101
|
Oh Y, Fung LWM. Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin. Cell Mol Biol Lett 2007; 12:604-20. [PMID: 17607528 PMCID: PMC6275721 DOI: 10.2478/s11658-007-0028-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 06/11/2007] [Indexed: 12/24/2022] Open
Abstract
The N-terminal region of non-erythroid alpha spectrin (Sp alpha II) is responsible for interacting with its binding partner, beta spectrin, to form functional spectrin tetramers. We used a yeast-two-hybrid system, with an N-terminal segment of alpha spectrin representing the functional tetramerization site, as a bait to screen human brain c-DNA library for proteins that interact with the alpha spectrin segment. In addition to several beta spectrin isoforms, we identified 14 proteins that interact with Sp alpha II. Seven of the 14 were matched to 6 known proteins: Duo protein, Lysyl-tRNA synthetase, TBP associated factor 1, two isoforms (b and c) of a protein kinase A interacting protein and Zinc finger protein 333 (2 different segments). Four of the 6 proteins are located primarily in the nucleus, suggesting that spectrin plays important roles in nuclear functions. The remaining 7 proteins were unknown to the protein data base. Structural predictions show that many of the 14 proteins consist of a large portion of unstructured regions, suggesting that many of these proteins fold into a rather flexible conformation. It is interesting to note that all but 3 of the 14 proteins are predicted to consist of one to four coiled coils (amphiphilic helices). A mutation in Sp alpha II, V22D, which interferes with the coiled coil bundling of Sp alpha II with beta spectrin, also affects Sp alpha II interaction with Duo protein, TBP associated factor 1 and Lysyl-tRNA synthetase, suggesting that they may compete with beta spectrin for interaction with Sp alpha II. Future structural and functional studies of these proteins to provide interaction mechanisms will no doubt lead to a better understanding of brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Younsang Oh
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607 USA
| | - Leslie W. -M. Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607 USA
| |
Collapse
|
102
|
Zilch LW, Kaleta DT, Kohtani M, Krishnan R, Jarrold MF. Folding and unfolding of helix-turn-helix motifs in the gas phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1239-48. [PMID: 17521916 PMCID: PMC2735046 DOI: 10.1016/j.jasms.2007.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 05/15/2023]
Abstract
Ion mobility measurements and molecular dynamic simulations have been performed for a series of peptides designed to have helix-turn-helix motifs. For peptides with two helical sections linked by a short loop region: AcA(14)KG(3)A(14)K+2H(+), AcA(14)KG(5)A(14)K+2H(+), AcA(14)KG(7)A(14)K+2H(+), and AcA(14)KSar(3)A(14)K+2H(+) (Ac = acetyl, A = alanine, G = glycine, Sar = sarcosine and K = lysine); a coiled-coil geometry with two anti-parallel helices is the lowest energy conformation. The helices uncouple and the coiled-coil unfolds as the temperature is raised. Equilibrium constants determined as a function of temperature yield enthalpy and entropy changes for the unfolding of the coiled-coil. The enthalpy and entropy changes depend on the length and nature of the loop region. For a peptide with three helical sections: protonated AcA(14)KG(3)A(14)KG(3)A(14)K; a coiled-coil bundle with three helices side-by-side is substantially less stable than a geometry with two helices in an antiparallel coiled-coil and the third helix collinear with one of the other two.
Collapse
Affiliation(s)
- Lloyd W Zilch
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | | | | | | |
Collapse
|
103
|
Worrall LJ, Walkinshaw MD. Crystal structure of the C-terminal three-helix bundle subdomain of C. elegans Hsp70. Biochem Biophys Res Commun 2007; 357:105-10. [PMID: 17407764 DOI: 10.1016/j.bbrc.2007.03.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 03/16/2007] [Indexed: 01/21/2023]
Abstract
Hsp70 chaperones are composed of two domains; the 40 kDa N-terminal nucleotide-binding domain (NDB) and the 30 kDa C-terminal substrate-binding domain (SBD). Structures of the SBD from Escherichia coli homologues DnaK and HscA show it can be further divided into an 18 kDa beta-sandwich subdomain, which forms the hydrophobic binding pocket, and a 10 kDa C-terminal three-helix bundle that forms a lid over the binding pocket. Across prokaryotes and eukaryotes, the NBD and beta-sandwich subdomain are well conserved in both sequence and structure. The C-terminal subdomain is, however, more evolutionary variable and the only eukaryotic structure from rat Hsc70 revealed a diverged helix-loop-helix fold. We have solved the crystal structure of the C-terminal 10 kDa subdomain from Caenorhabditis elegans Hsp70 which forms a helical-bundle similar to the prokaryotic homologues. This provides the first confirmation of the structural conservation of this subdomain in eukaryotes. Comparison with the rat structure reveals a domain-swap dimerisation mechanism; however, the C. elegans subdomain exists exclusively as a monomer in solution in agreement with the hypothesis that regions out with the C-terminal subdomain are necessary for Hsp70 self-association.
Collapse
Affiliation(s)
- Liam J Worrall
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
104
|
Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, Mohandas N, An X. The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 2007; 110:1036-42. [PMID: 17468340 PMCID: PMC1924765 DOI: 10.1182/blood-2007-02-076919] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The malaria parasite Plasmodium falciparum releases the ring-infected erythrocyte surface antigen (RESA) inside the red cell on entry. The protein migrates to the host cell membrane, where it binds to spectrin, but neither the nature of the interaction nor its functional consequences have previously been defined. Here, we identify the binding motifs involved in the interaction and describe a possible function. We have found that spectrin binds to a 108-amino acid fragment (residues 663-770) of RESA, and that this RESA fragment binds to repeat 16 of the beta-chain, close to the labile dimer-dimer self-association site. We further show that the RESA fragment stabilizes the spectrin tetramer against dissociation into its constituent dimers, both in situ and in solution. This is accompanied by enhanced resistance of the cell to both mechanical and thermal degradation. Resealed erythrocytes containing RESA(663-770) display resistance to invasion by merozoites of P falciparum. We infer that the evolutionary advantage of RESA to the parasite lies in its ability to prevent invasion of cells that are already host to a developing parasite, as well as possibly to guard the cell against thermal damage at the elevated body temperatures prevailing in febrile crises.
Collapse
Affiliation(s)
- Xinhong Pei
- Red Cell Physiology Laboratory, New York Blood Center, 310 E. 67th Street, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
An X, Zhang X, Salomao M, Guo X, Yang Y, Wu Y, Gratzer W, Baines AJ, Mohandas N. Thermal stabilities of brain spectrin and the constituent repeats of subunits. Biochemistry 2007; 45:13670-6. [PMID: 17087521 PMCID: PMC4401158 DOI: 10.1021/bi061368x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The different genes that encode mammalian spectrins give rise to proteins differing in their apparent stiffness. To explore this, we have compared the thermal stabilities of the structural repeats of brain spectrin subunits (alphaII and betaII) with those of erythrocyte spectrin (alphaI and betaI). The unfolding transition midpoints (T(m)) of the 36 alphaII- and betaII-spectrin repeats extend between 24 and 82 degrees C, with an average higher by some 10 degrees C than that of the alphaI- and betaI-spectrin repeats. This difference is reflected in the T(m) values of the intact brain and erythrocyte spectrins. Two of three tandem-repeat constructs from brain spectrin exhibited strong cooperative coupling, with elevation of the T(m) of the less stable partner corresponding to coupling free energies of approximately -4.4 and -3.5 kcal/mol. The third tandem-repeat construct, by contrast, exhibited negligible cooperativity. Tandem-repeat mutants, in which a part of the "linker" helix that connects the two domains was replaced with a corresponding helical segment from erythroid spectrin, showed only minor perturbation of the thermal melting profiles, without breakdown of cooperativity. Thus, the linker regions, which tolerate few point mutations without loss of cooperative function, have evidently evolved to permit conformational coupling in specified regions. The greater structural stability of the repeats in alphaII- and betaII-spectrin may account, at least in part, for the higher rigidity of brain compared to erythrocyte spectrin.
Collapse
Affiliation(s)
- Xiuli An
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Bignone PA, King MDA, Pinder JC, Baines AJ. Phosphorylation of a threonine unique to the short C-terminal isoform of betaII-spectrin links regulation of alpha-beta spectrin interaction to neuritogenesis. J Biol Chem 2007; 282:888-96. [PMID: 17088250 DOI: 10.1074/jbc.m605920200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spectrin tetramers are cytoskeletal proteins required in the formation of complex animal tissues. Mammalian alphaII- and betaII-spectrin subunits form dimers that associate head to head with high affinity to form tetramers, but it is not known if this interaction is regulated. We show here that the short C-terminal splice variant of betaII-spectrin (betaIISigma2) is a substrate for phosphorylation. In vitro, protein kinase CK2 phosphorylates Ser-2110 and Thr-2159; protein kinase A phosphorylates Thr-2159. Antiphospho-Thr-2159 peptide antibody detected phosphorylated betaIISigma2 in Cos-1 cells. Immunoreactivity was increased in Cos-1 cells by treatment with forskolin, indicating that phosphorylation is promoted by elevated cAMP. The effect of forskolin was counteracted by the cAMP-dependent kinase inhibitor, H89. In vitro, protein kinase A phosphorylation of an active fragment of betaIISigma2 greatly reduced its interaction with alphaII-spectrin at the tetramerization site. Mutation of Thr-2159 to alanine eliminated inhibition by phosphorylation. Among the processes that require spectrin in mammals is the formation of neurites (incipient nerve axons). We tested the relationship of spectrin phosphorylation to neuritogenesis by transfecting the neuronal cell line, PC12, with enhanced green fluorescent protein-coupled fragments of betaIISigma2-spectrin predicted to act as inhibitors of spectrin tetramer formation. Both wild-type and T2159E mutant fragments allowed normal neuritogenesis in PC12 cells in response to nerve growth factor. The mutant T2159A inhibited neuritogenesis. Because the T2159A mutant represents a high affinity inhibitor of tetramer formation, we conclude that tetramers are requisite for neuritogenesis. Furthermore, because both the T2159E mutant and the wild-type allow neuritogenesis, we conclude that the short C-terminal betaII-spectrin is phosphorylated during this process.
Collapse
Affiliation(s)
- Paola A Bignone
- Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, Great Britain
| | | | | | | |
Collapse
|
107
|
Hülsmeier J, Pielage J, Rickert C, Technau GM, Klämbt C, Stork T. Distinct functions of alpha-Spectrin and beta-Spectrin during axonal pathfinding. Development 2007; 134:713-22. [PMID: 17215305 DOI: 10.1242/dev.02758] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-shape changes during development require a precise coupling of the cytoskeleton with proteins situated in the plasma membrane. Important elements controlling the shape of cells are the Spectrin proteins that are expressed as a subcortical cytoskeletal meshwork linking specific membrane receptors with F-actin fibers. Here, we demonstrate that Drosophila karussell mutations affect beta-spectrin and lead to distinct axonal patterning defects in the embryonic CNS. karussell mutants display a slit-sensitive axonal phenotype characterized by axonal looping in stage-13 embryos. Further analyses of individual, labeled neuroblast lineages revealed abnormally structured growth cones in these animals. Cell-type-specific rescue experiments demonstrate that beta-Spectrin is required autonomously and non-autonomously in cortical neurons to allow normal axonal patterning. Within the cell, beta-Spectrin is associated with alpha-Spectrin. We show that expression of the two genes is tightly regulated by post-translational mechanisms. Loss of beta-Spectrin significantly reduces levels of neuronal alpha-Spectrin expression, whereas gain of beta-Spectrin leads to an increase in alpha-Spectrin protein expression. Because the loss of alpha-spectrin does not result in an embryonic nervous system phenotype, beta-Spectrin appears to act at least partially independent of alpha-Spectrin to control axonal patterning.
Collapse
Affiliation(s)
- Jörn Hülsmeier
- Institut für Neurobiologie, Badestr. 9, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
108
|
Bhattacharya M, Mukhopadhyay C, Chakrabarti A. Specificity of Prodan for the Self-associating Domain of Spectrin: A Molecular Docking Study. J Biomol Struct Dyn 2006; 24:269-76. [PMID: 17054385 DOI: 10.1080/07391102.2006.10507119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The hydrophobic fluorescent probe Prodan binds to the self-associating domain of spectrin with 1:1 stoichiometry. A model of the self-associating domain was generated based on its homology with other domains of spectrin. Prodan was then docked onto the model, and several sites with low interaction energy were identified. To verify whether the binding of Prodan is specific towards the self-associating domain of spectrin, it was docked on to several other domains of spectrin, having a known three-dimensional structure. Analysis of the docking results suggests that the binding of Prodan to the self-associating domain of spectrin will involve hydrophobic and hydrophilic groups of Prodan. The results clearly indicate the preference of Prodan for a particular binding site of the self-associating domain.
Collapse
Affiliation(s)
- Malyasri Bhattacharya
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 India
| | | | | |
Collapse
|
109
|
Batey S, Clarke J. Apparent cooperativity in the folding of multidomain proteins depends on the relative rates of folding of the constituent domains. Proc Natl Acad Sci U S A 2006; 103:18113-8. [PMID: 17108086 PMCID: PMC1636339 DOI: 10.1073/pnas.0604580103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Indexed: 11/18/2022] Open
Abstract
Approximately 75% of eukaryotic proteins contain more than one so-called independently folding domain. However, there have been relatively few systematic studies to investigate the effect of interdomain interactions on protein stability and fewer still on folding kinetics. We present the folding of pairs of three-helix bundle spectrin domains as a paradigm to indicate how complex such an analysis can be. Equilibrium studies show an increase in denaturant concentration required to unfold the domains with only a single unfolding transition; however, in some cases, this is not accompanied by the increase in m value, which would be expected if the protein is a truly cooperative, all-or-none system. We analyze the complex kinetics of spectrin domain pairs, both wild-type and carefully selected mutants. By comparing these pairs, we are able to demonstrate that equilibrium data alone are insufficient to describe the folding of multidomain proteins and to quantify the effects that one domain can have on its neighbor.
Collapse
Affiliation(s)
- Sarah Batey
- Department of Chemistry, University of Cambridge, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
110
|
Das A, Base C, Dhulipala S, Dubreuil RR. Spectrin functions upstream of ankyrin in a spectrin cytoskeleton assembly pathway. ACTA ACUST UNITED AC 2006; 175:325-35. [PMID: 17060500 PMCID: PMC2064573 DOI: 10.1083/jcb.200602095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prevailing models place spectrin downstream of ankyrin in a pathway of assembly and function in polarized cells. We used a transgene rescue strategy in Drosophila melanogaster to test contributions of four specific functional sites in beta spectrin to its assembly and function. (1) Removal of the pleckstrin homology domain blocked polarized spectrin assembly in midgut epithelial cells and was usually lethal. (2) A point mutation in the tetramer formation site, modeled after a hereditary elliptocytosis mutation in human erythrocyte spectrin, had no detectable effect on function. (3) Replacement of repetitive segments 4-11 of beta spectrin with repeats 2-9 of alpha spectrin abolished function but did not prevent polarized assembly. (4) Removal of the putative ankyrin-binding site had an unexpectedly mild phenotype with no detectable effect on spectrin targeting to the plasma membrane. The results suggest an alternate pathway in which spectrin directs ankyrin assembly and in which some important functions of spectrin are independent of ankyrin.
Collapse
Affiliation(s)
- Amlan Das
- Program in Cell & Developmental Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
111
|
Dubreuil RR. Functional links between membrane transport and the spectrin cytoskeleton. J Membr Biol 2006; 211:151-61. [PMID: 17091212 DOI: 10.1007/s00232-006-0863-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/10/2006] [Indexed: 01/12/2023]
Abstract
Membrane transporters precisely regulate which molecules cross the plasma membrane and when they can cross. In many cases it is also important to regulate where substances can cross the plasma membrane. Consequently, cells have evolved mechanisms to confine and stabilize membrane transport proteins within specific subdomains of the plasma membrane. A number of different transporters (including ion pumps, channels and exchangers) are known to physically associate with the spectrin cytoskeleton, a submembrane complex of spectrin and ankyrin. These proteins form a protein scaffold that assembles within discrete subdomains of the plasma membrane in polarized cells. Recent genetic studies in humans and model organisms have provided the opportunity to test the hypothesis that the spectrin cytoskeleton has a direct role in restricting transporters to specialized domains. Remarkably, genetic defects in spectrin and ankyrin can produce effects on cell physiology that are comparable to knockouts of the transporters themselves.
Collapse
Affiliation(s)
- Ronald R Dubreuil
- Dept. of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607, USA.
| |
Collapse
|
112
|
Paramore S, Voth GA. Examining the influence of linkers and tertiary structure in the forced unfolding of multiple-repeat spectrin molecules. Biophys J 2006; 91:3436-45. [PMID: 16891371 PMCID: PMC1614492 DOI: 10.1529/biophysj.106.091108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unfolding pathways of multiple-repeat spectrin molecules were examined using steered molecular dynamics (SMD) simulations to forcibly unfold double- and triple-repeat spectrin molecules. Although SMD has previously been used to study other repeating-domain proteins, spectrin offers a unique challenge in that the linker connecting repeat units has a definite secondary structure, that of an alpha-helix. Therefore, the boundary conditions imposed on a double- or triple-repeat spectrin must be carefully considered if any relationship to the real system is to be deduced. This was accomplished by imposing additional forces on the system which ensure that the terminal alpha-helices behave as if there were no free noncontiguous helical ends. The results of the SMD simulations highlight the importance of the rupture of the alpha-helical linker on the subsequent unfolding events. Rupture of the linker propagates unfolding in the adjacent repeat units by destabilizing the tertiary structure, ultimately resulting in complete unfolding of the affected repeat unit. Two dominant classes of unfolding pathways are observed after the initial rupture of a linker which involve either rupture of another linker (possibly adjacent) or rupture of the basic tertiary structure of a repeat unit. The relationship between the force response observed on simulation timescales and those of experiment or physiological conditions is also discussed.
Collapse
Affiliation(s)
- Sterling Paramore
- Department of Chemistry, Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, 84112-0850, USA
| | | |
Collapse
|
113
|
Kobayashi Y, Katanosaka Y, Iwata Y, Matsuoka M, Shigekawa M, Wakabayashi S. Identification and characterization of GSRP-56, a novel Golgi-localized spectrin repeat-containing protein. Exp Cell Res 2006; 312:3152-64. [PMID: 16875688 DOI: 10.1016/j.yexcr.2006.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/04/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Spectrin repeat (SR)-containing proteins are important for regulation of integrity of biomembranes, not only the plasma membrane but also those of intracellular organelles, such as the Golgi, nucleus, endo/lysosomes, and synaptic vesicles. We identified a novel SR-containing protein, named GSRP-56 (Golgi-localized SR-containing protein-56), by a yeast two-hybrid method, using a member of the transient receptor potential channel family, TRPV2, as bait. GSRP-56 is an isoform derived from a giant SR-containing protein, Syne-1 (synaptic nuclear envelope protein-1, also referred to as Nesprin-1 or Enaptin), predicted to be produced by alternative splicing. Immunological analysis demonstrated that this isoform is a 56-kDa protein, which is localized predominantly in the Golgi apparatus in cardiomyocytes and C2C12 myoblasts/myotubes, and we found that two SR domains were required both for Golgi targeting and for interaction with TRPV2. Interestingly, overexpression of GSRP-56 resulted in a morphological change in the Golgi structure, characterized by its enlargement of cis-Golgi marker antibody-staining area, which would result partly from fragmentation of Golgi membranes. Our findings indicate that GSRP-56 is a novel, particularly small Golgi-localized member of the spectrin family, which possibly play a role in maintenance of the Golgi structure.
Collapse
Affiliation(s)
- Yuko Kobayashi
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | |
Collapse
|
114
|
An X, Guo X, Zhang X, Baines AJ, Debnath G, Moyo D, Salomao M, Bhasin N, Johnson C, Discher D, Gratzer WB, Mohandas N. Conformational Stabilities of the Structural Repeats of Erythroid Spectrin and Their Functional Implications. J Biol Chem 2006; 281:10527-32. [PMID: 16476728 DOI: 10.1074/jbc.m513725200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two polypeptide chains of the erythroid spectrin heterodimer contain between them 36 structural repeating modules, which can function as independently folding units. We have expressed all 36 and determined their thermal stabilities. These vary widely, with unfolding transition mid-points (T(m)) ranging from 21 to 72 degrees C. Eight of the isolated repeats are largely unfolded at physiological temperature. Constructs comprising two or more adjacent repeats show inter-repeat coupling with coupling free energies of several kcal mol(-1). Constructs comprising five successive repeats from the beta-chain displayed cooperativity and strong temperature dependence in forced unfolding by atomic force microscopy. Analysis of aligned sequences and molecular modeling suggests that high stability is conferred by large hydrophobic side chains at position e of the heptad hydrophobic repeats in the first helix of the three-helix bundle that makes up each repeat. This inference was borne out by the properties of mutants in which the critical residues have been replaced. The marginal stability of the tertiary structure at several points in the spectrin chains is moderated by energetic coupling with adjoining structural elements but may be expected to permit adaptation of the membrane to the large distortions that the red cell experiences in the circulation.
Collapse
Affiliation(s)
- Xiuli An
- Red Cell Physiology Laboratory, New York Blood Center, 310 E. 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Saadat L, Pittman L, Menhart N. Structural cooperativity in spectrin type repeats motifs of dystrophin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:943-54. [PMID: 16603424 DOI: 10.1016/j.bbapap.2006.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/16/2006] [Accepted: 02/17/2006] [Indexed: 11/21/2022]
Abstract
Dystrophin is a member of the spectrin family of proteins, which are characterized as being predominantly composed the spectrin-type-repeat, a triple alpha-helical bundle motif present in multiple tandem copies, producing a rod-like shape. Whether or not this motif, which is determined by sequence homology, is correlated with biophysical domains in the intact protein is uncertain. The nature of the domain structure impacts the flexibility and shape of the rod region of this protein, which is a target for modification in several therapeutic approaches aimed at Duchenne Muscular Dystrophy, a common and fatal genetic disease caused by defective dystrophin. We examined three such motifs in dystrophin, expressing them recombinantly both singly and in tandem, and studying their thermodynamic properties by solvent and thermal denaturation. We have found that the degree to which they are independently stable and expressible varies considerably. The fourth motif appears to be largely stable and independent, whereas the third and second motifs interact strongly.
Collapse
Affiliation(s)
- Laleh Saadat
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, 3101 S. Dearborn, Chicago, IL 60616, USA
| | | | | |
Collapse
|
116
|
Scott KA, Randles LG, Moran SJ, Daggett V, Clarke J. The folding pathway of spectrin R17 from experiment and simulation: using experimentally validated MD simulations to characterize States hinted at by experiment. J Mol Biol 2006; 359:159-73. [PMID: 16618492 DOI: 10.1016/j.jmb.2006.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/31/2006] [Accepted: 03/06/2006] [Indexed: 11/27/2022]
Abstract
We present an experimental and computational analysis of the folding pathway of the 17th domain of chicken brain alpha-spectrin, R17. Wild-type R17 folds in a two-state manner and the chevron plot (plot of the logarithm of the observed rate constant against concentration of urea) shows essentially linear folding and unfolding arms. A number of mutant proteins, however, show a change in slope of the unfolding arm at high concentration of denaturant, hinting at complexity in the folding landscape. Through a combination of mutational studies and high temperature molecular dynamics simulations we show that the folding of R17 can be described by a model with two sequential transition states separated by an intermediate species. The rate limiting transition state for folding in water has been characterized both through experimental Phi-value analysis and by simulation. In contrast, a detailed analysis of the transition state predicted to dominate under highly denaturing conditions is only possible by simulation.
Collapse
Affiliation(s)
- Kathryn A Scott
- MRC Centre for Protein Engineering, University of Cambridge Chemical Laboratory, UK
| | | | | | | | | |
Collapse
|
117
|
Batey S, Scott KA, Clarke J. Complex folding kinetics of a multidomain protein. Biophys J 2006; 90:2120-30. [PMID: 16387757 PMCID: PMC1386790 DOI: 10.1529/biophysj.105.072710] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 12/05/2005] [Indexed: 11/18/2022] Open
Abstract
Spectrin domains are three-helix bundles, commonly found in large tandem arrays. Equilibrium studies have shown that spectrin domains are significantly stabilized by their neighbors. In this work we show that domain:domain interactions can also have profound effects on their kinetic behavior. We have studied the folding of a tandem pair of spectrin domains (R1617) using a combination of single- and double-jump stopped flow experiments (monitoring folding by both circular dichroism and fluorescence). Mutant proteins were also used to investigate the complex folding kinetics. We find that, although the domains fold and unfold individually, there is a single rate-determining step for both folding and unfolding of the protein. This is consistent with the equilibrium observation of cooperative folding of the entire two-domain protein. The results may have important biological implications. Not only will the protein fold more efficiently during cotranslational folding, but the ability of the multidomain protein to withstand thermal unfolding in the cell will be dramatically increased. This study suggests that caution has to be exercised when extrapolating from single domains to larger proteins with a number of independently folding modules arranged in tandem. The multidomain protein spectrin is certainly more than "the sum of its parts".
Collapse
Affiliation(s)
- Sarah Batey
- Department of Chemistry, MRC Centre for Protein Engineering, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
118
|
Grzybek M, Chorzalska A, Bok E, Hryniewicz-Jankowska A, Czogalla A, Diakowski W, Sikorski AF. Spectrin-phospholipid interactions. Existence of multiple kinds of binding sites? Chem Phys Lipids 2006; 141:133-41. [PMID: 16566912 DOI: 10.1016/j.chemphyslip.2006.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 02/20/2006] [Indexed: 11/28/2022]
Abstract
The object of this paper is to review briefly the studies on the interactions of erythroid and non-erythroid spectrins with lipids in model and natural membranes. An important progress on the identification of lipid-binding sites has recently been made although many questions remain still unanswered. In particular, our understanding of the physiological role of such interactions is still limited. Another important issue is the occurrence of spectrins in membrane rafts, how they are attached to the raft and what is their function in rafts.
Collapse
Affiliation(s)
- Michał Grzybek
- University of Wrocław, Institute of Biochemistry and Molecular Biology, Poland
| | | | | | | | | | | | | |
Collapse
|
119
|
Wilhelmsen K, Litjens SHM, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, Raymond K, Sonnenberg A. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. ACTA ACUST UNITED AC 2006; 171:799-810. [PMID: 16330710 PMCID: PMC2171291 DOI: 10.1083/jcb.200506083] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)–1 and –2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin α6β4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Salomao M, An X, Guo X, Gratzer WB, Mohandas N, Baines AJ. Mammalian alpha I-spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes. Proc Natl Acad Sci U S A 2006; 103:643-8. [PMID: 16407147 PMCID: PMC1334653 DOI: 10.1073/pnas.0507661103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian red blood cells, unlike those of other vertebrates, must withstand the rigors of circulation in the absence of new protein synthesis. Key to this is plasma membrane elasticity deriving from the protein spectrin, which forms a network on the cytoplasmic face. Spectrin is a tetramer (alphabeta)(2), made up of alphabeta dimers linked head to head. We show here that one component of erythrocyte spectrin, alphaI, is encoded by a gene unique to mammals. Phylogenetic analysis suggests that the other alpha-spectrin gene (alphaII) common to all vertebrates was duplicated after the emergence of amphibia, and that the resulting alphaI gene was preserved only in mammals. The activities of alphaI and alphaII spectrins differ in the context of the human red cell membrane. An alphaI-spectrin fragment containing the site of head-to-head interaction with the beta-chain binds more weakly than the corresponding alphaII fragment to this site. The latter competes so strongly with endogenous alphaI as to cause destabilization of membranes at 100-fold lower concentration than the alphaI fragment. The efficacies of alphaI/alphaII chimeras indicate that the partial structural repeat, which binds to the complementary beta-spectrin element, and the adjacent complete repeat together determine the strength of the dimer-dimer interaction on the membrane. Alignment of all available alpha-spectrin N-terminal sequences reveals three blocks of sequence unique to alphaI. Furthermore, human alphaII-spectrin is closer to fruitfly alpha-spectrin than to human alphaI-spectrin, consistent with adaptation of alphaI to new functions. We conclude that alphaI-spectrin represents a neofunctionalized spectrin adapted to the rapid make and break of tetramers.
Collapse
Affiliation(s)
- Marcela Salomao
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
121
|
Taylor CM, Keating AE. Orientation and oligomerization specificity of the Bcr coiled-coil oligomerization domain. Biochemistry 2005; 44:16246-56. [PMID: 16331985 PMCID: PMC2526250 DOI: 10.1021/bi051493t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Bcr oligomerization domain, from the Bcr-Abl oncoprotein, is an attractive therapeutic target for treating leukemias because it is required for cellular transformation. The domain homodimerizes via an antiparallel coiled coil with an adjacent short, helical swap domain. Inspection of the coiled-coil sequence does not reveal obvious determinants of helix-orientation specificity, raising the possibility that the antiparallel orientation preference and/or the dimeric oligomerization state are due to interactions of the swap domains. To better understand how structural specificity is encoded in Bcr, coiled-coil constructs containing either an N- or C-terminal cysteine were synthesized without the swap domain. When cross-linked to adopt exclusively parallel or antiparallel orientations, these showed similar circular dichroism spectra. Both constructs formed coiled-coil dimers, but the antiparallel construct was approximately 16 degrees C more stable than the parallel to thermal denaturation. Equilibrium disulfide-exchange studies confirmed that the isolated coiled-coil homodimer shows a very strong preference for the antiparallel orientation. We conclude that the orientation and oligomerization preferences of Bcr are not caused by the presence of the swap domains, but rather are directly encoded in the coiled-coil sequence. We further explored possible determinants of structural specificity by mutating residues in the d position of the coiled-coil core. Some of the mutations caused a change in orientation specificity, and all of the mutations led to the formation of higher-order oligomers. In the absence of the swap domain, these residues play an important role in disfavoring alternate states and are especially important for encoding dimeric oligomerization specificity.
Collapse
Affiliation(s)
- Christina M. Taylor
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
122
|
Paramore S, Ayton GS, Mirijanian DT, Voth GA. Extending a spectrin repeat unit. I: linear force-extension response. Biophys J 2005; 90:92-100. [PMID: 16227506 PMCID: PMC1367040 DOI: 10.1529/biophysj.105.066969] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonequilibrium molecular dynamics simulations were used to calculate the elastic properties of a spectrin repeat unit. A contiguous alpha-helical linker was constructed by employing periodic boundary conditions, allowing a novel scheme for evaluating the thermodynamic force as a function of extension. By measuring the force-extension response under small extensions, spectrin was observed to behave primarily as an elastic material with a spring constant of 1700 +/- 100 pN/nm. The implications of this spring constant, in terms of the properties of the spectrin tetramer, are also discussed.
Collapse
Affiliation(s)
- Sterling Paramore
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
123
|
Abstract
A spectrin repeat unit was subject to extension using cyclic expansion nonequilibrium molecular dynamics. Periodic boundary conditions were used to examine the effects of the contiguous alpha-helical linker on the force response. The measured force-extension curve shows a linear increase in the force response when the spectrin repeat unit is extended by approximately 0.4 nm. After that point, the force response peaks and subsequently declines. The peak in the force response marks the point where the spectrin repeat unit undergoes a change in its material properties from a strongly elastic material to a mostly viscous one, on the timescales of the simulations. The force peak is also correlated with rupture of the alpha-helical linker, and is likely the event responsible for the peaks in the sawtooth-pattern force-extension curves measured by atomic force microscopy experiments. Rupture of the linker involves simultaneously breaking approximately four hydrogen bonds that maintain the alpha-helical linker. After this initial rupture, the linker undergoes simple helix-to-coil transitions as the spectrin repeat unit continues to be extended. The implications of linker rupture in the interpretation of unfolding and atomic force microscopy experiments are also discussed.
Collapse
Affiliation(s)
- Sterling Paramore
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
124
|
Rybakova IN, Ervasti JM. Identification of spectrin-like repeats required for high affinity utrophin-actin interaction. J Biol Chem 2005; 280:23018-23. [PMID: 15826935 DOI: 10.1074/jbc.m502530200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most studies aimed at characterizing the utrophinactin interaction have focused on the amino-terminal tandem calponin homology domain. However, we recently reported evidence suggesting that spectrin-like repeats of utrophin also participate in binding to actin. Here we expressed several recombinant fragments encoding the utrophin amino-terminal domain alone or in combination with various numbers of spectrin-like repeats. We further quantitatively characterized the actin binding properties of each recombinant utrophin fragment using a high-speed sedimentation assay. To evaluate the capacity of each protein to stabilize actin filaments, we compared the effect of utrophin recombinant fragments and full-length utrophin on 6-propionyl-2-(N,N-dimethylamino)naphthalene actin depolymerization. Our results suggest that, whereas the amino-terminal domain is essential for primary interaction between utrophin and actin, spectrin-like repeats have additive effects on the affinity and stoichiometry of binding. Our data indicate that the amino-terminal domain and first 10 consecutive spectrin-like repeats recapitulate the actin binding activity of full-length utrophin more faithfully than the amino-terminal domain alone. These findings support the model for lateral association of utrophin along the actin filament and provide the molecular basis for designing the most effective utrophin "mini-genes" for treatment of dystrophinopathies.
Collapse
Affiliation(s)
- Inna N Rybakova
- Department of Physiology, University of Wisconsin Medical School, Madison, 53706, USA
| | | |
Collapse
|
125
|
Ray S, Bhattacharyya M, Chakrabarti A. Conformational study of spectrin in presence of submolar concentrations of denaturants. J Fluoresc 2005; 15:61-70. [PMID: 15711878 DOI: 10.1007/s10895-005-0214-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 06/24/2004] [Indexed: 12/15/2022]
Abstract
The presence of very low concentrations of the commonly used chemical denaturants, guanidinium chloride (GdmCl) and urea brought about conformational changes in the erythrocyte membrane skeletal protein, spectrin. Evidences in support of changes in the quaternary structure of spectrin have been put forward from quenching study of tryptophan fluorescence, by both steady state and time-resolved measurements, using acrylamide as the quencher. It revealed significant differences between the Stern-Volmer quenching constants (K(SV)) and the fraction of accessible tryptophans (f(e)) observed in absence and presence of GdmCl and urea concentrations below 1 M at which the association of the two subunits remains intact. The steady state anisotropy of both the spectrin tryptophans and the spectrin-bound fluorescence probe, Prodan also indicate changes in the overall flexibility of the spectrin dimer, originating from changes in the quaternary structure of spectrin. Studies on the binding of Prodan, further indicate that conformational changes also occur in spectrin near the Prodan-binding site at the terminal domain of the protein which is reflected in 3-4 fold decrease in the affinity of binding of Prodan to spectrin in the presence of GdmCl and urea compared to that observed in the absence of the denaturants. The dissociation constant (K(d)) of Prodan to spectrin is 0.43 microM at 25 degrees C.
Collapse
Affiliation(s)
- Sibnath Ray
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India
| | | | | |
Collapse
|
126
|
Sumandea CA, Fung LWM. Mutational effects at the tetramerization site of nonerythroid alpha spectrin. ACTA ACUST UNITED AC 2005; 136:81-90. [PMID: 15893590 DOI: 10.1016/j.molbrainres.2005.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 11/18/2004] [Accepted: 01/08/2005] [Indexed: 10/25/2022]
Abstract
Spectrin, a prominent cytoskeletal protein, exerts its fundamental role in cellular function by forming a sub-membrane filamentous network. An essential aspect of spectrin network formation is the tetramerization of spectrin alphabeta heterodimers. We used laboratory methods, the yeast two-hybrid system and random mutagenesis, to investigate, for the first time, effects of amino acid mutations on tetramerization of nonerythroid (brain) spectrin (fodrin). Based on high sequence homology with erythroid spectrin, we assume the putative tetramerization region of nonerythroid alpha-spectrin at the N-terminal region. We introduced mutations in the region consisting of residues 1-45 and studied mutational effects on spectrin alphabeta association to form tetramers. We detected single, double, and triple mutations involving 24 residues in this region. These amino acid mutations of nonerythroid alpha-spectrin exhibit full, partial, or no effect on the association with nonerythroid beta-spectrin. Single amino acid mutations in the region of residues 1-9 (D2Y, G5V, V6D, and V8M) did not affect the association. However, seven single mutations (I15F, I15N, R18G, V22D, R25P, Y26N, and R28P) affected the alphabeta association. These mutations were clustered in the region predicted by sequence alignment to be crucial in nonerythroid alpha-spectrin for tetramerization, a region that spanned residues 12-36, corresponding to the partial domain Helix C' (residues 21-45) in erythroid alpha-spectrin. In addition, two other mutations, one upstream and one downstream of this region at positions 10 (E10D) and 37 (R37P), also affected the alphabeta association. Our results implied nonerythroid alpha-spectrin partial domain helix may be longer than Helix C' (residues 21-45 and a total of 25 residues) in erythroid alpha-spectrin and spanned at least residues 10-37. It is interesting to note that seven out of these nine single mutations (I15F, I15N, R18G, V22D, R25P, Y26N, R37P) were at the a, d, e or g heptad positions based on sequence alignment with erythroid alpha-spectrin. Four of the mutated residues (I15, R18, V22, R25) are conserved in both erythroid and nonerythroid spectrin. These positions were previously identified as hot spots in erythroid alpha-spectrin that lead to severe hematological symptoms. This study clearly demonstrated that single mutation in a region predicted to be critical functionally in nonerythroid alpha-spectrin indeed leads to functional abnormalities and may lead to neurological disorders.
Collapse
Affiliation(s)
- Claudia A Sumandea
- Loyola University of Chicago, Department of Chemistry, 6525 N Sheridan Road, Chicago, IL 60626, USA
| | | |
Collapse
|
127
|
Ortiz V, Nielsen SO, Klein ML, Discher DE. Unfolding a linker between helical repeats. J Mol Biol 2005; 349:638-47. [PMID: 15896349 DOI: 10.1016/j.jmb.2005.03.086] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 03/14/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
In many multi-repeat proteins, linkers between repeats have little secondary structure and place few constraints on folding or unfolding. However, the large family of spectrin-like proteins, including alpha-actinin, spectrin, and dystrophin, share three-helix bundle, spectrin repeats that appear in crystal structures to be linked by long helices. All of these proteins are regularly subjected to mechanical stress. Recent single molecule atomic force microscopy (AFM) experiments demonstrate not only forced unfolding but also simultaneous unfolding of tandem repeats at finite frequency, which suggests that the contiguous helix between spectrin repeats can propagate a cooperative helix-to-coil transition. Here, we address what happens atomistically to the linker under stress by steered molecular dynamics simulations of tandem spectrin repeats in explicit water. The results for alpha-actinin repeats reveal rate-dependent pathways, with one pathway showing that the linker between repeats unfolds, which may explain the single-repeat unfolding pathway observed in AFM experiments. A second pathway preserves the structural integrity of the linker, which explains the tandem-repeat unfolding event. Unfolding of the linker begins with a splay distortion of proximal loops away from hydrophobic contacts with the linker. This is followed by linker destabilization and unwinding with increased hydration of the backbone. The end result is an unfolded helix that mechanically decouples tandem repeats. Molecularly detailed insights obtained here aid in understanding the mechanical coupling of domain stability in spectrin family proteins.
Collapse
Affiliation(s)
- Vanessa Ortiz
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
128
|
Franzot G, Sjöblom B, Gautel M, Djinović Carugo K. The Crystal Structure of the Actin Binding Domain from α-Actinin in its Closed Conformation: Structural Insight into Phospholipid Regulation of α-Actinin. J Mol Biol 2005; 348:151-65. [PMID: 15808860 DOI: 10.1016/j.jmb.2005.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 12/22/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Alpha-actinin is the major F-actin crosslinking protein in both muscle and non-muscle cells. We report the crystal structure of the actin binding domain of human muscle alpha-actinin-3, which is formed by two consecutive calponin homology domains arranged in a "closed" conformation. Structural studies and available biochemical data on actin binding domains suggest that two calponin homology domains come in a closed conformation in the native apo-form, and that conformational changes involving the relative orientation of the two calponin homology domains are required for efficient binding to actin filaments. The actin binding activity of muscle isoforms is supposed to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which binds to the second calponin homology domain. On the basis of structural analysis we propose a distinct binding site for PtdIns(4,5)P2, where the fatty acid moiety would be oriented in a direction that allows it to interact with the linker sequence between the actin binding domain and the first spectrin-like repeat, regulating thereby the binding of the C-terminal calmodulin-like domain to this linker.
Collapse
Affiliation(s)
- Giacomo Franzot
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste in Area Science Park, S.S. 14 Km 163,5 34012 Trieste, Italy
| | | | | | | |
Collapse
|
129
|
Pare GC, Easlick JL, Mislow JM, McNally EM, Kapiloff MS. Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp Cell Res 2005; 303:388-99. [PMID: 15652351 DOI: 10.1016/j.yexcr.2004.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 10/07/2004] [Accepted: 10/12/2004] [Indexed: 12/30/2022]
Abstract
Muscle A-kinase anchoring protein (mAKAP) is a scaffold protein found principally at the nuclear envelope of striated myocytes. mAKAP maintains a complex consisting of multiple signal transduction molecules including the cAMP-dependent protein kinase A, the ryanodine receptor calcium release channel, phosphodiesterase type 4D3, and protein phosphatase 2A. By an unknown mechanism, a domain containing spectrin repeats is responsible for targeting mAKAP to the nuclear envelope. We now demonstrate that the integral membrane protein nesprin-1alpha serves as a receptor for mAKAP on the nuclear envelope in cardiac myocytes. Nesprin-1alpha is inserted into the nuclear envelope by a conserved, C-terminal, klarsicht-related transmembrane domain and forms homodimers by the binding of an amino-terminal spectrin repeat domain. Through the direct binding of the nesprin-1alpha amino-terminal dimerization domain to the third mAKAP spectrin repeat, nesprin-1alpha targets mAKAP to the nuclear envelope. In turn, overexpression of these spectrin repeat domains in myocytes can displace mAKAP from nesprin-1alpha.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- A Kinase Anchor Proteins
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Substitution
- Animals
- Base Sequence
- Binding, Competitive
- COS Cells
- Cyclic Nucleotide Phosphodiesterases, Type 4
- DNA, Complementary/genetics
- Dimerization
- Multiprotein Complexes
- Mutagenesis, Site-Directed
- Myocytes, Cardiac/metabolism
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Envelope/metabolism
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Point Mutation
- Protein Structure, Quaternary
- Rats
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Genevieve C Pare
- Department of Pediatrics, Heart Research Center, Oregon Health and Science University, NRC5, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
130
|
Starr DA, Fischer JA. KASH 'n Karry: The KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays 2005; 27:1136-46. [PMID: 16237665 DOI: 10.1002/bies.20312] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A diverse family of proteins has been discovered with a small C-terminal KASH domain in common. KASH domain proteins are localized uniquely to the outer nuclear envelope, enabling their cytoplasmic extensions to tether the nucleus to actin filaments or microtubules. KASH domains are targeted to the outer nuclear envelope by SUN domains of inner nuclear envelope proteins. Several KASH protein genes were discovered as mutant alleles in model organisms with defects in developmentally regulated nuclear positioning. Recently, KASH-less isoforms have been found that connect the cytoskeleton to organelles other than the nucleus. A widened view of these proteins is now emerging, where KASH proteins and their KASH-less counterparts are cargo-specific adaptors that not only link organelles to the cytoskeleton but also regulate developmentally specific organelle movements.
Collapse
Affiliation(s)
- Daniel A Starr
- Section of Molecular and Cellular Biology, Center for Genetics and Development, University of California, Davis, CA, USA
| | | |
Collapse
|
131
|
Scott KA, Batey S, Hooton KA, Clarke J. The folding of spectrin domains I: wild-type domains have the same stability but very different kinetic properties. J Mol Biol 2004; 344:195-205. [PMID: 15504411 DOI: 10.1016/j.jmb.2004.09.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 09/07/2004] [Accepted: 09/17/2004] [Indexed: 11/30/2022]
Abstract
The study of proteins with the same architecture, but different sequence has proven to be a valuable tool in the protein folding field. As a prelude to studies on the folding mechanism of spectrin domains we present the kinetic characterisation of the wild-type forms of the 15th, 16th, and 17th domains of chicken brain alpha-spectrin (referred to as R15, R16 and R17, respectively). We show that the proteins all behave in a two-state manner, with different kinetic properties. The folding rate varies remarkably between different members, with a 5000-fold variation in folding rate and 3000-fold variation in unfolding rate seen for proteins differing only 1 kcal mol(-1) in stability. We show clear evidence for significant complexity in the energy landscape of R16, which shows a change in amplitude outside the stopped-flow timescale and curvature in the unfolding arm of the chevron plot. The accompanying paper describes the characterisation of the folding pathway of this domain.
Collapse
Affiliation(s)
- Kathryn A Scott
- MRC Centre for Protein Engineering, University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
132
|
Kusunoki H, MacDonald RI, Mondragón A. Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. Structure 2004; 12:645-56. [PMID: 15062087 DOI: 10.1016/j.str.2004.02.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 01/20/2004] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
Erythroid spectrin, a major component of the cytoskeletal network of the red cell which contributes to both the stability and the elasticity of the red cell membrane, is composed of two subunits, alpha and beta, each formed by 16-20 tandem repeats. The properties of the repeats and their relative arrangement are thought to be key determinants of spectrin flexibility. Here we report a 2.4 A resolution crystal structure of human erythroid beta-spectrin repeats 8 and 9. This two-repeat fragment is unusual as it exhibits low stability of folding and one of its repeats lacks two tryptophans highly conserved among spectrin repeats. Two key factors responsible for the lower stability and, possibly, its flexibility, are revealed by the structure. A third novel feature of the structure is the relative orientation of the two repeats, which increases the range of possible conformations and provides new insights into atomic models of spectrin flexibility.
Collapse
Affiliation(s)
- Hideki Kusunoki
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208 USA
| | | | | |
Collapse
|
133
|
Ray S, Chakrabarti A. Membrane interaction of erythroid spectrin: surface-density-dependent high-affinity binding to phosphatidylethanolamine. Mol Membr Biol 2004; 21:93-100. [PMID: 15204438 DOI: 10.1080/09687680310001625800] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Density-dependent spectrin binding to dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine (DMPC/DMPE) small uni-lamellar vesicles (SUVs) has been directly evaluated in this work from the increase in the extent of quenching of the tryptophan fluorescence of spectrin at two different temperatures, above and below the main phase transition temperatures (Tm). Results from the binding studies of spectrin to phospholipid SUVs indicated that the binding dissociation constant Kd, increased from 45 +/- 7 nM in pure DMPC SUVs to 219 +/- 20 nM in DMPC/DMPE (50:50) SUVs, both in the gel and liquid crystalline phase. However, in pure DMPE SUVs the Kd decreased drastically to 0.7 +/- 0.2 nM in the gel phase at 18 degrees C and to 2.6 +/- 0.7 nM in the fluid phase at 55 degrees C indicating a high affinity binding of spectrin for the bilayer-forming DMPE. The maximum extent of phospholipid-induced quenching and the number of spectrin molecules associated with one SUV particle, evaluated in the present work, led to a model in DMPC/DMPE bilayer membranes indicating the PE-binding site of spectrin to localize at one of the terminal domains of the dimeric spectrin. A direct evidence of the localization of the PE-binding site at one of the terminal ends of the spectrin dimer also came from electron microscopic observation in fluid membranes made of bovine brain PE.
Collapse
Affiliation(s)
- Sibnath Ray
- Biophysics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | |
Collapse
|
134
|
Wang Y, Ha Y. The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain. Mol Cell 2004; 15:343-53. [PMID: 15304215 DOI: 10.1016/j.molcel.2004.06.037] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/20/2004] [Accepted: 05/24/2004] [Indexed: 01/08/2023]
Abstract
Amyloid beta-peptide, which forms neuronal and vascular amyloid deposits in Alzheimer's disease, is derived from an integral membrane protein precursor. The biological function of the precursor is currently unclear. Here we describe the X-ray structure of E2, the largest of the three conserved domains of the precursor. The structure of E2 consists of two coiled-coil substructures connected through a continuous helix and bears an unexpected resemblance to the spectrin family of protein structures. E2 can reversibly dimerize in the solution, and the dimerization occurs along the longest dimension of the molecule in an antiparallel orientation, which enables the N-terminal substructure of one monomer to pack against the C-terminal substructure of a second monomer. Heparan sulfate proteoglycans, the putative ligand for the precursor present in extracellular matrix, bind to E2 at a conserved and positively charged site near the dimer interface.
Collapse
Affiliation(s)
- Yongcheng Wang
- Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
135
|
Liu J, Taylor DW, Taylor KA. A 3-D reconstruction of smooth muscle alpha-actinin by CryoEm reveals two different conformations at the actin-binding region. J Mol Biol 2004; 338:115-25. [PMID: 15050827 DOI: 10.1016/j.jmb.2004.02.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 02/05/2004] [Accepted: 02/11/2004] [Indexed: 11/20/2022]
Abstract
Cryoelectron microscopy was used to obtain a 3-D image at 2.0 nm resolution of 2-D arrays of smooth muscle alpha-actinin. The reconstruction reveals a well-resolved long central domain with 90 degrees of left-handed twist and near 2-fold symmetry. However, the molecular ends which contain the actin binding and calmodulin-like domains, have different structures oriented approximately 90 degrees to each other. Atomic structures for the alpha-actinin domains were built by homology modeling and assembled into an atomic model. Model building suggests that in the 2-D arrays, the two calponin homology domains that comprise the actin-binding domain have a closed conformation at one end and an open conformation at the other end due to domain swapping. The open and closed conformations of the actin-binding domain suggests flexibility that may underlie Ca2+ regulation. The approximately 90 degrees orientation difference at the molecular ends may underlie alpha-actinin's ability to crosslink actin filaments in nearly any orientation.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
136
|
Asin-Cayuela J, Helm M, Attardi G. A Monomer-to-Trimer Transition of the Human Mitochondrial Transcription Termination Factor (mTERF) Is Associated with a Loss of in Vitro Activity. J Biol Chem 2004; 279:15670-7. [PMID: 14744862 DOI: 10.1074/jbc.m312537200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human mitochondrial transcription termination factor (mTERF) is a nuclear-encoded 39-kDa protein that recognizes a mtDNA segment within the mitochondrial tRNA(Leu(UUR)) gene immediately adjacent to and downstream of the 16 S rRNA gene. Binding of mTERF to this site promotes termination of rDNA transcription. Despite the fact that mTERF binds DNA as a monomer, the presence in its sequence of three leucine-zipper motifs suggested the possibility of mTERF establishing intermolecular interactions with proteins of the same or different type. When a mitochondrial lysate from HeLa cells was submitted to gel filtration chromatography, mTERF was eluted in two peaks, as detected by immunoblotting. The first peak, which varied in proportion between 30 and 50%, appeared at the position expected from the molecular mass of the monomer (41 +/- 2 kDa), and the gel filtration fractions that contained it exhibited DNA binding activity. Most interestingly, the material in this peak had a strong stimulating activity on in vitro transcription of the mitochondrial rDNA. The second peak eluted at a position corresponding to an estimated molecular mass of 111 +/- 5 kDa. No mTERF DNA binding activity could be detected in the corresponding gel filtration fractions. Therefore, we propose that mTERF exists in mitochondria in two forms, an active monomer and an inactive large size complex. The estimated molecular weight of this complex and the fact that purified mTERF can be eluted from a gel filtration column as a complex of the same molecular weight strongly suggest that this inactive complex is a homotrimer of mTERF.
Collapse
Affiliation(s)
- Jordi Asin-Cayuela
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
137
|
Abstract
Hereditary elliptocytosis (HE) is a common disorder of erythrocyte shape, occurring especially in individuals of African and Mediterranean ancestry, presumably because elliptocytes confer some resistance to malaria. The principle lesion in HE is mechanical weakness or fragility of the erythrocyte membrane skeleton due to defects in alpha-spectrin, beta-spectrin, or protein 4.1. Numerous mutations have been described in the genes encoding these proteins, including point mutations, gene deletions and insertions, and mRNA processing defects. Several mutations have been identified in a number of individuals on the same genetic background, suggesting a "founder effect." The majority of HE patients are asymptomatic, but some may experience hemolytic anemia, splenomegaly, and intermittent jaundice.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, PO Box 208064, New Haven, CT 06520-8064, USA
| |
Collapse
|
138
|
Holton J, Alber T. Automated protein crystal structure determination using ELVES. Proc Natl Acad Sci U S A 2004; 101:1537-42. [PMID: 14752198 PMCID: PMC341770 DOI: 10.1073/pnas.0306241101] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2003] [Accepted: 11/24/2003] [Indexed: 11/18/2022] Open
Abstract
Efficient determination of protein crystal structures requires automated x-ray data analysis. Here, we describe the expert system ELVES and its use to determine automatically the structure of a 12-kDa protein. Multiwavelength anomalous diffraction analysis of a selenomethionyl derivative was used to image the Asn-16-Ala variant of the GCN4 leucine zipper. In contrast to the parallel, dimeric coiled coil formed by the WT sequence, the mutant unexpectedly formed an antiparallel trimer. This structural switch reveals how avoidance of core cavities at a single site can select the native fold of a protein. All structure calculations, including indexing, data processing, locating heavy atoms, phasing by multiwavelength anomalous diffraction, model building, and refinement, were completed without human intervention. The results demonstrate the feasibility of automated methods for determining high-resolution, x-ray crystal structures of proteins.
Collapse
Affiliation(s)
- James Holton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3206
| | | |
Collapse
|
139
|
Abstract
We have investigated the prefibrillar state of salmon (s) and human (h) calcitonin (CT). Size exclusion chromatography at pH 3.3 and 7.4 indicates that sCT is present in solution as a dimer, whereas hCT elutes as a monomer at pH 3.3 and as monomer-dimer at pH 7.4. Guanidine hydrochloride unfolding experiments show that dimerization is stabilized by hydrophobic interactions. We investigated the dimeric structure by multidimensional nuclear magnetic resonance spectroscopy and calculations by using an sCT mutant (LAsCT) in which Pro23 and Arg24 were substituted for Leu23 and Ala24. As indicated by the Leu9-Tyr27 and Leu12-Leu19 contacts, the mutated hormone forms a head-to-tail dimer whose basic unit is an alpha-helix in the region Leu12-Tyr22. The solution behavior of LAsCT is identical to that of sCT, so the dimeric structure can safely be extended to sCT: we believe that such a structure inhibits fibril maturation in sCT. No stable dimer was observed for hCT, which we attributed to the absence of a defined helical structure. However, we suggest that intermolecular collisions of short ordered regions (for example, a sequence of turns) in hCT favors intermolecular contacts, and specific orientation can be obtained through hydrogen bond formation involving Tyr12, Phe16, and Phe19, with the aromatic ring acting as an acceptor. Taken together, our results indicate that hCT fibrillation can be reduced by favoring a helical dimer, obtainable by replacing the three aromatic amino acids with leucines.
Collapse
Affiliation(s)
- Giuseppina Andreotti
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Edificio 70, Via Campi Flegrei 34, I-80078 Pozzuoli (Napoli), Italy
| | | |
Collapse
|
140
|
Gallagher PG, Zhang Z, Morrow JS, Forget BG. Mutation of a highly conserved isoleucine disrupts hydrophobic interactions in the alpha beta spectrin self-association binding site. J Transl Med 2004; 84:229-34. [PMID: 14661034 DOI: 10.1038/labinvest.3700029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We studied an infant with severe neonatal hemolytic anemia and hyperbilirubinemia that evolved into a partially compensated ellipto-poikilocytic anemia. His father had typical elliptocytosis. Their erythrocyte membranes demonstrated structural and functional defects in spectrin. Genetic studies revealed that the proband and his father were heterozygous for an alpha-spectrin mutation, Ile24Thr, in the alpha beta spectrin self-association binding site. The proband also carried the low expression allele alpha(LELY) in trans, influencing the clinical phenotype. The importance of isoleucine in this position of the proposed triple helical model of spectrin repeats is highlighted by its evolutionary conservation in all alpha spectrins from Drosophila to humans. Molecular modeling demonstrated that replacement of a hydrophobic isoleucine with a hydrophilic threonine disrupts highly conserved hydrophobic interactions in the interior of the spectrin triple helix critical for spectrin function.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520-8064, USA.
| | | | | | | |
Collapse
|
141
|
Grynberg M, Jaroszewski L, Godzik A. Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization. BMC Bioinformatics 2003; 4:46. [PMID: 14536023 PMCID: PMC270062 DOI: 10.1186/1471-2105-4-46] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 10/10/2003] [Indexed: 12/02/2022] Open
Abstract
Background The correct folding and dimerization of tubulins, before their addition to the microtubular structure, needs a group of conserved proteins called cofactors A to E. The biochemical analysis of cofactors gave an insight to their general functions, however not much is known about the domain structure and detailed, molecular function of these proteins. Results Combining modelling and fold prediction tools, we present 3D models of all cofactors, including several previously unannotated domains of cofactors B-E. Apart from the new HEAT and Armadillo domains in cofactor D and an unusual spectrin-like domain in cofactor C, we have identified a new subfamily of ubiquitin-like domains in cofactors B and E. Together, these observations provide a reliable, molecular level model of cofactor complex. Conclusion Distant homology searches allowed the identification of unknown regions of cofactors as self-reliant domains and allow us to present a detailed hypothesis of how a cofactor complex performs its function.
Collapse
Affiliation(s)
- Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St, 02-106 Warsaw, Poland
- The Burnham Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Lukasz Jaroszewski
- current address Bioinformatics Core for Joint Center for Structural Genomics, UCSD, 9500 Gillman Dr. La Jolla, CA 92093, USA
| | - Adam Godzik
- The Burnham Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| |
Collapse
|
142
|
Park S, Caffrey MS, Johnson ME, Fung LWM. Solution structural studies on human erythrocyte alpha-spectrin tetramerization site. J Biol Chem 2003; 278:21837-44. [PMID: 12672815 DOI: 10.1074/jbc.m300617200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the solution NMR structure of a recombinant peptide that consists of the first 156 residues of erythroid alpha-spectrin. The first 20 residues preceding the first helix (helix C') are in a disordered conformation. The subsequent three helices (helices A1, B1, and C1) form a triple helical bundle structural domain that is similar, but not identical, to previously published structures for spectrin from Drosophila and chicken brain. Paramagnetic spin label-induced NMR resonance broadening shows that helix C', the partial domain involved in alpha- and beta-spectrin association, exhibits little interaction with the structural domain. Surprisingly, helix C' is connected to helix A1 of the structural domain by a segment of 7 residues (the junction region) that exhibits a flexible disordered conformation, in contrast to the predicted rigid helical structure. We suggest that the flexibility of this particular junction region may play an important role in modulating the association affinity of alpha- and beta-spectrin at the tetramerization site of different isoforms, such as erythroid spectrin and brain spectrin. These findings may provide insight for explaining various physiological and pathological conditions that are a consequence of varying alpha- and beta-subunit self-association affinities in their formation of the various spectrin tetramers.
Collapse
Affiliation(s)
- Sunghyouk Park
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
143
|
Sutherland-Smith AJ, Moores CA, Norwood FLM, Hatch V, Craig R, Kendrick-Jones J, Lehman W. An atomic model for actin binding by the CH domains and spectrin-repeat modules of utrophin and dystrophin. J Mol Biol 2003; 329:15-33. [PMID: 12742015 DOI: 10.1016/s0022-2836(03)00422-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Utrophin and dystrophin link cytoskeletal F-actin filaments to the plasmalemma. Genetic strategies to replace defective dystrophin with utrophin in individuals with muscular dystrophy requires full characterization of these proteins. Both contain homologous N-terminal actin-binding motifs composed of a pair of calponin-homology (CH) domains (CH1 and CH2) that are connected by spectrin-repeat modules to C-terminal membrane-binding sequences. Here, electron microscopy and 3D reconstruction of F-actin decorated with utrophin and dystrophin actin-binding constructs were performed using Utr261 (utrophin's CH domain pair), Utr416 (utrophin's CH domains and first spectrin-repeat) and Dys246 (dystrophin's CH domain pair). The lozenge-like utrophin CH domain densities localized to the upper surface of actin subdomain 1 and extended azimuthally over subdomain 2 toward subdomains 3 and 4. The cylinder-shaped spectrin-repeat was located at the end of the CH domain pair and was aligned longitudinally along the cleft between inner and outer actin domains, where tropomyosin is present when on thin filaments. The connection between the spectrin-repeat module and the CH domains defined the orientation of CH1 and CH2 on actin. Resolution of utrophin's CH domains and spectrin-repeats permitted docking of crystal structures into respective EM densities, leading to an atomic model where both CH and spectrin-domains bind actin. The CH domain-actin interaction for dystrophin was found to be more complex than for utrophin. Binding assays showed that Utr261 and Utr416 interacted with F-actin as monomers, whereas Dys246 appeared to associate as a dimer, consistent with a bilobed Dys246 structure observed on F-actin in electron microscope reconstructions. One of the lobes was similar in shape, position and orientation to the monomeric CH domains of Utr261, while the other lobe apparently represented a second set of CH domains in the dimeric Dys246. The extensive contact made by dystrophin on actin may be used in vivo to help muscles dissipate mechanical stress from the contractile apparatus to the extracellular matrix.
Collapse
Affiliation(s)
- Andrew J Sutherland-Smith
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
144
|
Collins BM, Watson PJ, Owen DJ. The structure of the GGA1-GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs. Dev Cell 2003; 4:321-32. [PMID: 12636914 DOI: 10.1016/s1534-5807(03)00037-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The GGAs are a family of clathrin adaptor proteins involved in vesicular transport between the trans-Golgi network and endosomal system. Here we confirm reports that GGAs are targeted to the Golgi via interaction between the GGA-GAT domain and ARF-GTP, and we present the structure of the GAT domain of human GGA1, completing the structural description of the folded domains of GGA proteins. The GGA-GAT domain possesses an all alpha-helical fold with a "paper clip" topology comprising two independent subdomains. Structure-based mutagenesis demonstrates that ARF1-GTP binding by GGAs is exclusively governed by the N-terminal "hook" subdomain, and, using an in vitro recruitment assay, we show that ARF-GTP binding by this small structure is required and sufficient for Golgi targeting of GGAs.
Collapse
Affiliation(s)
- Brett M Collins
- Department of Clinical Biochemistry, University of Cambridge, Hills Road, CB2 2XY, Cambridge, United Kingdom.
| | | | | |
Collapse
|
145
|
Abstract
Mechanisms for nuclear migration and nuclear anchorage function together to control nuclear positioning. Both tubulin and actin networks play important roles in nuclear positioning. The actin cytoskeleton has been shown to position nuclei in a variety of systems from yeast to plants and animals. It can either act as a stable skeleton to anchor nuclei or supply the active force to move nuclei. Two C. elegans genes and their homologues play important roles in these processes. Syne/ANC-1 anchors nuclei by directly tethering the nuclear envelope to the actin cytoskeleton, and UNC-84/SUN functions at the nuclear envelope to recruit Syne/ANC-1.
Collapse
Affiliation(s)
- Daniel A Starr
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
146
|
Ray S, Chakrabarti A. Erythroid spectrin in miceller detergents. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:16-28. [PMID: 12451592 DOI: 10.1002/cm.10082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have studied the interaction of spectrin, the major protein of the erythrocyte cytoskeleton, with four commonly used detergents at concentrations above their critical miceller concentrations (cmc). Fluorescence spectroscopic studies on the emission intensity, steady state polarization, quenching with acrylamide, and time-resolved fluorescence measurements were done with spectrin in anionic detergents, e.g., SDS, deoxycholate, and nonionic detergents, e.g., Triton-X-100 and octylglucoside at concentrations double their respective cmc's. The spectrin-detergent complexes in all four systems have been characterized by far-UV CD and measurements on tryptophan fluorescence in combination with fluorescence of the extrinsic probe, pyrene. Tryptophan fluorescence studies revealed quaternary structural changes due to unzipping of the spectrin subunits in Triton-X-100 without complete dissociation. Both Triton-X-100 and SDS were found to partially denature spectrin indicated by the far-UV CD. Octylglucoside and deoxycholate are shown to have the least structural perturbations on the cytoskeletal protein, rationalizing the use of octylglucoside, in particular and also deoxycholate to be the most effective in preparing cytoskeletal fractions from erythrocytes rather than the Triton-X-100 that has long been used for preparing the Triton shells.
Collapse
Affiliation(s)
- Sibnath Ray
- Biophysics Division, Saha Institute of Nuclear Physics, Calcutta, India
| | | |
Collapse
|
147
|
Shiba K, Shirai T, Honma T, Noda T. Translated products of tandem microgene repeats exhibit diverse properties also seen in natural proteins. Protein Eng Des Sel 2003; 16:57-63. [PMID: 12646693 DOI: 10.1093/proeng/gzg003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Repetitiousness is often observed in the primary and tertiary structures of proteins. We are intrigued by the potential role played by periodicity in the evolution of proteins and have created artificial repetitious proteins from repeats of short DNA sequences (microgenes). In this paper we characterize the physicochemical properties of six such artificially created proteins, which are the translated products of repeats of three microgenes. Three of the six proteins contain beta-sheet-like structures and are rather hydrophobic in nature. These proteins form macroscopic membranous structures in the presence of monovalent cationic ions, suggesting they have the capacity to promote strong intermolecular interactions. Of the other three proteins, one is comprised of alpha-helices and two have disordered structures. Small angle X-ray scattering analysis indicates that the artificial proteins do not fold as tightly as natural proteins, but are more compact than if completely denatured. One alpha-helical protein whose microgene unit was designed from coiled coil proteins was crystallized, demonstrating that repetitious artificial proteins can undergo transition to a more ordered state under appropriate conditions. Application of this approach to the development of a novel protein engineering system is discussed.
Collapse
Affiliation(s)
- Kiyotaka Shiba
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Toshima, Tokyo 170-8455, Japan.
| | | | | | | |
Collapse
|
148
|
Damelin M, Silver PA. In situ analysis of spatial relationships between proteins of the nuclear pore complex. Biophys J 2002; 83:3626-36. [PMID: 12496130 PMCID: PMC1302438 DOI: 10.1016/s0006-3495(02)75363-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Macromolecular transport between the nucleus and cytoplasm occurs through the nuclear pore complexes (NPCs). The NPC in the budding yeast Saccharomyces cerevisiae is a 60-MDa structure embedded in the nuclear envelope and composed of ~30 proteins, termed nucleoporins or nups. Here we present a large-scale analysis of spatial relationships between nucleoporins using fluorescence resonance energy transfer (FRET) in living yeast cells. Energy transfer was measured in a panel of strains, each of which coexpresses the enhanced cyan and yellow fluorescent proteins as fusions to distinct nucleoporins. With this approach, we have determined 13 nucleoporin pairs yielding FRET signals. Independent experiments are consistent with the FRET results: Nup120 localization is perturbed in the nic96-1 mutant, as is Nup82 localization in the nup116Delta mutant. To better understand the spatial relationship represented by an in vivo FRET signal, we have investigated the requirements of these signals. We demonstrate that in one case FRET signal is lost upon insertion of a short spacer between the nucleoporin and its enhanced yellow fluorescent protein label. We also show that the Nup120 FRET signals depend on whether the fluorescent moiety is fused to the N- or C-terminus of Nup120. Combined with existing data on NPC structure, the FRET pairs identified in this study allow us to propose a refined molecular model of the NPC. We suggest that the approach may serve as a prototype for the in situ study of other large macromolecular complexes.
Collapse
Affiliation(s)
- Marc Damelin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and the Dana-Farber Cancer Institute, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | | |
Collapse
|
149
|
Röper K, Gregory SL, Brown NH. The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. J Cell Sci 2002; 115:4215-25. [PMID: 12376554 DOI: 10.1242/jcs.00157] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have characterised a family of giant cytoskeletal crosslinkers encoded by the short stop gene in Drosophila and the dystonin/BPAG1 and MACF1 genes in mammals. We refer to the products of these genes as spectraplakins to highlight the fact that they share features with both the spectrin and plakin superfamilies. These genes produce a variety of large proteins, up to almost 9000 residues long, which can potentially extend 0.4 micro m across a cell. Spectraplakins can interact with all three elements of the cytoskeleton: actin, microtubules and intermediate filaments. The analysis of mutant phenotypes in BPAG1 in mouse and short stop in Drosophila demonstrates that spectraplakins have diverse roles. These include linking the plasma membrane and the cytoskeleton, linking together different elements of the cytoskeleton and organising membrane domains.
Collapse
Affiliation(s)
- Katja Röper
- Wellcome Trust/Cancer Research UK Institute and Dept of Anatomy, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | |
Collapse
|
150
|
Abstract
Mutations in anc-1 (nuclear anchorage defective) disrupt the positioning of nuclei and mitochondria in Caenorhabditis elegans. ANC-1 is shown to consist of mostly coiled regions with a nuclear envelope localization domain (called the KASH domain) and an actin-binding domain; this structure was conserved with the Drosophila protein Msp-300 and the mammalian Syne proteins. Antibodies against ANC-1 localized cytoplasmically and were enriched at the nuclear periphery in an UNC-84-dependent manner. Overexpression of the KASH domain or the actin-binding domain caused a dominant negative anchorage defect. Thus, ANC-1 may connect nuclei to the cytoskeleton by interacting with UNC-84 at the nuclear envelope and with actin in the cytoplasm.
Collapse
Affiliation(s)
- Daniel A Starr
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|