benzoate (NPPB) a blocker of the CF transmembrane conductance regulator (CFTR), converted secretion to absorption. Thus, the direction and magnitude of baseline fluid movement depended on a balance between active absorption of Na+ and cAMP-dependent secretion of Cl-. 3. 8-(4-Chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (CPT-cAMP), methacholine and luminal uridine 5'-triphosphate (UTP) all induced or increased fluid secretion across non-CF cultures. Results with NPPB and with 4,4'-diisothiocyanatostilbene-2,2'-disulphonate (DIDS), a blocker of Ca(2+)-activated Cl- channels, suggested that fluid secretion induced by CPT-cAMP was mediated primarily by CFTR; UTP acted entirely via Ca(2+)-activated Cl- channels, and methacholine activated both pathways. 4. All CF cultures showed baseline fluid absorption, which was abolished by amiloride. 5. CF cultures showed a normal secretory response to UTP, a reduced response to methacholine, and no response to CPT-cAMP. 6. Thus, the absorptive processes of airway glands are retained in CF, but the cAMP-dependent secretory process is lost. This would markedly reduce the water content of gland secretions. The resulting change in viscosity would contribute to the accumulation of airway mucus which is characteristic of this disease.
Collapse
Affiliation(s)
- C Jiang
- School of Optometry, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
142
|
Azizi F, Matsumoto PS, Wu DX, Widdicombe JH. Effects of hydrostatic pressure on permeability of airway epithelium. Exp Lung Res 1997; 23:257-67. [PMID: 9184792 DOI: 10.3109/01902149709087371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The presence of blood proteins and excess liquid in the airway lumen during airway inflammation may be secondary to extravasation and elevation of subepithelial hydrostatic pressure. This study examines how hydrostatic pressures of 5-20 cm H2O affect hydraulic conductivity and macromolecular permeability of primary cultures of bovine tracheal epithelium. Hydraulic conductivity was not altered by transepithelial pressure gradients of up to 20 cm H2O directed from the mucosal to serosal side of the tissue (m-s). By contrast, a 20-cm H2O s-m pressure resulted in a marked increase in hydraulic conductivity with the critical pressure lying between 10 and 20 cm H2O. Electrical conductance (i.e., permeability to ions) was not altered by m-s pressure gradients, or by a 5-cm H2O s-m gradient, but was increased by s-m pressures > or = 10 cm. Fluxes (s-m and m-s) of fluorescein and fluorescent dextrans (70 and 2000 kDa) were not altered by pressures of up to 20 cm H2O m-s. By contrast s-m pressure gradients of 20 cm H2O dramatically increased the s-m fluxes of these probes. The increases in flux were completely reversible. The results indicate that s-m pressure gradients greatly increase the hydraulic conductivity of airway epithelium by creating pores with an effective diameter greater than 54 nm.
Collapse
Affiliation(s)
- F Azizi
- Children's Hospital Oakland Research Institute, Oakland, CA 94609-1809, USA
| | | | | | | |
Collapse
|
143
|
Jiang C, Akita GY, Colledge WH, Ratcliff RA, Evans MJ, Hehir KM, St George JA, Wadsworth SC, Cheng SH. Increased contact time improves adenovirus-mediated CFTR gene transfer to nasal epithelium of CF mice. Hum Gene Ther 1997; 8:671-80. [PMID: 9113507 DOI: 10.1089/hum.1997.8.6-671] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Multiple dosing with recombinant adenoviral vectors containing the cystic fibrosis transmembrane conductance regulator (CFTR) cDNA to the nasal mucosa of cystic fibrosis (CF) transgenic mice reportedly results in only partial correction of the CF defect in chloride (Cl-) secretion without normalizing sodium (Na+) hyperabsorption, perhaps indicating inefficient gene transfer into the nasal airway epithelium in vivo. In this study, we have examined whether optimizing vector administration such as contact time could improve gene transfer efficiency. Changes in basal nasal potential difference (PD), and in PD (delta PD) following addition of amiloride and subsequent removal of Cl- from the luminal perfusate were assayed. As reported previously, the basal nasal PD was significantly more negative in CF mice (-24.9 +/- 2.1 mV) than in normal mice (-6.3 +/- 1.2 mV). Normal mouse nasal mucosa exhibited a large hyperpolarization in response to low Cl- substitution (delta PD of 8.5 +/- 1.9 mV), whereas the nasal mucosa of the CF mouse depolarized in response to this treatment. No correction of either the Cl- or Na+ transport defects were observed when 5 x 10(9) IU of Ad2/CFTR-5 were administered to the nasal passage of CF mice over a period of 5-20 min. However, when CF mice were perfused over a period of 60 min with the same dose of vector, a significant response (delta PD of 5.9 +/- 1.1 mV) to low Cl- substitution was detected 2 days later. In these mice, the basal nasal PD (-10.5 +/- 1.4 mV) and the response to amiloride were also reduced, indicating a partial correction of the Na+ transport defect. Expression of functional CFTR activity was transient with no measurable delta PD signals observed by day 7 post-treatment. These results suggest that prolonging the contact between an adenoviral vector and the respiratory epithelium enhances the efficiency of gene transfer and can result in improved correction of the CF Na+ and Cl- ion transport defects. Therefore, strategies that improve internalization of viral vectors and that prolong their contact time with target cells may result in the improved clinical efficacy of such vectors.
Collapse
Affiliation(s)
- C Jiang
- Genzyme Corporation, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Pasyk EA, Foskett JK. Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3'-phosphate 5'-phosphosulfate channels in endoplasmic reticulum and plasma membranes. J Biol Chem 1997; 272:7746-51. [PMID: 9065435 DOI: 10.1074/jbc.272.12.7746] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by abnormal regulation of epithelial ion and fluid transport due to mutations in the CF transmembrane conductance regulator (CFTR), an apical membrane-localized Cl- channel, that usually prevent it from exiting the endoplasmic reticulum. Defective or absent CFTR in the epithelium is believed to disrupt fluid balance in human airways and thereby contribute to chronic respiratory inflammation. Patch-clamp of the plasma membrane and outer membrane of the nuclear envelope of nuclei isolated from CFTR-expressing Chinese hamster ovary cells revealed that CFTR is associated with a regulated ATP channel in both membrane compartments. CFTR expression was also shown to be associated with permeability to another adenine nucleotide, adenosine 3'-phosphate 5'-phosphosulfate, the universal sulfate donor in cells. These results may provide a link between the ion channel function of CFTR and abnormal glycoprotein processing observed in CF.
Collapse
Affiliation(s)
- E A Pasyk
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
145
|
FESTA ELIANE, GUIMARÃES ELIANE, MACCHIONE MARIANGELA, SALDIVA PAULOH, KING MALCOLM. Acute Effects of Uridine 5′-Triphosphate on Mucociliary Clearance in Isolated Frog Palate. ACTA ACUST UNITED AC 1997. [DOI: 10.1089/jam.1997.10.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
146
|
Abstract
ATP and other nucleotides can be released from cells through regulated pathways, or following the loss of plasma membrane integrity. Once outside the cell, these compounds take on new roles as intercellular signaling molecules that elicit a broad spectrum of physiological responses through the activation of numerous cell surface receptor subtypes. This review summarizes recent advances in the molecular characterization of ATP receptors and discusses roles for cloned receptors in established and novel physiological processes.
Collapse
Affiliation(s)
- A J Brake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143-0450, USA
| | | |
Collapse
|
147
|
Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 1996; 85:229-36. [PMID: 8612275 DOI: 10.1016/s0092-8674(00)81099-5] [Citation(s) in RCA: 711] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite an increased understanding of the cellular and molecular biology of the CFTR Cl- channel, it is not known how defective Cl- transport across airway epithelia causes chronic bacterial infections in cystic fibrosis (CF) airways. Here, we show that common CF pathogens were killed when added to the apical surface of normal airway epithelia. In contrast, these bacteria multiplied on CF epithelia. We found that bactericidal activity was present in airway surface fluid of both normal and CF epithelia. However, because bacterial killing required a low NaCl concentration and because CF surface fluid has a high NaCl concentration, CF epithelia failed to kill bacteria. This defect was corrected by reducing the NaCl concentration on CF epithelia. These data explain how the loss of CFTR Cl- channels may lead to lung disease and suggest new approaches to therapy.
Collapse
Affiliation(s)
- J J Smith
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
148
|
Brayden D, Creed E, Meehan E, O'Malley K. Passive transepithelial diltiazem absorption across intestinal tissue leading to tight junction openings. J Control Release 1996. [DOI: 10.1016/0168-3659(95)00120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
149
|
Affiliation(s)
- C Alonso
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias UAM, Madrid
| |
Collapse
|
150
|
Barbry P, Lazdunski M. Structure and regulation of the amiloride-sensitive epithelial sodium channel. ION CHANNELS 1996; 4:115-167. [PMID: 8744208 DOI: 10.1007/978-1-4899-1775-1_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- P Barbry
- Institute of Molecular and Cellular Pharmacology, CNRS, Valbonne, France
| | | |
Collapse
|